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This study aims to describe how preservice secondary mathematics teachers (PSMTs) reason
about different function representations. The study focuses on two PSMTs’ reasonings across
static and dynamic representations of functions. Sfard’s (2008) Theory of Commognition guided
our analysis. Findings indicate that while static representations restrict attention given to
covariation, dynamic representations support PSMTs’ reasoning about covariation including
making connections to how covariation is represented in static graphs.
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The concept of function permeates all levels of mathematics and is a large focus of the high
school curriculum. Central to the treatment of functions in high school is attention to
characteristics of families of functions given their usefulness for mathematical modeling. This
attention means that significant emphasis is placed on graphical representations of functions (i.c.,
static graphs on a Cartesian plane). Research has shown that when analyzing graphical
representations of functions, students and teachers alike often attend to perceptual cues rather
than the relationships between the variables the perceptual cues are representing (e.g., Moore &
Thompson, 2015; Sinclair et al., 2009). The coordination of two quantities represented in a graph
of a function and the ways they change in relation to each other is called covariational reasoning
and has been identified as foundational for mathematical modeling as well as many calculus
concepts (e.g., Carlson et al., 2002). Given the role that functions play in the high school
curriculum, it is essential that preservice secondary mathematics teachers (PSMTs) develop
covariational reasoning skills. Carlson et al. pointed to the potential of dynamic technologies to
support those learning to apply covariational reasoning. Recent work with a particular dynamic
representation of functions in one dimension, the dynagraph (Goldenberg et al., 1992), has
pointed to its potential to elicit student reasoning about the ways in which independent and
dependent variables vary and covary (e.g., Antonini et al., 2020; Sinclair et al., 2009). To that
end, the purpose of this study was to examine the similarities and differences in the ways PSMTs
reasoned about different representations of functions—static and dynamic.
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Background Literature

Reasoning about Static Graphs

Static representations of functions include tables, lists of ordered pairs, equations, and
graphs. There is evidence that students’ limited experience with graphical representations
constrains them from making meaningful connections among algebraic and graphical
representations (Knuth, 2000). Static graphical representations also conceal the dynamic aspects
of function, such as the rate of change and relative position, that are essential for forming a
robust understanding of function (e.g., Antonini et al., 2020; Carlson, 1998; Confrey & Smith,
1995; Ng, 2016). Research has shown that when reasoning about static graphs, it is not unusual
to pay attention to shape and perceptual cues rather than the ways the graph represents how the
variables change together (e.g., Moore & Thompson, 2015; Oehrtman et al., 2008; Weber, 2012).
Moore and Thompson (2015) have also shown that it is not uncommon for a graph to be
interpreted as the function itself, rather than a representation of the function. They distinguished
static shape thinking from emergent shape thinking and described static shape thinking as
considering a graph as an object, reacting to perceptual cues and the perceived shape of the graph
rather than perceiving a graph as a trace and a representation of covarying quantities. Students
with emergent shape thinking interpret features of the graph as properties of covariation.
Thompson and Carlson (2017) noted that covariational reasoning happens “most strongly when a
person is strategizing how to keep track of quantities’ values simultaneously” (p. 438). Thus,
dynamic representations where one can act on one quantity and track the concurrent relationship
with another quantity might support the development of covariational reasoning skills.
Reasoning about Dynamic Representations of Functions

Digital technology provides many affordances related to the ways in which one can interact
with functions and their graphs (Drijvers, 2015). Such technologies allow for the use of tables,
expressions, and graphs to be dynamically linked to animated motion (e.g., Johnson et al., 2020;
Kaput Center, 2016). There is evidence that engaging in activities of these types can support the
development of reasoning about varying quantities and the ways in which they are represented in
graphs (e.g., Johnson et al., 2020). Another way of leveraging the dynamic affordances of digital
technologies to represent function is to use parallel axes rather than perpendicular axes, typically
referred to as a dynagraph. Goldenberg et al. (1992) introduced dynagraphs to draw attention to
dynamic function behavior and to help students focus on the function by eliminating complex
information shown in a Cartesian graph. Students can test their conjectures of the relationship
between input and output by dragging the input and observing the resulting change in the output.
With the movement of this interactive representation, identification of invariants and covariation
become central to one’s exploration. Antonini et al. (2020) described dynagraphs as dynamic
interactive mediators because students can engage in discourse with a dynagraph, “asking”
questions of the tool and engaging to receive an “answer”. Research has shown that use of
dynagraphs can support the teaching of functions (e.g., Antonini et al., 2020) and can foster
covariational reasoning by eliciting attention to movement, time, and space (Lisarelli, 2017).

There is little research comparing student reasoning when engaging with static and dynamic
representations of function (exceptions include Antonini et al., 2020; Ng, 2016, and Sinclair et
al., 2009). Given the potential of dynagraphs to support the development of reasoning about
variables both separately and together, it is of interest to compare the ways in which one would
reason about static and dynamic representations of the same functions. Our aim is to describe
how PSMTs reason about functions with different visual mediators (i.e., static and dynamic).
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Theoretical Framework

Stfard’s (2008) Theory of Commognition unites cognitive and communicational processes to
explain student thinking as “an individualized version of interpersonal communication” (p. 81).
For Sfard, communication is a back and forth (action/reaction) that includes all communication,
including with oneself. From this perspective, Antonini et al. (2020) explained “doing
mathematics means engaging in the type of communication defined as mathematics and learning
means becoming able to access and express this discourse” (p. 4). So, to study students’ learning,
we must attend to the words, visual mediators, narratives, and routines that form their discourse.

Mathematical discourse is characterized by specific words that are used by experts in specific
ways. In the context of this study, that might include words like function, quadratic, increasing,
rate of change, domain, or it might include informal language that is clear enough for an expert
to understand the mathematics one is referring to. Visual mediators are objects that can be seen
and operated on in the communication process. In mathematics, visual mediators can include, but
are not limited to, symbols and graphs. Visual mediators of this type are static in that they can be
seen and operated on, but not interacted with. In contrast, Antonini et al. (2020) introduced a
dynamic interactive visual mediator (referred to as a DIM) described as a mediator that is “both
dynamic - they change over time - and interactive - they respond to a person’s manipulations” (p.
5). A dynagraph is an example of a DIM. In this study, we attended to the ways students
communicate with and about different types of visual mediators (i.e., static vs. DIM).

Context of the Study

Since our goal was to compare and contrast the ways in which PSMTs reasoned about static
graphical representations of functions and dynamic interactive representations of functions,
asking students to compare and contrast within each representation type met our needs. To this
end, we decided to use the instructional routine of Which One Doesn’t Belong (WODB)
(Danielson, 2016). A typical WODB task includes four objects and students are simply asked,
which one doesn’t belong? The main characteristic of a WODB task is that all of the options
within the task can be considered correct which shifts students’ focus away from trying to obtain
the “correct” answer to distinguishing attributes of the objects presented in each option. This
study used two WODB tasks, one with four static graphs of functions — each from a different
function family (referred to going forward as the static task) and one with four dynagraphs of the
same four functions (going forward referred to as the dynamic task).

In the static task, PSMTs considered four graphs (Figure 1) of functions and were asked to
decide WODB and why. Once the PSMTs explained their choice, they were then asked to
explain why someone else might argue that each of the other remaining graphs does not belong.

Figure 1: The static WODB task
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In the dynamic task, the same four functions were presented (in a different order) but this
time represented using dynagraphs (Note: PSMTs were not told they were the same). As a
reminder, a dynagraph consists of two parallel number lines (function input on one, output on the
other), and as the input is dragged, corresponding changes to the output will result (Figure 2).
Just like the static task, PSMTs were asked to decide and explain WODB. Then they were asked
why someone else might argue that each of the other remaining dynagraphs does not belong.

.....

meut

Figure 2: The dynamic WODB task-linear, square root, quadratic, and absolute value
functions from top to bottom (https://www.geogebra.org/m/wjecnfev)

Methodology

This study was situated within the context of a larger study investigating how PSMTs
reasoned across static and dynamic representations of function. Here we used a multiple case
study design (Yin, 2017) to explore two cases, where each case was defined by the type of visual
mediator (i.e., static and DIM) with which the students interacted. Our overarching research
question was: What is the nature of students’ discourse about function as they interact with
different visual mediators (i.e., static and dynamic interactive mediators)?

The full study included 25 PSMTs attending six universities. Here we focus on two female
participants; neither had experience with dynagraphs before. They were secondary mathematics
education majors attending different universities. Both participants were enrolled in a math
methods course, prior to student teaching, at the time of the study.

Video screen capture recordings of semi-structured interviews (Goldin, 2000) served as the
main data source. One interview posed the static visual mediator first, and the second began with
the DIM. Interviews were transcribed verbatim and uploaded in Atlas.ti to assist with coding.

Similar to Antonini et al. (2020), we used Sfard’s (2008) Theory of Commognition to guide
our analysis. We attended to words, discourses, and narratives to code the PSMTs’ comparing
and contrasting of the mediators presented in the tasks. In our consideration of the scholarly
mathematical discourse (words), we were specifically interested in the characteristics of function
that were elicited. We read the transcripts for the specific characteristics of function being
described (e.g., domain, range, increasing, decreasing, maximum), created quotations for each
chunk of transcript referring to a specific characteristic, and applied labels. A full list of these
characteristics is included in the findings.

Next, we coded for the discourse about and with each mediator. To do so, all team members
watched each video and reviewed the transcript to become familiar with each participant’s
discourse. This was followed by full team meetings to develop short codes describing the
discourse using the protocol set forth by DeCuir-Gunby et al. (2011). We compared the data and
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emerging codes using a constant comparative method to create our final version of the codebook.
From there two researchers coded each interview, and any discrepancies were discussed amongst
them to come to a consensus. Finally, the researchers read the coded data again, condensing
codes into categories and then identifying themes in the participants’ narratives about the
different types of mediators. These themes are presented in the findings section.

Findings

The PSMTs engaged with two different visual mediators, a set of four static Cartesian graphs
and a set of four dynagraphs. Regardless of the order of engagement (i.e., static or DIM first), the
characteristics of function they attended to when comparing and contrasting the functions in each
activity were similar. The characteristics elicited included: differentiability, domain and range,
function families, function vs. non-function, increasing and decreasing, independent and
dependent variables, local and global extrema, rate of change, and symmetry. Representative
examples from our data for the most commonly noted characteristics are shown in Table 1. The
only characteristics not included in the communication with both mediators were function/non-
function and symmetry. In both cases, these characteristics were mentioned by only one of the
two PSMTs and on only one of the four functions being compared. The other seven
characteristics were routinely included by both PSMTs in their discourse about both visual
mediators. Given the similarities in the mathematical focus of their discourse related to both
visual mediators, we next present findings related to the nature of the discourse related to the
mathematical focus for each of the two visual mediators.

Table 1: Representative examples of discourse related to characteristics of functions
Representative Examples

Static DIM

Domain/Range ~ PSMT 1: “The domain [of A]is PSMT 1: “The domain [of h(c)] is going
only from one to infinity.” to go on forever here.”

Increasing/ PSMT 1: “[A’s] just going to PSMT 2: “And b, I'm noticing that as

Decreasing keep going up.” you increase the input of b, more

and more like the like g(b) increases
less.”

Rate of Change PSMT 1: “The slope of the lines PSMT 2: “And it looks like so as d is
[of absolute value function] approaching negative infinity j(d)
was one or negative one.” increases at the same rate that d is

decreasing.”

Nature of Discourse with and about Static Visual Mediators

When engaging with the static version of the WODB task, the nature of the PSMTs’
discourse was routinely focused on using formal mathematical language (though not always
precisely) and what we referred to as “describing the image”. Representative examples for each
of these types of narratives are provided in Table 2.

As they compared and contrasted the four static graphs, the PSMTs consistently used the
formal language to typically describe characteristics of functions — e.g., domain, range,
increasing, decreasing, slope, concave up. For example, PSMT 2 described graph A using the
term “restricted domain” (see row 1 of Table 2). This is to be expected given the years of
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experience they have of being asked to identify characteristics of functions based on their graphs.
Of course, their discourse would include the words used by the mathematicians they have
learned from over the years. However, the PSMTs did not always use these words in precise
ways. For example, when trying to describe the non-constant rate of change of the function in
graph C, PSMT 1 refers to it as “average rate of change” with uncertainty, as she knows it is not
constant, but is not sure what to call it.

Table 2: Representative examples of discourse about the static visual mediators

Features of PSMTs’ Representative Examples
narratives
Use of formal and precise =~ PSMT 2: “[A’s] the only one that has like a restricted domain.
mathematical language Because it like, it doesn't have any inputs, that work for the,

they give, like a real value lower than one.”

Use of formal and PSMT 1: “The slope [of D] from zero to infinity and the range is
imprecise going to be positive one. But I wouldn't say it’s that's not
mathematical language really an av- (pause) that’s not really an average rate of

change.”

Describing the image PSMT 1: “Well, [C’s] concave down, it's opening down. ... [D’s]

the only one that goes through the origin. ... B’s the only one
that doesn't belong because it's the only one that touches all
or touches three quadrants while the rest touch one or two.”

PSMT 2: “[C’s] only one where it doesn't go above zero. It
doesn't have an output above zero, right.”

Whether their formal mathematical language was precise or not, the PSMTs consistently
compared and contrasted the static graphs by describing the presented images as if they were
pictures. For example, while PSMT 1 (see row 3 of Table 2) correctly described graph C as
“concave down”, the follow up phrase “it’s opening down” reveals she is describing the image
rather than the increasing and then decreasing rates of change that the term concavity is intended
to describe. The routine of describing the image in the static graphs is consistent with what
Moore and Thompson (2015) refer to as “static shape thinking” or “treating a graph as a piece of
wire ... attending to perceptual cues and the perceptual shape of a graph” (p. 784). The attention
to perceptual cues (e.g., “goes through the origin”, “touches three quadrants™) and shape (e.g.,
“doesn’t go above zero”) is evident in both examples presented in row 3 of Table 2.

Nature of Discourse with and about Dynamic Interactive Mediators

When engaging with the dynamic version of the WODB task, the nature of the PSMTs’
discourse was routinely focused on describing relative direction, distance, and/or speed and
connecting their noticing to imagined graphs of known functions. Representative examples for
each of these routines are provided in Table 3.

The PSMTs interacted with each dynagraph by dragging the independent variable and
examining the resulting reaction of the dependent variable. As they explored dynamically, they
described the dynamic characteristics they noticed. Both PSMTs consistently noted the variables'
relative direction and speed. For example, as PSMT 2 dragged d to the far left, she saw j(d) move
to the right and stated, “as d is approaching negative infinity, j(d) increases”. In addition, she
noted that “j(d) is increasing constantly or very close to the same amount that d is”. Relative
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distance and speed were also often discussed. For example, when describing her exploration of g
alongside of 4, PSMT 1 noted their relative speed but used distance to make sense of it, referring
to the length of the connector between ¢ and %(c) to describe that distance, she explains “so, the
outputs, the g(b) aren’t moving as fast as this one” and then describing % she said, “it's like the
arrow from the inputs, the outputs, gets larger and larger and larger.” The arrow getting “larger”
corresponded to the increasing rate of change. In the PSMTs’ discourse about the relative speed,
direction, and distance, there is evidence of attending to not only how each of the input and
output are varying, but also the ways in which they are covarying.

Table 3: Representative examples of discourse about the dynamic interactive mediators

Features of PSMTs’ Representative Examples
narratives
Describing relative PSMT 1: “So the outputs, the g(b) aren't moving as fast as if like if
speed, direction, I move this one [talking about /]. And I move it, it's like the
and/or distance arrow from the inputs, the outputs, gets larger and larger and

larger. But here [talking about g] it does get larger. But it's like
it takes a longer time for it to get as long, like cause see, like
here I have to move b all the way to the right for it to get really
long.”

PSMT 2: “It looks like j(d) is increasing constantly or very close to
the same amount that d is and then when d is less than zero j(d)
is increasing, oooh. And it looks like so as d is approaching
negative infinity, j(d) increases at the same rate that d is
decreasing. And so that reminds me of the absolute value

function.”

Imagining a Cartesian PSMT 2: “Because, so like, if I'm picturing, like, the function, like
graphical absolute value of x and to the right of zero, d would be, or to the
representation of a right of zero, x and f{x) would be the same or d and j(d) would
known function be the same. But then to the left of zero, as d approaches

negative infinity x would approach or I feel like a mixing of
other notation like as x approaches negative infinity, f(x) would
approach infinity at the same rate. If that makes sense, like it's
just the x function on both sides. But. Yeah.”

PSMT 1: “[h(c)’s] probably like (pause) a quadratic that is facing
down or maybe even an absolute value, because if I move. The
x values from negative to positive, the y values look like they're
staying. (pause) They're kind of repeating themselves, the
outputs are similar.”

Another routine that emerged in the PSMTs’ discourse was connecting the relationships they
were observing among the variables with Cartesian graphs of function families with which they
were familiar. They tended to describe images of static graphs of functions on Cartesian planes
they envisioned as sharing characteristics with the dynamic representations they were
investigating. For example, as PSMT 2 dragged d from the far right to the far left and noticed
j(d) moving at a constant speed and the same direction until a certain point and continuing at a
constant speed but moving the opposite direction she said, “like if ’'m picturing, like, the
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function, like absolute value of x and to the right of zero, d would be, or to the right of zero, x
and f(x) would be the same ... as x approaches negative infinity, f{x) would approach infinity at
the same rate. If that makes sense, like it's just the x function on both sides.” She is connecting
what she is seeing in the dynagraph with a Cartesian graph that she is familiar with. PSMT 1’s
description is similar; she starts by connecting the relative direction of d and j(d) to “probably
like (pause) a quadratic that is facing down”, but then considers the constant relative distance and
says “maybe even an absolute value ... y values look like they're staying. They're kind of
repeating themselves”. This routine of connecting the dynamic movement of the dynagraph
representation to an imagined Cartesian graph of a known function is consistent with what
Moore and Thompson (2015) referred to as emergent shape thinking, “understanding a graph
simultaneously as what is made (a trace) and how it is made (covariation)” (p. 785). Here the
PSMTs were imagining the one-dimensional trace as a two-dimensional trace and in doing so
demonstrated their understanding of the ways in which the quantities were covarying.

Discussion and Conclusion

In this study, we investigated the similarities and differences in the ways PSMTs reasoned
about static and dynamic representations of functions. Findings from this study suggest that static
representations of function limit students’ attention to covariation; this is consistent with prior
research that showed students pay attention to shape and perceptual cues rather than the ways the
graph represents how the variables change together (Moore & Thompson, 2015; Oehrtman et al.,
2008; Weber, 2012). On the other hand, we found evidence of emergent shape thinking when
students engaged with the DIM. They were imagining how their action would be represented in a
static graph (a trace) which led them to reason covariationally. This attempt to make a
connection raises a question: Do PSMTs not naturally tend to reason covariationally when
presented with static representations in the first place or did the DIM support this connection
making? Further research is needed to gain more insight to the reason behind this connection.

Results also suggest that different representations of function influenced PSMTSs’ use of
mathematical language. The DIM seemed to disrupt PSMTs’ reliance on formal mathematical
language since they did not have a formal language to attach to the non-traditional function
representations (i.e., dynagraphs). This is consistent with Ng’s (2016) findings that students
demonstrated increased reliance on verbs of motion and less reliance on formal mathematical
language in the dynamic environment. In both representations, PSMTs described dynamic
situations; however, they used dynamic language only with the DIM. It is possible that PSMTs
had to think differently than they are used to, and thus did not have an expert’s discourse at hand
to describe what they observed. Whereas the familiarity of the static representation caused them
to draw upon formal language (sometimes imprecisely), either because they are accustomed to
doing so or because they felt it was expected. The fact that the DIM elicited more informal
language may benefit the development of precise use of formal language. PSMTs tend to attend
to dynamic features of the function as they are describing what they see. This will eventually
evolve into formal mathematical language with the support of mathematics teacher educators.

Given the promise of the use of dynagraphs in supporting PSMTs’ use of dynamic language
and expressing emerging shape thinking, we plan to scale up the study with more PSMTs to
determine if the patterns we saw here are consistent. In addition, we plan to consider how the use
of DIMs might support the development of emergent shape thinking about static representations.
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