
WfBench: Automated Generation of
Scientific Workflow Benchmarks

Tainã Coleman⇤, Henri Casanova† Ketan Maheshwari‡, Loı̈c Pottier⇤, Sean R. Wilkinson‡
Justin Wozniak§, Frédéric Suter‡, Mallikarjun Shankar‡, Rafael Ferreira da Silva‡

⇤University of Southern California, Marina del Rey, CA, USA †University of Hawaii, Honolulu, HI, USA
§Argonne National Laboratory, Lemont, IL, USA ‡Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract—The prevalence of scientific workflows with high
computational demands calls for their execution on various dis-
tributed computing platforms, including large-scale leadership-
class high-performance computing (HPC) clusters. To handle the
deployment, monitoring, and optimization of workflow execu-
tions, many workflow systems have been developed over the past
decade. There is a need for workflow benchmarks that can be
used to evaluate the performance of workflow systems on current
and future software stacks and hardware platforms.

We present a generator of realistic workflow benchmark
specifications that can be translated into benchmark code to be
executed with current workflow systems. Our approach generates
workflow tasks with arbitrary performance characteristics (CPU,
memory, and I/O usage) and with realistic task dependency
structures based on those seen in production workflows. We
present experimental results that show that our approach gener-
ates benchmarks that are representative of production workflows,
and conduct a case study to demonstrate the use and usefulness
of our generated benchmarks to evaluate the performance of
workflow systems under different configuration scenarios.

Index Terms—scientific workflows, workflow benchmarks, dis-
tributed computing

I. INTRODUCTION

Scientific workflows have supported some of the most
significant discoveries of the past several decades [1] and are
executed in production daily to serve a wealth of scientific
domains. Many workflows have high computational and I/O
demands that warrant execution on large-scale parallel and
distributed computing platforms. Because of the difficulties
involved in deploying, monitoring, and optimizing workflow
executions on these platforms, the past decade has seen a
dramatic surge of workflow systems [2].

Given the diversity of production workflows, the range
of execution platforms, and the proliferation of workflow
systems, it is crucial to quantify and compare the levels of
performance that can be delivered to workflows by different
platform configurations, workflow systems, and combinations
thereof. As a result, the workflows community has recently
recognized the need for workflow benchmarks [3]. In this

This manuscript has been authored in part by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The publisher, by accepting the article for publication, acknowledges that
the U.S. Government retains a non-exclusive, paid up, irrevocable, world-
wide license to publish or reproduce the published form of the manuscript, or
allow others to do so, for U.S. Government purposes. The DOE will provide
public access to these results in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

paper, we present a generator of realistic workflow benchmark
specifications that can be translated into benchmark code to
be executed with current workflow systems.

A. Motivation

Application benchmarks have long been developed for the
purpose of identifying performance bottlenecks and comparing
HPC platforms. Benchmarks have been developed that stress
various aspects of the platform (e.g., speed of integer and
floating point operations, memory, I/O, and network latency
and throughput) and several developed benchmark suites have
become popular and are commonly used [4]–[9]. A few of
these benchmarks capture some, but not all, of the relevant
features of production workflow applications: (i) A workflow
typically comprises tasks of many different “types”, i.e., that
correspond to computations with different I/O, CPU, GPU,
and memory consumption [10], [11]. (ii) Even tasks of the
same type, i.e., that are invocations of the same program
or function, can have different resource consumption based
on the workflow configuration (e.g., input parameters, input
dataset). (iii) In practice, several workflow tasks are often
executed concurrently on a single compute node, causing
performance interference and exacerbating points (i) and (ii)
above, which impacts workflow execution time. (iv) In produc-
tion, workflows are executed using systems that orchestrate
their execution and that can be configured in various ways
(e.g., regarding the task scheduling decisions they make);
Thus, it is crucial for workflow benchmarks to be seamlessly
executable using a wide range of these systems rather than
being implemented using one particular runtime system (e.g.,
as is the case for classical HPC benchmarks implemented with
MPI).

To further motivate the need for workflow benchmarks, we
present results obtained from the execution of the benchmarks
proposed in this work on two small 4-node (each node
with 48 cores) platforms with 2.6GHz Skylake and 2.8GHz
Cascadelake processors, provided by Chameleon Cloud [12].
Benchmarks are executed using the Pegasus workflow sys-
tem [13] and configured for 18 different benchmark scenarios.
In all these scenarios the same amount of compute work
is performed, but using two different numbers of workflow
tasks (500 and 5,000), three different total amounts of data
to read/write from disk (1 GB, 50 GB, and 100 GB), and
three different ratios of compute operations to memory opera-

T-
50

00
 D

-1
00

 B

T-
50

00
 D

-1
00

 C

T-
50

00
 D

-5
0

B

T-
50

0
D

-1
00

 B

T-
50

00
 D

-1
 B

T-
50

0
D

-1
00

 C

T-
50

00
 D

-5
0

M

T-
50

00
 D

-1
 M

T-
50

00
 D

-5
0

C

T-
50

0
D

-5
0

B

T-
50

0
D

-1
 B

T-
50

00
 D

-1
00

 M

T-
50

0
D

-1
 M

T-
50

00
 D

-1
 C

T-
50

0
D

-1
00

 M

T-
50

0
D

-5
0

M

T-
50

0
D

-5
0

C

T-
50

0
D

-1
 C

0.6

0.8

1

1.2

1.4

SoyKb 1000Genome Montage Seismology

Scenario

M
ak

es
pa

n
Ra

tio

Fig. 1. Makespan ratio between workflow executions on 4-node Cascadelake
and Skylake platforms. The horizontal axis shows experimental scenarios
sorted by increasing Seismology makespan ratios. (T: number of tasks; D:
data footprint in GB; C: cpu-bound; M: memory-bound; B: balanced.) Values
above (resp. below) y = 1 correspond to cases in which the Cascadelake
execution is faster (resp. slower) than the Skylake execution.

tions performed by the workflow tasks (cpu-bound, memory-
bound, balanced). For each scenario we generated benchmarks
for workflow configurations that are representative of four
different scientific workflow application domains (two from
bioinformatics, one for astronomy, and one for seismology).
All details regarding benchmark generation and configuration
are given in Section III. Figure 1 shows the ratio between
execution times (or makespans) obtained on the Cascadelake
and the Skylake nodes.

Two key observations can be made from these results. First,
results differ significantly across workflow configurations,
as seen in the width of the envelope. Second, trends are
difficult to explain. For instance, considering the SoyKb and
1000Genome data points, we see that for many scenarios they
are close to each other, for many scenarios the SoyKb data
point is well above the 1000Genome data point, and for many
other scenarios the situation is reversed. Overall, we find that
it is difficult to explain, let alone predict, workflow (relative)
makepans based on platform and workflow configurations.
Another example of this difficulty is the fact that Skylake leads
to faster executions for 13 of the 72 benchmark executions.
This is because these particular Skylake nodes happen to
have higher bandwidth disks than the Cascadelake nodes.
However, for some high-data scenarios (e.g., scenarios T-5000-
D-100-M and T-500-D-100-M) Cascadelake executions are
significantly faster. Furthermore, for the Seismology workflow
configuration, Cascadelake is always preferable even for high-
data scenarios. Workflow performance being difficult to predict
is one of the motivations for developing workflow benchmarks.

B. Contributions
In the workflows community, most researchers and prac-

titioners have resorted to using workflow instances from
real-world applications as benchmarks, sometimes including
these instances as part of benchmark suites [14]–[17]. One
drawback is that the obtained results are not generalizable,
especially because specific workflow instances are not con-
figurable and thus may not expose all relevant performance
behaviors or bottlenecks. Another drawback, is that executing
these benchmarks requires installing many scientific software

dependencies (since the benchmark code is actual application
code) and scientific datasets. “Application skeletons” have
been developed that are representative of commonly used
workflow patterns and can be composed to generate synthetic
workflow specifications [18], [19]. These works provide some
basis for constructing task-dependency structures in workflow
benchmarks (to this end this work builds on [19]), but they do
not provide fully-specified, let alone executable, benchmarks.

The key insight in this work is that it is possible to automate
the generation of representative workflow benchmarks that
can be executed on real platforms. The main contribution
is an approach that implements this automation and has the
following capabilities: (i) configurable to be representative of
a wide range of performance characteristics and structures;
(ii) instantiable to be representative of the performance char-
acteristics and structures of real-world workflow applications;
(iii) automatically translatable into executable benchmarks for
execution with arbitrary workflow systems. This approach
not only generates realistic workflow tasks with arbitrary
I/O, CPU, and memory demands (i.e., so as to enable weak
and strong scaling experiments), but also realistic workflow
task graphs that are based on those of real-world workflow
applications.

The experimental evaluation of our proposed approach is
twofold. First, we assess the ability of our generated work-
flow benchmarks to mimic the performance characteristics of
production workflow applications. We do so by demonstrating
that I/O, CPU, and memory utilization for the generated
workflow benchmark tasks corresponds to the performance
characteristics of tasks in real-world workflows, and that,
as a result, workflow benchmark executions have temporal
execution patterns similar to that of real-world workflows.
Second, we execute a set of workflow benchmarks generated
using our approach on the Summit leadership-class computing
system and compare measured performance to that derived
from analytical performance models.

The benefits of these benchmarks are manyfold. Scientists
can compare the characteristics and performance of their
workflows to reference benchmark implementations; Workflow
systems developers can leverage these benchmarks as part of
their continuous integration processes; Computing facilities
can assess the performance of their systems beyond the
traditional HPC benchmark implementations; Workflow prac-
titioners can use these benchmarks to perform fair comparison
of competing workflow systems.

The remainder of this paper is organized as follows. Section II
discusses related work. Section III describes our approach.
Section IV presents experimental validation results. Section V
presents experimental evaluation results. Section VI describes
a case-study that showcases the usefulness of our approach.
Finally, Section VII concludes with a summary of results and
perspectives on future work.

II. RELATED WORK

The field of HPC has seen the development of many
benchmarks and benchmark suites [4]–[6], [20]–[26]. HPC

settings have been historically structured around relatively
stable technologies and practices (e.g., monolithic parallel
programs applications that use MPI). Recent work [9] has
proposed separating the system-specific implementation from
the specification of the benchmarks, so as to target different
runtime systems. This is also the philosophy adopted in
this work and our benchmarks could easily be implemented
within the framework in [9], which currently does not include
workflow-specific benchmarks.

Some researchers have investigated the automatic generation
of representative benchmarks. For instance, Logan et al. [27]
leverage the notion of skeletons to study the I/O behaviors of
real-world applications. Their approach consists in suppressing
computational parts of parallel applications, so that only
communication and I/O operations remain. Users can then run
the resulting benchmarks, which exhibit the complex I/O and
communication patterns of real-world applications, without
having to experience long execution times. Similarly, Hao
et al. [28] leverage execution traces from real-world parallel
applications to automatically generate synthetic MPI programs
that mimic the I/O behaviors of these applications without
having to execute their computational segments.

In this work, we focus on scientific workflow applications.
Some studies have proposed to use particular domain-specific
workflows as benchmarks [14]–[17], [29]. For instance, Kr-
ishnan et al. [29] propose a benchmark for complex clinical
diagnostic pipelines, in which a particular configuration of a
production pipeline is used as a benchmark. Although these
benchmarks are by definition representative of a real-world
application, they are limited to particular scientific domains
and application configurations. To address this limitation, Katz
et al. [18] and Coleman et al. [19] have proposed approaches
for generating synthetic workflow configurations based on rep-
resentative commonly used workflow patterns. The limitations
there is that these works only generate abstract specifications
of workflow task graphs, which is only one of the required
components of an executable workflow benchmark. To the
best of our knowledge, this study is the first to propose a
generic workflow benchmark generation method that makes it
possible to generate executable workflow benchmarks that can
be configured by the users to be representative of a wide range
of relevant scientific workflow configurations.

III. APPROACH

Developing a workflow benchmark requires developing
(i) representative benchmarks of workflow tasks and (ii) rep-
resentative benchmarks of workflows that consist of multiple
tasks with data dependencies. We discuss our approach for
each of the above in the next two sections.

A. Developing Representative Workflow Task Benchmarks

Workflow tasks have different characteristics in terms of
compute-, memory-, and I/O-intensiveness [10], which impact
workflow performance differently on different architectures.
Consequently, a workflow benchmark generation tool should

be configurable, by the user, so that generated benchmark
workflow tasks can exhibit arbitrary such characteristics.

We have developed a generic benchmark (implemented in
Python) that, based on user-provided parameters, launches
instances of different I/O-, CPU-, and/or memory-intensive
operations. The benchmark executions proceeds in three con-
secutive phases1:

#1 Read input from disk: Given a binary file, this phase
of the benchmark simply opens the file with the “rb”
option and calls file.readlines() to read the file
content from disk, in a single thread.

#2 Compute: This phase is configured by a number of cores
(n), a total amount of CPU work (cpuwork) to perform,
a total amount of memory work to perform (memwork),
and the fraction of the computation’s instructions that
correspond to non-memory operations (f), which, for
now, must be a multiple of 0.1. This phase starts n groups
of 10 threads, where threads in the same group are pinned
to the same CPU core (using set_affinity). Within
each group, 10⇥ (1� f) threads run a memory-intensive
executable (compiled C++) that computes random ac-
cesses to positions in an array in which one unit is added
to each position up to the total amount of memory work
(memwork) has been performed; and 10 ⇥ f threads
run a CPU-intensive executable (compiled C++) that
calculates an increasingly precise value of ⇡ up until
the specified total amount of computation (cpuwork) has
been performed. In this manner, our benchmark uses both
CPU and memory resources, and parameter f defines the
relative use of these resources.

#3 Write output to disk: Given a number of bytes, this
phase simply opens an empty binary file with the “wb”
option and calls file.write() to write random bytes
to disk in a single thread.

This above approach is relatively simple and makes several
assumptions that do not necessarily hold true for real-world
workflow tasks. For instance, I/O operations could overlap
with computation, and there could be many I/O and compute
phases. Furthermore, our implementation of the compute phase
(phase #2) on the CPU uses multiple threads that can have
complex interference in terms of resource usage (e.g., cache
vs. main memory use). Furthermore, due to our use of 10
threads per core, there is context-switching overhead that likely
does not occur with real-world workflow tasks. Finally, due to
our use of only 10 threads, f can only take discrete values
(multiples of 0.1), which does not make it possible to capture
arbitrary non-memory/memory operation mixes. Nevertheless,
we claim that this approach makes it possible to instantiate
benchmarks that are representative of real-world workflow
tasks. We verify this claim in Section IV-A.

1We do not use stress test tools such as stress-ng (e.g., using
--vm-bytes or --vm-keep for creating memory pressure, or --hdd
or --hdd-bytes for performing I/O operations) as it does not generate
a precise amount of memory operations or actual files that could be used
downstream in the workflow.

B. Developing Representative Workflow Benchmarks

Now that we have an approach for developing benchmarks
of workflow tasks, we need an approach for producing a
benchmark of an entire workflow of these tasks. To this end,
we rely on the recently developed WfChef [19] open source
tool. Given a set of real workflow instances for a particular
scientific application, WfChef analyzes the task graphs in these
instances to produce a “workflow recipe”, i.e., data structures
and code that describes discovered task-dependency patterns.
A workflow recipe can then be used to generate synthetic
workflow task graphs with (almost) arbitrary numbers of tasks.
The results in [19] show that WfChef is able to produce
synthetic workflow task graphs with realistic structures that
are representative of that found in real-world workflows.

Given the above, we have developed a workflow benchmark
generator that takes as input a desired number of tasks and a
WfChef workflow recipe. In [19] the authors have generated
workflow recipes for many scientific applications. We use
these same recipes for a subset of these applications for our
experimental evaluations in Sections IV and V. Our workflow
benchmark generator first invokes the WfChef recipe to gener-
ate a task graph. Once the task graph has been generated, each
task is set to be an instance of the workflow task benchmark
described in the previous section. For each task, the user
can specify values for the parameters of the workflow task
benchmark described in the previous section that pertain to
the computation (n, cpuwork, memwork, f). The user can
specify individual data volumes for each task in a way that is
coherent with respect to task data dependencies. Alternatively,
the user can specify a total data footprint, i.e., the sum of the
sizes in bytes of all data files read/written by workflow tasks,
in which case uniform I/O volumes are computed for each
workflow task benchmark.

Figure 2 illustrates a CPU-only benchmark instantiation
with nine tasks. All of these tasks use n = 1 core but for the
yellow task, which uses n = 2 cores. Each task has a different
mix of cpu- and memory-intensive threads (shown as blue and
red lines), due to different tasks have different values of the f
parameter. (The figure does not depict that different tasks may
have different cpuwork values.) The benchmark also includes
19 data files, for a total data footprint of 1,700 MB, which
are input/output of various tasks so as to create the particular
task-dependency structure shown by the edges in the figure.

Our generator returns a JSON object that fully describes
the workflow benchmark in terms of tasks, task performance
characteristics, task input and output files, and task data
dependencies. This JSON object, along with the workflow task
benchmark implementation described in the previous section,
can be used to generate an executable workflow. For instance,
for the experiments in Sections IV-B and V, we implemented
a translator that translates the JSON object into programs for
executing workflow benchmarks using the Pegasus [13] and
Swift/T [30] workflow systems, respectively2.

2Note that translators can be easily written to translate JSON descriptions
for execution with most DAG-based workflow systems [2].

100 MB 100 MB 100 MB

33 MB 33 MB 17 MB 17 MB

45 MB 45 MB 75 MB 45 MB

190 MB 190 MB 190 MB
250 MB

75 MB 75 MB 45 MB 75 MB

Number of tasks: 9
Data footprint: 1700 MB

Fig. 2. Example of a generated workflow benchmark. For each task,
represented as a circle, inner rectangles represent I/O operations performed
in a single thread (phase #1, read input from disk, and phase #3, write
output to disk); blue/red lines represent the CPU/memory threads respectively
(phase #2). Outer white rectangles denote data files and show their respective
sizes. Task data dependencies are depicted as directed edges.

TABLE I
COMPUTE NODE HARDWARE CONFIGURATIONS USED TO PERFORM

VALIDATION EXPERIMENTS.

Family Name Processor #cores RAM LLC
(GB) (MB)

nehalem Intel Xeon E5530 CPU @ 2.4 GHz 16 24 8
Haswell Intel Xeon E5-2670 CPU @ 2.3 GHz 48 128 32
Skylake Intel Xeon Gold 6126 CPU @ 2.6 GHz 48 196 19
Cascadelake Intel Xeon Gold 6242 CPU @ 2.8 GHz 64 196 22

IV. VALIDATING THE ACCURACY OF GENERATED
WORKFLOW BENCHMARKS

In this section, we present experimental evaluation results
to quantify the soundness of our benchmarking approach.
These experiments are performed on four different kinds
of (dedicated) compute nodes as listed in Table I. Several
Haswell, Skylake, and Cascadelake nodes are provided by the
Chameleon Cloud [12]. One older nehalem node is a bare-
metal server hosted at one of our institutions.

A. Workflow Tasks
To evaluate the benchmarking approach described in Sec-

tion III-A, we consider four different tasks from the Montage
astronomy workflow [13] and three different tasks from the
1000Genome bioinformatics workflow [31], which altogether
correspond to seven different compiled executables. Our ob-
jective is to verify whether it is possible to configure our
workflow task benchmark so that its performance behavior is
similar to that of each of these workflow tasks. That is, the
benchmark’s execution time should track that of the workflow
task on a particular compute node for various load conditions.

Experimental Goals – Recall from Section III-A that our
CPU-only benchmark is configured by a number of cores
(n), an amount of CPU work (cpuwork), an amount of
memory work (memwork), and a fraction of the executed
CPU instructions that are non-memory operations (f). In
this section, we ignore the I/O portion of the benchmark,

since it can simply be configured based on the I/O volumes
observed in the execution of the real workflow task. More
challenging is the computational portion of the benchmark,
and in particular the configuration parameter f . We want to
answer two questions: (i) is it possible to pick a good value
for f? and (ii) does picking a good value matter?

To answer these two questions, we perform the following
experiments. Given a workflow task’s execution on a core
of a particular compute node, we instantiate our benchmark
(i.e., we pick cpuwork and memwork values) for each value
of f (i.e., 0.1, 0.2, . . . , 0.9) so that its execution time is
equal to that of the real workflow task on that compute
node. Then, we execute the real workflow task and all these
benchmark instantiations on the same compute node again,
but with additional external memory load. The goal is to have
the compute node exhibit a different relative performance of
CPU and memory. As a result, the executions of the workflow
task and of the instantiated benchmarks are slowed down, and
we wish to confirm that: (i) there exists a value of f that
makes our benchmark’s execution time track the execution
time of the real workflow task; and that (ii) this value of
f remains the same across different compute nodes with
different architectures and regardless of the external load. If
both hypotheses are confirmed, then parameter f is useful and
it is possible to pick a good value for it.

Experimental Methodology – On a compute node, we execute
a real workflow task and measure its execution time, T . For
each possible value of f , we then search for the cpuwork
and memwork values that make the benchmark run (approxi-
mately) in time T . We perform this search greedily as follows.
We start with two guesses for cpuwork and memwork, run
the benchmark, and measure the completion times of the cpu-
intensive threads, Tcpu, and of the memory-intensive threads,
Tmem. We then adjust the amounts of work as cpuwork =
cpuwork⇥T/Tcpu and memwork = memwork⇥T/Tmem.
We repeat this process until |Tcpu�T |/T < 5% and |Tmem�
T |/T < 5%, which converges after only a few iterations
in all our experiments. We then re-run the workflow task
and the instantiated benchmark on that same compute node,
but on which we have now introduced extra memory load.
This load is introduced by running stress-ng instances on
other cores of the compute nodes. More precisely, we run one
instance of stress-ng on n/2 other cores (n is the total
number of cores on the compute node), which causes sufficient
memory load to impact the execution of the workflow task
and of our benchmark without leading to execution times that
would be impractically high. For each value of f , we can then
compare the benchmark’s execution time and the workflow
task’s execution time. We perform these experiments on all
the compute node hardware configurations listed in Table I.

Results – Experimental results are shown in Figure 3. Each
plot is for different Montage and 1000Genome tasks and shows
the ratio between the benchmark’s execution time and that of
the workflow task (vertical axis) vs. f (on the horizontal axis).
Values above (resp. below) 1.0 correspond to cases in which

the benchmark execution is longer (resp. shorter) than that
of the workflow task. Each curve corresponds to a different
compute node. We can make several observations from these
results.

First, the execution time ratio varies based on f , in the
range 0.7-1.68. That is, for a “bad” f value, the benchmark’s
execution time can be up to 30% (reps. 68%) faster (resp.
slower) than that of the workflow task. Second, we find that
for each compute node architecture there is a “good” f value
that leads to a ratio close to 1.0, and that this value is different
for each workflow task. This means that it is possible to find
a good f value for each workflow task, and that having f be
constrained to be a multiple of 0.1 (so that each benchmark
uses only 10 threads), is sufficient to obtain good results.
Unsurprisingly, we find that different workflow tasks have
different performance characteristics in terms of CPU and
memory usage (best f values for our seven tasks vary between
0.4 and 0.8). Third, and most importantly, we find that for a
given workflow task the same f value is consistently best (or
close to best) across all compute node architectures. That is,
in each plot, all curves intersect the y = 1 line for almost the
same x values. This observation validates that our benchmark
can be instantiated to capture a workflow task’s fundamental
performance characteristics and thus have execution behavior
that is representative of that of the workflow task across
different architectures.

An interesting question is: Given a workflow task, how can
we determine the best f value for instantiating a representative
benchmark of that task? One option is to run the above
experiments so as to determine the best f value empirically.
Given the results in Figure 3, running these experiments on
a single compute node should suffice. Alternately, one could
consider profiling the task’s execution on a particular compute
node to discover its relative CPU and memory usage. This can
be done for instance using the perf Linux tool to measure
the total number of hardware instructions executed and how
many of these are memory load/store instructions. To evaluate
the effectiveness of this approach, we profiled the execution of
our seven workflow tasks on a nehalem compute node. Table II
shows how the f values determined based on profiling with
perf compared to those based on the experimental results in
Figure 3. We show profiling-based values rounded off to the
nearest multiple of 0.1, which would presumably be used by
a user as the f value provided to our benchmark, but also, in
parentheses, the values before rounding off.

We find that using the profiling approach produces the
empirically best f value, once rounded off, for one of our
seven workflow tasks, and is within 0.1 of the best f value
for all but two of these seven tasks (for which it is 0.2 and
0.4 away). It is expected that the profiling approach cannot
always produce the best f value (e.g., because our memory-
intensive threads also use the CPU in addition to performing
memory operations). But it may still be attractive since, in
most cases, it makes it possible to find a reasonable f value
by running the workflow task only once. This said, although
a 0.1 deviation from the best f values may seem low, this

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.5

machine
cascadelake
haswell
nehalem
skylake

f(fraction of CPU operations) f(fraction of CPU operations) f(fraction of CPU operations)

Ru
nt

im
e

Ra
tio

Ru
nt

im
e

Ra
tio

task=mBgModel task=mProject task=mViewer

task=frequency task=individuals task=mutation_overlap task=mAdd

Fig. 3. Ratio between the benchmark’s execution time and that of the workflow task for different fractions of the computation’s instructions that correspond
to CPU operations (f).

TABLE II
ESTIMATED VALUES FOR THE FRACTIONS OF THE COMPUTATION’S

INSTRUCTIONS THAT CORRESPOND TO CPU OPERATIONS (f) OBTAINED
WITH THE PERF LINUX TOOL AND OUR EMPIRICAL EXPERIMENTS.

Task values for f
perf empirical

mAdd 0.5 (0.45) 0.4
mViewer 0.4 (0.38) 0.8
mBgModel 0.5 (0.54) 0.4
mProject 0.6 (0.55) 0.6
individuals 0.6 (0.57) 0.5
mutation overlap 0.6 (0.62) 0.4
frequency 0.5 (0.53) 0.6

deviation can have a large impact on benchmark accuracy for
scenarios in which multiple workflow tasks run concurrently
on the same compute node.

Overall, we conclude that our workflow task benchmark,
albeit simple, can be configured to be representative of the fun-
damental performance characteristics of real workflow tasks.

B. Workflows
In this section, we verify the claim that our approach can

generate benchmarks representative of full workflow applica-
tions. For each Montage and 1000Genome task (i.e., all exe-
cutables used by Montage and 1000Genome), we instantiate
a representative workflow task benchmark. The I/O volumes
are based on the actual input/output file sizes as specified
in the Montage and 1000Genome workflows. We empirically
determine the other benchmark configuration parameters that
lead to benchmark task execution times that are close to
actual task execution times and remain so under different
load conditions, as described in the previous section. We
then generate a representative task data-dependency structure
using the approach described in Section III-B. This results
in a benchmark instantiation, the specification of which is
produced as a JSON file. From this JSON file, we then
automatically generate a Python program for executing the
workflow using the Pegasus API [13]. This allows us to
execute the benchmark using Pegasus in exactly the same
way in which Montage and 1000Genome workflows are ex-
ecuted in production. Consequently, we can perform sound
comparisons between benchmark executions and Montage and

TABLE III
COMPARISON BETWEEN THE REAL-WORLD MONTAGE WORKFLOW

APPLICATION AND THE GENERATED WORKFLOW BENCHMARK.

degree
#tasks makespan (sec) makespan. time

Montage Benchmark Montage Benchmark % difference

1.0 157 157 709 822 13.74 %
1.5 707 717 1582 1756 10.99 %
2.0 2149 2130 2017 2220 10.06 %
2.5 5155 5155 10015 9957 -0.58 %

1000Genome executions, where both kinds of executions use
the exact same software stack.

Montage workflows – Table III shows benchmark and Mon-
tage results for four different configurations of the Montage
application. Specifically, each configuration is for a different
value of the degree input parameter to Montage, which has a
large impact on the size of the workflow, as seen in the number
of tasks shown in the second column of the table. Note that
our benchmark does not necessarily contain that exact same
number of tasks. While this may seem surprising, it is an
artifact of the WfChef synthetic workflow generation approach
described in Section III-B. Recall that WfChef generates
workflow structures based on real workflow instances for a
particular application. To do so, it “mines” these instances
to discover repeated sub-structures, and then replicates these
sub-structures to generate a workflow of a particular size. As a
result, it cannot generate synthetic workflows for all arbitrary
numbers of tasks. In our case, for instance, for degree = 1.5,
although we invoke WfChef asking it to generate a workflow
with 707 tasks, it returns a workflow with 10 more tasks. For
degree = 2.0, it generates a workflow with 19 fewer tasks than
desired. These differences in numbers of tasks have an impact
on overall execution time, but, given the current WfChef
design and implementation, they are the price to pay for having
realistic task-dependency structures in our benchmarks.

All executions are performed on an HTCondor [32] cluster
composed of four Haswell compute nodes using Pegasus.
During these executions, many workflow/benchmark tasks are
executed concurrently on different cores of the same compute
node, and thus interfere with each other for memory and I/O
operations. (Each workflow/benchmark application is executed

0.00

0.25

0.50

0.75

1.00

100 1000 10000
Time (s)

F(
Ta

sk
 S

ta
rt

Ti
m

e)
benchmark real degree 1 1.5 2 2.5

Fig. 4. Empirical cumulative distribution function of task start times for
sample real-world and benchmark workflows for the Montage application.

TABLE IV
COMPARISON BETWEEN THE REAL-WORLD 1000GENOME WORKFLOW

APPLICATION AND THE CALIBRATED WORKFLOW BENCHMARK.

#ch #tasks makespan (sec) makespan
1000Genome Benchmark 1000Genome Benchmark % difference

1 66 66 971 892 -8.13 %
2 232 234 2548 2531 -0.66 %
3 648 645 6321 5645 -10.56 %
4 1548 1548 13409 13553 1.07 %

separately, thus only tasks from the same workflow/benchmark
are executed concurrently.) Makespans are reported in the
fourth and fifth columns of Table III, with the percentage
difference, relative to the execution of the real Montage
workflow, shown in the sixth column. These results show that
benchmark executions have makespans within at most 14% of
the makespans of the real workflow. For the largest workflow
configurations (degree = 2.5), the makespans are the closest,
with less than 1% difference.

The results in Table III show that benchmark makespans
are close to real makespans, even though our task benchmark-
ing approach makes several simplifying assumptions that do
not necessarily hold for real-world tasks (see discussion in
Section III-A) and our benchmark workflow does not have the
exact same task-dependencies and not always the same number
of tasks as the real workflow. However, the makespan is only
one metric for quantifying the discrepancy between benchmark
and real workflow executions. One may wonder whether the
temporal structures of the executions are also similar. Figure 4
shows the empirical cumulative distributed functions (ECDF)
of task start times for each real Montage workflow (dashed
lines) and its benchmark counterpart (solid lines). We observe
the ECDF for the benchmark execution is close to that for the
real execution, with similar overall shape and inflection points.

1000Genome workflows – Table IV shows benchmark and
1000Genome results for four different configurations of the
1000Genome application. Specifically, each configuration is
for a different value of the ch (number of chromosomes) input
parameter to 1000Genome, which has a large impact on the
size of the workflow, as seen in the numbers of tasks shown
in the second column of the table. Similarly to Montage,
all executions are performed on the HTCondor cluster using
Pegasus. All relative makespan differences are within 11%,
noting that for ch = 2 and ch = 4 the difference is about 1%.

0.00

0.25

0.50

0.75

1.00

100 1000 10000
Time (s)

F(
Ta

sk
 S

ta
rt

Ti
m

e)

benchmark real # chromosomes 1ch 2ch 3ch 4ch

Fig. 5. Empirical cumulative distribution function of task start times for
sample real-world and benchmark workflows for the 1000Genome application.

Figure 5 shows the ECDF of task start times. Like for the
Montage results, visual inspection shows that the ECDF for
the benchmark execution is close to that for the real workflow
execution, with similar overall shape and inflection points.

Overall, we conclude that our approach makes it possible to
generate workflow benchmark that have structure, performance
characteristics, and execution patterns, that are very similar to
that of real-world workflow applications.

V. EXPERIMENTAL EVALUATION

We conduct an experimental evaluation to measure the
impact of different instances of IO- and CPU-intensive opera-
tions on workflow applications that exhibit different workflow
patterns. Specifically, we generate CPU-only benchmarks for
five very distinct workflow applications (Blast, Cycles, Epige-
nomics, Montage, and SoyKB). These applications exhibit a
range of task-dependency structures (deep fan-out-fan-in tasks
pipelines, highly-parallel shallow task-graphs, etc.). The goal
of these experiments is to show that it is possible, using our
approach, to generate a suite of workflow benchmarks that
make it possible to uncover non-trivial performance behaviors
that occur on a specific platform using a specific workflow
system.

Experiment Scenario – For each workflow application, we
generate workflow instances composed of 1,000, 10,000,
50,000, and 100,000 tasks, and for each number of tasks con-
figuration we generate instances in which the total workflow
data footprint is 100 GB, 500 GB, and 1 TB. In total, we
generate 60 different workflow configurations for this experi-
ment. We run these workflow instances on the ORNL’s Summit
leadership class HPC system [33]. Summit is equipped with
4,608 compute nodes, in which each is equipped with two
IBM POWER9 processors (42 cores), six NVIDIA Tesla V100
accelerators each with 96 GiB of HBM2, 512 GB of DDR4
memory, and connection to a 250 PB GPFS scratch filesystem.
Workflow executions are performed using the Swift/T [30]
workflow system. We chose Swift/T as its workflows are
compiled into MPI programs that are optimized for running at
scale on HPC clusters. Each workflow is configured to use up
to 40 CPU cores per compute node (two cores are reserved
for management operations), and the total number of nodes
requested per workflow is computed as (0.1 ⇥ #tasks)/40,
e.g. a workflow instance composed of 10,000 tasks uses 25
nodes (or 1,000 CPU cores), and a 100,000-tasks instance uses

0

10

20

30

40

1,000 10,000 50,000 100,000
Tasks

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)
blast cycles epigenomics montage soykb

Data Footprint (GB) 100 500 1000

Fig. 6. Workflow throughput weak scaling for different number of tasks in
the workflow and total number of CPU cores used (i.e., 0.1⇥#tasks). Runs
were performed using ORNL’s Summit leadership class HPC system.

250 nodes (or 10,000 CPU cores). All workflow tasks compute
the same amount of work (cpuwork = 500, memwork = 0),
so comparison across workflow configurations is consistent.

Results – Figure 6 shows workflow throughput (number of
tasks per second) for all workflow configurations. As expected,
as data footprint increases workflow throughput is impaired by
the time spent on I/O operations; and workflow throughput
improves with the size of the workflow (due to increased
parallelism). In addition to these expected results, these ex-
periments also show several less expected results. Although
workflows of same size perform the same total amount of
CPU work, I/O load distribution may significantly diverge
across workflows—the task graph structure may encompass
highly parallel batches of tasks (e.g., Blast), or sparse sets
of specific workflow patterns (e.g., Cycles)—and therefore,
I/O contention may occur at different times throughout the
workflow execution. This can have a large impact on workflow
performance, as seen for instance for the Blast and Cycles
workflows: a Blast workflow can perform about twice as
many tasks per time unit than a Cycles workflow for 50,000-
tasks instances. Conversely, for low data footprint (100 GB)
and 10,000-tasks configurations, Montage and Epigenomics
instances outperform the other workflow applications by up
to a factor 1.9. This is due to their task graph structures—
they both present a fan-out-fan-in pattern that is repeated
as the number of tasks in the workflow increases. In a low
data footprint configuration, fan-in tasks do not experience
I/O bottlenecks due to the number of files generated by
their parent tasks, but as the workflow grows in size and
data footprint, performance is significantly impacted by data
read/write operations.

In Figure 6, both Blast and Epigenomics achieve lower
throughput for 100,000-task instances when compared to
50,000-task instances for the low data footprint configuration.
An examination of the individual execution logs for these runs
reveals that there is a considerable difference in I/O write
throughput between 50,000-task and 100,000-task instances.
Figure 7 shows average write throughput measurements (over-

epigenomics

blast

0 25 50 75 100

0 25 50 75 100
0

25

50

75

100

0

50

100

150

0

25

50

75

100

0

50

100

150

% of workflow execution

A
vg

. W
rit

e
Th

ro
ug

hp
ut

 (M
B

/s
)

ru

nn
in

g
ta

sk
s

x1
00

tasks 50000 100000

Fig. 7. Average write throughout (in MB/s, overlapping area chart) and num-
ber of concurrent running tasks (dashed-lines) for 50,000- and 100,000-tasks
Blast (top) and Epigenomics (bottom) workflow instances. Each workflow run
has a 100GB data footprint.

lapping area chart) and number of running tasks (dashed
lines) throughout the workflow execution for both applications.
Overall, write throughput is noticeably lower for the large
instances (up to a factor 10 for Epigenomics). The source of
this low performance is twofold. First, individual files have
relatively small sizes (⇠20 MB and ⇠10 MB for 50,000 and
100,000 tasks, respectively), which is known to hinder the
ability of the I/O system to reach high throughput. Second,
the 100,000-task instances operate over twice as many files,
which may increase contention for the shared file system.
The latter is evidenced by spikes in write throughput when
the number of concurrently running tasks decreases. These
observations showcase the fact that understanding, and thus
modeling, workflow performance accurately is not easy, and
observation that we further corroborate in the next section.

VI. USEFULNESS OF BENCHMARKS

A common use of benchmarks is to estimate overall ex-
ecution time, or makespan, for different application and/or
platform configurations. In Section V, we show benchmark
results for the Summit platform. One may wonder whether
these results could be estimated using simple performance
models. If the obtained estimates make it possible to com-
pare makespans across different configurations reliably, then
perhaps workflow benchmarks are not useful, at least for the
purpose of makespan estimation. In this section, we present a
few makespan models and assess whether they can be used to
estimate workflow performance accurately.

A. Workflow Makespan Models

Consider a platform that comprises n p-core compute nodes.
Each node can read, resp. write, data to some shared file
system with a data rate of bwread, resp. bwwrite, in bytes/sec.

We assume that both these data rates are measured by run-
ning a simple I/O benchmark (e.g., using the dd command).
Note that concurrent I/O operations performed by multiple
nodes may be limited by some overall bottleneck aggregate
bandwidth to the shared file system. We leave this out of our
model because the Summit platform advertises very high such
aggregate bandwidth. Consider a workflow benchmark that is
to be executed on this platform, where each task t runs on a
single core and has a known work wt in seconds. We assume
all wt values are measured by executing each task individually.
We have performed the above measurements on the Summit
platform (wt = 20.62 sec for all workflow benchmark tasks;
bwread = 466 MB/sec; bwwrite = 60 MB/sec).

Macro-task Models – A simple approach when modeling
a complex application, such as a workflow, is to view the
application as a single “macro” task that reads input, performs
computation, and writes output. Given any workflow, we can
compute the total amount of data read by the workflow tasks
in bytes (dataread), the total amount of data written by the
workflow tasks in bytes (datawrite), and the total amount of
sequential work performed by the workflow tasks (work). The
workflow execution time can then be estimated as:

makespan = dataread/(n⇥ bwread) +

work/(n⇥ p) +

datawrite/(n⇥ bwwrite) .

The second term above assumes that the computation can be
parallelized perfectly across all cores, which is typically not
the case due to task dependencies. The above model assumes
no overlap between computation and I/O, but such overlap
occurs in workflow executions. A simple model that assumes
perfect overlap is as follows:

makespan = max(work/(n⇥ p),

dataread/(n⇥ bwread) +

datawrite/(n⇥ bwwrite)) .

Per-level Model – The Macro-task models ignore the task
dependency structure of the workflow. To develop a more
accurate model that accounts for the workflow structure, we
consider that the workflow consists of L levels, where level
l = 0, . . . , L � 1 is the set of tasks with a top-level equal to
l. The top-level of a task is defined as the length, in number
of edges, of the longest path from workflow entry task to that
task. Thus, level 0 consists of the workflow’s entry tasks. All
tasks in the same level can be performed concurrently, and
when all tasks in level l have been completed it is guaranteed
that all tasks in level l+1 can begin execution. We assume a
level-by-level execution so that the makespan is estimated as:

makespan =
XL�1

l=0
makespan(l) ,

where makespan(l) denotes the makespan of level l. Note
that in practice there could be overlap between the execution
of consecutive levels.

A difficulty here is that makespan(l) depends on how
the tasks in level l are scheduled onto the available cores,

1

10

100

1,000 10,000 50,000 100,000
Tasks

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

no overhead overhead

benchmark macro-task macro-task-overlap per-level

Fig. 8. Throughput vs. number of tasks for the Blast application with 500GB
data footprint.

0.1

1.0

10.0

100.0

1,000 10,000 50,000 100,000
Tasks

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

no overhead overhead

benchmark macro-task macro-task-overlap per-level

Fig. 9. Throughput vs. number of tasks for the Montage application with
1000GB data footprint.

and in particular the order in which they are scheduled. The
scheduling scheme depends on the workflow system, and it
is unlikely that a user would be able to reverse-engineer this
scheme precisely. We assume that tasks are sorted in non-
increasing order of execution time (i.e., I/O time plus compute
time) and scheduled in this order, which corresponds to a
standard list-scheduling approach. Rather than computing a
precise schedule (which would amount to running a full-
fledged simulation), we assume that tasks are executed in
batches of at most n⇥p tasks, where all batches, save perhaps
for the last one, run one task on each available core in the
platform. If m tasks are scheduled on the same compute
node then they read input, resp. write output, with a data rate
bwread/m, resp. bwwrite/m. For all but the last batch of tasks,
m = p, while for the last batch of tasks m  p. In this way,
we obtain an execution time estimate for each task in a batch.
Since batch executions can overlap (i.e., after the shortest task
in a batch completes on a core, a task in the next batch starts
executing on that core), we estimate the execution time of a
batch as the average execution time of its tasks.

Writing a closed-form formula for this model is tedious, but
it is straightforward to implement it programmatically [34].
Note that this model is likely more sophisticated than what a
typically user may develop.

B. Model Evaluation

Figures 8 and 9 show throughput vs. number of tasks as
measured based on benchmark executions and as estimated
using the three above models, for Blast and Montage with

0
1000
2000
3000
4000
5000

1,000 10,000 50,000 100,000
TasksR

un
tim

e
O

ve
rh

ea
d

(s
ec

)
blast cycles epigenomics montage soykb

Fig. 10. Workflow execution time (or total overhead) vs. number of tasks.

0

10

20

30

40

1,000 10,000 50,000 100,000
Tasks

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

per-level + overhead real

blast cycles epigenomics montage soykb

Fig. 11. Throughput vs. number of tasks for all applications with 500 GB
footprint. Solid, resp. dashed, lines for measured, vs. estimated, makespans.
Estimates are computed using the per-level model with added measured
overhead.

500 GB and 1 TB data footprints, respectively. Results are sim-
ilar for other applications and/or data footprint combinations.
The relative throughput of the three estimates is as expected,
with the macro-task estimate that assumes full overlap of
I/O and computation leading to higher throughput than its
no-overlap counterpart, and the per-level estimate leading
to the lowest throughput, as it accounts for the workflow’s
structure. The main observation, however, is that there is a
large discrepancy between the estimated and the benchmarked
throughput (up to one order of magnitude for 100,000 tasks).

The main reason for the observed discrepancy is that our
models do not account for the overhead of the workflow
system. To measure this overhead, we executed our bench-
marks on Summit with zero data footprint and where all
workflow tasks perform zero work. Figure 10 shows measured
makespans for these executions. The general and expected
trend is that overhead increases as the number of tasks in-
creases. But overhead behavior differs across applications and
developing an accurate overhead model may not be straight-
forward. Instead, we simply add measured total overhead
for each application and number of tasks to the makespan
estimates computed using the models in the previous section.
Throughput values computed using these modified estimated
makespans are shown in Figures 8 and 9 as dotted lines, and
are much closer to the measured throughput for the benchmark
executions. The per-level model, augmented with measured
overhead, leads to the most accurate throughput estimates.

One may wonder whether throughput estimates computed
using the per-level model (with added measured overhead)
paint an accurate picture of the relative performance of the
different workflow applications. Figure 11 shows measured

and estimated throughput vs. number of tasks for all workflow
applications with a 500 GB data footprint. There are clear
differences between the measured and estimated throughput,
both in terms of the relative ranking of the applications and
in the trends. For instance, while the measured throughput
shows that the Montage application achieves the second lowest
throughput across all five applications, the estimated through-
put instead shows it to achieve the second highest throughput.
For 50,000 tasks the estimates show Blast and Montage to
achieve similar throughput, while measurements show more
than a factor 2 difference. Furthermore, while in the measured
results all applications but Blast show monotonically increas-
ing throughput as the number of tasks increases, the through-
put estimates show non-monotonically increasing throughput
for all applications. Results are similar for the 100 GB and
1 TB data footprints, in that there are clear discrepancies
between measured and estimated relative throughput and their
trends. These discrepancies are slightly larger when using the
macro-task models, and much larger when not adding the
measured overhead to the estimated makespans.

We conclude that estimating workflow performance by
composing I/O and compute benchmark results on a particular
platform using the above models does not paint an accurate
picture of workflow performance, even assuming that the
overhead behavior of the workflow system is perfectly known
(which is not true in practice). While developing accurate mod-
els may be possible, doing so, especially so that they remain
accurate across platform configurations, workflow applications
and workflow systems, is likely a very steep challenge. This
justifies the need for and the usefulness of the workflow
benchmarks developed in this work.

VII. CONCLUSION

We have presented an approach for automatically generating
realistic workflow benchmark specifications that are easily
translated into benchmark code that is executable with current
workflow systems. This approach generates workflow tasks
with arbitrary performance characteristics regarding CPU,
memory, and I/O usage, and generates realistic task depen-
dency structures based on that seen in real-world scientific
workflow applications. We have presented experimental re-
sults that show that our approach can be used to instantiate
benchmarks whose executions and execution performance are
representative of production workflow applications. We have
also conducted a case-study that demonstrates the use and the
usefulness of our generated benchmarks.

One future work direction is to extend our generated bench-
marks to support other or emerging workflow scenarios, e.g.,
scenarios in which workflow tasks are MPI-based parallel
programs (e.g., “HPC workflows” [35]). We also plan to
support GPU workflow task benchmark implementation so
that users can specify memory work on the GPU (for global
and shared memory), define data transfer from/to the GPU,
or use an already available GPU benchmark. Finally, we wish
to extend our approach to generate benchmarks that perform

“in situ” executions, that is, where intermediate workflow data
can remain in memory rather than being stored on disk.

Acknowledgments. This work is funded by NSF contracts #2106059,
#2106147, #2103489, and #2103508, and supported by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the U.S.
DOE Office of Science and the NNSA. This research used resources
of the OLCF at ORNL, which is supported by the Office of Science of
the U.S. DOE under Contract No. DE-AC05-00OR22725. We thank
the NSF Chameleon Cloud for providing time grants to access their
resources.

REFERENCES

[1] R. M. Badia Sala, E. Ayguadé Parra, and J. J. Labarta Mancho,
“Workflows for science: A challenge when facing the convergence of
HPC and big data,” Supercomputing frontiers and innovations, vol. 4,
no. 1, pp. 27–47, 2017.

[2] “Existing workflow systems,” https://s.apache.org/existing-workflow-
systems, 2022.

[3] R. Ferreira da Silva, H. Casanova, K. Chard, I. Altintas, R. M. Ba-
dia, B. Balis, T. a. Coleman, F. Coppens, F. Di Natale, B. Enders,
T. Fahringer, R. Filgueira, G. Fursin, D. Garijo, C. Goble, D. Howell,
S. Jha, D. S. Katz, D. Laney, U. Leser, M. Malawski, K. Mehta,
L. Pottier, J. Ozik, J. L. Peterson, L. Ramakrishnan, S. Soiland-Reyes,
D. Thain, and M. Wolf, “A community roadmap for scientific workflows
research and development,” in 2021 IEEE Workshop on Workflows in
Support of Large-Scale Science (WORKS), 2021, pp. 81–90.

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski,
R. S. Schreiber et al., “The NAS parallel benchmarks summary and
preliminary results,” in Supercomputing’91: Proceedings of the 1991
ACM/IEEE conference on Supercomputing. IEEE, 1991, pp. 158–165.

[5] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK Benchmark:
past, present and future,” Concurrency and Computation: practice and
experience, vol. 15, no. 9, pp. 803–820, 2003.

[6] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi, “The HPC Challenge (HPCC)
Benchmark Suite,” in Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, 2006.

[7] C. R. Ferenbaugh, “PENNANT: An unstructured mesh mini-app for ad-
vanced architecture research,” Concurrency and Computation: Practice
and Experience, vol. 27, no. 17, pp. 4555–4572, 2015.

[8] R. F. Van der Wijngaart and T. G. Mattson, “The parallel research ker-
nels,” in 2014 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2014, pp. 1–6.

[9] E. Slaughter, W. Wu, Y. Fu, L. Brandenburg, N. Garcia, W. Kautz,
E. Marx, K. S. Morris, Q. Cao, G. Bosilca et al., “Task Bench: A
parameterized benchmark for evaluating parallel runtime performance,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2020, pp. 1–15.

[10] L. Ramakrishnan and D. Gannon, “A survey of distributed workflow
characteristics and resource requirements,” Indiana University, pp. 1–
23, 2008.

[11] R. Ferreira da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou,
and E. Deelman, “A characterization of workflow management systems
for extreme-scale applications,” Future Generation Computer Systems,
vol. 75, pp. 228–238, 2017.

[12] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons learned from
the Chameleon testbed,” in Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC ’20). USENIX Association, July
2020.

[13] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus, a workflow management system for science automation,”
Future Generation Computer Systems, vol. 46, no. 0, pp. 17–35, 2015.

[14] J. Bader, L. Thamsen, S. Kulagina, J. Will, H. Meyerhenke, and O. Kao,
“Tarema: Adaptive resource allocation for scalable scientific workflows
in heterogeneous clusters,” arXiv preprint arXiv:2111.05167, 2021.

[15] S. Capella-Gutierrez, D. de la Iglesia, J. Haas, A. Lourenco, J. M.
Fernández, D. Repchevsky, C. Dessimoz, T. Schwede, C. Notredame,
J. L. Gelpi et al., “Lessons learned: recommendations for establishing
critical periodic scientific benchmarking,” BioRxiv, p. 181677, 2017.

[16] Q. Yang, R. Jin, N. Gandhi, X. Ge, H. A. Khouzani, and M. Zhao,
“Edgebench: a workflow-based benchmark for edge computing,” arXiv
preprint arXiv:2010.14027, 2020.

[17] E. Larsonneur, J. Mercier, N. Wiart, E. Le Floch, O. Delhomme, and
V. Meyer, “Evaluating workflow management systems: a bioinformatics
use case,” in 2018 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM). IEEE, 2018, pp. 2773–2775.

[18] D. S. Katz, A. Merzky, Z. Zhang, and S. Jha, “Application skeletons:
Construction and use in eScience,” Future Generation Computer Sys-
tems, vol. 59, pp. 114–124, 2016.

[19] T. Coleman, H. Casanova, and R. Ferreira da Silva, “WfChef: Automated
Generation of Accurate Scientific Workflow Generators,” in 17th IEEE
eScience Conference, 2021, pp. 159–168.

[20] P. S. Crozier, H. K. Thornquist, R. W. Numrich, A. B. Williams, H. C.
Edwards, E. R. Keiter, M. Rajan, J. M. Willenbring, D. W. Doerfler, and
M. A. Heroux, “Improving performance via mini-applications.” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, 2009.

[21] P. Luszczek, J. J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas,
J. Kepner, J. McCalpin, D. Bailey, and D. Takahashi, “Introduction
to the HPC challenge benchmark suite,” Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United States), Tech. Rep., 2005.

[22] S. Chunduri, T. Groves, P. Mendygral, B. Austin, J. Balma, K. Kandalla,
K. Kumaran, G. Lockwood, S. Parker, S. Warren et al., “GPCNeT:
Designing a benchmark suite for inducing and measuring contention
in HPC networks,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2019,
pp. 1–33.

[23] Z. Jiang, W. Gao, L. Wang, X. Xiong, Y. Zhang, X. Wen, C. Luo, H. Ye,
X. Lu, Y. Zhang et al., “HPC AI500: a benchmark suite for HPC AI
systems,” in International Symposium on Benchmarking, Measuring and
Optimization. Springer, 2018, pp. 10–22.

[24] K. Parasyris, I. Laguna, H. Menon, M. Schordan, D. Osei-Kuffuor,
G. Georgakoudis, M. O. Lam, and T. Vanderbruggen, “HPC-MixPBench:
An HPC benchmark suite for mixed-precision analysis,” in 2020
IEEE International Symposium on Workload Characterization (IISWC).
IEEE, 2020, pp. 25–36.

[25] S. Kudo, K. Nitadori, T. Ina, and T. Imamura, “Prompt report on exa-
scale HPL-AI benchmark,” in 2020 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 2020, pp. 418–419.

[26] V. Marjanović, J. Gracia, and C. W. Glass, “Performance modeling of
the HPCG benchmark,” in International Workshop on Performance Mod-
eling, Benchmarking and Simulation of High Performance Computer
Systems. Springer, 2014, pp. 172–192.

[27] J. Logan, S. Klasky, H. Abbasi, Q. Liu, G. Ostrouchov, M. Parashar,
N. Podhorszki, Y. Tian, and M. Wolf, “Understanding I/O performance
using I/O skeletal applications,” in Euro-Par 2012 Parallel Processing,
C. Kaklamanis, T. Papatheodorou, and P. G. Spirakis, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 77–88.

[28] M. Hao, W. Zhang, Y. Zhang, M. Snir, and L. T. Yang, “Automatic gen-
eration of benchmarks for I/O-intensive parallel applications,” Journal
of Parallel and Distributed Computing, vol. 124, pp. 1–13, 2019.

[29] V. Krishnan, S. Utiramerur, Z. Ng, S. Datta, M. P. Snyder, and E. A.
Ashley, “Benchmarking workflows to assess performance and suitability
of germline variant calling pipelines in clinical diagnostic assays,” BMC
bioinformatics, vol. 22, no. 1, pp. 1–17, 2021.

[30] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and I. T.
Foster, “Swift/T: Large-scale application composition via distributed-
memory dataflow processing,” in 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing. IEEE, 2013, pp.
95–102.

[31] R. Ferreira da Silva, R. Filgueira, E. Deelman, E. Pairo-Castineira,
I. M. Overton, and M. Atkinson, “Using simple PID-inspired controllers
for online resilient resource management of distributed scientific work-
flows,” Future Generation Computer Systems, vol. 95, pp. 615–628,
2019.

[32] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the Condor experience,” Concurrency and computation: prac-
tice and experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[33] S. S. Vazhkudai, B. R. De Supinski, A. S. Bland, A. Geist, J. Sexton,
J. Kahle, C. J. Zimmer, S. Atchley, S. Oral, D. E. Maxwell et al.,

“The design, deployment, and evaluation of the CORAL pre-exascale
systems,” in SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2018, pp. 661–
672.

[34] “WfBench GitHub,” Ommitted due to double blind review process, 2022.

[35] M. Mattoso, K. Ocana, F. Horta, J. Dias, E. Ogasawara, V. Silva,
D. de Oliveira, F. Costa, and I. Araújo, “User-steering of HPC work-
flows: State-of-the-art and future directions,” in Proceedings of the 2nd
ACM SIGMOD Workshop on Scalable Workflow Execution Engines and
Technologies, 2013, pp. 1–6.

