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Abstract

Recent studies have investigated personalized thermal
comfort modeling using probabilistic and machine-
learning-based techniques to enhance the capability of
contextualizing human factors for building systems’
operation and simulation. Different modeling schemes and
input parameters have been used to create models with
varying degrees of accuracy. Inspired by the thermal
acclimation process, we have investigated the influence of
short-term thermal history on individuals’ thermal comfort
votes as a critical variable in the modeling process. To this
end, through an experimental study in a controlled
environment, 10 human subjects were exposed to two
consecutive modes of thermal conditioning with transient
temperature configurations — gradually changing from low
to high and then high to low temperatures while collecting
environmental and human-related data. Through statistical
analyses, it was observed that the temperature ranges, for
which participants reported thermal comfort satisfaction
were significantly different depending on the conditioning
modes. Moreover, participants showed to have different
sensitivities (reflected in rates of providing response) in
these consecutive conditioning modes. These preliminary
findings provide an insight into the necessity of tracking
short-term thermal history for personalized thermal comfort
modeling to enhance control and simulation processes for
energy efficiency.

Introduction

Contextualizing indoor condition requirements associated
with occupants’ personal thermal comfort via participatory
sensing has been demonstrated as a potential way to
integrate dynamics of human factors in the operation of
Heating, Ventilation, Air-Conditioning (HVAC) systems
(Pritoni, Salmon et al. 2017). It has been shown that such an
approach  prevents  over-conditioning  (Jazizadeh,
Ghahramani et al. 2013), helps identify the ranges of
acceptable conditions allowing building systems to reduce
conditioning loads (Purdon, Kusy et al. 2013, Jung and
Jazizadeh 2020), and improves occupants’ comfort
(Erickson and Cerpa 2012). This approach has been defined
as comfort-aware operations that rely on personalized
thermal comfort modeling using probabilistic or machine-
learning-based methods. Therefore, thermal comfort votes
either as thermal sensation/perception or preference is an
important variable in the modeling process.

However, owing to the subjective nature of thermal comfort
as shown in Figure 1, variations of votes reported under the

same environmental conditions complicate the process of
inferring individual comfort characteristic patterns and limit
the potentials of comfort-aware HVAC operations. This
approach requires precise prediction of occupant thermal
comfort to enable energy-efficient adjustment of indoor
conditions. As synthesized in our recent review article (Jung
and Jazizadeh 2019), the accuracy of predicting individual
comfort without using any physiological parameters as
input into machine-learning algorithms was reported to be
between 60 — 70%.

In field studies, it has been shown that temperature is the
main driving factor with a dominant impact on thermal
comfort vote variations (Jazizadeh, Marin et al. 2013).
Therefore, in comfort-aware operations, when occupants
provide or change their votes, the corresponding ambient
temperature is captured and used in developing personalized
comfort profiles. However, as noted, given the fact that
thermal acclimation property and the short-term thermal
history could affect individual comfort perceptions, in this
study, we have investigated the impact of this factor on
votes reported by human subjects. The findings will provide
an insight into considerations for data collection and
modeling of personalized comfort predictors.
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Figure 1. Dynamic and inconsistent nature of thermal
votes (Jazizadeh, Ghahramani et al. 2014)

According to the American Society of Heating,
Refrigerating, and Air-conditioning Engineers (ASHRAE),
thermal perceptions could vary across different seasons.
Occupants’ thermal satisfaction could be affected by
seasonal variations in outdoor temperatures. Adjustments in
clothing values provide an opportunity in each season to
apply different temperature setpoints, which could adjust
the required conditioning load by HVAC systems and even
improve efficiency (Erickson, Carreira-Perpifian et al. 2011,
Erickson, Achleitner et al. 2013). In addition to those



seasonal variations in occupants’ thermal experiences,
short-term thermal history, and its corresponding
physiological acclimation could affect the occupant
experience and their temporal perception of the indoor
ambient conditions. Therefore, in this study, we have
focused on this aspect. In doing so, we have performed an
experimental study by including 10 participants using a
thermal conditioning strategy that provides a change in
participants’ short-term thermal history. Participants’ votes
were collected by utilizing a thermal preference scale
indicating whether a participant is comfortable, desires a
lower temperature (uncomfortably cool), or desires a higher
temperature (uncomfortably warm).

In the remaining sections of this paper, we have presented a
background of recent studies on comfort-aware operations
for HVAC systems and the commonly used variables for
personalized comfort modeling, as well as the experimental
and analytical methods, followed by the findings.

Comfort-Aware Operations Paradigm

Under the premise that user-adjusted temperature setpoints
(hereinafter setpoints) provide satisfactory indoor
conditions, HVAC systems use thermostats in the control
loop. To identify the setpoints, generalized
recommendations or standard models such as predicted
mean vote (PMV) are used. In other words, the HVAC
systems condition the space under the assumption that most
occupants will be satisfied by using those operational
setpoints. Considering the feasibility of using generalized
setpoints for thermostats, they have been commonly used in
practice, and in some occasions, questionnaires have been
used to collect occupants' thermal comfort perceptions
(Huizenga, Laeser et al. 2002). However, discrepancies
between actual votes and PMV values have been reported in
different studies (Hoof 2008, Becker and Paciuk 2009). The
generalization of human-related parameters, such as the
metabolic rate, is one of the major causes of such
discrepancies (Hoof 2008). Therefore, standardized
methods could be improved to better contextualize how
individual occupants perceive the environment as
satisfactory.

Benefiting from ubiquitous computing technologies,
participatory sensing through web- or smartphone-based
surveys has paved the way for contextualizing human
factors in regard to individual’s thermal comfort. This
approach has gained attention by researchers in the wake of
emphasizing the personalization of comfort assessments
(Humphreys and Hancock 2007). This paradigm of the
HVAC operations is, as noted, called comfort-aware HVAC
operations.

At the inception of this new paradigm, studies employed
real-time votes to identify optimal setpoints in multi-
occupancy spaces (Murakami, Terano et al. 2007, Purdon,
Kusy et al. 2013). Later, with the aim of reducing the
required level of user intervention, studies sought
methodologies to benefit from pattern recognition for

individuals’ thermal comfort profiling based on a set of
previously collected votes using cutting-edge machine-
learning algorithms (Daum, Haldi et al. 2011, Li, Menassa
et al. 2017). In other words, personalized predictive models
of thermal comfort are developed to enable a mapping
between indoor ambient conditions and occupants’
experience.

Input parameters in comfort inference
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Figure 2. Variations of input parameters in prediction of
thermal comfort due to the shift of the paradigm from
generalization to personalization

The conventional input parameters in the prediction of
thermal comfort are air temperature, relative humidity, air
speed, mean radiant temperature, metabolic rate, and
clothing insulation as employed in the PMV model. On the
other hand, in recent years, as indicated in Figure 2, studies
have used or proposed different input parameters by
considering the trade-off between the need for user
engagement versus feasibility of advanced sensing
methodologies (Jung and Jazizadeh 2017, Jung and
Jazizadeh 2018, Li, Menassa et al. 2018). For example, the
need for a total of 27 parameters (according to ASHRAE) to
measure the actual metabolic rate could be relaxed by
acquiring some of the physiological responses of the human
body through novel physiological sensing systems (Jung
and Jazizadeh 2018). These research efforts have
contributed to improving the performance of thermal
comfort inference. However, they have not investigated the
impact of short-term thermal history.

Despite the active exploration of human-related parameters
in recent years (Jung and Jazizadeh 2019), studies have
relied on a limited number of environmental parameters by
disregarding parameters, such as air speed and mean radiant
temperature. The reason could be twofold: (1) the similarity



of the mean radiant temperature to air temperature in most
conditions (Walikewitz, Janicke et al. 2015) and (2) the
complexity of measuring air-speed and generalized
recommendations by standards — ASHRAE has
recommended the average air speed of 0.20 m/s at the
location of occupants as a limit in thermal comfort
satisfaction (ASHRAE 2017).

While studies have recommended different combinations of
ambient and human-related variables for personalized
thermal comfort models, variations in ambient temperature
have a high correlation with changes in thermal votes
(Jazizadeh, Marin et al. 2013). This is not only related to
instantaneous temperature measurements, but it could be
associated with the short-term thermal history that we have
investigated in this study. It is worth noting that thermal
history is a parameter that could be conveniently quantified
by tracking the temporal temperature variations.

Methodology

An experimental study was designed and conducted upon
receiving the approval of Virginia Tech’s Internal Review
Board (IRB). An isolated testbed was used as a thermal
chamber for the experiment. To simulate the transient
thermal conditions, we employed gradually increasing and
decreasing transient temperatures, which represent heating
and cooling modes, using an air-conditioning unit only for
control of the ambient temperature. To minimize the impact
of the radiant heat exchange, the selected testbed was a
space with no windows. As illustrated in Figure 3, human
subjects were positioned so that they were not directly
affected by the jet of the conditioned air. By configuring the
testbed in this way, our objective was to allow a slow
temperature variation with small steps at a time.

In total, 6 males and 4 females participated in the
experiments for this study. We asked participants to wear
short-sleeved t-shirts and long pants (around 0.5 clo) to
minimize the impact of the clothing insulation variable. All
participants declared that they were healthy prior to the
experiments. After meeting these criteria, we conducted the
experimental study following the procedure described
below.

(1) Each participant waited for 10 — 15 minutes outside
the thermal chamber in the building (around 22°C)
to stabilize his/her metabolism and go through the
temperature acclimation process. This is because
walking from outside could increase metabolism
and the subject might experience a considerable
temperature change once he/she enters the thermal
chamber.

(2) The thermal chamber was initially conditioned at
around 20°C and each participant experienced this
condition for five minutes prior to the start of the
experiment.

(3) Throughout the experiment, the temperature and
humidity were continuously measured using a

sensor system with a sampling frequenting of
0.5Hz. Participants reported their thermal
preference using an 11-point scale from -5 (desire
for a lower temperature) to 5 (desire for a higher
temperature). To ensure consistency of thermal
comfort votes, a thermal preference scale that we
have designed for this purpose (Jazizadeh, Marin
etal. 2013) was used.

(4) The temperature was adjusted at a pace of around
1°C per 5 minutes.

(5) The participants experienced a temperature
increase from around 20°C (68°F) to around 28°C
(86°F) and then a temperature decrease from
around 28°C to around 20°C. The total duration of
each experiment was 65 — 90 minutes.

(6) The participants were instructed to report their
thermal preference vote every time they perceived
a change in their vote.
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Figure 3. Cross-section and floor-plan views of the
experimental testbed.

The key design point in this experimental study is step #5,
during which participants experience gradually varying
temperatures and develop a short-term thermal history.
Participants were exposed to two transient temperature
configurations in a sequence to evaluate the differences in
their thermal comfort perceptions.
Data Processing and Analytics
Our objective was to show that the short-term thermal
history of participants can affect their perceived thermal
comfort and their thermal comfort votes. Therefore, our
specific analytical objectives included:

1. Identifying the statistical difference in

temperature distributions when participants felt



comfortable in different modes of thermal
conditioning — i.e., heating and cooling,

2. Quantifying the variations of thermal preference
votes with respect to temperature variations over
time in different modes of thermal conditioning
i.e., heating and cooling.

Even though we collected the relative humidity data
throughout each experiment, given its marginal impact on
thermal comfort (Jazizadeh, Marin et al. 2013), we focused
our analyses on air temperature. However, it is worth noting
that the relative humidity was from 20.3% to 48.4%
throughout the experiments and none of the participants
directly complained about humidity. For our first analytical
objective, to ecvaluate the statistical difference in
temperature ranges that resulted in thermal satisfaction
votes, we sampled the participants’ thermal votes every two
seconds and matched them with the air temperature data.
For instance, when a participant reported a vote of zero
(reflecting thermal satisfaction and preference for no
change) at 10:05 am and changed it to a negative vote
(reflecting a preference for a cooler environment) at 10:15
am, participant’s votes during this 10-minute interval were
sampled to be zero. We created two datasets representing
each one of the thermal conditioning modes. For the
statistical comparisons, we performed Welch’s t-test
between two datasets.

The Welch’s t-test applies to the cases having samples with
unequal sample sizes and variances. In our -cases,
participants often reported comfort across different lengths
of time for the two scenarios. Note that given its strength in
Type 1 error (the rejection of a true null hypothesis; so-
called false positive), the use of the Welch’s t-test is
recommended when two sample sizes are different (Ruxton
2006, Derrick, Toher et al. 2016). Different from the Student
t-test that assumes the same variance for the populations, the
calculation of a test statistic (t") is presented in Equation (1).
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where 1 and 2 represent each group, y is the mean, s? is the
variance, and n is the sample size. The degree of freedom
(v) is calculated as reflected in Equation (2).
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where u is s2/s? . Using the values from the above
equations, we evaluated the null hypothesis and calculated
the p-values.

For our second analytical objective, we quantified the
variations of thermal votes with respect to temperature
variations over time in each mode of thermal conditioning.
In other words, we evaluated each participant’s tendency for
utilizing the thermal preference scale to report a preferred

change with respect to temperature variations. In doing so,
we used the metrics presented in Equation (3).
TVCR = \learl 3)
|TVgap|
where TVCR refers to Thermal Vote Change Rate, Ty, is
the gap between the initial and end temperatures, and TV,
refers to the gap between the initial and end thermal votes.

Results

Figure 4 presents example graphs of measurements for one
participant. In general, participants showed expected
responses to temperature variations. When the temperature
was increasing, they reported preferences for having lower
temperatures by using negative votes and vice versa.
However, as Figure 4 shows, the noticeable difference was
between air temperature ranges, for which the participants
reported a vote of zero, reflecting thermal comfort
satisfaction in each thermal conditioning mode. As shown
in Table 1, not only the mean values were different, but also
the p-values of two datasets from Welch’s t-test indicated
that they were statistically significantly different with p-
values of less than 0.01 for all participants. Prior to using
Welch’s t-test, we confirmed that the two datasets had
different variances and numbers of samples, which justified
the use of Welch’s t-test.
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Table 1. Mean and variance of the temperatures and the length of time when each participant felt comfortable in heating
and cooling modes and the corresponding p-values from Welch’s t-test.

Mean temperature while Variance of the temperature Length of time being P-value from
Subject comfortable (°C) while comfortable (°C) comfortable (minutes) Welch’s t-test
Heating Cooling Heating Cooling Heating Cooling

1 229 259 0.190 0.153 3 3 <0.01

2 23.4 24.8 0.285 1.046 7 20 <0.01

3 22.6 26.1 2.007 0.316 23 7 <0.01

4 20.6 25.8 0.477 0.324 9 4 <0.01

5 20.6 25.0 0.288 0.045 10 3 <0.01

6 224 24.0 1.956 0.932 27 24 <0.01

7 214 232 0.103 0.451 4 14 <0.01

8 22.8 25.6 0.142 0.114 8 8 <0.01

9 21.1 243 0.061 0.372 8 9 <0.01

10 20.4 24.1 0.182 0.729 11 11 <0.01

Table 2. Thermal sensitivity of each subject in the heating and cooling modes.
Heating Cooling
. Temperature Thermal vote Temperature Thermal vote
Subject Vote (°C) change rate Vote (°C) change rate
Initial End Initial End (°C/Vote) Initial End Initial End (°C/Vote)

1 3 -5 17.1 29.3 1.525 -5 5 29.3 19.1 1.020
2 3 -5 19.9 30.0 1.263 -5 4 30.0 21.7 0.922
3 0 -5 20.4 292 1.760 -5 4 29.2 22.1 0.789
4 1 -4 18.9 29.4 2.100 -4 3 29.4 21.1 1.186
5 0 -5 19.6 28.4 1.670 -5 4 28.4 21.0 0.822
6 0 -4 19.9 27.6 1.925 -4 1 27.6 229 0.940
7 2 -5 20.4 27.1 0.957 -5 2 27.1 22.0 0.729
8 1 -5 21.1 26.8 0.570 -5 5 26.8 23.6 0.320
9 0 -3 20.6 27.6 2.333 -3 1 27.6 233 1.075
10 0 -4 19.6 27.0 1.850 -4 2 27.0 229 0.683
Average 1 -4.5 19.75 2824 1.6 -4.5 3.1 2824 2197 0.85

In addition, although this study used an experimental setup
with controlled temperature variations in contrast to the
field study by Jazizadeh, Ghahramani et al. (2014), the
scatter plot in Figure 4 manifests similar patterns that can be
observed in Figure 1 — i.e., different indoor thermal
conditions with same thermal preferences (blow line) and
same conditions with different thermal preferences (green
dashed line). These observations show that the thermal
votes reported by users could be affected by their short-term
history of thermal experience. Therefore, the record of an
air temperature at the time of reporting thermal votes might
not fully represent the context in determining thermal
comfort perceptions.

The observations could be interpreted that the order of
conditioning, from heating to cooling, showed to have an
impact on participants’ perceptions. Most of the participants
reported to be comfortable at around 20.0 to 23.0°C, and the
temperature was increased at least by 4.0°C more. When the
cooling mode started, participants were relieved by the fact
that the temperature was reduced in the testbed. In other
words, their bodies had been acclimated to the heating mode
and then the cooling mode started, causing a sensory

differential and a feeling of relief that resulted in thermal
comfort satisfaction at different temperature ranges. With
respect to the rates of change in thermal votes, as shown in
Table 2, all participants were more sensitive to the second
part of the experiments when the air temperature was
decreasing. This sensitivity is reflected in the fact that the
average TVCR is higher for the heating mode. This could
be also related to participants’ acclimation over time after
fading of the initial relief, which resulted in voting in
response to the short-term history of the thermal condition.

Conclusion

Seeking to understand the impact of short-term thermal
history on thermal comfort preference votes, in this study,
we conducted an experiment with 10 human subjects. The
results showed that the thermal history could play an
important role in driving thermal comfort votes. Short-term
thermal history resulted in significant differences in
temperature ranges for the same thermal comfort votes.
Therefore, it should be considered as an environmental
parameter for personalized thermal comfort inference and
comfort-aware HVAC operations. All subjects felt
comfortable at a different temperature range for consecutive



heating and cooling modes. Another key observation was
that the subjects were more sensitive to the cooling mode,
compared to the heating mode considering that on average
it took smaller changes in temperature for them to report a
change in their preference. This could be associated with the
fact that the changes in the votes are driven by indoor
temperature differentials. Once the initial relief of running
the cooling mode faded away, acclimation to new
conditions resulted in more frequent votes.

There are limitations in this preliminary study that should
be addressed in future explorations: (1) the order of the
conditioning modes may have an impact on the
observations; (2) the testbed was a closed controlled space
without any windows, but more complex heat exchange
mechanisms could be observed in actual indoor
environments; (3) more complex measurements could
reveal more information on the causation of the observed
variations on thermal experiences. To further explore the
influence of thermal conditioning modes and short-term
thermal history on thermal comfort votes, future studies
beyond this preliminary exploration are needed. Training of
personalized thermal comfort inference models could be
conducted by integrating thermal history features to
evaluate their impact on model performance improvement.
Moreover, field studies could be conducted to assess the
feasibility of addressing thermal history in the operation of
comfort-aware HVAC operations.
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