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Abstract 

Recent studies have investigated personalized thermal 

comfort modeling using probabilistic and machine-

learning-based techniques to enhance the capability of 

contextualizing human factors for building systems’ 

operation and simulation. Different modeling schemes and 

input parameters have been used to create models with 

varying degrees of accuracy. Inspired by the thermal 

acclimation process, we have investigated the influence of 

short-term thermal history on individuals’ thermal comfort 

votes as a critical variable in the modeling process. To this 

end, through an experimental study in a controlled 

environment, 10 human subjects were exposed to two 

consecutive modes of thermal conditioning with transient 

temperature configurations – gradually changing from low 

to high and then high to low temperatures while collecting 

environmental and human-related data. Through statistical 

analyses, it was observed that the temperature ranges, for 

which participants reported thermal comfort satisfaction 

were significantly different depending on the conditioning 

modes. Moreover, participants showed to have different 

sensitivities (reflected in rates of providing response) in 

these consecutive conditioning modes. These preliminary 

findings provide an insight into the necessity of tracking 

short-term thermal history for personalized thermal comfort 

modeling to enhance control and simulation processes for 

energy efficiency. 

Introduction 

Contextualizing indoor condition requirements associated 

with occupants’ personal thermal comfort via participatory 

sensing has been demonstrated as a potential way to 

integrate dynamics of human factors in the operation of 

Heating, Ventilation, Air-Conditioning (HVAC) systems 

(Pritoni, Salmon et al. 2017). It has been shown that such an 

approach prevents over-conditioning (Jazizadeh, 

Ghahramani et al. 2013), helps identify the ranges of 

acceptable conditions allowing building systems to reduce 

conditioning loads (Purdon, Kusy et al. 2013, Jung and 

Jazizadeh 2020), and improves occupants’ comfort 

(Erickson and Cerpa 2012). This approach has been defined 

as comfort-aware operations that rely on personalized 

thermal comfort modeling using probabilistic or machine-

learning-based methods. Therefore, thermal comfort votes 

either as thermal sensation/perception or preference is an 

important variable in the modeling process. 

However, owing to the subjective nature of thermal comfort 

as shown in Figure 1, variations of votes reported under the 

same environmental conditions complicate the process of 

inferring individual comfort characteristic patterns and limit 

the potentials of comfort-aware HVAC operations. This 

approach requires precise prediction of occupant thermal 

comfort to enable energy-efficient adjustment of indoor 

conditions. As synthesized in our recent review article (Jung 

and Jazizadeh 2019), the accuracy of predicting individual 

comfort without using any physiological parameters as 

input into machine-learning algorithms was reported to be 

between 60 – 70%. 

In field studies, it has been shown that temperature is the 

main driving factor with a dominant impact on thermal 

comfort vote variations (Jazizadeh, Marin et al. 2013). 

Therefore, in comfort-aware operations, when occupants 

provide or change their votes, the corresponding ambient 

temperature is captured and used in developing personalized 

comfort profiles. However, as noted, given the fact that 

thermal acclimation property and the short-term thermal 

history could affect individual comfort perceptions, in this 

study, we have investigated the impact of this factor on 

votes reported by human subjects. The findings will provide 

an insight into considerations for data collection and 

modeling of personalized comfort predictors. 

 

Figure 1. Dynamic and inconsistent nature of thermal 

votes (Jazizadeh, Ghahramani et al. 2014) 

According to the American Society of Heating, 

Refrigerating, and Air-conditioning Engineers (ASHRAE), 

thermal perceptions could vary across different seasons. 

Occupants’ thermal satisfaction could be affected by 

seasonal variations in outdoor temperatures. Adjustments in 

clothing values provide an opportunity in each season to 

apply different temperature setpoints, which could adjust 

the required conditioning load by HVAC systems and even 

improve efficiency (Erickson, Carreira-Perpiñán et al. 2011, 

Erickson, Achleitner et al. 2013). In addition to those 
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seasonal variations in occupants’ thermal experiences, 

short-term thermal history, and its corresponding 

physiological acclimation could affect the occupant 

experience and their temporal perception of the indoor 

ambient conditions. Therefore, in this study, we have 

focused on this aspect. In doing so, we have performed an 

experimental study by including 10 participants using a 

thermal conditioning strategy that provides a change in 

participants’ short-term thermal history. Participants’ votes 

were collected by utilizing a thermal preference scale 

indicating whether a participant is comfortable, desires a 

lower temperature (uncomfortably cool), or desires a higher 

temperature (uncomfortably warm). 

In the remaining sections of this paper, we have presented a 

background of recent studies on comfort-aware operations 

for HVAC systems and the commonly used variables for 

personalized comfort modeling, as well as the experimental 

and analytical methods, followed by the findings. 

Comfort-Aware Operations Paradigm 

Under the premise that user-adjusted temperature setpoints 

(hereinafter setpoints) provide satisfactory indoor 

conditions, HVAC systems use thermostats in the control 

loop. To identify the setpoints, generalized 

recommendations or standard models such as predicted 

mean vote (PMV) are used. In other words, the HVAC 

systems condition the space under the assumption that most 

occupants will be satisfied by using those operational 

setpoints. Considering the feasibility of using generalized 

setpoints for thermostats, they have been commonly used in 

practice, and in some occasions, questionnaires have been 

used to collect occupants' thermal comfort perceptions 

(Huizenga, Laeser et al. 2002). However, discrepancies 

between actual votes and PMV values have been reported in 

different studies (Hoof 2008, Becker and Paciuk 2009). The 

generalization of human-related parameters, such as the 

metabolic rate, is one of the major causes of such 

discrepancies (Hoof 2008). Therefore, standardized 

methods could be improved to better contextualize how 

individual occupants perceive the environment as 

satisfactory.  

Benefiting from ubiquitous computing technologies, 

participatory sensing through web- or smartphone-based 

surveys has paved the way for contextualizing human 

factors in regard to individual’s thermal comfort. This 

approach has gained attention by researchers in the wake of 

emphasizing the personalization of comfort assessments 

(Humphreys and Hancock 2007). This paradigm of the 

HVAC operations is, as noted, called comfort-aware HVAC 

operations. 

At the inception of this new paradigm, studies employed 

real-time votes to identify optimal setpoints in multi-

occupancy spaces (Murakami, Terano et al. 2007, Purdon, 

Kusy et al. 2013). Later, with the aim of reducing the 

required level of user intervention, studies sought 

methodologies to benefit from pattern recognition for 

individuals’ thermal comfort profiling based on a set of 

previously collected votes using cutting-edge machine-

learning algorithms (Daum, Haldi et al. 2011, Li, Menassa 

et al. 2017). In other words, personalized predictive models 

of thermal comfort are developed to enable a mapping 

between indoor ambient conditions and occupants’ 

experience. 

 

Figure 2. Variations of input parameters in prediction of 

thermal comfort due to the shift of the paradigm from 

generalization to personalization 

The conventional input parameters in the prediction of 

thermal comfort are air temperature, relative humidity, air 

speed, mean radiant temperature, metabolic rate, and 

clothing insulation as employed in the PMV model. On the 

other hand, in recent years, as indicated in Figure 2, studies 

have used or proposed different input parameters by 

considering the trade-off between the need for user 

engagement versus feasibility of advanced sensing 

methodologies (Jung and Jazizadeh 2017, Jung and 

Jazizadeh 2018, Li, Menassa et al. 2018). For example, the 

need for a total of 27 parameters (according to ASHRAE) to 

measure the actual metabolic rate could be relaxed by 

acquiring some of the physiological responses of the human 

body through novel physiological sensing systems (Jung 

and Jazizadeh 2018). These research efforts have 

contributed to improving the performance of thermal 

comfort inference. However, they have not investigated the 

impact of short-term thermal history. 

Despite the active exploration of human-related parameters 

in recent years (Jung and Jazizadeh 2019), studies have 

relied on a limited number of environmental parameters by 

disregarding parameters, such as air speed and mean radiant 

temperature. The reason could be twofold: (1) the similarity 
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of the mean radiant temperature to air temperature in most 

conditions (Walikewitz, Jänicke et al. 2015) and (2) the 

complexity of measuring air-speed and generalized 

recommendations by standards – ASHRAE has 

recommended the average air speed of 0.20 m/s at the 

location of occupants as a limit in thermal comfort 

satisfaction (ASHRAE 2017). 

While studies have recommended different combinations of 

ambient and human-related variables for personalized 

thermal comfort models, variations in ambient temperature 

have a high correlation with changes in thermal votes 

(Jazizadeh, Marin et al. 2013). This is not only related to 

instantaneous temperature measurements, but it could be 

associated with the short-term thermal history that we have 

investigated in this study. It is worth noting that thermal 

history is a parameter that could be conveniently quantified 

by tracking the temporal temperature variations.  

Methodology 

An experimental study was designed and conducted upon 

receiving the approval of Virginia Tech’s Internal Review 

Board (IRB). An isolated testbed was used as a thermal 

chamber for the experiment. To simulate the transient 

thermal conditions, we employed gradually increasing and 

decreasing transient temperatures, which represent heating 

and cooling modes, using an air-conditioning unit only for 

control of the ambient temperature. To minimize the impact 

of the radiant heat exchange, the selected testbed was a 

space with no windows. As illustrated in Figure 3, human 

subjects were positioned so that they were not directly 

affected by the jet of the conditioned air. By configuring the 

testbed in this way, our objective was to allow a slow 

temperature variation with small steps at a time. 

In total, 6 males and 4 females participated in the 

experiments for this study. We asked participants to wear 

short-sleeved t-shirts and long pants (around 0.5 clo) to 

minimize the impact of the clothing insulation variable. All 

participants declared that they were healthy prior to the 

experiments. After meeting these criteria, we conducted the 

experimental study following the procedure described 

below. 

(1) Each participant waited for 10 – 15 minutes outside 

the thermal chamber in the building (around 22°C) 

to stabilize his/her metabolism and go through the 

temperature acclimation process. This is because 

walking from outside could increase metabolism 

and the subject might experience a considerable 

temperature change once he/she enters the thermal 

chamber. 

(2) The thermal chamber was initially conditioned at 

around 20°C and each participant experienced this 

condition for five minutes prior to the start of the 

experiment. 

(3) Throughout the experiment, the temperature and 

humidity were continuously measured using a 

sensor system with a sampling frequenting of 

0.5Hz. Participants reported their thermal 

preference using an 11-point scale from -5 (desire 

for a lower temperature) to 5 (desire for a higher 

temperature). To ensure consistency of thermal 

comfort votes, a thermal preference scale that we 

have designed for this purpose (Jazizadeh, Marin 

et al. 2013) was used. 

(4) The temperature was adjusted at a pace of around 

1ºC per 5 minutes. 

(5) The participants experienced a temperature 

increase from around 20°C (68°F) to around 28°C 

(86°F) and then a temperature decrease from 

around 28°C to around 20°C. The total duration of 

each experiment was 65 – 90 minutes. 

(6) The participants were instructed to report their 

thermal preference vote every time they perceived 

a change in their vote.  

 

Figure 3. Cross-section and floor-plan views of the 

experimental testbed. 

The key design point in this experimental study is step #5, 

during which participants experience gradually varying 

temperatures and develop a short-term thermal history. 

Participants were exposed to two transient temperature 

configurations in a sequence to evaluate the differences in 

their thermal comfort perceptions.  

Data Processing and Analytics 

Our objective was to show that the short-term thermal 

history of participants can affect their perceived thermal 

comfort and their thermal comfort votes. Therefore, our 

specific analytical objectives included: 

1. Identifying the statistical difference in 

temperature distributions when participants felt 
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comfortable in different modes of thermal 

conditioning – i.e., heating and cooling, 

2. Quantifying the variations of thermal preference 

votes with respect to temperature variations over 

time in different modes of thermal conditioning 

i.e., heating and cooling. 

Even though we collected the relative humidity data 

throughout each experiment, given its marginal impact on 

thermal comfort (Jazizadeh, Marin et al. 2013), we focused 

our analyses on air temperature. However, it is worth noting 

that the relative humidity was from 20.3% to 48.4% 

throughout the experiments and none of the participants 

directly complained about humidity. For our first analytical 

objective, to evaluate the statistical difference in 

temperature ranges that resulted in thermal satisfaction 

votes, we sampled the participants’ thermal votes every two 

seconds and matched them with the air temperature data. 

For instance, when a participant reported a vote of zero 

(reflecting thermal satisfaction and preference for no 

change) at 10:05 am and changed it to a negative vote 

(reflecting a preference for a cooler environment) at 10:15 

am, participant’s votes during this 10-minute interval were 

sampled to be zero. We created two datasets representing 

each one of the thermal conditioning modes. For the 

statistical comparisons, we performed Welch’s t-test 

between two datasets. 

The Welch’s t-test applies to the cases having samples with 

unequal sample sizes and variances. In our cases, 

participants often reported comfort across different lengths 

of time for the two scenarios. Note that given its strength in 

Type I error (the rejection of a true null hypothesis; so-

called false positive), the use of the Welch’s t-test is 

recommended when two sample sizes are different (Ruxton 

2006, Derrick, Toher et al. 2016). Different from the Student 

t-test that assumes the same variance for the populations, the 

calculation of a test statistic (𝑡′) is presented in Equation (1).  

 𝑡′ =
𝜇1−𝜇2

√
𝑠1
2

𝑛1
+
𝑠2
2

𝑛2

 (1) 

where 1 and 2 represent each group, 𝜇 is the mean, 𝑠2 is the 

variance, and 𝑛 is the sample size. The degree of freedom 

(𝑣) is calculated as reflected in Equation (2). 

𝑣 =
(
1

𝑛1
+
𝑢

𝑛2
)
2

1

𝑛1
2(𝑛1−1)

+
𝑢2

𝑛2
2(𝑛2−1)

  (2) 

where 𝑢  is 𝑠2
2/𝑠1

2 . Using the values from the above 

equations, we evaluated the null hypothesis and calculated 

the p-values. 

For our second analytical objective, we quantified the 

variations of thermal votes with respect to temperature 

variations over time in each mode of thermal conditioning. 

In other words, we evaluated each participant’s tendency for 

utilizing the thermal preference scale to report a preferred 

change with respect to temperature variations. In doing so, 

we used the metrics presented in Equation (3). 

𝑇𝑉𝐶𝑅 =
|𝑇𝑔𝑎𝑝|

|𝑇𝑉𝑔𝑎𝑝|
   (3) 

where 𝑇𝑉𝐶𝑅 refers to Thermal Vote Change Rate, 𝑇𝑔𝑎𝑝 is 

the gap between the initial and end temperatures, and 𝑇𝑉𝑔𝑎𝑝 

refers to the gap between the initial and end thermal votes.  

Results 

Figure 4 presents example graphs of measurements for one 

participant. In general, participants showed expected 

responses to temperature variations.  When the temperature 

was increasing, they reported preferences for having lower 

temperatures by using negative votes and vice versa. 

However, as Figure 4 shows, the noticeable difference was 

between air temperature ranges, for which the participants 

reported a vote of zero, reflecting thermal comfort 

satisfaction in each thermal conditioning mode. As shown 

in Table 1, not only the mean values were different, but also 

the p-values of two datasets from Welch’s t-test indicated 

that they were statistically significantly different with p-

values of less than 0.01 for all participants. Prior to using 

Welch’s t-test, we confirmed that the two datasets had 

different variances and numbers of samples, which justified 

the use of Welch’s t-test.  

 

Figure 4. Observations for human subject #10. 
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Table 1. Mean and variance of the temperatures and the length of time when each participant felt comfortable in heating 

and cooling modes and the corresponding p-values from Welch’s t-test. 

Subject 

Mean temperature while 

comfortable (°C) 

Variance of the temperature 

while comfortable (°C) 

Length of time being 

comfortable (minutes) 
P-value from 

Welch’s t-test 
Heating Cooling Heating Cooling Heating Cooling 

1 22.9 25.9 0.190 0.153 3 3 <0.01 

2 23.4 24.8 0.285 1.046 7 20 <0.01 

3 22.6 26.1 2.007 0.316 23 7 <0.01 

4 20.6 25.8 0.477 0.324 9 4 <0.01 

5 20.6 25.0 0.288 0.045 10 3 <0.01 

6 22.4 24.0 1.956 0.932 27 24 <0.01 

7 21.4 23.2 0.103 0.451 4 14 <0.01 

8 22.8 25.6 0.142 0.114 8 8 <0.01 

9 21.1 24.3 0.061 0.372 8 9 <0.01 

10 20.4 24.1 0.182 0.729 11 11 <0.01 

 

Table 2. Thermal sensitivity of each subject in the heating and cooling modes. 

Subject 

Heating Cooling  

Vote 
Temperature 

(°C) 

Thermal vote 

change rate 

(°C/Vote) 

Vote 
Temperature 

(°C) 

Thermal vote 

change rate 

(°C/Vote) Initial End Initial End Initial End Initial End 

1 3 -5 17.1 29.3 1.525 -5 5 29.3 19.1 1.020 

2 3 -5 19.9 30.0 1.263 -5 4 30.0 21.7 0.922 

3 0 -5 20.4 29.2 1.760 -5 4 29.2 22.1 0.789 

4 1 -4 18.9 29.4 2.100 -4 3 29.4 21.1 1.186 

5 0 -5 19.6 28.4 1.670 -5 4 28.4 21.0 0.822 

6 0 -4 19.9 27.6 1.925 -4 1 27.6 22.9 0.940 

7 2 -5 20.4 27.1 0.957 -5 2 27.1 22.0 0.729 

8 1 -5 21.1 26.8 0.570 -5 5 26.8 23.6 0.320 

9 0 -3 20.6 27.6 2.333 -3 1 27.6 23.3 1.075 

10 0 -4 19.6 27.0 1.850 -4 2 27.0 22.9 0.683 

Average 1 -4.5 19.75 28.24 1.6 -4.5 3.1 28.24 21.97 0.85 

In addition, although this study used an experimental setup 

with controlled temperature variations in contrast to the 

field study by Jazizadeh, Ghahramani et al. (2014), the 

scatter plot in Figure 4 manifests similar patterns that can be 

observed in Figure 1 – i.e., different indoor thermal 

conditions with same thermal preferences (blow line) and 

same conditions with different thermal preferences (green 

dashed line). These observations show that the thermal 

votes reported by users could be affected by their short-term 

history of thermal experience. Therefore, the record of an 

air temperature at the time of reporting thermal votes might 

not fully represent the context in determining thermal 

comfort perceptions. 

The observations could be interpreted that the order of 

conditioning, from heating to cooling, showed to have an 

impact on participants’ perceptions. Most of the participants 

reported to be comfortable at around 20.0 to 23.0°C, and the 

temperature was increased at least by 4.0°C more. When the 

cooling mode started, participants were relieved by the fact 

that the temperature was reduced in the testbed. In other 

words, their bodies had been acclimated to the heating mode 

and then the cooling mode started, causing a sensory 

differential and a feeling of relief that resulted in thermal 

comfort satisfaction at different temperature ranges. With 

respect to the rates of change in thermal votes, as shown in 

Table 2, all participants were more sensitive to the second 

part of the experiments when the air temperature was 

decreasing. This sensitivity is reflected in the fact that the 

average TVCR is higher for the heating mode. This could 

be also related to participants’ acclimation over time after 

fading of the initial relief, which resulted in voting in 

response to the short-term history of the thermal condition.   

Conclusion 

Seeking to understand the impact of short-term thermal 

history on thermal comfort preference votes, in this study, 

we conducted an experiment with 10 human subjects. The 

results showed that the thermal history could play an 

important role in driving thermal comfort votes. Short-term 

thermal history resulted in significant differences in 

temperature ranges for the same thermal comfort votes. 

Therefore, it should be considered as an environmental 

parameter for personalized thermal comfort inference and 

comfort-aware HVAC operations. All subjects felt 

comfortable at a different temperature range for consecutive 



heating and cooling modes. Another key observation was 

that the subjects were more sensitive to the cooling mode, 

compared to the heating mode considering that on average 

it took smaller changes in temperature for them to report a 

change in their preference. This could be associated with the 

fact that the changes in the votes are driven by indoor 

temperature differentials. Once the initial relief of running 

the cooling mode faded away, acclimation to new 

conditions resulted in more frequent votes.   

There are limitations in this preliminary study that should 

be addressed in future explorations: (1) the order of the 

conditioning modes may have an impact on the 

observations; (2) the testbed was a closed controlled space 

without any windows, but more complex heat exchange 

mechanisms could be observed in actual indoor 

environments; (3) more complex measurements could 

reveal more information on the causation of the observed 

variations on thermal experiences. To further explore the 

influence of thermal conditioning modes and short-term 

thermal history on thermal comfort votes, future studies 

beyond this preliminary exploration are needed. Training of 

personalized thermal comfort inference models could be 

conducted by integrating thermal history features to 

evaluate their impact on model performance improvement. 

Moreover, field studies could be conducted to assess the 

feasibility of addressing thermal history in the operation of 

comfort-aware HVAC operations.  
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