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In recent years Metal-organic frameworks (MOFs) have Enerqy Grids Propertles _ :Z? Electronic Propertles
emerged as a substantial class of crystalline structures with . . There are many pretrained 2D CNN models. = % | . . .
) o - As we know, generating novel MOFs is an As aresult, we use multi-dimensional scaling ‘ [ < The potential energy is a fundamental calculation needed to
extremely high porosity, inner surface area, and variability of important challenge to solve. We use ' _ I e wn sl B desian MOFEs f licat it
the organic and inorganic components. MOFs have applications a\/?/asserstein ngerative Adversarial Network (MDS) to translate MOF 3D coordinates to 2D. g eS|gr:| S O; rgaf?y tap[;ll(_;a ons. rl]s (]
in gas separation, gas purification, and electrolytic catalysis, . . MDS can preserve the geometric properties of MDS currently computed via technigues such as o
. . with 3D convolutions to generate new MOF the 3D data and illustrate itin the 2D images. density functional theory (DFT), which are Arbitrary Neural
among other fields. The creation of better MOFs for these ener rids. We treat the ener rids as a i ag i rohibitively expensive and not Netw ork
purposes represents a multibillion-dollar engineering challenge. dy gras. W 9y g Some of these geometric properties include, PK¢ Y €Xp .
blueprint informing us of potential largest cavity diameter (LCD), Pore Limiting . ,ﬁ:,,m suitable for high-throughput screening.
We develop a ML based workflow to generate and characterize The enerav arids are obtained Diameter (PLD) and Henry's Constant. 180 . k¢ W " utional network
MOFs. We use a generative adversarial network, a deep usin theggegnman-Hibbs 4th o . i .-}_;,' . s Mggéogﬁsf a gradp tco;wofu |Iona NEWorK,
generative model, to synthesize periodic energy grids. g Y We initially tested on spheres which were easy "' . | o >IN, 10 predict potentia
order corrected Lennard-Jones to generate and calculate LCDs. We then used - Wi i energies of MOFs. NN Output

potential energy. The energy grids
directly correlate to the hydrogen
adsorption capabilities of MOF.

MOFs from the CORE MOF Dataset and tested =~ °
several different methods. We represent the crystal structures using

graphs, such that each atom is represented
by a node, and the edge represents the
nearest image distance between the two

We also focus on the characterization of MOFs to speed up
workflow. We use a dimensionality reduction algorithms to take
3D coordinates down to 2D image representations to utilize
existing deep learning vision algorithms. We use transfer
learning to predict geometric properties such as largest cavity

We first ran MDS on each MOF's coordinates.
Our second method was tiling the MOFs to

A GAN is used to generate novel

diameter, pore limiting diameter, and accessible surface area. energy grids. The GAN is Fig. Energy grid capture hidden cavities. The third was passing atoms.
compromised of two separate representation of the unit the distance matrix of the MOF into MDS.
We characterize the electronic properties of MOFs as well. We neural networ_ks. The first is a cell of a MOFE. Each voxel We can predict the potential energy and generate bond level
use a Graph CNN on the 3D coordinates to predict the generator which tries to create represents _the energy value We decided to use the distance matrix MOFs energies.
geometric properties and potential energies of MOFs. We use realistic energy grids. The second  for that region. for testing because of their fast generation and B
physics guided graph kernel that takes advantage of the locall Is a discriminator that tries to similarity to the synthesized spheres. -
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distinguish between real energy
grids (from the dataset) and Distance Matrix Tiled MOF
fakes (created by the generator). =

interactions of quantum systems to predict bond level energy
functions and predict potential energies an order of magnitude
faster than density functional theory.
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Our results were good on the MOFs generated with the distance
matrix as seen in the graphs below. We did test on the tiled .
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MOFs and single MOFs, but they were both less accurate. The

Datasets
We use the computation ready experimental metal organic
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the atomic coordinates obtained from the dataset.
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Consistent Field Calculation (SCF) was done for each one.
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