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Abstract

Accurate long-term trajectory prediction in complex
scenes, where multiple agents (e.g., pedestrians or vehi-
cles) interact with each other and the environment while at-
tempting to accomplish diverse and often unknown goals,
is a challenging stochastic forecasting problem. In this
work, we propose MUSE-VAE, a new probabilistic model-
ing framework based on a cascade of Conditional VAEs,
which tackles the long-term, uncertain trajectory prediction
task using a coarse-to-fine multi-factor forecasting archi-
tecture. In its Macro stage, the model learns a joint pixel-
space representation of two key factors, the underlying en-
vironment and the agent movements, to predict the long and
short term motion goals. Conditioned on them, the Micro
stage learns a fine-grained spatio-temporal representation
for the prediction of individual agent trajectories. The VAE
backbones across the two stages make it possible to nat-
urally account for the joint uncertainty at both levels of
granularity. As a result, MUSE—-VAE offers diverse and si-
multaneously more accurate predictions compared to the
current state-of-the-art. We demonstrate these assertions
through a comprehensive set of experiments on nuScenes
and SDD benchmarks as well as PFSD, a new synthetic
dataset, which challenges the forecasting ability of models
on complex agent-environment interaction scenarios.

1. Introduction

Human behavior forecasting is an essential problem
studied in various research fields such as computer vi-
sion [14], computer graphics [15], robotics [10], and cog-
nitive science [44]. The fundamental problem with predict-
ing human motion is the inherent stochasticity stemming
from the fact that human beings use numerous sources of
information to make a wide variety of different decisions at
any given moment, which all impact their future movement.
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Figure 1. (a) The predicted trajectory heatmaps are overlaid in the
semantic map. Ground Truth (GT) long-term goal (LG) and short-
term goals (SG1 and SG2) are marked with ‘x’. (b) Complete
trajectory forecasting based on the predicted LG and SG. Each
sequence of trajectories is obtained from a different pair of LG
and SG predictions.

This movement uncertainty translates beyond the motion of
the humans alone to the movement of objects controlled by
humans, such as vehicles [0].

To embrace the uncertainty, in this paper, we focus on
developing computational models, learned from data, that
can predict a realistic multi-modal distribution of the future
agent (humans, vehicles, etc.) trajectories. The models are
designed in the context of two main factors that drive this
uncertainty: the environment the agents occupy and the task
they are attempting to accomplish.

However, direct forecasting of long-term trajectories is
a challenging task. A person typically plans one’s move-
ment in a coarse-to-fine fashion: with a final destina-
tion in mind, through a sequence of intermediate goals or
way-points, the movement is executed to reach those sub-
goals [8,34]. State-of-the-Art (SOTA) methods [25,43,46]
leverage this intuition to propose goal-conditioned predic-
tion model. However, despite their effectiveness compared
to traditional approaches [ 1, 14,42], these models show lim-
ited ability to deal with complex environments [43], par-



ticularly as they affect the movement [46]. This often re-
sults in physically implausible trajectory predictions that
violate agent-environment collision constraints. Moreover,
the models frequently struggle to account for the diversity
of the forecast goals and trajectories [25], which are driven
by the uncertain, multi-modal nature of the problem.

To address this, we propose MUSE-VAE: a multi-scale,
environment-aware model for long-term trajectory predic-
tion which (1) takes a stage-wise, coarse-to-fine approach
to trajectory prediction by predicting both the higher-level
goals and the goal-conditioned trajectory, (2) avoids col-
lision with obstacles without loss of spatial signal which
can occur due to spatial reorganization when compressing
2D information into 1D features, and (3) learns a multi-
modal predictive distribution across the stages, thus captur-
ing the inherent uncertainty. MUSE—-VAE embodies a three-
step learning strategy across a Macro-stage and Micro-
stage. The Macro-stage comprises of two steps for coarse
predictions. We first predict the long-term goal, i.e., the
last step of the given sequence based on heatmap trajec-
tory representation. Given the long-term goal, sequential
short-term goals are predicted as shown in Fig. la. After
getting the goal positions in the Macro-stages, finally, our
model produces the full trajectories in the Micro-stage as
in Fig. 1b. Our main contributions are as follows: (a) We
introduce a novel multi-scale learning strategy for CVAE-
based probabilistic models in order to make environment-
aware collision-free trajectory predictions. (b) Unlike the
prior works, we show that one can learn trajectory distribu-
tions that can be well generalized in new scenes at test time,
giving various reasonable predictions compliant to the en-
vironment without needing extra steps for diversity. (¢) The
proposed coarse-to-fine approach enables diverse and accu-
rate trajectory predictions by forecasting the heading of the
entire trajectories through goal prediction and then expand-
ing it to granular and complete predictions.

We demonstrate these contributions through experiments
on both real and synthetic dataset. With various grounded
evaluation metrics, we show that MUSE-VAE can produce
predictions similar to GT trajectories while achieving less
collision with the environment than the SOTA methods.

2. Related Work

The modeling of agent movement behavior, including in-
dividual humans, crowds, vehicles, etc., is a long-standing
problem crossing the boundaries of multi-agent and com-
puter vision communities. We focus on three relevant as-
pects: the forecasting of individual trajectories, the inter-
play between movement behavior and the environment, and
the need for modeling thet uncertainty in motion prediction.
Sequence Learning The human trajectory has a sequence
characteristic that changes in turn according to the passage
of time. In order to capture the nature of the sequential in-
formation, many prior works [, 14,21,32,33,42] utilize

Recurrent Neural Networks (RNNs) [27] such as LSTMs
and GRUs. However, RNN suffers from forgetting the past
hidden states as the recursion goes. [12,45] tackle the tem-
poral aspects of human trajectory forecasting by adopting
Transformer Networks [41]. Transformer solves the long-
range dependency problem by processing the a sequence
as a whole with self-attention and positional encoding. Y-
net [25] solves the sequential trajectory learning problem
with only convolution layers. They represent trajectories
with multiple heatmaps, which are stacked with the seman-
tic environment map image along the channel dimension
and fed to their convolution networks as a whole. This way,
they learn temporal movements with the environment with-
out tradition sequence learning networks.

Environment Learning A decision about the trajectory
taken towards a goal depends on the surrounding environ-
ment. Many prior approaches provide environmental in-
formation to their model for realistic trajectory predictions.
[32,33,45,46] encode the environment layout and semantics
as a representation of the scene image with a convolution
network and use it to train their models along with trajec-
tory features. While these approaches can learn the scene
context surrounding the trajectory, they compress it into 1D
feature vectors after CNNs and FCs layers, which can con-
vey corrupted information in terms of spatial signals. Y-
net [25] addresses this issue by aligning the semantic map
with the trajectory heatmap spatially and processing them
as a whole. Our model attempts more meaningful environ-
mental learning without unnecessary information by focus-
ing on a limited area around the trajectory rather than the
entire scene while keeping the spatial signal by utilizing the
heatmap trajectory representation.

Multimodal Learning The trajectory of an agent (hu-
man, vehicle, etc.) is affected by a number of factors such
as the destination in mind, the surrounding environment,
nearby agents and so on, which leads to an intrinsic un-
certainty about the future behavior. Recent studies focus
on learning the distribution of the human trajectory based
on deep generative models, sidestepping the deterministic
trajectory prediction. [17,21,33,40,45] adopt Conditional
Variational AutoEncoders (CVAE) [35] and [14,20,32] in-
troduce Generative Adversarial Network (GAN) [13] for
learning of trajectory distribution where multiple predic-
tions can be sampled. Trajectron++ [33] tackles the mul-
timodal aspect of trajectory distributions by adopting a dis-
crete latent distribution for the latent space, and Gaussian
Mixture Model as the output distribution of the decoder
in their CVAE framework. AgentFormer [45] promotes
diversity of the predictions with a pairwise distance loss
across predictions. However, this approach requires retrain-
ing whenever a different number of predictions are sought
at test time. Y-net [25] utilizes K-means clustering of pre-
dictive discrete density maps at test time to achieve diverse
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Figure 2. (a) The semantic map with 8 past / 12 future trajectories.
Rather than the global map, we use the local map to focus on the
nearby environment of the given trajectories. (b) Input and output
format of Macro-stage models, LG-CVAE and SG-net. Trajectory
heatmaps are overlaid with the local view semantic map. Here we
assume 2 short-term goals at future time step 4 and 8 among 12
future steps. Thus, SG-net outputs 3 heatmaps; 2 for the short-
term goals and 1 for the long-term goal.

prediction; however, the model does not explicitly learn
the resolution-free multimodal trajectory density. Some
prior works [25,28,43,46] encourage the multimodality by
proposing a goal-conditioned forecasting model under the
assumption that one’s movement depends primarily on the
final goal position.

MUSE-VAE adopts a stage-wise training procedure to
incorporate sequential information while maintaining a
trajectory aligned with the environment. First, in the
Macro-stage, future predictions are obtained by utilizing
the heatmap representation of trajectories along with the
semantic environment map, and then in the Micro-stage,
RNN-based networks are used to facilitate sequence learn-
ing. The Micro-stage takes advantage of coarse predictions
from the Macro-stage, reducing the long-range dependency
problem and guiding the path to avoid obstacles. Adopting
VAE in both Macro- and Micro-stages, our model learns the
inherent uncertainty of forecasting, which can give a variety
of plausible predictions.

3. Proposed Method

The trajectory prediction problem is formulated as fol-
lows. Assume that we are given ¢, > 0 timestamps, the
past trajectory positions x = {xf}i"zl of agent ¢ in scene
S, where z¢ € R? denotes the 2D world coordinates of the
agent ¢ at time £. Our goal is to predict the future trajec-
tory of the same agent during ¢t; > 0 future timestamps,
y = {yf}i’fti ., in the sense of their distribution. y! € R?
is the future 2D position in the same coordinate system as

xt. This prediction should take into account the environ-

mental context S, i.e., p(y|z,S). We propose our MUIti-
Scale Environment-aware model, MUSE-VAE for coarse-
to-fine trajectory forecasting. The Macro-stage is defined
as a coarse prediction of the future trajectories, and the
Micro-stage is defined as a fine prediction based on the
coarse prediction. In the Macro-stage, only a subset of the
future steps are predicted as the long-term and short-term
goals. We denote the long-term goal as the final step at
tr.g = tp+y and the short-term goals as some intermediate
steps tsg € {tpt+1,..-,tp+f—1}. The Macro-stage aims
to obtain rough predictions that are well aligned with the
scene for collision avoidance against environmental obsta-
cles. Based on the coarse prediction, the Micro-stage gen-
erates a fine-grained prediction of all ¢ future steps. In
this stage, we adopt the RNN [27] to efficiently learn the
sequential features of trajectories.

In Sec. 3.1, we introduce the coarse prediction stage,
Macro-stage, and elaborate on how the primary Macro-
stage model, Long-term Goal Conditional VAE (LG-
CVAE), and the subsequent Macro-stage model, Short-term
Goal network (SG-net), are formulated. Sec. 3.2 introduces
the Micro-stage, the fine prediction stage, used to refine pre-
dictions of complete forecast trajectories.

3.1. Macro-stage: Coarse Prediction Stage

One of the most important factors in the uncertainty of
the future behavior is the future heading of an individual.
One way to narrow the possibilities is to be aware of the
surroundings and learn patterns from the past. [33, 45, 46]
learn a representation of the environment, defined in image
space, by encoding the semantic map of the scene into a 1D
flattened feature, which can introduce distortion of spatial
information of the scene. For alignment between trajecto-
ries and the semantic map, we represent trajectories x in
the pixel space as suggested in Y-net [25], using a Gaussian
heatmap, denoted by I,. The Gaussian filter has a vari-
ance of 4, and we create the homography matrices to map
the world coordinates in meters to the image-based coordi-
nates in pixel. Trajectories in ¢, past timestamp are all rep-
resented in a single heatmap, while each future step is rep-
resented as one heatmap per step. The trajectory heatmap
size matches the size of the semantic map.

Typically, the full environment information of a given
scene is not necessary for long-term trajectory prediction.
Often, the scene proximal to an agent’s current location is
sufficient. Thus, we focus only on the local semantic map,
with trajectory heatmaps created as illustrated in Fig. 2a.
The local map is centered at the last observed agent loca-
tion. The inputs and outputs of the Macro-stage are illus-
trated in Fig. 2b. The input of the long-term goal prediction
model, LG-CVAE, consists of concatenated (local seman-
tic map, past trajectory heatmap) and outputs one long-term
goal heatmap. The short-term goal prediction model, SG-
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Figure 3. MUSE-VAE architecture. LG-CVAE is the first stage which predicts the long-term goal based on CVAE framework. Conditioned
on the long-term goal, SG-net predicts the waypoints from the past trajectories to the long-term goal. We group these two stages as
Macro-stage where the predictions are made in heatmap representation to keep the spatial signal along with the semantic map. Finally in
Micro-stage, full trajectories are obtained with RNN-based CVAE. More implementation details are in the Supplementary Materials.

net, has the input of concatenated (local semantic map, past
trajectory heatmap, long-term goal heatmap) and outputs
Ngsg + 1 heatmaps, where Ng¢ is the number of short-
term goals'. The local semantic map I, can be determined
as f(S, $va H,n) where f is the function that converts the
global scene information S and homography # into a local
image-based representation of size (n,n) pixels centered at

the last observed location xz” of agent ¢.

3.1.1 LG-CVAE: Long-term Goal Prediction Model

Where a person will go in the future depends primarily on
the long-term goal position. Therefore, for different po-
tential future trajectories, it is of paramount importance to
predict different long-term goal positions in good quality.
To model the inherent uncertainty with semantic map and
heatmap trajectory representations, we combine U-net [30]
and Conditional Variational AutoEncoder (CVAE) [35] as
studied in [19]. Given the heatmap I, of the past trajecto-
ries, the heatmap I of the long-term goal, and the local
semantic map Iy, the objective of the CVAE is to maximize
the conditional distribution,

p(Tea) e, Tar) = / po(Tralw, Lo, Indp(w|Le, In)dw. (1)

The stochasticity of the conditional latent distribution
p(w|I, Ipr) is propagated and contributes to the multi-
modality of p(Irc|Iy, Inr). The LG-CVAE loss is defined
as the negative evidence lower bound as follows.

Lre =Byl 1..10) 108 po(ILclw, o, Inr))
+KL(Q¢>(U}|ILG’[$7IM)||pw(w‘Iaf7[M))7

I'The extra count corresponds to the long-term goal.

where ¢4 (w|Irg, Iy, Inr) and py(w|I;, Ins) are the poste-
rior and the conditional prior distributions, respectively, as-
sumed to be Gaussian for tractability. The output trajectory
heatmap distribution pg(Ir¢|w, I, Ipr) has a Bernoulli
distribution. Parameters of those densities are modeled us-
ing deep neural networks with the learning parameters ¢,
1, and 6, respectively, see Fig. 3. We use focal loss be-
tween the predicted heatmap I/L?; and the Ground Truth
(GT) heatmap I for the reconstruction loss to mitigate
the imbalanced class issue in the trajectory heatmap repre-
sentation.

Joint pixel-based environment-trajectory input (I, )
is encoded using a U-net architecture backbone [30],
which shows excellent performance on semantic segmen-
tation learning. The encoded U-net features of dimension
(C, H, W), where the feature map has C' channels, a height
of H, and a width of WV, are average-pooled in the spatial
dimension, and outputs (C,1,1) feature maps, which are
eventually converted to a C'-dimensional vector. It is con-
catenated with the latent factor w sampled from the latent
distribution. The posterior and the prior latent distributions
are obtained from the separated posterior and prior network
respectively consisting of convolutional layers.

To avoid the posterior collapse [4,39] stemming from the
strong U-net decoder, we pretrain the encoders and apply
Free Bits [18] and KL annealing [5] strategies as studied
in [22]. Additional implementation details are discussed in
the Supplementary Materials.

3.1.2 SG-net: Short-term Goal Prediction Model

In the second stage of the Macro-stage, we predict the short-
term goals based on the long-term goal prediction from LG-



CVAE. The purpose of SG-net is to give waypoints from
the last observed step to the long-term goal that are well-
aligned with the environment. The final stage in Sec. 3.2
Micro-stage processes the trajectory and the semantic map
as 1D feature vectors separately. Therefore, predicting all
fine-grained future steps using only long-term goal infor-
mation increases the risk of making predictions that are not
well aligned with the environment based on destroyed spa-
tial signals. SG-net utilizes U-net to generate Ngg + 1
heatmaps where Ng¢ is the number of short-term goals and
1 accounts for the long-term goal as illustrated in Fig. 2b.
Unlike the LG-CVAE, this stage outputs the deterministic
prediction based on the predicted long-term goal since we
deal with the uncertainty of the fine trajectories other than
long-term goals in the next stage. Thus, SG-net loss is sim-
ply reconstruction loss with focal loss as follows.

Nsg+1 . .
Lsa=— Y (a(l—Tsq:) Isailog(Isc:) )
=1

+(1 - a)I/sc;\iw(l — Isgi)log(l — EG\«;));

where Is¢ is the GT trajectory heatmap and IS/E is the pre-
dicted heatmap and o« = 0.25, v = 2 as studied in [23].

3.2. Micro-stage: Fine Prediction Stage

In the final stage of our model, we predict complete fu-
ture trajectories at the micro level. Here we change the co-
ordinate from the discrete pixel coordinate to continuous
world coordinate for fine predictions. Even if guided by
predicted long-term and short-term goals from SG-net, in-
dividual steps may also have the variability stemming from
the surrounding environment. To deal with this uncertainty,
we leverage CVAE in this step as well. As illustrated in
Fig. 3, we set p(z|x) as the prior conditioned on past tra-
jectories x, which is learned to approximate the posterior
latent distribution p(z|x, y) where y denotes the future tra-
jectories In test time, we sample the latent factor z from
p(z]x) to predict p(y|z, z). While decoding future steps,
our model use the long-term and short-term goal informa-
tion from SG-net in the form of LSTM-encoded features.
We apply the Teacher Forcing technique to correct the pre-
diction by feeding the GT/predicted long-term and short-
term goals during training/test time respectively. To reduce
the gap between training and test time reconstructions, we
provide an additional reconstruction loss from the prior dis-
tribution following [7, 36]. Thus, Micro-stage training loss
with S-weighted ELBO [16] is formulated as follows.

—Eq. (212, [log P (ylz, )]

ﬂklic’ro =

(C))

where both the latent distributions and the output trajectory
distribution are assumed as Gaussian distributions. We feed
the U-net features from LG-CVAE to the prior network of
Micro-stage so that the Micro-stage also recognizes the en-
vironment.

4. Experiments

Sec. 4.1 introduces the datasets, evaluation metrics, and
statistical analysis used in the experiments. Sec. 4.2 quan-
titatively evaluates SOTA models as well as MUSE-VAE.
Sec. 4.3 compares the qualitative aspects of the predictions
for intuitive assessment. In Sec. 4.4, each component of
MUSE-VAE is analyzed by ablation studies.

4.1. Preliminaries

Datasets We used three datasets for the evaluation. The
Stanford Drone Dataset (SDD) [29] is used in the TrajNet
challenge [31] and prior works [25, 32]. The nuScenes
Dataset [6] is a public autonomous driving dataset used
by many prior arts [24,26,45]. In addition, we created a
new Path Finding Simulation Dataset (PFSD) using envi-
ronments borrowed from [38]. Unlike SDD and nuScenes,
the spaces in PFSD are more complex to navigate. For more
details, please refer to the Supplementary Materials.
Evaluation Metrics For the evaluation, we adopted the
standard metrics of minimum Average Displacement Error
(ADE) and Final Displacement Error (FDE). We also re-
port the Kernel Density Estimate-based Negative Log Like-
lihood (KDE NLL) used in [17,33] as a comprehensive in-
dicator of the predictive performance. Finally, we assess the
Environment Collision-Free Likelihood (ECFL) [37], the
probability that an agent has a path free of collision with
the environment. We use it to address a drawback of exist-
ing works, which often neglect the importance of forecast-
ing that adheres to environment structures. We report ECFL
in percent points, where 100% means no collisions. More
details can be found in the Supplementary Materials.
Statistical Analysis / Model Ranking It is challenging to
compare different models across multiple metrics. There-
fore, we test the statistical significance of the results, using
both traditional approach [9] and modern Bayesian analy-
sis [2]. The Supplementary Materials provides the details.

4.2. Quantitative Results

We conduct experiments on the three datasets introduced
in Sec. 4.1 and compare the performance of MUSE-VAE
with Trajectron++ (T++) [33], Y-net [25], and AgentFormer
(AF) [45] baselines, using their public code. Scene maps
provided by PFSD and nuScenes show a much wider range
of environments compared to SSD. Therefore, we provide a
local view of the semantic map to all models including ours
for a fair comparison. For all experiments in MUSE-VAE,
we sample the latent factor z only once in Micro-stage, and
we gain all diversity from the latent factor w in LG-CVAE
by sampling it K times since we assume the uncertainty
primarily depends on the long-term goal position.

Tab. 1 summarizes the experimental results on PFSD.
Following the commonly used temporal horizon setting, we
observe 3.2 sec (8 frames) and predict 4.8 sec (12 frames)



future trajectories. Considering the increased complexity of
the local environment layouts of PESD, we choose sampling
number K = 20, 50 to investigate the learned trajectory dis-
tribution. Our model can achieve the best performance for
all metrics in K = 20, 50 except for FDE in K = 20 where
our model stands at second best. The KDE NLL scores of
Y-net and AF indicate that their K predictions fail to reflect
the true trajectory distribution. This is because the K pre-
dictions are not sampled from the learned distribution from
their first training stage but sampled in the next stage by ma-
nipulating them to focus on the diversity. Y-net conducts a
test time sampling trick based on K-means clustering to ob-
tain diverse predictions. AF has the second stage training to
apply the pairwise distance loss between K predictions for
the diversity, which is inefficient since it requires re-training
whenever K changes. On the other hand, MUSE-VAE can
produce predictions within a low error range with GT trajec-
tories, while reflecting the GT trajectory distribution (lower
KDE NLL) and making realistic predictions reducing envi-
ronment collisions (higher ECFL).

Tab. 2 shows the evaluation on SDD. It follows the same
temporal horizon setup as PFSD. As in the prior works, we
choose K = 5,20 and errors are reported in pixel distance.
MUSE-VAE can significantly outperform the state-of-the-
art methods in ADE. Though our model shows the second
best performance in FDE, MUSE—-VAE largely ties up with
the best method. For the same reason analyzed in PESD, our
model gives the best performance in KDE NLL. We can see
that MUSE-VAE has slightly worse ECFL, which is still the
second best, than Y-net. This is because the labeling of the
scene provided from Y-net is incomplete®, which adversely
affects MUSE-VAE that relies heavily on the semantic map
in Macro-stage predictions.

For the nuScenes dataset, following prior works, 2 sec
(4 frames) observations and 6 sec (12 frames) predictions
are made only for the vehicles and K = 5,10 genera-
tions are investigated. Tab. 3 shows that our model consis-
tently outperforms the others in every metric and sampling
number. Compared to the previous two datasets, nuScenes
has much narrower and strict navigable space, where our
Macro stage can take the benefit of accurate LG and SG
predictions aligned well with environment. On the other
hand, since nuScenes is a real world dataset, many static
past trajectories are also observed. Due to the fact that our
model focuses on learning the trajectory distribution rather
than simply having min ADE/FDE based on diverse sam-
plings and generations, these real world data characteristics
in nuScenes are well reflected in the trained model, which
can lead to better performance across all metrics.
Statistical Analysis We computed average rankings of
the methods, and T++, Y-Net, AF, and Ours obtain 3.42,
2.92, 2.33, 1.33, respectively. We conducted the Fried-

2The incomplete labels are discussed in the Supplementary Materials.

Table 1. Results on the PFSD with K =20 and 50. With ¢, = 3.2s
(8 frames) and ¢ty = 4.8s (12 frames), errors are in meters.

K | Model | ADE | | FDE | | KDENLL | | ECFL ¢

T++ 0.17 0.37 -0.88 83.32
20 Y-net 0.13 0.20 0.20 91.52
AF 0.08 0.11 0.47 94.54
Ours 0.07 0.12 -1.46 96.95
T++ 0.14 0.25 -1.11 83.39
50 Y-net 0.09 0.12 0.04 91.74
AF 0.08 0.09 1.17 95.37
Ours 0.06 0.09 -1.68 97.02

Table 2. Results on the SDD with K =5 and 20. With ¢, = 3.2s
(8 frames) and ¢ty = 4.8s (12 frames), errors are in pixels.

K | Model | ADE | | FDE | | KDENLL | | ECFL ¢

T++ 11.11 24.42 8.74 86.94

5 Y-net | 11.49 | 20.19 8.98 89.99
AF 1147 | 18.88 8.57 89.02

Ours 9.60 19.70 8.43 89.30

T++ 8.16 16.40 7.37 86.88

20 Y-net 7.84 11.94 8.05 89.32
AF 8.35 11.03 7.48 87.30

Ours 6.36 11.10 7.21 89.30

Table 3. Results on the nuScenes with K =5 and 10. With¢, = 2s
(4 frames) and ¢ty = 6s (12 frames), errors are in meters.

K | Model | ADE | | FDE | | KDENLL | | ECFL 1

T++ 3.14 7.45 7.20 68.99
5 Y-net 2.46 5.15 11.03 85.46
AF 1.59 3.14 9.39 86.74
Ours 1.38 2.90 5.12 89.24
T++ 2.46 5.65 5.61 69.02
10 Y-net 1.88 3.47 7.52 82.90
AF 1.30 2.47 7.76 85.76
Ours 1.09 2.10 3.82 89.33
man test [1 1] and confirmed that our method outperformed

AF with statistical significance. We also conducted the
Bayesian signed rank test [3] and confirmed that our method
is either superior or at least on par versus the competitors.
The Supplementary Materials explain this in further detail.

4.3. Qualitative Results

We provide additional qualitative context to the quanti-
tative metrics, in order to reveal the underlying factors that
support each model’s benefits and tradeoffs. In Fig. 4, we
visualize several instances of predicted long and short-term
goals as well as the trajectories in the context of differ-
ent environments and movement behaviors, driven by the
three datasets we used for evaluation. Specifically, Figs. 4a
and 4b are instances from PFSD with K = 20, Figs. 4c
and 4d are drawn for SDD with K = 20, and Figs. 4e and 4f
come from nuScenes with K = 10. We take a look at in-



stances of a ‘fork-in-the-road’ scenario from each dataset
to test ability of models to understand the multimodality
of long-term goals conditioned on the environment. In
Figs. 4a, 4c and 4e, we overlay predicted trajectories and
goal heatmaps from Macro-stage over local semantic maps
to demonstrate the ability of the models to make reasonable
coarse predictions in the context of different environment
features. The first column with the green border is the long-
term goal prediction from LG-CVAE. The following three
columns with the orange border are two short-term goals
and one long-term goal from SG-Net. The two rows show
two different predictions generated by sampling two differ-
ent latent factors w in LG-CVAE, based on the same ob-
servation z. We can see that (1) the short-term goals align
well with the given predicted long-term goal, and (2) long-
term goal projections naturally vary because of the structure
of the ‘fork-in-the-road’ scenario, which gives a generally
bimodal uncertainty in the possible goal directions.

Figs. 4b, 4d and 4f illustrate complete trajectory predic-
tions, where the images in the clock-wise order, from the
top-left, correspond to the Micro-stage of MUSE—-VAE, fol-
lowed by T++, AF, and Y-net, respectively. Across all three
datasets, we can observe that predictions of T++ and AF
tend to lead to collisions with the environment. On the other
hand, predictions of Y-net and our MUSE-VAE are well-
aligned and collision-free. We attribute this to T++ and
AF encoding the semantic map into a 1D-representation,
which entangles the spatial signal, while our model and
Y-net process the semantic map along with the trajectory
heatmap in 2D. Although Y-net produces predictions that
avoid collision with obstacles, in contrast to MUSE—VAE it
yields trajectories with diverse duration, which often over-
shoot or undershoot the true trajectory horizon. This is be-
cause the goal predictions of Y-net are not made directly
by the learned model; rather, they stem from the test time
sampling trick, which is weakly conditioned on the past tra-
jectory signal, particularly its velocity. On the other hand,
our MUSE-VAE’s goal predictions are not only well aligned
with the environment structure in the Macro-stage, but also
reflect learned dependency on the past trajectory sequence
modeled by an RNN in the Micro stage.

4.4. Ablation Study

We analyze the effectiveness of each component in
MUSE-VAE through an ablation study. Tab. 4 shows three
ablated experiments with the complete model MUSE-VAE.
w/o SG-net model has no SG-net in Macro-stage, and thus,
the long-term goal prediction is directly fed to the Micro-
stage. w/o Micro-stage model does not include the Micro-
stage, implying all future trajectories are predicted in the
SG-net by letting Nsg = t¢ — 1. In w/o LL-prior model,
we eliminate the log-likelihood from the prior distribution
pr(z]x) to assess the utility of this term in reducing the gap

Table 4. Ablation study on the PESD with K =20. With ¢, = 3.2s
(8 frames) and ¢ty = 4.8s (12 frames), errors are in meters.

Model | ADE | | FDE | | KDENLL | | ECFL {
MUSE-VAE 0.07 0.12 -1.46 96.95
w/o SG-net 0.10 0.13 -0.48 91.88

w/o Micro-stage | 0.13 0.12 - 99.24
w/o LL-prior 0.07 0.13 -0.96 95.34

between the training and the inference-time reconstruction.

Our model requires the LG prediction from LG-CVAE,
necessitating its presence in all experiments. Thus, there
is little observed variability in min FDE. The most notable
difference in performance stems from w/o Micro-stage, the
absence of which precludes evaluation of the KDE NLL
score. In this case, complete trajectory predictions hap-
pen in the SG-net, defined in discrete pixel coordinates, thus
limiting the accuracy of the forecasted trajectory’. On the
other hand, an advantage of this model is the few collisions,
indicated by ECFL, because all predictions are obtained
from pixel coordinates well aligned with the environment.
In w/o SG-net, Micro-stage has no information of way-
points other than the LG prediction from LG-CVAE. Thus,
the KDE NLL value shows that distribution learning of w/o
SG-net is not as good as a complete model. w/o LL-prior
also degrades KDE NLL performance. This indicates that
the reconstruction loss from the prior distribution during
training allows the model to learn how to generate predic-
tions that better reflect one’s movement patterns given past
trajectories. This thorough ablation study shows that it is
crucial to consider both the Macro-stage for coarse predic-
tions aligned well with the environment and the Micro-stage
for fine predictions reflecting the past sequential states.

5. Conclusion

In this paper, we introduce MUSE-VAE a probabilistic
model capable of recognizing the environment and generat-
ing multimodal predictions based on the coarse-to-fine ap-
proach. Our experimental results using various datasets and
metrics show MUSE-VAE achieves both versatile and accu-
rate forecasts that are well matched to environmental con-
ditions. MUSE-VAE processes each agent independently,
which cannot reflect agent-interaction. In the future work,
we will take into consideration of multi agent-aware model
that can avoid collisions with neighboring agents.
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3Complete trajectory predictions in this case are made from the
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Figure 4. Left: Macro-stage results of (a) PFSD, (c) SDD, and (e) nuScenes respectively. In the first column, the Long-term Goal (LG)
heat map prediction from LG-CVAE is overlaid on the local semantic map. The following three columns are two Short-term Goals (SG)
and one LG from SG-Net. Here we show only two different sampling generations in each dataset. The blue and orange lines indicate

GT past and GT future trajectories, respectively. GT LG and SGs are marked with x’

. Right: Complete trajectory predictions of (b)

PFSD, (d) SDD, and (f) nuScenes respectively. In each dataset, the 1st/2nd/3rd/4th image from top-left to bottom-right is from Micro-

stage of ours/Trajectron++/Y-net/AgentFormer, respectively. The blue, orange, and red lines indicate GT past, GT future, predicted future
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