
Cholula: Fast, Fault-tolerant, and Strongly
Consistent Off-chain Object Storage
David Shen1, Cole Dumas1, Callie Sardina1, Lewis Tseng1, Moayad Aloqaily2

1Boston College, MA, USA
2Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), UAE

E-mails: {shendc, dumasca, sardinac, lewis.tseng}@bc.edu, maloqaily@ieee.org

Abstract—Emerging security technologies such as Blockchain
are prominent to secure data. Blockchain inherits the advanced
principles of cryptography and decentralization. This paper
explores an appropriate design for distributed object storage
systems for off-chain data. Our system Cholula has the following
salient features: (i) Strong consistency; (ii) Optimal fast-path
latency (1 RTT when there is no conflicting write); (iii) Tolerance
of Byzantine servers; (iv) Security (preventing from an imposter
attack); and (v) Censorship-resistance. We present our design
and evaluation in this work. We demonstrate that Cholula has a
better performance than the state-of-the-art object storage system
Giza (the system behind Microsoft OneDrive) and Cassandra in
the context of geo-replicated off-chain data.

Index Terms—Object storage, Fault-tolerance, Off-chain stor-
age, Byzantine attack, Geo-replication

I. INTRODUCTION

Blockchain provides a secure, decentralized system
for transactions between potentially untrustworthy nodes.
Blockchain records data in an transparent, append-only, times-
tamped manner which is distributed to all the participating
nodes within the network [1]. Blockchains are becoming
increasingly prevalent across many industries. More interest-
ingly, intelligent Blockchain systems are promising for the
use of sophisticated communication and services for bridg-
ing the traditional gap of using blockchain applications [2].
Useful applications of blockchain include: increasing financial
transaction trustworthiness, providing traceability within the
supply chain, supporting the creation of a global currency, and
ensuring information security within the healthcare industry –
to name a few.

Blockchain is known to have limited scalability. In order to
assure integrity and security, data (or a block of transactions) is
replicated at every node and the order of blocks (and contents
in the blocks) need to be verified and agreed upon by each
node, however, this can hinder the scalability. Due to the
limitation, it is too expensive for current smart contracts to
generate large quantities of data on-chain. However, there
is a need to exchange a large amount of data.1 Off-chain
storage provides a solution for scaling transactions. Data can
be stored in off-chain nodes (or off-chain databases) in order
to unburden the blockchain and increase efficiency, while
retaining the traceability and trustworthiness of blockchain [4],

1Even with a recent crash in the crypto market, storing 1GB of data on-
chain still costs around USD 30.48 Million on Ethereum at the time this paper
was written [3].

[5]. Thus, off-chain storage provides a more efficient means
of storing ledger states and executing smart contracts used in
general-purpose transactions.

Current off-chain storage solutions include Swarm, Hyper-
core, SAFE, Storj, and Arweave [4], [5]. However, limitations
concerning storage, mutability, privacy, access control, and
use case applications persist [4], [5]. We defer a detailed
discussion on the limitations to Section II-B and other related
work to Section V.

In this paper, we present our system, Cholula – a fast, fault-
tolerant and strongly consistent off-chain object storage. Our
system additionally addresses three limitations of off-chain
storage: imposter attack, immutability, and censorship, which
will be subsequently discussed.

In order to employ Blockchain solutions effectively in these
applications, strong consistency is necessary. Strong consis-
tency refers to the property that all nodes must observe the
same total order of operations – read and write. To accomplish
strong consistency and preserve the total order, nodes need to
agree on the ordering. Strong consistency [6] helps ensure
correctness. Even though it also affects the performance and
availability properties e.g., the CAP theorem [7], Cholula
optimizes the fast-path performance to achieve 1 RTT (round-
trip) delay, which is optimal in such storage systems. Fast path
occurs when operations commit in a single communication
step.

We also experimentally demonstrate that Cholula outper-
forms Giza [8], the state-of-the-art object storage system
(which supports Microsoft OneDrive), and Cassandra [9], a
popular NoSQL in the context of geo-replicaiton when there
is no conflicting write (the common case for our targeting
scenarios).

II. PRELIMINARIES AND KEY OBSERVATIONS

A. Model

The off-chain storage system consists of n replicas, which
are static, and nc clients such that clients and replicas are
communicate in an asynchronous message-passing networks.
We assume ≤ f replicas may become Byzantine faulty. That
is, Byzantine replicas can behave arbitrarily, including sending
malicious messages and tampering stored content. The clients
are assumed to be crash-prone. Links are assumed to be
asynchronous (messages could be delivered with an arbitrary
delay) and reliable. A reliable link has two properties: (i)
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Fig. 1: Illustration of an imposter attack

eventually, messages would be delivered from a fault-free
sender to a fault-free receiver, and (ii) a fault-free receiver
receives a message if and only if a sender has sent the message.

B. Limitations of Current Off-chain Storage Systems

In the following discussion, we will use NFT (non-fungible
token) minting as a working motivating example, as it is
arguably one of the most popular Blockchain applications
at present. In general, NFTs are minted in three steps [10]:
(1) storing the image to an off-chain storage, e.g., IPFS; (2)
obtaining the content hash; (3) minting an NFT with that hash
embedded in the NFT metadata. We discuss three issues which
may occur with this model.

There are three limitations of using current off-chain storage
systems:

• Imposter attack: If the second step or third occurs slowly
at the original artist, there is the risk of an attacker steal-
ing and minting an NFT before the true artist can do so.
The attacker would then own the NFT. Figure 1 presents
the illustration of this attack. Dashed lines represent slow
links whereas red lines represent the malicious imposter
that steal the artworks stored on the off-chain storage. We
defer discussion on the relevance and practicality of the
attack and NFT minting to Appendix A.

• Immutability: A current limitation to a decentralized off-
chain storage, e.g., IPFS (The Interplanetary File System),
is the requirement of immutability. Several artists cannot
collaborate on or modify the same artwork which has
been stored in the off-chain storage because of the
immutability property.

• Censorship: The issue of censorship also arises if a
centralized off-chain storage system removes the content.

Our system addresses the three aforementioned downfalls
of off-chain storages. To protect against an imposter attack,
we use erasure coding, making it necessary for an attacker to
obtain a subset of these fragments in order to steal the data. As
long as the attacker cannot compromise that many replicas, the

image/artwork remains safe. Typical decentralized off-chain
storages do not use coding for performance issues.

We address immutability by adopting the versioned object
storage – every write/mutation creates a new version. The
off-chain storage employs a key-value structure and creates
a versioned object for each object creation or mutation. This
protects against purposeful or accidental manipulation of the
data.

Our system employs a cloud-of-clouds [11] model as op-
posed to a decentralized peer-to-peer model (akin to IPFS) to
evade censorship. Our model mimics a decentralized structure
through the use of several different cloud service providers.
Our approach makes censorship harder because various clouds
may or may not censor varying types of data, especially
for cloud providers located in different countries. Because of
erasure coding, each cloud does not store a full copy of the
data. Therefore, even if a shard of data is removed from storage
in one cloud, the source data can still be retrieved through
shards on other clouds.

C. Target Workload

In our target scenarios, there are two phases:

• Phase 1: before the NFT is minted, there are a small
number of artists (clients to our off-chain storage) that
may read and write concurrently. That is, nc is small.

• Phase 2: after the NFT is minted, there are a large number
of readers. There will be no writer, since the artwork
and the NFT is already completed and should remain
immutable. Note that in the typical NFT applications,
others still read the artwork from the off-chain storage.

Moreover, replicas or storage servers could be compromised
or have a non-zero incentive to censor the hosted content, e.g.,
pressures or requests from the government. Hence, we model
them to be susceptible to Byzantine faults. That being said,
compared to the peer-to-peer systems, cloud providers usually
provide more trustworthy security measures and access con-
trol. This also helps Cholula prevents from common security
attacks, e.g., denial-of-service or man-in-the-middle attacks.

In the case of clients, as typical in most Byzantine storage
systems [11]–[13], we assume the clients are crash-prone.
Particularly, the artists are assumed to be fault-free, since they
have a strong incentive to be reboot and recover to complete
the task and artwork.

D. Properties of Off-Chain Storage Systems

Cholula satisfies the following properties:

• Strong consistency: our system satisfies linearizability
[6]. Roughly speaking, all the operations observed by the
clients appear to occur instantaneously and follow the
same total ordering that respect the real-time ordering.

• Optimal fast-path latency: when there is no conflicting
write operation, both read and write operations can be
completed in 1 RTT.

• Fault-tolerance: it tolerates up to f Byzantine servers.



• Security: it prevents from the imposter attack outlined
above, as long as up to f servers are corrupted, and other
security attacks ensured by common cloud providers.

• Censorship-resistance: any single cloud provider cannot
directly remove the stored content.

III. CHOLULA: DESIGN

Our design is inspired by Giza [8]. We also develop our
system and Giza on top of Cassandra [9]. Since Giza is
Microsoft’s proprietary system, we have to clone one based
on the description in the paper. Thus, we describe the concept
of Giza with our integration of Cassandra first, followed by
the key technical changes to derive Cholula. For brevity, we
focus on the metadata replication and the write operation, since
using erasure coding for the data part is quite straightforward,
and read operation is symmetric to a write. Roughly speaking,
metadata contains the necessary control information associated
with the data (or coded shard) itself.

A. Fast and Slow Write Paths

1) Fast Write - FastPaxos: Fast Paxos [14] is used for
the fast write path, which Giza attempts first and resolves
in one round trip if there is no contention. First it reads the
highest known committed version field to retrieve the latest
version received locally, and increments it to use as the new
version.

It then sends a PreAccept request for its current metadata
value, which involves a LWT (lightweight transaction) that
ensures there is not already a value PreAccepted for the object
and that the proposed version is greater than any committed
version before writing the node’s ID into preaccepted and the
metadata value into preaccepted value.

If the PreAccept succeeds for a fast quorum (greater than
3N/4), then the result is returned to the client and the value
is committed asynchronously, where it sets the committed
value of that version, adds it to the known committed versions
set, and updates highest known committed version. Finally, it
cleans up the PreAccept request by clearing the preaccepted
and preaccepted value field using another LWT, to verify that
the PreAccepted field still contains the current node’s ID2. This
is executed asynchronously and will take an additional round
trip, but the time needed is unimportant because the Giza can
already guarantee that the value is saved, and responds to the
client before executing those tasks.

If the PreAccept fails, either because another value has
already been PreAccepted (this is the case of contention), or
the version proposed has already been committed, Giza moves
to the slow write path.

2) Slow Write - Classic Paxos: The slow write path
involves the class Paxos algorithm with the standard Pre-
pare/Promise, Propose/Accept phases. However, this is done

2The design in the Giza paper did not explain that PreAccept used a field in
the database (for storing metadata). Considering how one of the major unique
points of Giza was its use of the database for Paxos states, we thought it
would logically follow that it would be used for the Fast Paxos states as well.

using Cassandra and LWT. These are executed on the highest
version of the object that is not committed.

The first step is the Prepare request. Giza queries its local
database for the version’s highest ballot seen, increments it,
and executes a LWT that writes the incremented ballot into
highest ballot seen if there has not been a higher ballot. If the
Prepare request fails to receive a quorum of positive responses,
it restarts with the fast write path.

At the same time, Giza performs a query on the other
nodes, to read their respective preaccepted, preaccepted value,
highest ballot accepted, and highest value accepted fields.
Once it has received a quorum of responses, it picks a value
to propose based on three cases:

Case 1: If there were any highest accepted ballots in the
responses, Giza picks the value of the largest one to propose.

Case 2: Otherwise, if there were any PreAccepted values
in the responses, Giza picks the one seen most frequently to
propose.

Case 3: Finally, if both of the above fail, there is no real
contention. Giza proposes its own value.

Once the value is picked, Giza performs the Propose/Accept
phase with another LWT: if the current ballot is greater than
the highest seen and highest accepted, and the version has
not yet been committed, it sets highest ballot accepted to
the current ballot and highest value accepted to the picked
version.

If it fails to receive a quorum of successful writes, or if
the value proposed is not its own, Giza restarts with the Fast
Write path, using the original value provided by the client.
Otherwise, the write is complete.

B. Database Design

The structure of the database is crucial to how Giza works.
The database is created with the schema as outlined in Figure
2 and Figure 3, containing both static and dynamic fields.

TABLE state (
object_id uuid,
version int,
value blob,
committed boolean,
highest_ballot_seen bigint,
highest_ballot_accepted bigint,
highest_value_accepted blob,
preaccepted int STATIC,
preaccepted_value blob STATIC,
known_committed_versions

set<int> STATIC,
highest_known_committed_version

int STATIC,
PRIMARY KEY (object_id, version)

);

Fig. 2: Database schema of Giza and Cholula

• object id and version together create the primary key
for each version of each object in Giza. They combine
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Fig. 3: Visualization of the database design. In this example, we have two objects, each with several versions. The first row
of each object is used for control information, whereas the later rows are data regarding each version (of the object).

to create a compound primary keywith version as the
selector within object id.

• The static fields preaccepted and preaccepted value are
used for the Fast Write path, to store the value that is
PreAccepted and the ID of the node that sent the request.

• The static field known committed versions stores the
set of versions that have been successfully committed,
and highest known committed version stores the highest
committed version, for simpler lookup when selecting a
new version number.

• highest ballot seen, highest ballot accepted, and high-
est value accepted store the Paxos states in the Slow
Write path for each version of each object.

• When a value is finally committed, committed is set to
True and value receives the committed value.

C. Cholula

Obviously, Giza does not satisfy our use scenarios because
it does not tolerate Byzantine servers. To provide efficient
Byzantine fault-tolerance, we push the work to the clients to
resolve conflicts (i.e., handling the slow path). As is outlined
in Section II-C, the number of writer clients is expected to be
small, making this design a reasonable tradeoff.

The high-level architecture of Cholula is presented in Figure
4. The top boxes are Cholula replicas/servers located at differ-
ent data centers (DC), which has three roles: (i) Cholula proxy
that implements the replication logic; (ii) metadata storage

...

Client A Client B

Phase 1

Phase 2

Fig. 4: Cholula: System Architecture. In this illustration, there
are two clients and n data centers DC1 to DCn. Each
data center has Cholula proxy that interacts with metadata
replication and object storage. In our design, only phase 1
(fast path) is between clients and data centers, whereas phase
2 is between clients.

that stores the control information; and (iii) object storage
that stores the coded element of an object. Bottom circles
are clients which communicate with both replicas and clients.
Now, we describe the key differences between Cholula and
Giza.

• Fast path (phase 1): clients contact a majority of nodes
(instead of 3N/4 + 1 as in Giza). If all the responses
match, then clients use the same approach to commit.

• Slow path (phase 2): if a response does not match, then



CA VA IR OR JP
CA 0.2
VA 72 0.2
IR 151 88 0.2
OR 59 93 145 0.2
JP 113 162 220 121 0.2

TABLE I: RTT (in ms) between VMs in emulated geographic
regions [15]. CA stands for California, VA for Virginia, IR for
Ireland, OR for Oregon, and JP for Japan. The RTT represents
typical ping latency between different Amazon Web Service
regions.

clients contact each other and use voting to agree on a
version for each conflicting write. Note that in this case, it
is possible that a Byzantine server lies about the existence
of a conflicting writes. However, by assumption, all the
writer clients are fault-free, so such a malicious behavior
can always be detected.

IV. EVALUATION

We present our evaluation of Cholula and two state-of-the-
art storage systems Microsoft Giza [8] (the core of Microsoft
OneDrive) and Cassandra [9] (one of the most popular NoSQL
for big data workload).

A. Experiment Setup

To analyze the performance of Giza and Cholula, we imple-
ment Giza and the fast path of Cholula on top of Cassandra.
Since the data path of storing coded element to a local object
storage is similar, we focus on the metadata replication in our
evaluation. We use Cassandra to realize this part.3 The layers
of Giza and Cholula on top of Cassandra are implemented in
Go and all three systems using Cassandra internal engine as
a core, which make the comparison fair between systems.

We ran three separate experiments, one for each system.
With the exception of the protocol used, each experiment had
an identical setup consisting of five nodes representing five
different regions: California (CA), Virginia (VA), Ireland (IR),
Oregon (OR), Japan (JP). Each node pair has a customized
artificial latency, chosen to emulate the latency between actual
ones between Amazon Web Service sites [15]. Table I shows
the RTT values for each pair of nodes.

The machines were setup on CloudLab using 5 m510
nodes, which had 8 core Intel Xeon D-1548 processors. The
CloudLab profile on the GitHub was used to create the nodes
on a LAN. Artificial delay between was added using Linux’s
Traffic Control (tc) to add delays to packets on all nodes
with filters on different IPs. They ran a single instance of
the given protocol, which was set up using the script provided
on the GitHub. Each metadata object was 11 bytes, and the
experiments ran for 3 minutes.

For each experiment, we measure the performance with no
contention so that all the systems have the best performance

3Our code can be found at https://github.com/pantherman594/Giza/

(i.e., on the fast path). As analyzed in Section II-C, this is a
common case for our target workload. We deploy one client
at the CA location to write data (randomly selected from
one of the 128 objects) sequentially. The read and write are
symmetric, so we only report the latency distribution of write
operations, as shown in Figure 5.

B. Summary of Our Findings

In the non-contention case (when there is no conflicting
writes), both Giza and Cholula take the fast path. This is
why we observe the straight line of the latency cumulative
distribution function (CDF) in the figure. Due to different
fast quorum size, Cholula has latency around 96ms and Giza
around 125ms. This is because the Cholula client at CA only
needs to wait for the response from the DC located at VA,
whereas Giza client at CA waits for the DC located at JP. Note
that the latency is slightly larger than the ping latency reported
in Table I because of the latency in accessing Cassandra table
(at local data center), as outlined in Section III.

Fig. 5: Latency CDF with non-contention cases (fast path
performance). Both Cholula and Giza complete in 1 RTT;
however, Cholula is faster because of a smaller fast quorum.

V. RELATED WORK

Eisenring evaluates various off-chain storage systems for
use in Blockchain Signaling System and posits IPFS as the
most suitable solution when compared with Swarm, Storj, and
CoAP [4]. No security or privacy is considered in his work.
Daniel and Tschorsch [5] compare IPFS and closely related
peer-to-peer systems off-chain storage solutions:

• Swarm: A P2P distributed content storage and retrieval
system with an incentive mechanism based upon the
Ethereum ecosystems. Drawbacks to Swarm include po-
tential storage issues, available content limitations, and
its dependency on Ethereum.

• Hypercore: A P2P system consisting of append-only
Hypercore logs, used for sharing large, mutable data.
Limitations of Hypercore include privacy concerns and
lack of detailed access controls.

• Storj: A decentralized cloud storage framework with
encrypted shards, erasure coding, and a reputation system
to protect against Byzantine attacks. Concerns regarding



Storj include increased centralization and privacy leaks.
That is, the replica selection is out of the control of
clients.

• Arweave: An on-chain data storage system for permanent
data. Arweave offers increased scalability solutions, but
retains storage limitations as an on-chain storage system,
and lacks mutability.

None of the system supports the features Cholula provides.
Tschirner et al. [16] confronts the challenge of data pri-

vacy by balancing the tradeoffs between data control and
transparency with the introduction of moving smart contracts,
which provide a means of keeping data localized while trusted
nodes retain the ability to access the data and execute smart
contracts. We do not focus on the computation aspect. Plus,
to provide availability and scalability, Cholula replicates data
to multiple nodes.

SlimChain addresses the poor scalability of Blockchain [17].
SlimChain is a stateless system which stores ledger states
and executes smart contracts in off-chain nodes to relieve the
blockchain of storage requirements and increase efficiency.
SlimChain requires an integration with a customized on-chain
transaction validation and state commitment, whereas Cholula
is compatible with any existing smart contracts that use off-
chain storages.

There are also works on Byzantine storages, e.g., [11]–[13].
However, these systems do not support strong consistency, nor
are they designed with off-chain usage in mind. Typically, they
do not prevent from imposter attack, nor support censorship
resistance.

VI. CONCLUSION

This paper presents Cholula, an off-chain versioned object
storage system with several desirable properties. We experi-
mentally demonstrate that Cholula provides better performance
than state-of-the-art systems (designed for non-Byzantine use
cases). This is mainly because the design of Cholula is
optimized for the common use scenarios for off-chain storages.
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APPENDIX A
REMARK ON NFT MINTING AND IMPOSTER ATTACK

To keep the discussion concise, we omit some steps in
most NFT use scenarios, including (i) uploading metadata
along with the content hash (or CID), which includes image
attributes, to the off-chain storage; (ii) intentionally keeping
an image as a place holder until the reveal phase; and (iii)
changing the baseURI so that it links to the correct set of
images during the reveal phase.

Since Web3 and NFTs are mostly community-driven, one
could argue that the imposter attack will not affect popular and
well-known artists. This is because imposter could easily be
debunked and cannot make any monetary gains. However, such
an imposter attack is such a low cost one, especially for images
upload to IPFS or similar P2P storages where host machines
could easily be compromised. With this vulnerability, new or
uprising artists could feel thwarted and mature ones would
feel discouraged if they need to constantly convince the
communities on the correct set of images.
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