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Abstract

When faced with sequential decision-making problems, it is often useful to be able
to predict what would happen if decisions were made using a new policy. Those
predictions must often be based on data collected under some previously used
decision-making rule. Many previous methods enable such off-policy (or coun-
terfactual) estimation of the expected value of a performance measure called the
return. In this paper, we take the first steps towards a universal off-policy estimator
(UnO)—one that provides off-policy estimates and high-confidence bounds for any
parameter of the return distribution. We use UnO for estimating and simultaneously
bounding the mean, variance, quantiles/median, inter-quantile range, CVaR, and
the entire cumulative distribution of returns. Finally, we also discuss UnO’s appli-
cability in various settings, including fully observable, partially observable (i.e.,
with unobserved confounders), Markovian, non-Markovian, stationary, smoothly
non-stationary, and discrete distribution shifts.

1 Introduction

Problems requiring sequential decision-making are ubiquitous [5]. When online experimentation is
costly or dangerous, it is essential to conduct off-policy evaluation before deploying a new policy;
that is, one must leverage existing data collected using some policy β (called a behavior policy)
to evaluate a performance metric of another policy π (called the evaluation policy). For problems
with high stakes, such as in terms of health [56] or financial assets [86], it is also crucial to provide
high-confidence bounds on the desired performance metric to ensure reliability and safety.

Perhaps the most widely studied performance metric in the off-policy setting is the expected return
[83]. However, this metric can be limiting for many problems of interest. Safety-critical applications,
such as automated healthcare, require minimizing the chances of risk-prone outcomes, and so
performance metrics such as value at risk (VaR) or conditional value at risk (CVaR) are more
appropriate [49, 14]. By contrast, applications like online recommendations are subject to noisy
data and call for robust metrics like the median and other quantiles [2]. In order to improve
user experiences, applications involving direct human-machine interaction, such as robotics and
autonomous driving, focus on minimizing uncertainty in their outcomes and thus use metrics like
variance and entropy [52, 84]. Recent work in distributional reinforcement learning (RL) have
also investigated estimating the cumulative distribution of returns [7, 24] and its various statistical
functionals [76]. While it may even be beneficial to use all of these different metrics simultaneously
to inform better decision-making, even individually estimating and bounding any performance metric,
other than mean and variance, in the off-policy setting has remained an open problem.

This raises the main question of interest: How do we develop a universal off-policy method—one that
can estimate any desired performance metrics and can also provide finite-sample confidence bounds
that hold simultaneously with high probability for those metrics?
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Prior Work: Off-policy methods can be broadly categorized as model-based or model-free [83].
Model-based methods typically require strong assumptions on the parametric model when statistical
guarantees are needed. Further, using model-based approaches to estimate parameters other than the
mean can also require estimating the distribution of rewards for every state-action pair in order to
obtain the complete return distribution for any policy.

By contrast, model-free methods are applicable to a wider variety of settings. Unfortunately, the
popular technique of using importance-weighted returns [71] only corrects for the mean under the
off-policy distribution. Recent work by Chandak et al. [18] provides a specialized extension to only
correct for the variance. Outside RL, works in the econometrics and causal inference literature have
also considered quantile treatments [29, 99] and inferences on counterfactual distributions [28, 20, 36],
but these methods are not developed for sequential decisions and do not provide any high-confidence
bounds with guaranteed coverage. Further, they often mandate stationarity, identically distributed
data, and full observability (i.e., no confounding).

Existing frequentist high-confidence bounds are not only specifically designed for either the mean
or variance, but also hold only individually [92, 45, 18]. Instead of frequentist intervals, a Bayesian
posterior distribution over the mean return and various statistics of that distribution can also be
obtained [105]. We are not aware of any method that provides off-policy bounds or even estimates
for any parameter of the return, while also handling different domain settings that are crucial for RL
related tasks. Therefore, a detailed discussion of existing work is deferred to Appendix C.

Contributions: We take the first steps towards a universal off-policy estimator (UnO) that estimates
and bounds the entire distribution of returns, and then derives estimates and simultaneous bounds for
all parameters of interest. With UnO, we make the following contributions:

A. For any distributional parameter (mean, variance, quantiles, entropy, CVaR, CDF, etc.), we provide
an off-policy method to obtain (A.1) model-free estimators; (A.2) high-confidence bounds that have
guaranteed coverage simultaneously for all parameters and that, perhaps surprisingly, often nearly
match or outperform prior bounds specifically designed for the mean and the variance; and (A.3)
approximate bounds using statistical bootstrapping that can often be significantly tighter.

B. The above advantages hold for (B.1) fully observable and partially observable (i.e., with unob-
served confounders) settings, (B.2) Markovian and non-Markovian settings, and (B.3) settings with
stationary, smoothly non-stationary, and discrete distribution shifts in a policy’s performance.

Limitations: Our method uses importance sampling and thus (1) Requires knowledge of action
probabilities under the behavior policy β, (2) Any outcome under the evaluation policy should have a
sufficient probability of occurring under β, and (3) Variance of our estimators scales exponentially
with the horizon length [39, 57], which may be unavoidable in non-Markovian domains [46].

Notation: For brevity, we first restrict our focus to the stationary setting. In Section 5, we discuss
how to tackle non-stationarity and distribution shifts. A partially observable Markov decision process
(POMDP) is a tuple (S,O,A,P,Ω,R, γ, d0), where S is the set of states, O is the set of observations,
A is the set of actions, P is the transition function, Ω is the observation function, R is the reward
function, γ ∈ [0, 1] is the discount factor, and d0 is the starting state distribution. Although our
results extend to the continuous setting, for notational ease, we consider S,A,O, and the set of
rewards to be finite. Since the true underlying states are only partially observable, the resulting
rewards and transitions from one partially observed state to another are therefore also potentially
non-Markovian [80]. We write St, Ot, At, and Rt to denote random variables for state, observation,
action, and reward respectively at time t. Let D be a data set (Hi)

n
i=1 collected using behavior

policies (βi)
n
i=1, where each Hi denotes the observed trajectory (O0, A0, β(A0|O0), R0, O1, ...).

Notice that an observed trajectory contains β(At|Ot) and does not contain the states St, for all t. Let

Gi :=
∑T

j=0 γ
jRj be the return of Hi, where ∀i, Gmin < Gi < Gmax for some finite constants

Gmin and Gmax, and T is a finite horizon length. Let Gπ and Hπ be the random variables for returns
and complete trajectories under any policy π, respectively. Since the set of observations, actions, and
rewards are finite, and T is finite, the total number of possible trajectories is finite. Let X be the finite
set of returns corresponding to these trajectories. Let Hπ be the set of all possible trajectories for
any policy π. Sometimes, to make the dependence explicit, we write g(h) to denote the return of
trajectory h. Further, to ensure that samples in D are informative, we make a standard assumption
that any outcome under π has sufficient probability of occurring under β (see Appendix B.1 for
further discussion of assumptions in general),
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Assumption 1. The set D contains independent (not necessarily identically distributed) observed
trajectories generated using (βi)

n
i=1, such that for some (unknown) ε > 0, (βi(a|o) < ε) =⇒

(π(a|o) = 0), for all o ∈ O, a ∈ A, and i ∈ {1, 2, ..., n}.

2 Idea Summary

For the desired universal method, instead of considering each parameter individually, we suggest
estimating the entire cumulative distribution function (CDF) of returns first:

∀ν ∈ R, Fπ(ν) := Pr
(
Gπ ≤ ν

)
.

Any distributional parameter, ψ(Fπ), can then be estimated from the estimate of Fπ. However, we
only have off-policy data from a behavior policy β, and the typical use of importance sampling [71]

only corrects for the mean return. To overcome this, we propose an estimator F̂n that uses importance
sampling from the perspective of the CDF to correct for the entire distribution of returns. The CDF

estimate, F̂n, is then used to obtain a plug-in estimator ψ(F̂n) for any distributional parameter ψ(Fπ).

Next, we show that this CDF-centric perspective provides the additional advantage that, if we can
compute a 1− δ confidence band F : R → 2R such that

Pr
(
∀ν ∈ R, Pr

(
Gπ ≤ ν

)
∈ F(ν)

)
≥ 1− δ,

then a 1− δ upper (or lower) high-confidence bound on any parameter, ψ(Fπ), can be obtained by
searching for a function F that maximizes (or minimizes) ψ(F ) and ∀ν ∈ R has F (ν) ∈ F(ν).

3 UnO: Universal Off-Policy Estimator

In the on-policy setting, one approach for estimating any parameter of returns, Gπ, might be to first
estimate its cumulative distribution Fπ and then use that to estimate its parameter ψ(Fπ). However,
doing this in the off-policy setting requires additional consideration as the entire distribution of the
observed returns needs to be adjusted to estimate Fπ since the data is collected using behavior policies
that can be different from the evaluation policy π.

We begin by observing that ∀ν ∈ R, Fπ(ν) can be expanded using the fact that the probability that
the return Gπ equals x is the sum of the probabilities of the trajectories Hπ whose return equals x,

Fπ(ν) = Pr(Gπ ≤ ν) =
∑

x∈X ,x≤ν

Pr(Gπ = x) =
∑

x∈X ,x≤ν

(
∑

h∈Hπ

Pr(Hπ = h)1{g(h)=x}

)
, (1)

where 1A = 1 if A is true and 0 otherwise. Now, observing that the indicator function can be one for
at most a single value less than ν as g(h) is a deterministic scalar given h, (1) can be expressed as,

Fπ(ν) =
∑

h∈Hπ

Pr(Hπ = h)
∑

x∈X ,x≤ν

1{g(h)=x} =
∑

h∈Hπ

Pr(Hπ = h)
(
1{g(h)≤ν}

)
,

where the red color is used to highlight changes. Now, from Assumption 1 as ∀β, Hπ ⊆ Hβ ,1

Fπ(ν) =
∑

h∈Hβ

Pr(Hπ = h)
(
1{g(h)≤ν}

)
=
∑

h∈Hβ

Pr(Hβ = h)
Pr(Hπ = h)

Pr(Hβ = h)

(
1{g(h)≤ν}

)
. (2)

The form of Fπ(ν) in (2) is beneficial as it suggests a way to not only perform off-policy corrections
for one specific parameter, as in prior works [71, 18], but for the entire cumulative distribution

function (CDF) of return Gπ . Formally, let ρi :=
∏T

j=0
π(Aj |Oj)
βi(Aj |Oj)

denote the importance ratio for Hi,

which is equal to Pr(Hπ = h)/Pr(Hβ = h) (see Appendix D).

Then, based on (2), we propose the following non-parametric and model-free estimator for Fπ .

∀ν ∈ R, F̂n(ν) :=
1

n

n∑

i=1

ρi1{Gi≤ν}. (3)

1Results can be extended to hybrid probability measures using Radon-Nikodym derivatives.
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Figure 1: An illustration of return distributions for π and
β. The CDF at any point ν corresponds to the area un-
der the probability distribution up until ν. Having order
statistics (G(i))

5
i=1 of samples (Gi)

5
i=1 drawn using β, (3)

constructs an empirical estimate of the CDF for π (green
shaded region) by correcting for the probability of ob-
serving each Gi using the importance-sampled counts of
Gi ≤ ν. Additionally, weighted-IS (WIS) can be used as
in (27) for a variance-reduced estimator for Fπ .

Figure 1 provides intuition for (3). In the following theorem, we establish that this estimator, F̂n,
is unbiased and not only pointwise consistent, but also a uniformly consistent estimator of Fπ,
even when the data D is collected using multiple behavior policies (βi)

n
i=1. The proof (deferred

to Appendix D) also illustrates that by using knowledge of action probabilities under the behavior

policies, no additional adjustments (e.g., front-door or backdoor [70]) are required by F̂n to estimate
Fπ , even when the domain is non-Markovian or has partial observability (confounders).

Theorem 1. Under Assumption 1, F̂n is an unbiased and uniformly consistent estimator of Fπ ,

∀ν ∈ R, ED

[
F̂n(ν)

]
= Fπ(ν), sup

ν∈R

∣∣∣F̂n(ν)− Fπ(ν)
∣∣∣ a.s.
−→ 0.

Remark 1. Notice that the value of F̂n(ν) can be more than one, even though Fπ(ν) cannot have a
value greater than one for any ν ∈ R. This is an expected property of estimators based on importance
sampling (IS). For example, the IS estimates of expected return during off-policy mean estimation can
be smaller or larger than the smallest and largest possible return when ρ > 1.

Having an estimator F̂n of Fπ, any parameter ψ(Fπ) can now be estimated using ψ(F̂n). However,
some parameters like the mean µπ, variance σ2

π, and entropy Hπ, are naturally defined using the
probability distribution dFπ instead of the cumulative distribution Fπ. Similarly, parameters like
the α-quantile Qα

π and inter-quantile range (which provide tail-robust measures for the mean and
deviation from the mean) and conditional value at risk CVaRα

π (which is a tail-sensitive measure) are
defined using the inverse CDF F−1

π (α). Therefore, let (G(i))
n
i=1 be the order statistics for samples

(Gi)
n
i=1 and G(0) := Gmin. Then, we define the off-policy estimator of the inverse CDF for all

α ∈ [0, 1], and the probability distribution estimator dF̂n as,

F̂−1
n (α) := min

{
g ∈ (G(i))

n
i=1

∣∣∣F̂n(g) ≥ α
}
, dF̂n(G(i)) := F̂n(G(i))− F̂n(G(i−1)), (4)

where dF̂n(ν) := 0 if ν 6= G(i) for any i ∈ (1, . . . , n). Using (4), we now define off-policy estimators
for parameters like the mean, variance, quantiles, and CVaR (see Appendix E.1 for more details on
these). This procedure can be generalized to any other parameter of Fπ for which a sample estimator

ψ(F̂n) can be directly created using F̂n as a plug-in estimator for Fπ .

µπ(F̂n) :=

n∑

i=1

dF̂n(G(i))G(i), σ2
π(F̂n) :=

n∑

i=1

dF̂n(G(i))
(
G(i) − µπ(F̂n)

)2
,

Qα
π(F̂n) := F̂−1

n (α), CVaRα
π(F̂n) :=

1

α

n∑

i=1

dF̂n(G(i))G(i)1{G(i)≤Qα
π(F̂n)}.

Remark 2. Let Hi be the observed trajectory for the Gi that gets mapped to G(i) when computing

the order statistics. Note that dF̂n(G(i)) equals ρi/n for this Hi. This implies that the estimator for

the mean, µπ(F̂n), reduces exactly to the existing full-trajectory-based IS estimator [71].

Notice that many parameters and their sample estimates discussed above are nonlinear in Fπ and

F̂n, respectively (the mean is one exception). Therefore, even though F̂n is an unbiased estimator

of Fπ , the sample estimator, ψ(F̂n), may be a biased estimator of ψ(Fπ). This is expected behavior
because even in the on-policy setting it is not possible to get unbiased estimates of some parameters
(e.g., standard deviation), and UnO reduces to the on-policy setting when π = β. However, perhaps

surprisingly, we establish in the following section that even when ψ(F̂n) is a biased estimator of
ψ(Fπ), high-confidence upper and lower bounds can still be computed for both Fπ and ψ(Fπ).
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Figure 2: An illustration of F̂n (in black) using five return
samples and the confidence band F (red shaded region) com-
puted using (5) with confidence intervals (red lines) at three

key points (κi)
3
i=1. Notice that the vertical “steps” in F̂n can

be of different heights and their total can be greater than 1
due to importance weighting. However, since we know that
Fπ is never greater than 1, F can be clipped at 1.

4 High-Confidence Bounds for UnO

Off-policy estimators are typically prone to high variance, and when the domain can be non-
Markovian, the curse of horizon might be unavoidable [46]. For critical applications, this might
be troublesome [94] and thus necessitates obtaining confidence intervals to determine how much
our estimates can be trusted. Therefore, in this section, we aim to construct a set of possible CDFs
F : R → 2R, called a confidence band, such that the true Fπ(ν) is within the set F(ν) with high
probability, i.e., Pr(∀ν ∈ R, Fπ(ν) ∈ F(ν)) ≥ 1− δ, for any δ ∈ (0, 1]. Subsequently, we develop
finite-sample bounds for any parameter ψ(Fπ) using F .

In the on-policy setting, F can be constructed using the DKW inequality [31] and its tight constants
[60]. However, its applicability to the off-policy setting is unclear as (a) unlike the on-policy CDF
estimate, the “steps” of an off-policy CDF estimate are not of equal heights, (b) the “steps” do not
sum to one (see Figure 2) and the maximum height of the steps need not be known either, and (c)
DKW assumes samples are identically distributed, however, off-policy data D might be collected
using multiple different behavior policies. This raises the question: How do we obtain F in the
off-policy setting?

Before constructing a confidence band F , let us first focus on obtaining bounds for a single point,
Fπ(κ). Let X := ρ(1{G≤κ}). Then, from Theorem 1, we have that ED[X] = Fπ(κ). This implies

that a confidence interval for the mean of X provides a confidence interval for Fπ(κ). Using this
observation, existing confidence intervals for the mean of a bounded random variable can be directly
applied to X to obtain a confidence interval for Fπ(κ). For example, Thomas et al. [91] present
tight bounds for the mean of IS-based random variables by mitigating the variance resulting from the

heavy tails associated with IS; we use their method on F̂n(κ) to bound Fπ(κ). Alternatively, recent
work by Kuzborskij et al. [53] can potentially be used with a WIS-based Fπ estimate (27).

Before moving further, we introduce some additional notation. Let (κi)
K
i=1 be anyK “key points” and

let CI−(κi, δi) and CI+(κi, δi) be the lower and the upper confidence bounds on Fπ(κi) constructed
at each key point using the observation made in the previous paragraph, such that

∀i ∈ (1, ...,K), Pr
(
CI−(κi, δi) ≤ Fπ(κi) ≤ CI+(κi, δi)

)
≥ 1− δi.

We now use the following observation to obtain a band, F , that contains Fπ with high confidence.
Because Fπ is a CDF, it is necessarily monotonically non-decreasing, and so if Fπ(κi) ≥ CI−(κi, δi)
then for any ν ≥ κi, Fπ(ν) must be no less than CI−(κi, δi). Similarly, if Fπ(κi) ≤ CI+(κi, δi)
then for any ν ≤ κi, Fπ(ν) must also be no greater than CI+(κi, δi). Let κ0 := Gmin, κK+1 :=
Gmax, CI−(κ0, δ0) := 0, and CI+(κK+1, δK+1) := 1; then, as illustrated in Figure 2, we can
construct a lower function F− and an upper function F+ that encapsulate Fπ with high probability,

F−(ν) :=

{
1 if ν > Gmax,

max
κi≤ν

CI−(κi, δi) otherwise. F+(ν) :=

{
0 if ν < Gmin,

min
κi≥ν

CI+(κi, δi) otherwise. (5)

Theorem 2. Under Assumption 1, for any δ ∈ (0, 1], if
∑K

i=1 δi ≤ δ, then the confidence band
defined by F− and F+ provides guaranteed coverage for Fπ . That is,

Pr
(
∀ν ∈ R, F−(ν) ≤ Fπ(ν) ≤ F+(ν)

)
≥ 1− δ.

5



Figure 3: Given a confidence band F , bounds for many parameters can be obtained using geometry.
(Left) For a lower bound on the mean, we would want a CDF F ∈ F that assigns as high a probability
as possible on lower G values, and F+ is the CDF which does that. To obtain the mean of F+, we use
the property that the mean of a distribution is the area above the CDF on the positive x-axis minus the
area below the CDF on the negative x-axis [3]. Hence, the mean of the distribution characterized by
F+ is the area of the shaded blue region minus the area of the shaded purple region, and this value
is the high-confidence lower bound on the mean. (Middle) Similarly, within F , F+ characterizes
the distribution with the smallest α-quantile. (Right) Building upon the lower bounds for the mean
and the quantile, Thomas and Learned-Miller [90] showed that the lower bound for α-CVaR can
be obtained using the area of the shaded blue region minus the area of the shaded purple region,
normalized by α. To get the upper bounds on the mean, quantile, and CVaR, analogous arguments
hold using the lower bound CDF F−. See Appendix E.5 for discussions of variance, inter-quantile,
entropy, and other parameters.

Remark 3. Notice that any choice of (κi)
K
i=1 results in a valid band F . However, F can be made

tighter by optimizing over the choice of (κi)
K
i=1. In Appendix E.5, we present one such method using

cross-validation to minimize the area enclosed within F .

Having obtained a high-confidence band for Fπ, we now discuss how high-confidence bounds for
any parameter ψ(Fπ) can be obtained using this band. Formally, with a slight overload of notation let
F be the set of all possible CDFs bounded between F− and F+, that is,

F :=
{
F
∣∣∣ ∀ν ∈ R, F−(ν) ≤ F (ν) ≤ F+(ν)

}
.

This band F contains many possible CDFs, one of which is Fπ with high probability. Therefore, to
get a lower or upper bound, ψ− or ψ+, on ψ(Fπ), we propose deriving a CDF F ∈ F that minimizes
or maximizes ψ(F ), respectively, and we show that these contain ψ(Fπ) with high probability:

ψ− := inf
F∈F

ψ(F ), ψ+ := sup
F∈F

ψ(F ). (6)

Theorem 3. Under Assumption 1, for any 1− δ confidence band F , the confidence interval defined
by ψ− and ψ+ provides guaranteed coverage for ψ(Fπ). That is,

Pr
(
ψ− ≤ ψ(Fπ) ≤ ψ+

)
≥ 1− δ.

While obtaining ψ− might not look straightforward, one can obtain closed-form expressions for many
popular parameters of interest. In other cases, simple algorithms exist for computing ψ− and ψ+ [74].
Figure 3 provides geometric depictions of the closed-form expressions for some parameters.

Remark 4. Perhaps surprisingly, even though ψ(F̂n) may be biased, we can obtain high-confidence
bounds with guaranteed coverage on any ψ(Fπ) using the confidence band F . In fact, confidence
bounds for all parameters computed using (6) hold simultaneously with probability at least 1− δ as
they are all derived from the same confidence band, F .

3.1. Statistical Bootstrapping: An important advantage of having constructed an off-policy estima-
tor of any ψ(Fπ) is that it opens up the possibility of using resampling-based methods, like statistical
bootstrapping [32], to obtain approximate confidence intervals for ψ(Fπ). In particular, we can use
the bias-corrected and accelerated (BCa) bootstrap procedure to obtain ψ− and ψ+ for ψ(Fπ). This
procedure is outlined in Algorithm 1 in Appendix E.4.

Unlike the bounds from (6), BCa-based bounds do not offer guaranteed coverage and need to be
computed individually for each parameter ψ. However, they can be combined with UnO to get
significantly tighter bounds with less data, albeit without guaranteed coverage.
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5 Confounding, Distributional Shifts, and Smooth Non-Stationarities

A particular advantage of UnO is the remarkable simplicity with which the estimates and bounds
for Fπ or ψ(Fπ) can be extended to account for confounding, distributional shifts, and smooth
non-stationarities that are prevalent in real-world applications [30].

Confounding / Partial Observability: Estimator F̂n in (3) accounts for partial observability when
both π and β have the same observation set. However, in systems like automated loan approval
[94], data might have been collected using a behavior policy β dependent on sensitive attributes like
race and gender that may no longer be allowable under modern laws. This can make the available

observation, Õ, for an evaluation policy π different from the observations, O, for β, which may also
have been a partial observation of the underlying true state S.

However, an advantage of many such automated systems (e.g., online recommendation, automated
healthcare, robotics) is the direct availability of behavior probabilities βi(A|O). In Appendix D,
we provide generalized proofs for all the earlier results, showing that access to βi(A|O) allows

UnO to handle various sources of confounding even when Õ 6= O, without requiring any additional
adjustments. When βi(A|O) is not available, we allude to possible alternatives in Appendix B.1.

Distribution Shifts: Many practical applications exhibit distribution shifts that might be discrete
or abrupt. One example is when a medical treatment developed for one demographic is applied to

another [37]. To tackle discrete distributional shifts, let F
(1)
π and F

(2)
π denote the CDFs of returns

under policy π in the first and the second domain, respectively. To make the problem tractable, similar
to prior work on characterizing distribution shifts [10], we assume that the Kolmogorov-Smirnov

distance between F
(1)
π and F

(2)
π is bounded.

Assumption 2. There exists ε ≥ 0, such that sup
ν∈R

∣∣∣F (1)
π (ν)− F

(2)
π (ν)

∣∣∣ ≤ ε.

Given data D collected in the first domain, one can obtain the bounds F
(1)
− and F

(1)
+ on F

(1)
π as in

Section 4. Now since F
(2)
π can differ from F

(1)
π by at most ε at any point, we propose the following

bounds for F
(2)
π for all ν ∈ R and show that they readily provide guaranteed coverage for F

(2)
π :

F
(2)
− (ν) := max(0, F

(1)
− (ν)− ε), F

(2)
+ (ν) := min(1, F

(1)
+ (ν) + ε). (7)

Theorem 4. Under Assumptions 1 and 2, ∀δ ∈ (0, 1], the confidence band defined by F
(2)
− and F

(2)
+

provides guaranteed coverage for F
(2)
π . That is, Pr(∀ν, F

(2)
− (ν) ≤ F

(2)
π (ν) ≤ F

(2)
+ (ν)) ≥ 1− δ.

Smooth Non-stationarity: The stationarity assumption is unreasonable for applications like online
tutoring or recommendation systems, which must deal with drifts of students’ interests or seasonal
fluctuations of customers’ interests [93, 88]. In the worst case, however, even a small change in the
transition dynamics can result in a large fluctuation of a policy’s performance and make the problem
intractable. Therefore, similar to the work of Chandak et al. [16], we assume that the distribution of
returns for any π changes smoothly over the past episodes 1 to L, and the ` episodes in the future. In

particular, we assume that the trend of F
(i)
π (ν) for all ν can be modeled using least-squares regression

using a nonlinear basis function φ : R → R
d (e.g., the Fourier basis, which is popular for modeling

non-stationary trends [12]).

Assumption 3. For any ν, ∃wν ∈ R
d, such that, ∀i ∈ [1, L+ `], F

(i)
π (ν) = φ(i)>wν .

Estimating F
(L+`)
π can now be seen as a time-series forecasting problem. Formally, for any key point

κ, let F̂
(i)
n (κ) be the estimated CDF using Hi observed in episode i. From Theorem 1, we know that

F̂
(i)
n (κ) is an unbiased estimator of F

(i)
π (κ); therefore, (F̂

(i)
n (κ))Li=1 is an unbiased estimate for the

underlying time-varying sequence (F
(i)
π (κ))Li=1. Now, using methods from time-series literature,

the trend of (F̂
(i)
n (κ))Li=1 can be analyzed to forecast F

(L+`)
π (κ), along with its CIs. In particular,

we propose using wild bootstrap [58, 26], which provides approximate CIs with finite sample error

of O(L−1/2) while also handling non-normality and heteroskedasticity, which would occur when
dealing with IS-based estimates resulting from different behavior polices [16]. See Appendix E.6 for
more details. Finally, using the bounds obtained using wild bootstrap at multiple key points, an entire
confidence band can be obtained as discussed in Section 4.
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6 Empirical Studies

In this section, we provide empirical support for the established theoretical results for the proposed
UnO estimator and high-confidence bounds. To do so, we use the following domains: (1) An
open source implementation [102] of the FDA-approved type-1 diabetes treatment simulator [59],
(2) A stationary and a non-stationary recommender system domain, and (3) A continuous-state
Gridworld with partial observability, where data is collected using multiple behavior policies. Detailed
description for domains and the procedures for obtaining π and β are provided in Appendix F.1; code
is also publicly available here. In the following, we discuss four primary takeaway results.

(A) Characteristics of the UnO estimator: Figure 4 reinforces the universality of UnO. As can be
seen, UnO can accurately estimate the entire CDF and a wide range of its parameters: mean, variance,
quantile, and CVaR.

Figure 4: Performance trend of the proposed estimators and bounds on three domains. The black
dashed line is the true value of Fπ or ψ(Fπ), green is our UnO estimator, red is our CI-based UnO
bound, blue is the bootstrap version of our UnO bound, and yellow is the baseline bound for the mean
[91] or variance [18]. Each bound has two lines (upper and lower); however, some are not visible due
to overlaps. The shaded regions are ±2 standard error, computed using 30 trials. The plots in the top
row are for CDFs obtained using 3× 104.5 samples. The next four rows are for different parameters
and share the same x-axis. Bounds were obtained for a failure rate δ = 0.05. Since the UnO-Boot
and Baseline-CI methods do not hold simultaneously for all the parameters, they were made to hold
with failure rate of δ/4 for a fair comparison (as there are 4 parameters in this plot).

(B) Comparison of UnO with prior work: Recent works for bounding the mean [45, 35] assume
no confounding and Markovian structure. Therefore, for a fair comparison, we resort to the method

8



Figure 5: (Top row) True rewards (unknown to the RL agent) associated with each of the five items
over the past 1000 episodes for different speeds of non-stationarity. Speed of 0 indicates stationary
setting and higher speeds indicates greater degrees of non-stationarity. (Bottom row). The black

dashed line is the true value of the future distribution of returns under π: F
(L+`)
π , where L = 1000

and ` = 1. In red is our UnO bound that does not account for non-stationarity, and in blue is the
wild-bootstrap version of our UnO bound that accounts for non-stationarity. The shaded region
corresponds to one standard error computed using 30 trials. Bounds were obtained for a failure rate
δ = 0.05. (Left column) In the stationary setting, both the variants of UnO bounds approximately

contain the true future CDF F
(L+`)
π . In this setting, the UnO method designed only for stationary

settings provides a tighter bound. (Middle & Right columns) As the domain becomes non-stationary,
UnO bounds that do not account for non-stationarity fail to adequately bound the true future CDF

F
(L+`)
π . When the degree of non-stationarity is high, not accounting for non-stationarity can lead

to significantly inaccurate bounds. By comparison, UnO bounds that use wild bootstrap to tackle
non-stationarity provide a more accurate bound throughout. As expected, when the fluctuations due to
non-stationarity increase, the width of the confidence band increases as well. These results illustrate
(a) the importance of accounting for non-stationarity, when applicable, and (b) the flexibility offered
by our proposed universal off-policy estimator, UnO, to tackle such settings.

of Thomas et al. [91] that can provide tight bounds even when the domain is non-Markovian or has
confounding (partial observability). Perhaps surprisingly, Figure 4 shows that the proposed guaranteed
coverage bounds, termed UnO-CI here, can be competitive with this existing specialized bound,
termed Baseline-CI here, for the mean. In fact, UnO-CI can often require an order of magnitude less
data compared to the specialized bounds for variance [18]; we refer readers to Appendix F.2 for a
discussion on potential reasons. This suggests that the universality of UnO can be beneficial even
when only one specific parameter is of interest.

(C) Finite-sample confidence bounds for other parameters using UnO: Figure 4 demonstrates
that UnO-CI also successfully addresses the open question of providing guaranteed coverage bounds
for multiple parameters simultaneously without additional applications of the union bound. As
expected, bounds for parameters like variance and CVaR that depend heavily on the distribution
tails take more samples to shrink than bounds on other parameters (like the median [quantile(0.5)]).
Additional discussion on the observed trends for the bounds is provided in Appendix F.2.

The proposed UnO-Boot bounds, as discussed in Section 3.1, are approximate and might not always
hold with the specified probability. However, they stand out by providing significantly tighter, and
thus more practicable, confidence intervals.

(D) Results for non-stationary settings: Results for this setting are presented in Figure 5. As
discussed earlier, online recommendation systems for tutorials, movies, advertisements and other
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products are ubiquitous. However, the popular assumption of stationarity is seldom applicable to
these systems. In particular, personalizing for each user is challenging in such settings as interests of
a user for different items among the recommendable products fluctuate over time. For an example, in
the context of online shopping, interests of customers can vary based on seasonality or other unknown
factors. To abstract such settings, in this domain the reward (interest of the user) associated with each
item changes over time. See Figure 5 (top row) for visualization of the domain, for different “speeds”
(degrees of non-stationarity).

In all the settings with different speeds, a uniformly random policy was used as a behavior policy β to
collect data for 1000 episodes. To test the efficacy of UnO, when the future domain can be different
from the past domains, the evaluation policy was chosen to be a near-optimal policy for the future
episode: 1000 + 1.

7 Conclusion

We have taken the first steps towards developing a universal off-policy estimator (UnO), closing the
open question of whether it is possible to estimate and provide finite-sample bounds (that hold with
high probability) for any parameter of the return distribution in the off-policy setting, with minimal
assumptions on the domain. Now, without being restricted to the most common and basic parameters,
researchers and practitioners can fully characterize the (potentially dangerous or costly) behavior of a
policy without having to deploy it.

There are many new questions regarding how UnO can be improved for policy evaluation by further
reducing data requirements or weakening assumptions. Using UnO for policy improvement also
remains an interesting future direction. Subsequent to this work, Huang et al. [43] showed how
models can be used to obtain UnO-style doubly robust estimators along with its convergence rates in
the contextual bandit setting. This allows their method to also provide finite-sample uniform CDF
bounds for a broad class of Lipschitz risk functionals.
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(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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