
An ML-based Generative Workflow for Metal-Organic Framework Synthesis
Shehtab Zaman*, Christopher Owen✢, Jacob Barkovitch*, Kevin Phillips*, Musen Zhou‡, Jianzhong Wu‡, Kenneth Chiu*, Michael Lawler✢

Introduction
In recent years Metal-organic frameworks (MOFs) have 
emerged as a substantial class of crystalline structures with 
extremely high porosity, inner surface area, and variability of 
the organic and inorganic components. MOFs have applications 
in gas separation, gas purification, and electrolytic catalysis, 
among other fields. The creation of better MOFs for these 
purposes represents a multibillion-dollar engineering challenge.

We develop a ML based workflow to generate and characterize 
MOFs. We use a generative adversarial network, a deep 
generative model, to synthesize periodic energy grids.

We also focus on the characterization of MOFs to speed up 
workflow. We use a dimensionality reduction algorithms to take 
3D coordinates down to 2D image representations to utilize 
existing deep learning vision algorithms. We use transfer 
learning to predict geometric properties such as largest cavity 
diameter, pore limiting diameter, and accessible surface area.

We characterize the electronic properties of MOFs as well. We 
use a Graph CNN on the 3D coordinates to predict the 
geometric properties and potential energies of MOFs. We use 
physics guided graph kernel that takes advantage of the local 
interactions of quantum systems to predict bond level energy 
functions and predict potential energies an order of magnitude 
faster than density functional theory.
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Datasets
We use the computation ready experimental metal organic 
framework [1] (CoRE MOF) dataset for our generative and 
predictive tasks. The energy grids are generated by processing 
the atomic coordinates obtained from the dataset.

The dataset for the Graph model is constructed using Quantum
Espresso [2], an ab initio software for electronic structure and 
energy calculations. We used the FIGXAU from the CoRE
MOF database. We found the ground state configuration using 
the Kjpaw [3] pseudopotentials and the Perdew-Burke-
Ernzerhof(PBE) [4] exchange-correlation functional. From this 
ground state configuration, random fluctuations were 
introduced by allowing each atom to randomly move any 
rational number between (Å) either on its x,y or z axis. 47,617 
new atomic configurations were generated and a Self-
Consistent Field Calculation (SCF) was done for each one.

Generation:
Energy Grids

As we know, generating novel MOFs is an 
important challenge to solve. We use 
a Wasserstein Generative Adversarial Network 
with 3D convolutions to generate new MOF 
energy grids. We treat the energy grids as a 
blueprint informing us of potential

The energy grids are obtained 
using the Feynman-Hibbs 4th

order corrected Lennard-Jones 
potential energy. The energy grids 
directly correlate to the hydrogen 
adsorption capabilities of MOF.

A GAN is used to generate novel
energy grids. The GAN is 
compromised of two separate 
neural networks. The first is a 
generator which tries to create
realistic energy grids. The second 
is a discriminator that tries to
distinguish between real energy
grids (from the dataset) and 
fakes (created by the generator).

Characterization: 
Electronic Properties

The potential energy is a fundamental calculation needed to 
design MOFs for many applications. It is
currently computed via techniques such as
density functional theory (DFT), which are
prohibitively expensive and not
suitable for high-throughput screening.

We propose a graph convolutional network,
MOFGCN, to predict potential
energies of MOFs.

We represent the crystal structures using
graphs, such that each atom is represented
by a node, and the edge represents the
nearest image distance between the two
atoms.

We can predict the potential energy and generate bond level 
energies.
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Characterization: Geometric 
Properties

There are many pretrained 2D CNN models. 
As a result, we use multi-dimensional scaling 
(MDS) to translate MOF 3D coordinates to 2D. 
MDS can preserve the geometric properties of 
the 3D data and illustrate it in the 2D images. 
Some of these geometric properties include, 
largest cavity diameter (LCD), Pore Limiting 
Diameter (PLD) and Henry's Constant.

We initially tested on spheres which were easy 
to generate and calculate LCDs. We then used 
MOFs from the CoRE MOF Dataset and tested 
several different methods.

We first ran MDS on each MOF's coordinates. 
Our second method was tiling the MOFs to 
capture hidden cavities. The third was passing 
the distance matrix of the MOF into MDS.

We decided to use the distance matrix MOFs 
for testing because of their fast generation and 
similarity to the synthesized spheres.

MDS

Fig. Energy grid 
representation of the unit 
cell of a MOF. Each voxel 
represents the energy value 
for that region.
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Our results were good on the MOFs generated with the distance 
matrix as seen in the graphs below. We did test on the tiled 
MOFs and single MOFs, but they were both less accurate. The 
average percent error was 85% with a median error of 45%. The 
yellow graph shows the relative errors for the MOFs.
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For any questions feel free to contact Shehtab Zaman 
szaman5@binghamton.edu
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