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Abstract

We develop a paradigm for developing local energy dissipation rate preserving (LEDRP) approxi-
mations to general gradient flow models driven by source terms. In driven gradient flow models, the
deduced energy density transport equation possesses an indefinite source. Local energy-dissipation-
rate preserving algorithms are devised to respect the mathematical structure of both the driven
gradient flow model and its deduced energy density transport equation. The LEDRP algorithms are
also global energy-dissipation-rate preserving (GEDRP) under proper boundary conditions such as
periodic boundary conditions. However, the contrary may not be true. We then apply the paradigm
to a phase field model for growth of a graphene sheet to produce a set of LEDRP algorithms. Nu-
merical refinement tests are conducted to confirm the convergence property of the new algorithms
and simulations of graphene growth are demonstrated to benchmark against existing results in the
literature.

Keywords: Local energy-dissipation-rate preserving algorithms, graphene growth, driven gradient
flow, finite difference, energy quadratization.

1. Introduction

A gradient flow refers to a thermodynamically consistent model describing relaxation dynamics
of a nonequilibrium system with respect to a given free energy landscape subject to explicit or
implicit constraints in the phase space. Two classes of well-known gradient flow models are the
Allen-Cahn and Cahn-Hilliard phase field model for multiphase materials systems [1, 2]. Gradient5

flow models have been used in many important applications in recent years, like many self-consistent
field theories for multiphase polymer solutions and melts, phase field crystal growth models, thin
film models and various phase field models for crystalline alloys etc. [3, 4]. Given the system’s free
energy, the gradient flow model is derived using the generalized Onsager principle or equivalently
the second law of thermodynamics [5, 6, 7, 8]. Gradient flow models can be either energy dissipative10

or energy conservative globally.
Among the gradient flow models, the crystal growth model is of great application value for it

can produce a variety of complex patterns, ranging from dendritic to fractal, determined through
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interactions with the substrate and other environmental factors [9, 10, 11, 12, 13, 14]. Recently,
as a result of its excellent electrical properties, high thermal conductivity and super mechanical15

properties, graphene has emerged as one of the promising new high performance materials and been
widely applied to many high tech applications, like electronic information, environmental protection,
biomedicine and others [15, 16, 17, 18]. To grow a single crystal graphene sheet, copper has been
widely used as the substrate because the graphene sheet can be transferred to another substrate
easily after its growth [19, 20]. Influenced by thermodynamic, kinetic, and growth factors, such as20

symmetry of the substrate copper, pressure of methane and hydrogen, adatom flux, morphologies
of the growing single crystal graphene sheet can be dendrites, squares, stars, hexagons, butterflies
and lobes, known as the kinetic Wulff shapes [10, 21, 22, 23, 24, 25, 26, 27].

To respect the global energy dissipation property of dissipative gradient flows in numerical
algorithms, ones have developed a series of energy stable schemes for dissipative gradient flow25

models. First introduced in [28], the convex-splitting method splits the free energy density into
one concave and one convex term so that they can be treated differentially when the temporal
discretization is devised to ensure the global energy dissipation of the system. Several designs soon
followed in various applications [29, 30, 31]. A few years ago, Chris Lieb et al. pointed out a
potential shortcoming of this method however [32]. On a different front, Shen et al. used another30

popular technique called stabilization method, which is easy to implement and effective to many
phase field models including the Allen-Cahn and Cahn-Hilliard equation [33]. After that, a novel
approach that can surely preserve the energy dissipation rate by introducing an auxiliary variable
to transform the free energy density into a quadratic form was introduced in [34]. It was coined
the name energy quadratization (EQ) method by Yang, Zhao and Wang and applied to a host of35

gradient flow models [35, 36, 37, 38]. This method has since been extended to hydrodynamical
models, producing linear, unconditionally energy stable schemes for the viscous binary fluid flow
model [37] and various other applications [39, 40, 41, 42, 43]. Later, Shen et al. developed another
EQ type method, called the scalar auxiliary variable method, and applied it to gradient flow models
[44] and conducted the error analysis for L2 and H−1 gradient flows with a typical form of free40

energy in [45]. The SAV method can be quite efficient for a class of gradient flows [46, 47]. Another
class of methods, known as the projection, Lagrange multiplier or supplementary variable method
[48, 49, 50, 51] have also been developed recently for gradient flow models, which not only capture
dynamics but also preserve the global energy dissipation property.

To preserve the energy and other invariants in conservative gradient flow systems like Hamilto-45

nian systems, the multisymplectic method has been introduced for years, applied to a large number
of conservative PDEs and achieved remarkable success in long time simulations [52, 53, 54]. Other
structure-preserving algorithms for conservative systems are constructed afterwards, like the dis-
crete variational derivative method [55], the averaged vector method [56], the Hamiltonian boundary
value method [57] and so on. Most of these methods focus on preserving the global energy and50

invariants of the models in which the local property and structure of the models were not seriously
considered. In many models, the energy density, which represents the local energy, obeys a deduced
energy transport equation describing intrinsic energy transport mechanism of the models locally. It
would be desirable if one can preserve the structure and property of the energy transport equation
locally when devising any numerical approximation to the gradient flow model. The numerical55

algorithms preserve the structure of the local energy transport equation are called local structure
preserving algorithms (LSPAs). Under proper boundary conditions, the local energy preserving
algorithm can yield corresponding global energy preserving property (i.e., for periodic boundary
conditions), but the converse is normally not true. In 2008, Wang et al. [58] introduced the con-
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cept of local structure preservation, and showed the advantage of the local structure preserving60

algorithms when applied to systems like solitary wave equations and the Maxwell’s equation. Af-
terwards, this idea has been applied to a series of other conservative models with certain degree of
success [59, 60, 61, 62, 63].

We note that the local energy dissipation rate preserving approximation is a special case of more
general structure preserving approximation. For a dynamical system given by a partial differential65

equation system, if a function say f is identified as its energy density, a transport equation for f can
be deduced and is called the energy transport equation. There can be other quantities of physical
interest whose transport equation can be deduced in the solution manifold of the dynamical system
as well. A structure-preserving numerical approximation means the numerical algorithm designed
to solve the dynamical system also yields consistent approximations for transport equations of the70

energy density and other quantities that are of physical interest. Notice that when the dynamical
system is coupled with its deduced equations, the coupled system is over-determined, consistent and
structurally unstable, i.e, any small perturbations to the coupled system can render the perturbed
system inconsistent and therefore unsolvable. The structural-preserving approximation requires the
numerical approximation to the coupled system maintains consistency in the approximated system.75

This is a very stringent requirement. The success rate for meeting this requirement is normally low
but not impossible. In this regard, the local energy dissipation rate preserving algorithm is one that
enables one to produce a consistent approximation to a dynamical system coupled with its energy
density transport equation. In this paper, we take the challenge to develop a systematic approach
to devise such consistent numerical approximations.80

Specifically, we develop a general framework or paradigm to devise local energy dissipation rate
preserving algorithms for gradient flow models and gradient flow models with source terms, known as
driven gradient flow models. We note that for the driven gradient flow model, it becomes extremely
important for the discrete system to respect the mathematical structure of the continuous PDE
system’s. Since the driven gradient flow system may no longer be dissipative nor conservative, local85

structure preservation can ensure necessary consistency between the discretized PDE system together
with its deduced equations and the continuous one. This paradigm can yield linear and nonlinear
schemes. In particular, it produces linear ones when combined with the energy quadratization
method. The paradigm is composed of two key ingredients. The first is to reformulate the gradient
flow model into a system with auxiliary variables and low order derivatives while the second is90

to develop a hierarchical set of discrete Leibnitz rules using finite difference operators. Following
this paradigm, local energy-dissipation-rate preserving algorithms are then devised. Under proper
boundary conditions, for instance, periodic boundary conditions, the local structure-preserving
schemes are also global structure-preserving. How to design a local structure-preserving schemes
that are also global structure-preserving for a given physical boundary conditions however remains95

an open problem though. In [64], we presented a few cases where the global energy-dissipation-rate
schemes can be constructed using a combination of local energy-dissipation-rate preserving schemes,
where different LEDRP schemes are adopted at different part of boundaries.

In the second part of the study, we apply some newly developed algorithms to simulate crystal
growth in graphene sheet on copper, using a gradient flow model with a source term introduced by100

Meca et al. [21]. We present three different second order algorithms using three different ways to
discretize the energy density function. The algorithms are implemented in a rectangular domain
and their second order convergence rates are verified numerically. Finally, numerical simulations
on growth of graphene sheets on copper are carried out and benchmarked against existing results
in the literature. We note that this numerical paradigm can be applied to any partial differential105
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equation system with deduced equations, not limited to thermodynamically consistent gradient flow
models [64].

The rest of paper is organized as follows. In §2, we present the general framework for developing
local energy dissipation rate preserving algorithms. In §3, we extend the method to driven gradient
flow models. In §4, we apply the method to a graphene sheet growth model. In §5, mesh refinement110

tests for the graphene growth model and simulations for a variety of benchmark examples are
presented. We give a concluding remark in the last section.

2. A framework of developing LEDRPs for gradient flows

In this section, we first present the general gradient flow model and derive the transport equation
of the energy density in the model to show the local energy transport mechanism of the gradient flow115

system. Then, we develop a general framework to develop local energy-dissipation-rate preserving
(LEDRP) algorithms for the system. Adopting the energy quadratization technique, we further
develop a class of linear LEDRP algorithms.

2.1. General gradient flow models

We first derive the general gradient flow model using the generalized Onsager principle. Given
the free energy of the system in terms of the functional of the phase variable ϕ

E =

∫
Ω

f(ϕ,∇ϕ,∇2ϕ, ...,∇mϕ)dx, (2.1)

where m is a positive integer and

E = f(ϕ,∇ϕ,∇2ϕ, ...,∇mϕ) (2.2)

is the free energy density.120

The time derivation of the free energy E is given by

dE
dt

=
m∑
i=0

[
(−1)i

(
∇i ∂f

∂∇iϕ
, ϕt

)
+

∫
∂Ω

i∑
k=1

(−1)k−1∇k−1 ∂f

∂∇iϕ
· ∂∇

i−kϕ

∂t
· ndS

]
, (2.3)

where (f, g) =
∫
Ω
fgdx is the inner product of function f(x) and g(x). The energy time rate of

change is dictated by two parts. One is the energy dissipation rate in the bulk and the other is the
energy flux going through the boundary. For adiabatical boundaries, the energy flux is zero which
is guaranteed by

i∑
k=1

(−1)k−1∇k−1 ∂f

∂∇iϕ
· ∂∇

i−kϕ

∂t
· n = 0, ∀ i = 0, 1, ...,m. (2.4)

For periodic boundary conditions, the net energy flux is zero as well. In both cases, the energy
dissipation rate becomes

dE
dt

=
m∑
i=0

(−1)i
(
∇i ∂f

∂∇iϕ
, ϕt

)
. (2.5)
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We denote

δE
δϕ

= µ =
m∑
i=0

(−1)i∇i ∂f

∂∇iϕ
. (2.6)

This is also known as the generalized chemical potential. The free energy dissipation rate is given
by

dE
dt

=

∫
Ω

δE
δϕ

· ϕtdx = −
∫
Ω

δE
δϕ

· M · δE
δϕ

dx. (2.7)

We note that when M is nonnegative, the free energy dissipates in time. This is what we call the
dissipative gradient flow system. When M is antisymmetric, the energy is conserved. This is called
a conservative gradient flow system.

Applying the generalized Onsager principle, we obtain the specific gradient flow system as follows
ϕt = −Mµ, x ∈ Ω, t > 0,

µ =

m∑
i=0

(−1)i∇i ∂f

∂∇iϕ
,

ϕ(x, 0) = ϕ0(x),

(2.8)

where M is the mobility operator or coefficient.125

Next, we examine how energy is transported in given gradient flow dynamics (2.8) for a given
mobility operator. We state a lemma firstly.

Lemma 2.1. Based on the product rule, we have the following identity

(−1)iϕt · ∇i ∂f

∂∇iϕ
= (−1)i∇ ·

(
i∑

k=1

(−1)k−1∇k−1ϕt · ∇i−k ∂f

∂∇iϕ

)
+∇iϕt ·

∂f

∂∇iϕ
. (2.9)

Applying the lemma, we arrive at the following transport equation of the energy density.

Theorem 2.1. The dissipative gradient flow system in (2.8) admits the following local energy
dissipation law (LEDL)

dE

dt
+

m∑
i=0

(−1)i∇ ·

(
i∑

k=1

(−1)k−1∇k−1ϕt · ∇i−k ∂f

∂∇iϕ

)
+ µMµ = 0, (2.10)

where E is the free energy density defined in (2.2).

The proof of the theorem is given in the Appendix A.130

This transport equation of the energy density can be rewritten into

dE

dt
−

m∑
i=0

(−1)i∇ ·

(
i∑

k=1

(−1)k−1∇k−1Mµ · ∇i−k ∂f

∂∇iϕ

)
+ µMµ = 0. (2.11)

Remark 2.1. In the free energy functional, we only consider terms that are invariant under rotation
and translation. These are the terms of the following forms: ∇2iϕ and ∥∇2i+1ϕ∥22, i = 1, 2, 3, ...,
where ∥∥2 denotes the length of the vector in Cartesian space.
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2.1.1. Reformulation of the model system

At the discrete level, we cannot derive a consistent, discretized, energy density transport equa-135

tion directly unless we introduce some intermediate variables to reformulate the system. This is
because of the discrete Leibnitz rule and the continuous Leibnitz rule are not compatible with any
spatial discretization involving higher order derivatives. We note that when we introduce interme-
diate variables, we must discuss the cases with respect to the parity of index m. Here we focus on
the case where m is odd, the other case is essentially the same.140

We first rewrite the model as follows
ϕt = −Mµ,

µ =

m−1
2∑

p=0

(
∆p ∂f

∂∆pϕ
−∇∆p ∂f

∂∇∆pϕ

)
,

(2.12)

then introduce two groups of intermediate variables

f ′(ϕ) = k1,
∂f

∂∆ϕ
= k2,

∂f

∂∆2ϕ
= k3, · · · , ∂f

∂∆
m−1

2 ϕ
= km+1

2
, (2.13)

∂f

∂∇ϕ
= h1,

∂f

∂∇∆ϕ
= h2,

∂f

∂∇∆2ϕ
= h3, · · · , ∂f

∂∇∆
m−1

2 ϕ
= hm+1

2
. (2.14)

With these intermediate variables, the model is rewritten as follows

ϕt = −Mµ,

µ =

m+1
2∑

p=1

∆p−1kp −

m+1
2∑

q=1

∇∆q−1hq,

ϕ(x, 0) = ϕ0(x).

(2.15)

The transport equation of the free energy density for model (2.13) - (2.15) is given as follows.

Theorem 2.2. Model (2.13) - (2.15) satisfies the following LEDL

∂tE +∇ ·

m+1
2∑

p=2

2p−3∑
l=0

(
(−1)

l+1 ∇lkp · ∇2p−3−lϕt

)
+

m+1
2∑

q=1

2q−2∑
r=0

(
(−1)

r+1 ∇rhq · ∇2q−2−rϕt

)
+ µMµ = 0,

(2.16)

with E the local energy defined by (2.2).

2.1.2. Local structure preserving algorithms for the equivalent system

Next we present three LEDRP algorithms for the system in 2D space. Let Nx, Ny, Ny be
three positive integers, we uniformly discretize domain Ωh = [xL, xR] × [yL, yR], with mesh sizes
hx = (xR − xL) /Nx, hy = (yR − yL) /Ny. We choose time interval as [0, T ] and discretize it
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uniformly to yield tn = nτ , with time step τ = T/Nt, where n = 0, 1, 2, ..., Nt. Then the discrete
domain reads as follows

Ωh = {(xj , yk, tn)|xj = xL + jhx, yk = yL + khy, tn = nτ, 0 ≤ j ≤ Nx, 0 ≤ k ≤ Ny, 0 ≤ n ≤ Nt}.
(2.17)

We denote fn
j,k as the approximate value f(x, y, t) at node (xj , yk, tn), 0 ≤ j ≤ Nx, 0 ≤ k ≤ Ny, 0 ≤

n ≤ Nt.145

We first discretize the free energy density (2.2), intermediate variables (2.13) - (2.14) and system
(2.15) as follows

En
j,k = f

(
ϕn
j,k,∇+

h ϕ
n
j,k,∆hϕ

n
j,k,∇+

h∆hϕ
n
j,k, ...,∆

m−1
2

h ϕn
j,k,∇+

h∆
m−1

2

h ϕn
j,k

)
, (2.18){

At
∂fn

∂ϕn
= Atk

n
1

}∣∣∣∣
j,k

,

{
At

∂fn

∂∆hϕn
= Atk

n
2

}∣∣∣∣
j,k

, · · · ,
{
At

∂fn

∂∆
m−1

2

h ϕn
= Atk

n
m+1

2

}∣∣∣∣
j,k

, (2.19)

{
At

∂fn

∂∇+
h ϕ

n
= Ath

n
1

}∣∣∣∣
j,k

,

{
At

∂fn

∂∇+
h∆hϕn

= Ath
n
2

}∣∣∣∣
j,k

, · · · ,
{
At

∂fn

∂∇+
h∆

m−1
2

h ϕn
= Ath

n
m+1

2

}∣∣∣∣
j,k

,

(2.20)

{
δ+t ϕ

n = −MAtµ
n

}∣∣∣∣
j,k

,

{
Atµ

n =

m+1
2∑

p=1

∆p−1
h Atk

n
p −∇−

h

m+1
2∑

q=1

∆q−1
h Ath

n
q

}∣∣∣∣
j,k

.

(2.21)

Here, the operators are defined by

Atf
n
j,k =

fn+1
j,k + fn

j,k

2
, δ+t f

n
j,k =

fn+1
j,k − fn

j,k

τ
, δ+x f

n
j,k =

fn
j+1,k − fn

j,k

hx
,

δ+y f
n
j,k =

fn
j,k+1 − fn

j,k

hy
, δ−x fn

j,k =
fn
j,k − fn

j−1,k

hx
, δ−y fn

j,k =
fn
j,k − fn

j,k−1

hy
,

∇+
h =

(
δ+x

δ+y

)
, ∇−

h =

(
δ−x

δ−y

)
, ∆h = ∇+

h · ∇−
h .

(2.22)

The operator At is defined as follows

At(
n∏

i=1

(aiϕ
n + bi)

ki) =
n∑

i=1

[
At(
∏
j ̸=i

(ajϕ
n + bj)

kj )kiAt(aiϕ
n + bi)

ki−1aiAtϕ
n
]
. (2.23)

For example,

At

(
|ϕn|2 − 1

)2
= 4At

(
|ϕn|2 − 1

)
Atϕ

n. (2.24)

We drop subscript (j, k) for simplicity in the following. Eliminating the intermediate variables,
we arrive at our first LEDRP algorithm as follows.
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Algorithm 1 (LEDRP-I).

δ+t ϕ
n = −M

{ m−1
2∑

p=0

∆p
hAt

∂fn

∂∆p
hϕ

n
−

m−1
2∑

q=0

∇−
h∆

q−1
h At

∂fn

∂∇+
h∆

q−1
h ϕn

}
. (2.25)

We next introduce some lemmas to prove the local energy dissipation preserving property of the
algorithm.

Lemma 2.2. For scalar functions f , g, we have the following discrete Leibnitz rule

δ+x (f · g)j = fj · δ+x gj + δ+x fj · gj+1,

δ+x (f · g)j = Axfj · δ+x gj + δ+x fj ·Axgj .
(2.26)

The properties hold in other spatial directions and time as well. Based on the lemma, we can150

derive the following properties.

Lemma 2.3. For scalar function f and vector function v, with v = (v1, v2)
T
, define vn

j,k =(
vn1j−1,k

, vn2j,k−1

)
, ṽn

j,k =
(
vn1j+1,k

, vn2j,k+1

)
, based on Lemma 2.2, we have

∇+
h · (f · v) = ∇−

h · v · f + v · ∇+
h f,

∇+
h · (f · v) = ∇+

h · v · f + ṽ · ∇+
h f.

(2.27)

The next theorem states that Algorithm 1 obeys a discrete LEDL analogous to that in the
continuous case.

Theorem 2.3. Discrete equation (2.19)-(2.21) implies the following discrete LEDL

δ+t E
n +∇+

h ·

m+1
2∑

p=2

p−2∑
l=0

(
δ+t ∆

l
hϕ

n · ∇−
h∆

p−2−l
h Atk

n
p − δ+t ∇−

h∆
l
hϕ

n ·∆p−2−l
h Atk

n
p

)

−

m+1
2∑

q=1

δ+t ∆
q−1
h ϕn ·Ath

n

q

+

m+1
2∑

q=2

q−2∑
r=0

(
−δ+t ∆

r
hϕ

n · ∇−
h∇

−
h∆

q−2−r
h Ath

n
q + δ+t ∇−

h∆
r
hϕ

n · ∇−
h∆

q−2−r
h Ath

n
q

)
+Atµ

nMAtµ
n = 0,

with E the discrete energy density defined by (2.18).

Next, we discretize the free energy density (2.2), intermediate variables (2.13) - (2.14) and
system (2.15) as follows

En = f
(
ϕn,∇−

h ϕ
n,∆hϕ

n,∇−
h∆hϕ

n, ...,∆
m−1

2

h ϕn,∇−
h∆

m−1
2

h ϕn
)
. (2.28)
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At
∂fn

∂ϕn
= Atk

n
1 , At

∂fn

∂∆hϕn
= Atk

n
2 , · · · ,At

∂fn

∂∆
m−1

2

h ϕn
= Atk

n
m+1

2

, (2.29)

At
∂fn

∂∇−
h ϕ

n
= Ath

n
1 , At

∂fn

∂∇−
h∆hϕn

= Ath
n
2 , · · · ,At

∂fn

∂∇−
h∆

m−1
2

h ϕn
= Ath

n
m+1

2

, (2.30)


δ+t ϕ

n = −MAtµ
n,

Atµ
n =

m+1
2∑

p=1

∆p−1
h Atk

n
p −∇+

h

m+1
2∑

q=1

∆q−1
h Ath

n
q .

(2.31)

Eliminating the intermediate variables, we arrive at the second LEDRP algorithm as follows.155

Algorithm 2 (LEDRP-II).

δ+t ϕ
n = −M

{ m−1
2∑

p=0

∆p
hAt

∂fn

∂∆p
hϕ

n
−∇+

h

m−1
2∑

q=0

∆q−1
h At

∂fn

∂∇−
h∆

q−1
h ϕn

}
. (2.32)

Lemma 2.4. For scalar function f and vector function v, with v = (v!, v2)
T
, we define vn

j,k =(
vn1j−1,k

, vn2j,k−1

)
, ṽn

j,k =
(
vn1j+1,k

, vn2j,k+1

)
. Based on Lemma 2.2, we have

∇−
h · (fv) = ∇−

h · v · f + v · ∇−
h f,

∇−
h · (f ṽ) = ∇+

h · v · f + v · ∇−
h f.

(2.33)

We can show that Algorithm 2 obeys an analogous discrete LEDL as well.

Theorem 2.4. Discrete equation (2.29)-(2.31) implies the following discrete LEDL

δ+t E
n +∇−

h ·

m+1
2∑

p=2

p−2∑
l=0

(
δ+t ∆

l
hϕ

n · ∇+
h∆

p−2−l
h Atk

n
p − δ+t ∇+

h∆
l
hϕ

n ·∆p−2−l
h Atk

n
p

)

−

m+1
2∑

q=1

δ+t ∆
q−1
h ϕn ·Ath̃

n
q

+

m+1
2∑

q=2

q−2∑
r=0

(
−δ+t ∆

r
hϕ

n ·∆q−1−r
h Ath̃

n
q + δ+t ∇+

h∆
r
hϕ

n · ∇+
h∆

q−2−r
h Ath

n
q

)
+Atµ

nMAtµ
n = 0,

with E the discrete energy density defined by (2.28).

Applying the implicit midpoint method in time, the forward Euler method and the implicit
midpoint method in space, we derive the third LEDRP algorithm. Here we denote the discrete free
energy density (2.2), intermediate variables (2.13) - (2.14) and system (2.15) as follows

En = f(Am
x Am

y ϕn,∇hA
m−1
x Am−1

y ϕn,∆hA
m−2
x Am−2

y ϕn, ...,∆
m−1

2

h AxAyϕ
n,∇h∆

m−1
2

h ϕn), (2.34)

9





At
∂fn

∂Am
x Am

y ϕn
= Am

x Am
y Atk

n
1 , At

∂fn

∂∆hA
m−2
x Am−2

y ϕn
= Am

x Am
y Atk

n
2 ,

· · · ,

At
∂fn

∂∆
m−1

2

h ϕn

= Am
x Am

y Atk
n
m+1

2

,

(2.35)



At
∂fn

∂∇hA
m−1
x Am−1

y ϕn
= Am

x Am
y Ath

n
1 , At

∂fn

∂∇h∆hA
m−3
x Am−3

y ϕn
= Am

x Am
y Ath

n
2 ,

· · · ,

At
∂fn

∂∇h∆
m−1

2

h AxAyϕn

= Am
x Am

y Ath
n
m+1

2

,

(2.36)


δ+t A

m
x Am

y ϕn = −MAtA
m
x Am

y µn,

AtA
m
x Am

y µn =

m+1
2∑

p=1

∆
p−1

h AtA
m−2p+2
x Am−2p+2

y knp −

m+1
2∑

q=1

∇h∆
q−1

h AtA
m−2q+1
x Am−2q+1

y hn
q ,

(2.37)

where the operators are defined by

∇h =

(
δ+x Ay

δ+y Ax

)
, ∆h = ∇h · ∇h. (2.38)

Eliminating the intermediate variables, we arrive at the third LEDRP algorithm.

Algorithm 3 (LEDRP-III).

δ+t A
2m
x A2m

y ϕn =−M
{ m+1

2∑
p=1

∆
p−1

h Am−2p+2
x Am−2p+2

y At
∂fn

∂∆
p−1

h Am−2p+2
x Am−2p+2

y ϕn

−

m+1
2∑

q=1

∇h∆
q−1

h AtA
m−2q+1
x Am−2q+1

y At
∂fn

∂∇h∆
q−1

h Am−2q+1
x Am−2q+1

y ϕn

}
.

(2.39)

We use a lemma to state relevant discrete Leibnitz rules.

Lemma 2.5. For scalar function f and vectors u,v, with u = (u1, u2)
T , v = (v1, v2)

T , we define

∇[i]
h · , ∀ i = 1, 2, ...,m as following

∇[i]
h · (fnvn) = δ+x

(
Ai−1

x Ai
yf

n ·Ayv
n
1

)
+ δ+y

(
Ai

xA
i−1
y fn ·Axv

n
2

)
, (2.40)

based on Lemma 2.2, the operators have the following property

∇[i]
h · (fnun + gnvn) = ∇[i]

h · (fnun) +∇[i]
h · (gnvn), (2.41)

and they obey the following discrete Leibnitz rules

∇[i]
h · (fnvn) = ∇h(A

i−1
x Ai−1

y fn) ·AxAyv
n +Ai

xA
i
yf

n · (∇h · vn), ∀ i = 1, 2, ...,m. (2.42)

10



We can show that Algorithm 3 obeys a discrete LEDL.160

Theorem 2.5. Discrete equation (2.35)-(2.37) implies the following discrete LEDL

δ+t E
n −

m+1
2∑

q=1

q−1∑
l=0

∇[m−2l]
h ·

(
∆

l

hδ
+
t ϕ

n ·∆q−l−1

h Am−2q+2l+1
x Am−2q+2l+1

y Ath
n
q

)

+

m+1
2∑

q=2

q−2∑
l=0

∇[m−2l−1]
h ·

(
∇h∆

l

hAth
n
q · ∇h∆

q−l−2

h Am−2q+2l+2
x Am−2q+2l+2

y δ+t ϕ
n
)

+

m+1
2∑

p=2

{ p−2∑
r=0

∇[m−2r]
h ·

(
∆

r

hδ
+
t ϕ

n · ∇h∆
p−r−2

h Am−2p+2r+2
x Am−2p+2r+2

y Atk
n
p

−∆
r

hAtk
n
p · ∇h∆

p−r−2

h Am−2p+2r+2
x Am−2p+2r+2

y δ+t ϕ
n
)}

+AtA
m
x Am

y µnMAtA
m
x Am

y µn = 0,

with E the discrete energy density defined by (2.34).

Remark 2.2. The stencil in algorithm 3 is ”too wide” when the order of the spatial derivative is high.
It can bring difficulties to efficient numerical implementations if we do not treat the boundaries
properly. In addition, when the mobility parameter M is based on the phase variable, it may
become more complex in implementations.165

We next turn to another numerical strategy to develop local structure preserving algorithms
using the energy quadratization method.

2.2. Energy quadratization (EQ) method

In this subsection, we develop a host of linear algorithms based on the EQ method by reformulat-
ing the gradient flow system into another equivalent model with a quadratic free energy functional.170

Afterwards, we follow the guideline alluded to in the previous subsection to construct the LEDRP
algorithms for the model.

2.2.1. EQ reformulation

In many models, the local free energy density E = f(ϕ,∇ϕ,∇2ϕ, ...,∇mϕ) can be rewritten into

E =
m∑
i=0

gi(ϵ) · |∇iϕ|2 + b, (2.43)

here b ≥ −C0 for ∀ ϕ, and is a function of ϕ,∇ϕ,∇2ϕ, ...,∇m−1ϕ. C0 is a finite constant, gi(ϵ)
are functions of constant parameter ϵ, i = 0, 1, 2...m. Here we introduce an auxiliary function
q(ϕ,∇ϕ,∇2ϕ, ...,∇m−1ϕ) as follows

q =
√
b+ C0, (2.44)

then energy density E can be written into

E =
m∑
i=0

gi(ϵ) · |∇iϕ|2 + q2 − C0. (2.45)
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Then, we can write the system (2.8) into the following equivalent form

ϕt = −Mµ,

µ = 2
m∑
i=0

(−1)igi(ϵ) · ∇2iϕ+ 2
m−1∑
i=0

(−1)i∇i

(
q · ∂q

∂∇iϕ

)
,

qt =
m−1∑
i=0

∂q

∂∇iϕ
· ∂∇

iϕ

∂t
.

(2.46)

Lemma 2.6. From Lemma 2.1, we derive the following identity

(−1)i · ϕt · ∇i

(
f

∂f

∂∇iϕ

)
= (−1)i∇

(
i∑

k=1

(−1)k−1∇k−1ϕt · ∇i−k

(
f

∂f

∂∇iϕ

))
+∇iϕt ·

(
f

∂f

∂∇iϕ

)
.

(2.47)

The transport equation for the energy density of the equivalent system (2.46) is given in the
following.175

Theorem 2.6. Model (2.46) admits the following LEDL

dE

dt
+ 2

m∑
i=0

[
(−1)igi(ϵ)∇

(
(−1)k−1

i∑
k=1

∇k−1ϕt · ∇2i−kϕ

)]

+ 2

m−1∑
i=0

[
(−1)i∇

(
i∑

k=1

(−1)k−1∇k−1ϕt · ∇i−k

(
q

∂q

∂∇iϕ

))]
+ µMµ = 0,

(2.48)

with E the energy density defined by (2.45).

2.2.2. Reformulation of the EQ reformulated system

Analogous to the previous practice, we first introduce two groups of intermediate variables to
reformulate the system (2.46) into an equivalent form, which makes it feasible for us to construct
the LEDRP algorithm. The intermediate variables are listed in the following:

q
∂q

∂ϕ
= k1, q

∂q

∂∆ϕ
= k2, q

∂q

∂∆2ϕ
= k3, ..., q

∂q

∂∆
m−1

2 ϕ
= km+1

2
, (2.49)

q
∂q

∂∇ϕ
= h1, q

∂q

∂∇∆ϕ
= h2, q

∂q

∂∇∆2ϕ
= h3, ..., q

∂q

∂∇∆
m−3

2 ϕ
= hm−1

2
. (2.50)

With the intermediate variables, the model is rewritten into

ϕt = −Mµ,

µ = 2
m∑
i=0

(−1)igi(ϵ) · ∇2iϕ+ 2

m−1
2∑

p=1

∆p−1kp −

m−3
2∑

q=1

∇∆q−1hq

 ,

qt =
m−1∑
i=0

∂q

∂∇iϕ
· ∂∇

iϕ

∂t
.

(2.51)
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Theorem 2.7. Model (2.51) admits the following LEDL

∂tE +∇ ·

m+1
2∑

p=2

2p−3∑
l=0

(
(−1)

l+1 ∇lkp · ∇2p−3−lϕt

)
+

m−1
2∑

q=1

2q−2∑
r=0

(
(−1)

r+1 ∇rhq · ∇2q−1−rϕt

)
+ µMµ = 0,

(2.52)

with E the energy density defined by (2.45).

2.2.3. Local structure preserving algorithms for the equivalent system

We discretize free energy density (2.45), the intermediate variables (2.49) - (2.50) and system180

(2.51) the same way as we did previously. We discuss the specific discretization method in detail,
and present the precise algorithms and the deduced transport equations of the energy density in
Appendix B.

First, we discretize the energy density (2.45), intermediate variables (2.49) - (2.50) and model
(2.51) as follows

En =
m∑

i=0 2|i

gi(ϵ) · |∆
i
2

hϕ
n|2 +

m∑
i=0 2∤i

gi(ϵ) · |∇+
h∆

i−1
2

h ϕn|2 +
∣∣∣∣qn (ϕn,∇+

h ϕ
n,∆hϕ

n, ...,∆
m−1

2

h

) ∣∣∣∣2 − C0,

(2.53)

Atq
n ∂qn,⋆

∂ϕn,⋆
= Atk1, Atq

n ∂qn,⋆

∂∆hϕn,⋆
= Atk2, ..., Atq

n ∂qn,⋆

∂∆
m−1

2

h ϕn,⋆
= Atkm+1

2
, (2.54)

Atq
n ∂qn,⋆

∂∇+
h ϕ

n,⋆
= Ath1, Atq

n ∂qn,⋆

∂∇+
h∆hϕn,⋆

= Ath2, ..., Atq
n ∂qn,⋆

∂∇+
h∆

m−3
2

h ϕn,⋆
= Athm−1

2
, (2.55)

where ϕn,⋆ = (3ϕn − ϕn−1)/2,

δ+t ϕ
n = −MAtµ

n,

Atµ
n = 2

m∑
i=0

(−1)igi(ϵ) ·At∆
i
hϕ

n + 2

m+1
2∑

p=1

∆p−1
h Atkp −

m−1
2∑

q=1

∇−
h∆

q−1
h Athq

 ,

δ+t q
n =

m+1
2∑

p=1

∂qn,⋆

∂∆p−1
h ϕn,⋆

· δ+t ∆
p−1
h ϕn +

m−1
2∑

q=1

∂qn,⋆

∂∇+
h∆

q−1
h ϕn,⋆

· δ+t ∇+
h∆

q−1
h ϕn,

(2.56)

this yields the first LEDRP based on the EQ technique.
Similarly, we develop our second LEDRP based on EQ technique. We define the discrete energy

density (2.45), intermediate variables (2.49) - (2.50), model (2.51) as follows

En =

m∑
i=0 2|i

gi(ϵ) · |∆
i
2

hϕ
n|2 +

m∑
i=0 2∤i

gi(ϵ) · |∇−
h∆

i−1
2

h ϕn|2 +
∣∣∣∣qn (ϕn,∇−

h ϕ
n,∆hϕ

n, ...,∆
m−1

2

h ϕn
) ∣∣∣∣2 − C0,

(2.57)
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Atq
n ∂qn,⋆

∂ϕn,⋆
= Atk1, Atq

n ∂qn,⋆

∂∆hϕn,⋆
= Atk2, ..., Atq

n ∂qn,⋆

∂∆
m−1

2

h ϕn,⋆
= Atkm+1

2
, (2.58)

Atq
n ∂qn,⋆

∂∇−
h ϕ

n,⋆
= Ath1, Atq

n ∂qn,⋆

∂∇−
h∆hϕn,⋆

= Ath2, ..., Atq
n ∂qn,⋆

∂∇−
h∆

m−3
2

h ϕn,⋆
= Athm−1

2
, (2.59)



δ+t ϕ
n = −MAtµ

n,

Atµ
n = 2

m∑
i=0

(−1)igi(ϵ) ·At∆
i
hϕ

n + 2

m+1
2∑

p=1

∆p−1
h Atkp −

m−1
2∑

q=1

∇+
h∆

q−1
h Athq

 ,

δ+t q
n =

m+1
2∑

p=1

∂qn,⋆

∂∆p−1
h ϕn,⋆

· δ+t ∆
p−1
h ϕn +

m−1
2∑

q=1

∂qn,⋆

∂∇−
h∆

q−1
h ϕn,⋆

· δ+t ∇−
h∆

q−1
h ϕn.

(2.60)

Applying the implicit midpoint method in time, the forward Euler method and implicit midpoint
method in space, we derive yet another LEDRP algorithm based on the EQ method. We denote the
discrete free energy density (2.45), intermediate variables (2.49) - (2.50), model (2.51) as follows

En =

m∑
i=0

gi(ϵ) · |∇
i

hA
m−i
x Am−i

y ϕn|2

+

∣∣∣∣qn(Am
x Am

y ϕ,∇hA
m−1
x Am−1

y ϕn,∆hA
m−2
x Am−2

y ϕn, ...,∆
m−1

2

h AxAyϕ
n

) ∣∣∣∣2 − C0,

(2.61)



AtA
m
x Am

y qn
∂qn,⋆

∂Am
x Am

y ϕn,⋆
= AtA

m
x Am

y kn1 ,

AtA
m
x Am

y qn
∂qn,⋆

∂∆hA
m−2
x Am−2

y ϕn,⋆
= AtA

m
x Am

y kn2 ,

...

AtA
m
x Am

y qn
∂qn,⋆

∂∆
m−1

2

h AxAyϕn,⋆

= AtA
m
x Am

y knm+1
2

,

(2.62)



AtA
m
x Am

y qn
∂qn,⋆

∂∇hA
m−1
x Am−1

y ϕn,⋆
= AtA

m
x Am

y hn
1 ,

AtA
m
x Am

y qn
∂qn,⋆

∂∇h∆hA
m−3
x Am−3

y ϕn,⋆
= AtA

m
x Am

y hn
2 ,

...

AtA
m
x Am

y qn
∂qn,⋆

∂∇h∆
m−3

2

h A2
xA

2
yϕ

n,⋆

= AtA
m
x Am

y hn
m−1

2

,

(2.63)
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

δ+t A
m
x Am

y ϕn = −MAtA
m
x Am

y µn,

AtA
m
x Am

y µn = 2
m∑
i=0

(−1)igi(ϵ) ·AtA
m−2i
x Am−2i

y ∆
i

hϕ
n

+ 2

m+1
2∑

p=1

∆
p−1

h AtA
m−2p+2
x Am−2p+2

y knp −

m−1
2∑

q=1

∇h∆
q−1

h AtA
m−2q+2
x Am−2q+2

y hn
q

 ,

δ+t A
m
x Am

y qn =

m+1
2∑

p=1

∂qn,⋆

∂∆
p−1

h Am−2p+2
x Am−2p+2

y ϕn,⋆
· δ+t ∆

p−1

h Am−2p+2
x Am−2p+2

y ϕn

+

m−1
2∑

q=1

∂qn,⋆

∂∇h∆
q−1

h Am−2q+2
x Am−2q+2

y ϕn,⋆
· δ+t ∇h∆

q−1

h Am−2q+2
x Am−2q+2

y ϕn.

(2.64)
These three local energy dissipation law preserving numerical algorithms are linear for the185

general gradient flow model. In practice, we also encounter such equation systems driven by a
forcing term like in some crystal growth models. The driven gradient flow model may not have
a definitive energy dissipation law. But, the time evolutionary equation for the energy density
exists, which is unavoidably affected by the forcing term. Next, we discuss how to design numerical
algorithms that preserve the energy transport equation in the discretized gradient flow system with190

forcing terms.

3. Local energy dissipation rate preserving (LEDRP) algorithms for driven gradient
flows

Given free energy (2.2), a driven gradient flow system reads as follows
ϕt = −Mµ+ g(ϕ),

µ =
δE
δϕ

,
(3.1)

with g(ϕ) the forcing term. The framework for developing LEDRPs for the gradient flow models
can be applied equally well to this model.195

With free energy density E defined in (2.2), driven gradient flow (3.1) has the following energy
density transport equation

∂tE +
m∑
i=0

(−1)i∇ ·

(
i∑

k=1

(−1)k−1∇k−1ϕt · ∇i−k ∂f

∂∇iϕ

)
E + µMµ = g(ϕ)µ. (3.2)

Compared with the local energy density transport equation of an “unforced” gradient flow model,
we add forcing term ′g(ϕ)µ′ to the energy density transport equation here. Hence, designing an
algorithm to preserve the structure of this equation upon discretization should be focused primarily
on how the forcing term is discretized to match the existing LEDRP algorithms. In fact, the
discretization of the forcing term is much less strict than the other terms in the energy density200
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transport equation, so it is a simple matter for us to extend the previous LEDRP algorithms to
the driven system. Practically, we just need to discretize the forcing term ′g(ϕ)′ to ensure the
appropriate order of the entire discretized system.

Introducing the same intermediate variables in gradient flow system (2.8), we arrive at
ϕt = −Mµ+ g(ϕ),

µ =

m+1
2∑

p=1

∆p−1kp −

m+1
2∑

q=1

∇∆q−1hq.
(3.3)

Apparently, system (3.3) admits an energy density transport equation.

Theorem 3.1. Model (3.3) admits the following energy transport equation

∂tE +∇ ·

m+1
2∑

p=2

2p−3∑
l=0

(
(−1)

l+1 ∇lkp · ∇2p−3−lϕt

)
+

m+1
2∑

q=1

2q−2∑
r=0

(
(−1)

r+1 ∇rhq · ∇2q−2−rϕt

)
+ µMµ = g(ϕ)µ,

(3.4)

with E the energy density defined by (2.2).205

We use the same methods proposed in §2 to derive LEDRP algorithms for the driven system. In
particular, we apply the implicit midpoint method in time to forcing term g(ϕ). The local energy
dissipation rate property (3.4) for the driven gradient flow can be preserved strictly at the discrete
level. The details are given in Appendix C.

Applying the EQ method to the system, we arrive at

ϕt = −Mµ+ g(ϕ),

µ = 2
m∑
i=0

(−1)igi(ϵ) · ∇2iϕ+ 2
m−1∑
i=0

(−1)i∇i

(
q · ∂q

∂∇iϕ

)
,

qt =
m−1∑
i=0

∂q

∂∇iϕ
· ∂∇

iϕ

∂t
,

(3.5)

which has the following energy density transport equation

dE

dt
+ 2

m∑
i=0

[
(−1)igi(ϵ)∇

(
(−1)k−1

i∑
k=1

∇k−1ϕt · ∇2i−kϕ

)]

+ 2
m−1∑
i=0

[
(−1)i∇

(
i∑

k=1

(−1)k−1∇k−1ϕt · ∇i−k

(
q

∂q

∂∇iϕ

))]
+ µMµ = g(ϕ)µ,

(3.6)

with E the energy density defined by (2.45).210

To derive linear LEDRP algorithms for the driven gradient flow system formulated in EQ form,
we can discretize “g(ϕ)” either explicitly or semi-implicitly. We give the LEDRP algorithms in
Appendix C.
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4. Algorithms for the graphene growth model

In this section, we apply the LEDRP algorithms to the epitaxial graphene growth model [21].215

Firstly, we rewrite the coupled model into the form of a driven gradient flow using the Onsager
principle and derive the energy density transport equation. Secondly, we construct several LEDRP
algorithms based on the EQ technique. We present the algorithms in 2D space.

4.1. Graphene growth model

We first reformulate the model from a new perspective following the Onsager principle for
nonequilibrium thermodynamics. We define the free energy as follows

E(ϕ, u) =
∫
Ω

[
1

2
ϵ2ξs,n(Θ)2|∇ϕ|2 + f(ϕ) +

u2

2τv
+

1

2
∇uT ·D · ∇u

]
dx, (4.1)

where ϵ is the interface width, ϕ is the phase variable (ϕ = 1 corresponds to the thin field crys-
tal domain), while u is the concentration of the diatom, ξs,n is the coefficient of the anisotropic
conformation entropy defined by

ξs,n(Θ) = 1 + ϵs,n cos(nΘ), (4.2)

in which ϵs,n is the step energy anisotropy (n-fold), Θ is the orientation of the normal to the edge

given by Θ = arctan
∂yϕ
∂xϕ

, τv is a desorption time parameter and D is the diffusivity tensor defined
by

D =

(
1 + δ cos(2Ψ) δ sin(2Ψ)

δ sin(2Ψ) 1− δ cos(2Ψ)

)
, (4.3)

with δ the diffusion anisotropy, and Ψ the rotated angle of the principle diffusion axes. The functions220

f(ϕ) and g(ϕ) are chosen as f(ϕ) = ϕ2(1 − ϕ)2/4, g(ϕ) = ϕ3(10 − 15ϕ + 6ϕ2)/120, respectively.
Function f(ϕ) serves as the double well bulk free energy and parameterizes the deposition flux at
the interface and g(ϕ) is a switch function monotonically connecting 0 to 1 in the phase space ϕ
and g′(ϕ) = f(ϕ).

The time derivative of the free energy (4.1) is calculated as follows

dE
dt

=
(
− ϵ2∇ ·

[
ξs,n(Θ)2∇ϕ

]
+ ϵ2∂x

[
ξs,n(Θ)ξ′s,n(Θ)∂yϕ

]
− ϵ2∂y

[
ξs,n(Θ)ξ′s,n(Θ)∂xϕ

]
+ f ′(ϕ), ϕt

)
+

(
u

τv
−∇ · (D · ∇u) , ut

)
+

∫
∂Ω

(
− ϵ2ξs,n(Θ)2∇ϕ · ϕt +

(
ϵ2ξs,n(Θ)ξ′s,n(Θ)∂yϕ

−ϵ2ξs,n(Θ)ξ′s,n(Θ)∂xϕ

)
· ϕt −D · ∇u · ut

)
· ndS,

(4.4)

which is consisted of the bulk and the boundary contribution. The variation of the free energy with
respect to the two thermodynamical variables ϕ and u, also known as the chemical potentials, are
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given by
δE
δϕ

= −ϵ2∇ ·
[
ξs,n(Θ)2∇ϕ

]
+ ϵ2∂x

[
ξs,n(Θ)ξ′s,n(Θ)∂yϕ

]
− ϵ2∂y

[
ξs,n(Θ)ξ′s,n(Θ)∂xϕ

]
+ f ′(ϕ),

δE
δu

=
u

τv
−∇ · (D · ∇u) .

(4.5)
With the following adiabatic boundary conditions(

−ϵ2ξs,n(Θ)2∇ϕ · ϕt +

(
ϵ2ξs,n(Θ)ξ′s,n(Θ)∂yϕ

−ϵ2ξs,n(Θ)ξ′s,n(Θ)∂xϕ

)
· ϕt −D · ∇u · ut

)
· n = 0, (4.6)

the surface energy flux vanishes at the boundary so that the time derivative of the free energy is
given exclusively by the bulk effect:

dE
dt

=
(
− ϵ2∇ ·

[
ξs,n(Θ)2∇ϕ

]
+ ϵ2∂x

[
ξs,n(Θ)ξ′s,n(Θ)∂yϕ

]
− ϵ2∂y

[
ξs,n(Θ)ξ′s,n(Θ)∂xϕ

]
+ f ′(ϕ), ϕt

)
+

(
u

τv
−∇ · (D · ∇u) , ut

)
.

(4.7)

Notice that the following boundary conditions

∇ϕ · n =

(
∂yϕ

−∂xϕ

)
· n = ∇u · n = 0 (4.8)

imply (4.6). Applying the generalized Onsager principle, we can formulate the dynamical equations
in the graphene growth model as follows

ut = −M(Θ)µ+ g(u), u = (ϕ, u)
T
,

µ =

(
−ϵ2∇ ·

[
ξs,n(Θ)2∇ϕ

]
+ ϵ2∂x

[
ξs,n(Θ)ξ′s,n(Θ)∂yϕ

]
− ϵ2∂y

[
ξs,n(Θ)ξ′s,n(Θ)∂xϕ

]
+ f ′(ϕ)

u
τv

−∇ · (D · ∇u)

)
,

g(u) = M(Θ)

(
ϵλg′(ϕ)u

f

)
, M(Θ) =

( 1
ατ(Θ)ϵ2 0

− 1
ατ(Θ)ϵ2 1

)
,

u(x, 0) = u0(x),

∇ϕ · n =

(
∂yϕ

−∂xϕ

)
· n = ∇u · n = 0, x ∈ ∂Ω,

(4.9)

where τ(Θ) = τ0(Θ) + τ1(Θ)ϵ, τ0(Θ) = ξs,n(Θ)ξk,n(Θ), τ1(Θ) = a2
ξs,n(Θ)2

β{1+δ cos[2(Ψ−Θ)]} , with a2 =

47
√
2/60. ξk,n(Θ) is the kinetic energy anisotropy defined as

ξk,n(Θ) = 1 + ϵk,n cos(nΘ− nΘ0), (4.10)
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Θ0 is a given angle. The model parameters α and λ are defined as λ = a1

d0
, α = β

d0
, with a1 = 10

√
2.225

In componentwise forms, the phase field graphene growth model given by system (4.9) together
with the initial and boundary conditions is summarized as follows

ατ(Θ)ϵ2ϕt = ϵ2∇ ·
[
ξs,n(Θ)2∇ϕ

]
− ϵ2∂x

[
ξs,n(Θ)ξ′s,n(Θ)∂yϕ

]
+ ϵ2∂y

[
ξs,n(Θ)ξ′s,n(Θ)∂xϕ

]
− f ′(ϕ)

+ ϵλg′(ϕ)u,

ut = −ϕt −
u

τv
+∇ · (D · ∇u) + f,

ϕ(x, 0) = ϕ0(x),

u(x, 0) = u0(x),

∇ϕ · n =

(
∂yϕ

−∂xϕ

)
· n = ∇u · n = 0, x ∈ ∂Ω,

(4.11)
For any smooth domain U in Ω, , the time derivative of the free energy is given by

dE
dt

=

∫
U

δE
δu

· utdx = −
∫
U

(
δE
δu

)T ·M · δE
δu

dx+

∫
U

δE
δu

· gdx−
∫
∂U

n · hds, (4.12)

where h is the terms generated when computing the variation vector, known as the energy flux, given
below. Corresponding to the free energy given in (4.1), the local free energy density is identified as

E(ϕ, u) =
1

2
ϵ2ξs,n(Θ)2|∇ϕ|2 + f(ϕ) +

u2

2τv
+

1

2
∇uT ·D · ∇u. (4.13)

Energy flux h is identified by the following theorem.

Theorem 4.1. System (4.9) has a local energy density transport equation:

dE

dt
+∇ · h+ µT ·M(Θ) · µ = g(u) · µ, (4.14)

with E the free energy density defined by (4.13) and the energy flux is given by

h =

[
−ϵ2ξs,n(Θ)2∇ϕ · ϕt +

(
ϵ2ξs,n(Θ)ξ′s,n(Θ)∂yϕ

−ϵ2ξs,n(Θ)ξ′s,n(Θ)∂xϕ

)
· ϕt −D · ∇u · ut

]
. (4.15)

4.1.1. EQ reformulation

We reformulate the system based on the EQ technique, i.e., we first rewrite the energy density
given by (4.13) as a quadratic form:

E(ϕ, u) =
1

2
ϵ2
√
|ξs,n(Θ)∇ϕ|2 +A

2

− 1

2
ϵ2A+

1

4
[ϕ (ϕ− 1)]2 +

u2

2τv
+

1

2
∇uT ·D · ∇u, (4.16)

where A is a positive constant to ensure the positivity of |ξs,n(Θ)∇ϕ|2 +A.230
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We then define scalar functions U(ϕ) and V (ϕ) as followsU(ϕ) =
√

|ξs,n(Θ)∇ϕ|2 +A,

V (ϕ) = ϕ (1− ϕ) .
(4.17)

Thus, the local free energy density can be quadratized in the three variables (U, V, u) as follows

E(U, V, u) =
1

2
ϵ2U2 − 1

2
ϵ2A+

1

4
V 2 +

u2

2τv
+

1

2
∇uT ·D · ∇u. (4.18)

We then rewrite system (4.9) into an equivalent form as follows

ut = −M(Θ) · µ+ g(u),

µ =

(
−ϵ2∇ · (U(ϕ)R(ϕ)) + 1

2V (ϕ)P (ϕ)

u
τv

−∇ · (D · ∇u)

)
,

∂tU = R(ϕ) · ∇ϕt,

∂tV = P (ϕ) · ϕt,

(4.19)

where 
R(ϕ) =

1

U(ϕ)

{
ξs,n(Θ)2∇ϕ+

(
−ξs,n(Θ)ξ′s,n(Θ)∂yϕ

ξs,n(Θ)ξ′s,n(Θ)∂xϕ

)}
,

P (ϕ) = 1− 2ϕ.

(4.20)

The initial conditions are given by

ϕ(x, 0) = ϕ0(x), u(x, 0) = u0(x), U(ϕ0) =
√
|ξs(Θ(ϕ0))∇ϕ0|2 +A, V (ϕ0) = ϕ0 (1− ϕ0) .

(4.21)

With the newly introduced variables, system (4.19) - (4.21) admits a reformulated energy density
transport equation.

Theorem 4.2. System (4.19) - (4.20) have the following energy density transport equation

dE

dt
+∇ ·

(
−ϵ2U(ϕ)R(ϕ)ϕt −D · ∇u · ut

)
+ µT ·M(Θ) · µ = g(u) · µ, (4.22)

with E the free energy density defined by (4.18).

Following the paradigm established in the previous section, we introduce intermediate variables
to reformulate system (4.19) - (4.21) into one with lower spatial derivatives suitable for constructing
local structure preserving algorithms. The intermediate variables are introduced as follows(

1
2V (ϕ)P (ϕ)

u
τv

)
= k,

(
ϵ2U(ϕ)R(ϕ)

D · ∇u

)
= H. (4.23)
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Then the system becomes 

ut = −M(Θ) · µ+ g(u),

µ = k −∇ ·H,

∂tU = R(ϕ) · ∇ϕt,

∂tV = P (ϕ) · ϕt.

(4.24)

System (4.23) - (4.24) admits the following energy transport equation

dE

dt
+∇ · (−H · u) + µT ·M(Θ) · µ = g(u) · µ, (4.25)

with E the free energy density defined by (4.18).

4.2. Local energy dissipation rate preserving (LEDRP) algorithms235

We now construct our local energy dissipation rate preserving algorithms for system (4.23) -
(4.24).

4.2.1. LEDRP algorithm I

We first discretize the free energy density (4.18) as follows

E(Un, V n, un) =
1

2
ϵ2|Un|2 − 1

2
ϵ2A+

1

4
|V n|2 + |un|2

2τv
+

1

2
(∇+

h u
n)T ·D · ∇+

h u
n. (4.26)

With the aid of Lemma 2.2, we obtain the time derivative of the discrete energy density

δ+t E
n = ϵ2AtU

n · δ+t Un +
1

2
AtV

n · δ+t V n +
Atu

n

τv
δ+t u

n + (δ+t ∇+
h u

n)T ·D · ∇+
hAtu

n. (4.27)

Applying the linear-implicit Crank-Nicolson method in time, the Euler method in space to
system (4.23) - (4.24), we obtain the first LEDRP algorithm.240

Graphene Algorithm 1. Given the physical variables at time tn−1 and tn, we compute their
values at tn+1 using the following formula.

( 1
2AtV

n · Pn,⋆

Atu
n

τv

)
= Atk

n,

(
ϵ2AtU

n ·Rn,⋆

D · ∇+
hAtu

n

)
= AtH

n,

δ+t u
n = −M

(
Θ

n,⋆
)
·Atµ

n + g(un,⋆),

Atµ
n = Atk

n −∇−
h ·AtH

n,

δ+t U
n = Rn,⋆ · δ+t ∇+

h ϕ
n,

δ+t V
n = Pn,⋆ · δ+t ϕn,

(4.28)
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with

Rn,⋆ =
1√

|ξs,n(Θn,⋆)∇+
h ϕ

n,⋆|2 +A

{
ξs,n(Θ

n,⋆)2∇+
h ϕ

n,⋆ +

(
−ξs,n(Θ

n,⋆)ξ′s,n(Θ
n,⋆)δ+y ϕ

n,⋆

ξs,n(Θ
n,⋆)ξ′s,n(Θ

n,⋆)δ+x ϕ
n,⋆

)}
,

Pn,⋆ = 1− 2ϕn,⋆,

g(un,⋆) = M
(
Θ

n,⋆
)
·

(
ϵλ 1

4AtV
nV n,⋆un,⋆

f

)
,

(4.29)

and Θ
n,⋆

= arctan
δcxϕ

n,⋆

δcyϕ
n,⋆ , Θ

n,⋆ = arctan
δ+x ϕn,⋆

δ+y ϕn,⋆
, δcxϕj,k =

ϕj+1,k−ϕj−1,k

2hx
, δcyϕj,k =

ϕj,k+1−ϕj,k−1

2hy
.

These can be specifically written into

ϕn+1 = ϕn + dt ∗ 1

ατ(Θ
n,⋆

)ϵ2

[
−1

2
AtV

n · Pn,⋆ +∇−
h ·
(
ϵ2AtU

n ·Rn,⋆
)
+ ϵλ · 1

4
AtV

n · V n,⋆un,⋆

]
,

un+1 =

((
1

dt
− 1

2τv

)
un − ϕn+1 − ϕn

dt
+∇−

h ·
(
D · ∇+

hAtu
n
)
+ f

)
/

(
1

dt
+

1

2τv

)
,

Un+1 = Un +Rn,⋆ · ∇+
h

(
ϕn+1 − ϕn

)
,

V n+1 = V n + Pn,⋆ ·
(
ϕn+1 − ϕn

)
,

Rn,⋆ =
1√

|ξs,n(Θn,⋆)∇+
h ϕ

n,⋆|2 +A

{
ξs,n(Θ

n,⋆)2∇+
h ϕ

n,⋆ +

(
−ξs,n(Θ

n,⋆)ξ′s,n(Θ
n,⋆)δ+y ϕ

n,⋆

ξs,n(Θ
n,⋆)ξ′s,n(Θ

n,⋆)δ+x ϕ
n,⋆

)}
,

Pn,⋆ = 1− 2ϕn,⋆.
(4.30)

Graphene Algorithm 1 admits a discrete energy density transport equation derivable by Lemma 2.3.

Theorem 4.3. System (4.28)-(4.29) admits the following discrete energy density transport equation
consistent with the continuous one

δ+t E
n −∇+

h ·
(
AtH

n · δ+t un
)
+ (Atµ

n)
T ·M(Θ

n,⋆
) ·Atµ

n = g (un,⋆) ·Atµ
n, (4.31)

with E the energy density defined by (4.26).

4.2.2. LEDRP algorithm II

We discretize energy density (4.18) as follows

E(Un, V n, un) =
1

2
ϵ2|Un|2 − 1

2
ϵ2A+

1

4
|V n|2 + |un|2

2τv
+

1

2
(∇−

h u
n)T ·D · ∇−

h u
n. (4.32)

With the aid of Lemma 2.2, we have

δ+t E
n = ϵ2AtU

n · δ+t Un +
1

2
AtV

n · δ+t V n +
Atu

n

τv
δ+t u

n + (δ+t ∇−
h u

n)T ·D · ∇−
hAtu

n. (4.33)
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Graphene Algorithm 2. Given physical variables at time tn−1 and tn, we compute their values
at tn+1 using the following.

( 1
2AtV

n · Pn,⋆

Atu
n

τv

)
= Atk

n,

(
ϵ2AtU

n ·Rn,⋆

D · ∇−
hAtu

n

)
= AtH

n,

δ+t u
n = −M

(
Θ

n,⋆
)
·Atµ

n + g(un,⋆),

Atµ
n = Atk

n −∇+
h ·AtH

n,

δ+t U
n = Rn,⋆ · δ+t ∇−

h ϕ
n,

δ+t V
n = Pn,⋆ · δ+t ϕn,

(4.34)

with

Rn,⋆ =
1√

|ξs,n(Θn,∗)∇−
h ϕ

n,⋆|2 +A

{
ξs,n(Θ

n,⋆)2∇−
h ϕ

n,⋆ +

(
−ξs,n(Θ

n,⋆)ξ′s,n(Θ
n,⋆)δ−y ϕn,⋆

ξs,n(Θ
n,⋆)ξ′s,n(Θ

n,⋆)δ−x ϕn,⋆

)}
,

Pn,⋆ = 1− 2ϕn,⋆,

g(un,⋆) = M
(
Θ

n,⋆
)
·

(
ϵλ 1

4AtV
nV n,⋆un,⋆

f

)
,

(4.35)

and Θ
n,⋆

= arctan
δcxϕ

n,⋆

δcyϕ
n,⋆ , Θ

n,⋆ = arctan
δ−x ϕn,⋆

δ−y ϕn,⋆
.245

Similarly, system (4.34)-(4.35) admits a discrete energy density transport equation derived using
Lemma 2.4.

Theorem 4.4. System (4.34)-(4.35) admits the following discrete energy transport equation

δ+t E
n −∇−

h ·
(
AtH̃

n · δ+t un
)
+ (Atµ

n)
T ·M(Θ

n,⋆
) ·Atµ

n = g (un,⋆) ·Atµ
n, (4.36)

with E the energy density defined by (4.32).

4.2.3. LEDRP algorithm III

We discretize energy density (4.18) as follows

E(Un, V n, un) =
1

2
ϵ2|AxAyU

n|2 − 1

2
ϵ2A+

1

4
|AxAyV

n|2 + |AxAyu
n|2

2τv
+

1

2
(∇hu

n)T ·D · ∇hu
n.

(4.37)

We obtain the time derivative of the discrete energy density as follows

δ+t E
n = ϵ2AtAxAyU

n · δ+t AxAyU
n +

1

2
AtAxAyV

n · δ+t AxAyV
n

+
AtAxAyu

n

τv
δ+t AxAyu

n + (δ+t ∇hu
n)T ·D · ∇hAtu

n.
(4.38)
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Graphene Algorithm 3. We present the third LEDRP algorithm as follows

( 1
2AtAxAyV

n ·AxAyP
n,⋆

AtAxAyu
n

τv

)
= AtAxAyk

n,

(
ϵ2AtAxAyU

n ·AxAyR
n,⋆

D · ∇hAtu
n

)
= AtAxAyH

n,

δ+t AxAyu
n = −M

(
Θ

n,⋆
)
·AtAxAyµ

n + g(AxAyu
n,⋆),

AtAxAyµ
n = AtAxAyk

n −∇h ·AtH
n,

δ+t AxAyU
n = AxAyR

n,⋆ · δ+t ∇hϕ
n,

δ+t AxAyV
n = AxAyP

n,⋆ · δ+t AxAyϕ
n,

(4.39)
with

AxAyR
n,⋆ =

1√
|ξs,n(Θn,⋆)∇hϕn,⋆|2 +A

{
ξs,n(Θ

n,⋆)2∇hϕ
n,⋆ +

(
−ξs,n(Θ

n,⋆)ξ′s,n(Θ
n,⋆)δ+y Axϕ

n,⋆

ξs,n(Θ
n,⋆)ξ′s,n(Θ

n,⋆)δ+x Ayϕ
n,⋆

)}
,

AxAyP
n,⋆ = 1− 2AxAyϕ

n,⋆,

g(un,⋆) = M
(
Θ

n,⋆
)
·

(
ϵλ 1

4AtAxAyV
nAxAyV

n,⋆AxAyu
n,⋆

f

)
,

(4.40)

and Θ
n,⋆

= arctan
δcxAyϕ

n,⋆

δcyAxϕn,⋆ , Θ
n,⋆ = arctan

δ+x Ayϕ
n,⋆

δ+y Axϕn,⋆
.250

To derive the energy density transport equation for system (4.39)-(4.40), we need the following
lemma.

Lemma 4.1. For scalar function f and vector v = (v1, v2)
T , we define ∇[1]

h · as follows

∇[1]
h · (fnvn) = δ+x (Ayf

n ·Ayv
n
1 ) + δ+y (Axf

n ·Axv
n
2 ) . (4.41)

Based on Lemma 2.2, the operator has the following property

∇[1]
h · (fnvn) = ∇hf

n ·AxAyv
n +AxAyf

n · (∇h · vn). (4.42)

Theorem 4.5. System (4.39) - (4.40) admits the following discrete energy density transport equa-
tion

δ+t E
n −∇[1]

h ·
(
AtH

n · δ+t un
)
+ (AtAxAyµ

n)
T ·M(Θ

n,⋆
) ·AtAxAyµ

n = g(AxAyu
n,⋆) ·AtAxAyµ

n,
(4.43)

with En the energy density defined in (4.37).

With these new algorithms for the graphene growth model, we will verify their rates of conver-
gence numerically next.255
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5. Numerical results

We first conduct mesh refinement tests on the first two algorithms subject to periodic boundary
conditions. The implementation of the third algorithm is too complicated to be included in this
paper. Then, we simulate graphene growth numerically using the driven phase field model.

5.1. Mesh refinement tests260

We use [0, 2π]× [0, 2π] as the spatial domain in the mesh refinement tests and choose the initial
conditions as follows

ϕ(x, 0) = 0.1 sin(x) sin(y), u(x, 0) = 0.1 cos(x) cos(y). (5.1)

We use 1e − 4 ∗ M as the mobility value here and the other parameter values used are listed in
Table 1.

In the test, we take a linear refinement path τ = 0.1
2k

, k = 1...6, and Nx = Ny = 16 ∗ 2k,
k = 1, 2, ..., 6. Then we calculate the errors and orders in the L2 norm, respectively. Table 2 - Table
3 demonstrate the second-order convergence of Graphene Algorithm 1 for ϕ and u, respectively,265

while Table 4 - Table 5 confirm the second-order convergence of Graphene Algorithm 2 for ϕ and
u, respectively.

Table 1: Parameter values used in mesh refinement tests

parameter symbol value
capillary parameter d0 6e-4
interfacial width ϵ 1
desorption time τv 1

step energy anisotropy(n-fold) ϵs,n 0.001
kinetic anisotropy(n-fold) ϵk,n 0.08
crystal symmetry of copper n 6

diffusion anisotropy δ 0
rotated angle of principle diffusion axes Ψ 0

deposition flux f 2.708
kinetic coefficient β 5.54e-3

5.2. Graphene sheet growth

In experiments and reported numerical simulations of graphene growth, we observe that growth
patterns can be quite complex. This can be contributed to many factors in the experiments. In
our model, we will select proper parameter values to simulate the growth and benchmark with the
available results. In our simulations, we use the codes implemented using the two algorithms to
simulate benchmark examples in a periodic domain [0, 2π]2 with 1282 meshes and τ = 1.0e− 4. We
fix the initial conditions as follows

ϕ(x, 0) =
1

2

(
1 + tanh

0.3− r

0.01

)
, u(x, 0) = 1, (5.2)
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Table 2: Mesh refinement tests for ϕ for Graphene Algorithm 1 at T = 0.1, Nx = Ny = N .

N τ
L2 Error L2 Order

coarse N fine N coarse τ fine τ

16 ∗ 21 16 ∗ 22 1e− 1/21 1e− 1/22 3.0006e-09 -
16 ∗ 22 16 ∗ 23 1e− 1/22 1e− 1/23 8.1434e-10 1.8815
16 ∗ 23 16 ∗ 24 1e− 1/23 1e− 1/24 2.0885e-10 1.9631
16 ∗ 24 16 ∗ 25 1e− 1/24 1e− 1/25 5.3577e-11 1.9627
16 ∗ 25 16 ∗ 26 1e− 1/25 1e− 1/26 1.3937e-11 1.9426

Table 3: Mesh refinement tests for u for Graphene Algorithm 1 at T = 0.1, Nx = Ny = N .

N τ
L2 Error L2 Order

coarse N fine N coarse τ fine τ

16 ∗ 21 16 ∗ 22 1e− 1/21 1e− 1/22 1.2089e-07 -
16 ∗ 22 16 ∗ 23 1e− 1/22 1e− 1/23 3.0553e-08 1.9843
16 ∗ 23 16 ∗ 24 1e− 1/23 1e− 1/24 7.6590e-09 1.9961
16 ∗ 24 16 ∗ 25 1e− 1/24 1e− 1/25 1.9160e-09 1.9991
16 ∗ 25 16 ∗ 26 1e− 1/25 1e− 1/26 4.7894e-10 2.0001

Table 4: Mesh refinement tests for ϕ for Graphene Algorithm 2 at T = 0.1, Nx = Ny = N .

N τ
L2 Error L2 Order

coarse N fine N coarse τ fine τ

16 ∗ 21 16 ∗ 22 1e− 1/21 1e− 1/22 3.0006e-09 -
16 ∗ 22 16 ∗ 23 1e− 1/22 1e− 1/23 8.1434e-10 1.8815
16 ∗ 23 16 ∗ 24 1e− 1/23 1e− 1/24 2.0885e-10 1.9631
16 ∗ 24 16 ∗ 25 1e− 1/24 1e− 1/25 5.3577e-11 1.9627
16 ∗ 25 16 ∗ 26 1e− 1/25 1e− 1/26 1.3937e-11 1.9426

where r =
√
(x− π)2 + (y − π)2.

In Figure 1 and Figure 2, we show the growth patterns simulated using Graphene Algorithm 1270

and Graphene Algorithm 2, respectively. Among these simulations, the results in the corresponding
rows of Figure 1 and Figure 2 use the same parameter values. Clearly, we observe that the patterns
computed using the two algorithms are visually identical while using the same set of parameter
values. The graphene pattern grows from a small circular seed with radius r = 0.3 and a given
diffusive diatom field, to a shaped pattern gradually. From our numerical experiments, the patterns275

are clear when T = 0.1, therefore it grows rather fast under certain parameter values. The patterns
are consistent with the results for Cu(100), Cu(221), Cu(110) and Cu(310) reported in [21].
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Table 5: Mesh refinement tests for u for Graphene Algorithm 2 at T = 0.1, Nx = Ny = N .

N τ
L2 Error L2 Order

coarse N fine N coarse τ fine τ

16 ∗ 21 16 ∗ 22 1e− 1/21 1e− 1/22 1.2089e-07 -
16 ∗ 22 16 ∗ 23 1e− 1/22 1e− 1/23 3.0553e-08 1.9843
16 ∗ 23 16 ∗ 24 1e− 1/23 1e− 1/24 7.6590e-09 1.9961
16 ∗ 24 16 ∗ 25 1e− 1/24 1e− 1/25 1.9160e-09 1.9991
16 ∗ 25 16 ∗ 26 1e− 1/25 1e− 1/26 4.7894e-10 2.0001

In order to numerically verify the accuracy of the energy density transport equation, we define
the maximal residue of the equation the respective algorithms as follows

LE
n+1/2
I = max

j,k

∣∣∣δ+t En −∇+
h ·
(
AtH

n · δ+t un
)
+ (Atµ

n)
T ·M(Θ

n,∗
) ·Atµ

n − g (un,∗) ·Atµ
n
∣∣∣,

(5.3)

with the variables defined in Graphene Algorithm 1, and

LE
n+1/2
II = max

j,k

∣∣∣δ+t En −∇−
h ·
(
AtH̃

n · δ+t un
)
+ (Atµ

n)
T ·M(Θ

n,∗
) ·Atµ

n − g (un,∗) ·Atµ
n
∣∣∣,

(5.4)

with the variables defined in Graphene Algorithm 2.
In Figure 3, we depict the maximal residue in t ∈ [0, 0.1] for Graphene Algorithm 1 and Graphene

Algorithm 2, respectively. We observe that both algorithms keep the maximum residue well under280

10−9, which confirms our theoretical energy dissipation rate preserving results.

6. Concluding remarks

We have developed a general framework for developing LEDRP algorithms for gradient flows,
a general thermodynamically consistent model, and gradient flows driven by source terms. By em-
ploying the EQ technique, we can develop linear LEDRP algorithms for the gradient flow systems,285

including the driven system. For the driven gradient flow, LEDRP is important since it ensures
the discrete energy density transport equation respects the property and structure of its continu-
ous counterpart. In proper boundary conditions, for instance, periodic boundary conditions, the
local structure-preserving property implies the global energy dissipation property. We then apply
the general approach to construct three second-order, LEDRP algorithms for the graphene growth290

model. Numerical experiments confirm the second order accuracy of the algorithms and demon-
strate good match with the benchmarking examples when simulating graphene growth in different
parameter regimes.
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Appendix A: Proof of some theorems in §2

a. Proof for Theorem 2.1: Multiplying µ and ϕt on both sides of the first equation and the
second equation of (2.8), respectively, we obtain

ϕtµ = −µMµ,

ϕtµ = ϕt

m∑
i=0

(−1)i∇i ∂f

∂∇iϕ
.

(6.1)

Combining the two equations in (6.1), we have

−µMµ = ϕt

m∑
i=0

(−1)i∇i ∂f

∂∇iϕ
. (6.2)

Applying Lemma 2.1 and substituting all the terms on the right hand of (6.2), we arrive at

−µMµ =

m∑
i=0

(−1)i∇ ·

(
(−1)k−1

i∑
k=1

∇k−1ϕt · ∇i−k ∂f

∂∇iϕ

)
+

m∑
i=0

∇iϕt ·
∂f

∂∇iϕ
. (6.3)

Meanwhile, the time derivative of energy density (2.2) is given by

dE

dt
=

m∑
i=0

∇iϕt ·
∂f

∂∇iϕ
. (6.4)

Inserting (6.4) into (6.3), we complete the proof.
b. Proof for Theorem 2.2: Multiplying µ and ϕt on both sides of the first equation and the
second equation in (2.15), respectively, we have

ϕtµ = −µMµ,

µϕt =

m+1
2∑

p=1

∆p−1kp −

m+1
2∑

q=1

∇∆q−1hq

 · ϕt.
(6.5)

Using the Leibnitz rule repeatedly, we obtain

∇ ·

m+1
2∑

p=2

2p−3∑
l=0

(
(−1)

l+1 ∇lkp · ∇2p−3−lϕt

)
+

m+1
2∑

q=1

2q−2∑
r=0

(
(−1)

r+1 ∇rhq · ∇2q−2−rϕt

)
+

m+1
2∑

p=1

(
kp ·∆p−1ϕt

)
+

m+1
2∑

q=1

(
hq · ∇∆q−1ϕt

)
= −µMµ.

(6.6)
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It follows from the definition of the energy density (2.2)

∂tE =

m+1
2∑

p=1

(
kp ·∆p−1ϕt

)
+

m+1
2∑

q=1

(
hq · ∇∆q−1ϕt

)
, (6.7)

substituting (6.7) into (6.6), we complete the proof.
c. Proof for Theorem 2.3: Using Lemma 2.3 m times, we have

−Atµ
nMAtµ

n =∇+
h ·

m+1
2∑

p=2

p−2∑
l=0

(
δ+t ∆

l
hϕ

n · ∇−
h∆

p−2−l
h Atk

n
p − δ+t ∇−

h∆
l
hϕ

n ·∆p−2−l
h Atk

n
p

)

−

m+1
2∑

q=1

δ+t ∆
q−1
h ϕn ·Ath

n

q

+

m+1
2∑

q=2

q−2∑
r=0

(
−δ+t ∆

r
hϕ

n · ∇−
h∇

−
h∆

q−2−r
h Ath

n
q + δ+t ∇−

h∆
r
hϕ

n · ∇−
h∆

q−2−r
h Ath

n
q

)
(6.8)

+

m+1
2∑

p=1

Atk
n
p · δ+t ∆

p−1
h ϕn +

m+1
2∑

q=1

Ath
n
q · δ+t ∇+

h∆
q−1
h ϕn.

It follows from the definition of the energy density, En, (2.18),

δ+t E
n =

m+1
2∑

p=1

Atk
n
p · δ+t ∆

p−1
h ϕn +

m+1
2∑

q=1

Ath
n
q · δ+t ∇+

h∆
q−1
h ϕn. (6.9)

Applying (6.9), we complete the proof.
d. Proof for Theorem 2.4: With the aid of Lemma 2.4, we arrive at the conclusion readily.305

e. Proof for Theorem 2.5: It follows from the definition of energy density, En, (2.34)

δ+t E
n =

m+1
2∑

p=1

AtA
m
x Am

y knp · δ+t ∆
p−1

h Am−2p+2
x Am−2p+2

y ϕn

+

m+1
2∑

q=1

AtA
m
x Am

y hn
q · δ+t ∇h∆

q−1

h Am−2q+1
x Am−2q+1

y ϕn.

(6.10)

With the aid of Lemma 2.5, we complete the proof.
f. Proof for Theorem 2.6: Multiply µ, ϕt, q on both sides of the three equations in (2.46),
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respectively, 

µϕt = −µMµ,

µϕt = 2
m∑
i=0

(−1)igi(ϵ) · ∇2iϕ · ϕt + 2
m−1∑
i=0

(−1)i∇i

(
q · ∂q

∂∇iϕ

)
· ϕt,

qqt =
m−1∑
i=0

q
∂q

∂∇iϕ
· ∂∇

iϕ

∂t
.

(6.11)

With Lemma 2.6, we derive from (6.11)

−µMµ = 2
m∑
i=0

[
(−1)igi(ϵ)∇

(
i∑

k=1

(−1)k−1∇k−1ϕt · ∇2i−kϕ

)]

+ 2
m−1∑
i=0

[
(−1)i∇

(
(−1)k−1

i∑
k=1

∇k−1ϕt · ∇i−k

(
q

∂q

∂∇iϕ

))]

+ 2
m∑
i=0

gi(ϵ)∇iϕt · ∇iϕt + 2qqt,

(6.12)

Meanwhile, the time derivative of energy density E, (2.45), is given by

dE

dt
= 2

m∑
i=0

gi(ϵ)∇iϕt · ∇iϕt + 2qqt. (6.13)

Inserting (6.13) into (6.12), we arrive at the conclusion.

Appendix B: LEDRP algorithms in §2.2.3

Here we list the three LEDRP algorithms based on the energy quadratization technique pre-
sented in §2.2.3. We present the first algorithm based on the energy quadratization method next.310

Eliminating the intermediate variables in system (2.54)-(2.56), we arrive at the first LEDRP algo-
rithm based on the EQ method as follows.

Algorithm 4 (EQ-LEDRP-I).

δ+t ϕ
n = −2M

 m∑
i=0

(−1)igi(ϵ) ·At∆
i
hϕ

n +

m+1
2∑

p=1

∆p−1
h

(
Atq

n ∂qn,⋆

∂∆p−1
h ϕn,⋆

)

−

m−1
2∑

q=1

∇−
h∆

q−1
h

(
Atq

n ∂qn,⋆

∂∇+
h∆

q−1
h ϕn,⋆

) ,

δ+t q
n =

m+1
2∑

p=1

∂qn,⋆

∂∆p−1
h ϕn,⋆

· δ+t ∆
p−1
h ϕn +

m−1
2∑

q=1

∂qn,⋆

∂∇+
h∆

q−1
h ϕn,⋆

· δ+t ∇+
h∆

q−1
h ϕn.
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The transport equation for the discrete energy density in Algorithm 4 is given below.

Theorem 6.1. Model (2.54)-(2.56) satisfies the following discrete LEDL

δ+t E
n + 2∇+

h ·

m+1
2∑

p=2

p−2∑
l=0

(
δ+t ∆

l
hϕ

n · ∇−
h∆

p−2−l
h Atk

n
p + δ+t ∇−

h∆
l
hϕ

n ·∆p−2−l
h Atk

n
p

)
− δ+t ϕ

n ·Ath
n

1

+

m−1
2∑

q=2

(
q−2∑
r=0

(
−δ+t ∆

r
hϕ

n · ∇−
h∇

−
h∆

q−2−r
h Ath

n
q + δ+t ∇−

h∆
r
hϕ

n · ∇−
h∆

q−2−r
h Ath

n
q

)
− δ+t ∆

q−1
h ϕn ·Ath

n

q

)

+
m∑

i=1 2∤i

gi(ϵ)

−
i−1∑

l= i−1
2

∇−
h∆

l
hAtϕ

n · δ+t ∆i−1−l
h ϕn +

i−1∑
l= i+1

2

∆l
hAtϕ

n · δ+t ∇−
h∆

i−1−l
h ϕn


+

m∑
i=1 2|i

gi(ϵ)
i−1∑
l= i

2

(
∇−

h∆
l
hAtϕ

n · δ+t ∆i−1−l
h ϕn −∆l

hAtϕ
n · δ+t ∇−

h∆
i−1−l
h ϕn

)
+Atµ

nMAtµ
n = 0,

with discrete energy density En defined in (2.53).

Proof. We note that the time derivative of discrete energy density (2.53) is given by

δ+t E
n = 2

m+1
2∑

p=1

Atk
n
p · δ+t ∆

p−1
h ϕn + 2

m−1
2∑

q=1

Ath
n
q · δ+t ∇+

h∆
q−1
h ϕn

+ 2
m∑

i=0 2|i

gi(ϵ)∆
i
2

hAtϕ
n ·∆

i
2

h δ
+
t ϕ

n + 2
m∑

i=1 2∤i

gi(ϵ)∇+
h∆

i
2

hAtϕ
n · ∇+

h∆
i−1
2

h δ+t ϕ
n.

(6.14)

Analogous to the proof of Theorem 2.3, we can easily arrive at the conclusion.315

Then we present second LEDRP algorithm. Eliminating the intermediate variables, system
(2.58)-(2.60) can be written into the following two-equation system.

Algorithm 5 (EQ-LEDRP-II).

δ+t ϕ
n = −2M

 m∑
i=0

(−1)igi(ϵ) ·At∆
i
hϕ

n +

m+1
2∑

p=1

∆p−1
h

(
Atq

n ∂qn,⋆

∂∆p−1
h ϕn,⋆

)

−

m−1
2∑

q=1

∇+
h∆

q−1
h

(
Atq

n ∂qn,⋆

∂∇−
h∆

q−1
h ϕn,⋆

) ,

δ+t q
n =

m+1
2∑

p=1

∂qn,⋆

∂∆p−1
h ϕn,⋆

· δ+t ∆
p−1
h ϕn +

m−1
2∑

q=1

∂qn,⋆

∂∇−
h∆

q−1
h ϕn,⋆

· δ+t ∇−
h∆

q−1
h ϕn.

The discrete energy density in Algorithm 5 obeys a transport equation given in the following
theorem.
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Theorem 6.2. Model (2.58)-(2.60) satisfies the following discrete local energy density transport
equation

δ+t E
n + 2∇−

h ·

m+1
2∑

p=2

p−2∑
l=0

(
δ+t ∆

l
hϕ

n · ∇+
h∆

p−2−l
h Atk

n
p − δ+t ∇+

h∆
l
hϕ

n ·∆p−2−l
h Atk

n
p

)
− δ+t ϕ

n ·Ath̃
n
1

+

m−1
2∑

q=2

(
q−2∑
r=0

(
−δ+t ∆

r
hϕ

n ·∆q−1−r
h Ath̃

n
q + δ+t ∇+

h∆
r
hϕ

n · ∇+
h∆

q−2−r
h Ath

n
q

)
− δ+t ∆

q−1
h ∇−

h ϕ
n ·Ath̃

n
q

)

+
m∑

i=1 2∤i

gi(ϵ)

−
i−1∑

l= i−1
2

∇+
h∆

l
hAtϕ

n · δ+t ∆i−1−l
h ϕn +

i−1∑
l= i+1

2

∆l
hAtϕ

n · δ+t ∇+
h∆

i−1−l
h ϕn


+

m∑
i=1 2|i

gi(ϵ)
i−1∑
l= i

2

(
∇+

h∆
l
hAtϕ

n · δ+t ∆i−1−l
h ϕn −∆l

hAtϕ
n · δ+t ∇+

h∆
i−1−l
h ϕn

)
+Atµ

nMAtµ
n = 0,

with discrete energy density En defined in (2.57).320

Analogously, we obtain the third LEDRP algorithm the same way.

Algorithm 6 (EQ-LEDRP-III).

δ+t A
2m
x A2m

y ϕn = 2
m∑
i=0

(−1)igi(ϵ) ·AtA
2m−2i
x A2m−2i

y ∆
i

hϕ
n

+ 2

m+1
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p=1

∆
p−1
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y AtA
m
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∂qn,⋆

∂∆
p−1
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−

m−1
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q=1

∇h∆
q−1

h Am−2q+2
x Am−2q+2

y AtA
m
x Am

y qn
∂qn,⋆

∂∇h∆
q−1

h Am−2q+1
x Am−2q+1

y ϕn,⋆

 ,

δ+t A
m
x Am

y qn =

m+1
2∑

p=1

∂qn,⋆

∂∆
p−1

h Am−2p+2
x Am−2p+2

y ϕn,⋆
· δ+t ∆

p−1

h Am−2p+2
x Am−2p+2

y ϕn

+

m−1
2∑

q=1

∂qn,⋆

∂∇h∆
q−1

h Am−2q+2
x Am−2q+2

y ϕn,⋆
· δ+t ∇h∆

q−1

h Am−2q+2
x Am−2q+2

y ϕn.

Algorithm 6 has a discrete transport equation for the discrete energy density.
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Theorem 6.3. Model (2.62)-(2.64) satisfies the following discrete energy density transport equation

δ+t E
n + 2

m∑
i=0 2|i

gi(ϵ)

i
2∑

j=0

(
∇[m−j]

h ·
(
δ+t ∇

j

hϕ
n ·AtA

m−(2i−j)
x Am−(2i−j)

y ∇2i−j−1

h ϕn
)

−∇[m−(2i−2−j)]
h ·

(
At∇

2i−2−j

h ϕn · δ+t Am−(j+2)
x Am−(j+2)

y ∇j+1

h ϕn
))

− 2
m∑

i=0 2∤i

gi(ϵ)

 i+1
2∑

j=0

∇[m−j]
h ·

(
δ+t ∇

j

hϕ
n ·AtA

m−(2i−j)
x Am−(2i−j)

y ∇2i−j−1

h ϕn
)

−

i−1
2∑

j=0

∇[m−(2i−2−j)]
h ·

(
At∇

2i−2−j

h ϕn · δ+t Am−(j+2)
x Am−(j+2)

y ∇j+1

h ϕn
)

− 2

m−1
2∑

q=1

q−1∑
l=0

∇[m−2l]
h ·

(
∆

l

hδ
+
t ϕ

n ·∆q−l−1

h Am−2q+2l+1
x Am−2q+2l+1

y Ath
n
q

)

+ 2

m−1
2∑

q=2

q−2∑
l=0

∇[m−2l−1]
h ·

(
∇h∆

l

hAth
n
q · ∇h∆

q−l−2

h Am−2q+2l+2
x Am−2q+2l+2

y δ+t ϕ
n
)

+ 2

m+1
2∑

p=2

{ p−2∑
r=0

∇[m−2r]
h ·

(
∆

r

hδ
+
t ϕ

n · ∇h∆
p−r−2

h Am−2p+2r+2
x Am−2p+2r+2

y Atk
n
p

−∆
r

hAtk
n
p · ∇h∆

p−r−2

h Am−2p+2r+2
x Am−2p+2r+2

y δ+t ϕ
n
)}

+AtA
m
x Am

y µnMAtA
m
x Am

y µn = 0,

with En the discrete energy density defined by (2.61).

Proof. We again omit the proof here.

Appendix C: LEDRP algorithms for driven gradient flows325

We list the algorithms and the corresponding discrete energy density transport equations for
the driven gradient flow system in the following.

Algorithm 7 (LEDRP-I for driven gradient flows). Given the free energy density in (2.18), the
intermediate variables (2.19) - (2.20), the discrete system reads as follows

δ+t ϕ
n = −MAtµ

n +Atg(ϕ
n),

Atµ
n =

m+1
2∑

p=1

∆p−1
h Atk

n
p −∇−

h

m+1
2∑

q=1

∆q−1
h Ath

n
q .

(6.15)

Next we state the local energy dissipation rate property for Algorithm 7 as follows.
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Theorem 6.4. Model (2.19) - (2.20), (6.15) has the following discrete energy density transport
equation

δ+t E
n +∇+

h ·

m+1
2∑

p=2

p−2∑
l=0

(
δ+t ∆

l
hϕ

n · ∇−
h∆

p−2−l
h Atk

n
p − δ+t ∇−

h∆
l
hϕ

n ·∆p−2−l
h Atk

n
p

)

−

m+1
2∑

q=1

δ+t ∆
q−1
h ϕn ·Ath

n

q

+

m+1
2∑

q=2

q−2∑
r=0

(
−δ+t ∆

r
hϕ

n · ∇−
h∇

−
h∆

q−2−r
h Ath

n
q + δ+t ∇−

h∆
r
hϕ

n · ∇−
h∆

q−2−r
h Ath

n
q

)
+Atµ

nMAtµ
n = Atg(ϕ

n) ·Atµ
n,

with E the discrete energy density defined by (2.18).

Algorithm 8 (LEDRP-II for driven gradient flows). Given the free energy density (2.28), the
intermediate variables (2.29) - (2.30), the discrete gradient flow system reads as follows

δ+t ϕ
n = −MAtµ

n +Atg(ϕ
n),

Atµ
n =

m+1
2∑

p=1

∆p−1
h Atk

n
p −∇+

h

m+1
2∑

q=1

∆q−1
h Ath

n
q .

(6.16)

Theorem 6.5. Model (2.29) - (2.30), (6.16) has the following discrete energy density transport
equation

δ+t E
n +∇−

h ·

m+1
2∑

p=2

p−2∑
l=0

(
δ+t ∆

l
hϕ

n · ∇+
h∆

p−2−l
h Atk

n
p − δ+t ∇+

h∆
l
hϕ

n ·∆p−2−l
h Atk

n
p

)

−

m+1
2∑

q=1

δ+t ∆
q−1
h ϕn ·Ath̃

n
q

+

m+1
2∑

q=2

q−2∑
r=0

(
−δ+t ∆

r
hϕ

n ·∆q−1−r
h Ath̃

n
q + δ+t ∇+

h∆
r
hϕ

n · ∇+
h∆

q−2−r
h Ath

n
q

)
+Atµ

nMAtµ
n = Atg(ϕ

n) ·Atµ
n,

with E the discrete energy density defined by (2.28).330

Algorithm 9 (LEDRP-III for driven gradient flows). Given the free energy density in (2.34), the
intermediate variables (2.35) - (2.36), the discrete gradient flow system reads as follows

δ+t A
m
x Am

y ϕn = −MAtA
m
x Am

y µn +Atg(A
m
x Am

y ϕn),

AtA
m
x Am

y µn =

m+1
2∑

p=1

∆
p−1

h AtA
m−2p+2
x Am−2p+2

y knp −

m+1
2∑

q=1

∇h∆
q−1

h AtA
m−2q+1
x Am−2q+1

y hn
q .

(6.17)
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Theorem 6.6. Model (2.35) - (2.36), (6.17) has the following energy density transport equation

δ+t E
n −

m+1
2∑

q=1

q−1∑
l=0

∇[m−2l]
h ·

(
∆

l

hδ
+
t ϕ

n ·∆q−l−1

h Am−2q+2l+1
x Am−2q+2l+1

y Ath
n
q

)

+

m+1
2∑

q=2

q−2∑
l=0

∇[m−2l−1]
h ·

(
∇h∆

l

hAth
n
q · ∇h∆

q−l−2

h Am−2q+2l+2
x Am−2q+2l+2

y δ+t ϕ
n
)

+

m+1
2∑

p=2

{ p−2∑
r=0

∇[m−2r]
h ·

(
∆

r

hδ
+
t ϕ

n · ∇h∆
p−r−2

h Am−2p+2r+2
x Am−2p+2r+2

y Atk
n
p

−∆
r

hAtk
n
p · ∇h∆

p−r−2

h Am−2p+2r+2
x Am−2p+2r+2

y δ+t ϕ
n
)}

+AtA
m
x Am

y µnMAtA
m
x Am

y µn = Atg(A
m
x Am

y ϕn) ·AtA
m
x Am

y µn,

with E the discrete energy density defined by (2.34).

In the following, we list the algorithms and the discrete energy density transport equation for
the driven gradient flow system based on the EQ technique.

Algorithm 10 (EQ-LEDRP-I for driven gradient flows). Given the free energy density in (2.53)
and intermediate variables (2.54) - (2.55), we discritize driven gradient flow (3.5) as follows

δ+t ϕ
n = −MAtµ

n + g(ϕn,⋆),

Atµ
n = 2

m∑
i=0

(−1)igi(ϵ) ·At∆
i
hϕ

n + 2

m+1
2∑

p=1

∆p−1
h Atkp −

m−1
2∑

q=1

∇−
h∆

q−1
h Athq

 ,

δ+t q
n =

m+1
2∑

p=1

∂qn,⋆

∂∆p−1
h ϕn,⋆

· δ+t ∆
p−1
h ϕn +

m−1
2∑

q=1

∂qn,⋆

∂∇+
h∆

q−1
h ϕn,⋆

· δ+t ∇+
h∆

q−1
h ϕn.

(6.18)

Theorem 6.7. System (6.18) admits the following discrete energy density transport equation

δ+t E
n + 2∇+

h ·

m+1
2∑

p=2

p−2∑
l=0

(
δ+t ∆

l
hϕ

n · ∇−
h∆

p−2−l
h Atk

n
p + δ+t ∇−

h∆
l
hϕ

n ·∆p−2−l
h Atk

n
p

)
− δ+t ϕ

n ·Ath
n

1

+

m−1
2∑

q=2

(
q−2∑
r=0

(
−δ+t ∆

r
hϕ

n · ∇−
h∇

−
h∆

q−2−r
h Ath

n
q + δ+t ∇−

h∆
r
hϕ

n · ∇−
h∆

q−2−r
h Ath

n
q

)
− δ+t ∆

q−1
h ϕn ·Ath

n

q

)

+
m∑

i=1 2∤i

gi(ϵ)

−
i−1∑

l= i−1
2

∇−
h∆

l
hAtϕ

n · δ+t ∆i−1−l
h ϕn +

i−1∑
l= i+1

2

∆l
hAtϕ

n · δ+t ∇−
h∆

i−1−l
h ϕn


+

m∑
i=1 2|i

gi(ϵ)
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l= i

2

(
∇−

h∆
l
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n · δ+t ∆i−1−l
h ϕn −∆l
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)
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nMAtµ
n = g(ϕn,⋆)Atµ

n,
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Algorithm 11 (EQ-LEDRP-II for driven gradient flows). Given the discrete energy density in
(2.57), and intermediate variables (2.58) - (2.59), we discretize driven gradient flow (3.5) as follows

δ+t ϕ
n = −MAtµ

n + g(ϕn,⋆),

Atµ
n = 2

m∑
i=0

(−1)igi(ϵ) ·At∆
i
hϕ

n + 2

m+1
2∑

p=1

∆p−1
h Atkp −

m−1
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q=1

∇+
h∆
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 ,
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p=1

∂qn,⋆

∂∆p−1
h ϕn,⋆

· δ+t ∆
p−1
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∂∇−
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q−1
h ϕn.

(6.19)

Theorem 6.8. Model (6.19) satisfies the following discrete energy density transport equation

δ+t E
n + 2∇−
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1

+
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n,

with discrete energy density En defined in (2.57).

Algorithm 12 (EQ-LEDRP-III for driven gradient flows). Given the discrete energy density in
(2.61), and intermediate variables (2.62) - (2.63), we discretize system (3.5) as follows
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∆
p−1

h AtA
m−2p+2
x Am−2p+2

y knp −

m−1
2∑

q=1
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∂∆
p−1

h Am−2p+2
x Am−2p+2

y ϕn,⋆
· δ+t ∆
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(6.20)
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Theorem 6.9. Model (6.20) satisfies the following discrete energy density transport equation
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with En the discrete energy density defined by (2.61).335

Appendix D: Proof of some theorems in §4

a. Proof for Theorem 4.1: Multiplying µ and ut on both sides of the first and the second
equation in (4.9), we have
ut · µ = −µT ·M(Θ) · µ+ g(u) · µ,

µ · ut =

(
−ϵ2∇ ·

[
ξs,n(Θ)2∇ϕ

]
+ ϵ2∂x

[
ξs,n(Θ)ξ′s,n(Θ)∂yϕ

]
− ϵ2∂y

[
ξs,n(Θ)ξ′s,n(Θ)∂xϕ

]
+ f ′(ϕ)

u
τv

−∇ · (D · ∇u)

)
· ut.

(6.21)
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Using derivative rule, we arrive at[
ϵ2ξs,n(Θ)2∇ϕ+

(
−ϵ2ξs,n(Θ)ξ′s,n(Θ)∂yϕ

ϵ2ξs,n(Θ)ξ′s,n(Θ)∂xϕ

)]
· ∇ϕt + f ′(ϕ)ϕt +

u

τv
ut

+∇uT ·D · ∇ut +∇ ·

[
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(
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−ϵ2ξs,n(Θ)ξ′s,n(Θ)∂xϕ

)
· ϕt −D · ∇u · ut

]
+ µT ·M(Θ) · µ = g(u) · µ,

(6.22)

from the definition of the local free energy, (4.13), we have

dE

dt
=

[
ϵ2ξs,n(Θ)2∇ϕ+

(
−ϵ2ξs,n(Θ)ξ′s,n(Θ)∂yϕ
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)]
· ∇ϕt + f ′(ϕ)ϕt +

u

τv
ut +∇uT ·D · ∇ut,

(6.23)

Combing the results, we complete the proof.
b. Proof of Theorem 4.2: The proof is similar to that of Theorem 4.1 and is thus omitted.
c. Proof of Theorem 4.3: Multiplying Atµ

n and δ+t u
n on both sides of the second and third

line in (4.28), respectively, we haveδ+t u
n ·Atµ

n = −(Atµ
n)T ·M

(
Θ

n,⋆
)
·Atµ

n + g(un,⋆) ·Atµ
n,

Atµ
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n · δ+t un.

(6.24)

Inserting the first and second equation which are in the first line of (4.28) into (6.24), we obtain( 1
2AtV

n · Pn,⋆

Atu
n

τv

)
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(6.25)

With the aid of Lemma 2.3, we have
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n +

1

2
AtV

n · Pn,⋆ · δ+t ϕn

+
Atu

n

τv
δ+t u

n + (δ+t ∇+
h u

n)T ·D · ∇+
hAtu

n −∇+
h ·
(
AtH

n · δ+t un
)

+ (Atµ
n)

T ·M(Θ
n,⋆

) ·Atµ
n = g (un,⋆) ·Atµ

n.

(6.26)

Inserting the last two equations of (4.28) into the time derivative of local energy (4.27), we arrive
at

δ+t E
n = ϵ2AtU

n ·Rn,⋆ · δ+t ∇+
h ϕ

n +
1

2
AtV

n · Pn,⋆ · δ+t ϕn

+
Atu

n

τv
δ+t u

n + (δ+t ∇+
h u

n)T ·D · ∇+
hAtu

n.
(6.27)
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Combining all the results, we complete the proof.
d. Proof of Theorem 4.4: We multiply Atµ

n and δ+t u
n on both sides of the second and third

equation in (4.34), respectively, we haveδ+t u
n ·Atµ

n = −(Atµ
n)T ·M

(
Θ

n,⋆
)
·Atµ

n + g(un,⋆) ·Atµ
n,

Atµ
n · δ+t un = Atk

n · δ+t un −∇+
h ·AtH

n · δ+t un,

(6.28)

Inserting the first and second equation which are in the first line of (4.34) into (6.28), we have( 1
2AtV

n · Pn,⋆

Atu
n

τv

)
· δ+t un −∇+

h ·

(
ϵ2AtU

n ·Rn,⋆

D · ∇−
hAtu

n

)
· δ+t un

= −(Atµ
n)T ·M

(
Θ

n,⋆
)
·Atµ

n + g(un,⋆) ·Atµ
n.

(6.29)

With the aid of Lemma 2.4, we have
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(6.30)

Inserting the last two equations of (4.34) into the time derivative of energy density (4.33), we arrive
at

δ+t E
n = ϵ2AtU
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h ϕ

n +
1

2
AtV

n · Pn,⋆ · δ+t ϕn +
Atu

n

τv
δ+t u

n + (δ+t ∇−
h u

n)T ·D · ∇−
hAtu

n.

(6.31)

Inserting (6.31) into (6.30), we complete the proof.340

e. Proof of Theorem 4.5: Multiplying AtAxAyµ
n, δ+t AxAyu

n on both sides of the second and
third equation in(4.39), we obtainδ+t AxAyu

n ·AtAxAyµ
n = − (AtAxAyµ
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(6.32)

Combing the two equations, we have( 1
2AtAxAyV

n ·AxAyP
n,⋆

AtAxAyu
n
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)
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(6.33)

with the aid of Lemma 4.1, the term −∇h ·AtH
n · δ+t AxAyu

n can be transformed into
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Then, we have
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1
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(6.35)

Inserting the last two equations of (4.39) into (4.38) arrives at

δ+t E
n = ϵ2AtAxAyU

n ·AxAyR
n,⋆ · δ+t ∇hϕ

n +
1

2
AtAxAyV

n ·AxAyP
n,⋆ · δ+t AxAyϕ

n

+
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n
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n.
(6.36)

Inserting (6.36) into (6.35), we complete the proof.
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(a) t = 0.01 (b) t = 0.03 (c) t = 0.08 (d) t = 0.1

(e) t = 0.01 (f) t = 0.03 (g) t = 0.08 (h) t = 0.1

(i) t = 0.01 (j) t = 0.03 (k) t = 0.08 (l) t = 0.1

(m) t = 0.01 (n) t = 0.03 (o) t = 0.08 (p) t = 0.1

(q) t = 0.01 (r) t = 0.03 (s) t = 0.08 (t) t = 0.1

Figure 1: Row 1: Simulation of Cu (100) for Graphene Algorithm 1. Row 2: Cu (100) (2). Row 3: Cu (221). Row
4: Cu (110). Row 5: Cu (310).
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(a) t = 0.01 (b) t = 0.03 (c) t = 0.08 (d) t = 0.1

(e) t = 0.01 (f) t = 0.03 (g) t = 0.08 (h) t = 0.1

(i) t = 0.01 (j) t = 0.03 (k) t = 0.08 (l) t = 0.1

(m) t = 0.01 (n) t = 0.03 (o) t = 0.08 (p) t = 0.1

(q) t = 0.01 (r) t = 0.03 (s) t = 0.08 (t) t = 0.1

Figure 2: Row 1: Simulation of Cu (100) for Graphene Algorithm 2. Row 2: Cu (100) (2). Row 3: Cu (221). Row
4: Cu (110). Row 5: Cu (310).
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(a) Cu(100) (b) Cu(100)(2) (c) Cu(221)

(d) Cu(110) (e) Cu(310) (f) Cu(100)

(g) Cu(100)(2) (h) Cu(221) (i) Cu(110)

(j) Cu(310)

Figure 3: (a)-(e):Local Structures for Graphene Algorithm 1, (f)-(j):Local Structures for Graphene Algorithm 2
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