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Abstract—Analog crossbar arrays have recently attracted
significant attention due to their usefulness for deep neural
net (DNN) computations with ultra-low power consumption.
However, recent studies have shown that DNNs implemented with
such crossbar arrays suffer from as high as 30% degradation
in performance due to the effects of manufacturing process
variability effects resulting in degradation of their functional
safety. One way to test these DNNs is to apply an exhaustive
set of test images to each device to ascertain its performance.
This is expensive and time-consuming. We propose an alternative
test scheme in which a small subset of test images is applied
to each DNN and the classification accuracy of the DNN is
predicted directly from observation of the final layer outputs
of the network. This saves test cost while allowing binning of
DNNs for performance. Experimental results for a variety of test
cases are presented and show test efficiency improvements of
10.3X over testing with the exhaustive test image set.

I. INTRODUCTION

Analog deep neural networks (DNNs) offer orders of mag-
nitude lower power consumption than corresponding digital ar-
chitectures and are attractive for battery-powered applications.
However, RRAM crossbar-based neural networks [1] suffer
from parametric manufacturing process variability effects re-
sulting in as much as 30% degradation in performance (e.g.,
classification accuracy) [2], [3]. Traditionally, determining
the classification accuracy of DNNs requires the (expensive)
application of an exhaustive set of test images to each device
for pass-fail classification. Consequently, a post-manufacture
test methodology is needed that can efficiently test DNN
devices in the presence of manufacturing process variability
effects, with minimum test effort and high test coverage. In this
context, we propose a machine-learning assisted alternative
test strategy for analog crossbar based DNNs in which a small
subset of test images is applied to the DNN-under-test and its
classification accuracy is predicted from its response to the
applied test images using a trained regressor.

Prior Work: Of key relevance to the work reported in this
research is prior work on alternative testing of analog mixed-
signal (AMS) circuits and systems [4], [S]. In this approach,
transient test stimulus is optimized in such a way that the
response of the device-under-test (DUT) to the applied stim-
ulus bears strong correlation to its performance specifications
under expected process variability statistics. Consequently,
the DUT specifications can be predicted directly from the
observed DUT test response using trained regression mod-
els. While we adopt a test strategy for DNNs inspired by
alternative test of AMS circuits, there are key differences.

Crossbar arrays contain large numbers of analog devices as
opposed to the comparatively fewer number of transistors
in AMS circuits resulting in relatively very large problem
dimensionality. Second, DNN operation is highly non-linear.
Small changes in system parameters or inputs can cause a
DNN to misclassify images. Use of subsets of test images
to test deep learning hardware accelerators [6] is studied for
hard faults in systolic array datapaths and control logic. It is
seen that DNN accuracy can drop to 8% from 98% in the
presence of such faults and that 93% fault coverage can be
obtained with just 0.1% of the test dataset. However, this
work is not easily scalable to analog crossbar arrays under
“continuous” multi-parameter variations across large numbers
of memristor devices. In [7], a misclassification driven training
algorithm is used to efficiently identify functionally critical
faults in memristive crossbar arrays. The work addresses stuck-
on and stuck-off failures in RRAM devices and does not
investigate parametric variability effects. Of interest also, is
the work of [8] where stochastic noise is added to DNN
training parameters to enhance the robustness of the network
to crossbar device parameter variations. The work reported
in this research is orthogonal to and can be used over and
above such training techniques to reduce analog DNN test
complexity under manufacturing variability effects.

Key contributions of this research: A novel methodology
for alternative testing of RRAM analog crossbar arrays using
a compact set of test images for DNNs is developed. The
accuracy of the DNN is predicted directly from the ensemble
of DNN test responses to the set of test images. Depending
on variability statistics and the test acceptance threshold, 3X -
10X speedup in test effort is achieved as compared to testing
each device with an exhaustive set of test images. The method
allows performance binning of devices with little extra test
effort. Further, the proposed test methodology is adaptive and
automatically recalibrates itself to respond to manufacturing
process statistics, process shifts and hard defects. Hard defects
are treated as extreme cases of parametric deviations.

II. PRELIMINARIES

The proposed alternative test approach is illustrated in Fig.
la. In this paper, we use the terms RRAM-based DNNs and
DNN Under Test (short for “device”), interchangeably. This
test set is ideally selected in such a way that the statistical
correlation between the ensemble of DUT responses to the
applied test image subset and the classification accuracy of
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Fig. 1: Alternative testing of RRAM-based DNNs.

the DUT is maximized. In the presence of such correlation in
Fig. 1a, it is possible to directly predict DNN classification
accuracy using a trained regressor that maps the observed
ensemble of test responses to the DNN accuracy.

In general, the accuracy prediction has error range of +A as
shown in Fig. 1b with error statistics modeled by a Gaussian
with estimated mean and variance o, A = ko, for appropriate
value of k. The accuracy threshold a, of Fig. 1b is the mini-
mum value of DNN accuracy acceptable for a “good” device.
However, for binning purposes, we desire to predict DNN
accuracy upto a cutoff accuracy below the accuracy threshold.
DNN devices with accuracy below the cutoff accuracy are
rejected outright. The range of DNN accuracy from cutoff to
100% is called the performance range of interest (PRI). Based
on this and on the predicted accuracy of the DNN as well as
knowledge of A, any device with predicted accuracy less than
atp, — A is classified as fail and any device with predicted
accuracy greater than a;;, + A is classified as pass. Devices
with predicted accuracy in-between the pass and fail categories
above are classified as fuzzy.

III. OVERVIEW

The proposed alternative testing methodology and tools for
analog RRAM crossbar arrays for DNNs is shown in Fig. 2a.
We first select a subset of images from the entire test dataset
with the maximum diversity of responses, implicitly increases
the correlation of Fig. 1, to a set of DNN devices sampled
from the space of device manufacturing process variations. The
ensemble of responses R of the crossbar DNN to this subset
of images is passed to an outlier detector (block 3 of Fig. 2)
that is used to determine if the ensemble statistics of the DUT
response resembles the statistics of its own training set of DNN
devices. Initially, the outlier detector is trained to recognize
the ensemble of output response statistics of a set of “training
devices” to the applied image set. Any device with ensemble
response not conforming to such statistics is classified as an
“outlier” and subject to standard testing procedures (block
5 of Fig. 2). All other devices are passed to a performance
classifier (block 4 of Fig. 2). This uses a trained regressor to
predict the performance of the DNN from R. The training set
of devices for the regressor is always selected to be identical
to the training set of devices for the outlier detector. In this
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Fig. 2: Alternative testing methodology and tools.

way, we ensure that the performance of any DNN device that
is not an outlier can be accurately predicted by the regressor.
The output of the regressor module consists of the mean and
variance of the predicted performance of the DUT and is used
to modulate A in Fig. 1b. This is used to classify each device
as pass, fail or fuzzy as described earlier.

All fuzzy devices are kicked back to standard testing pro-
cedures to reduce the uncertainty of performance prediction
close to the performance acceptance threshold for further
testing. Finally, the standard testing and device classification
module of Fig. 2 uses the entire image test dataset for direct
determination of DNN device performance. Devices outside
the PRI are rejected. The remaining devices within the PRI,
called inlier devices, are added to the current training set of
the outlier detector and performance predictor to retrain both
with the expanded set of training devices in batches of 100-
250 devices for improving corresponding test effort over time.
The proposed DNN alternative test approach is designed to
automatically detect, learn and compensate for manufacturing
process shifts as and when they occur over time. Fig. 2b shows
test tools that have been developed to enable the proposed
alternative test methodology.

IV. PROPOSED ALTERNATIVE TESTING
A. RRAM variability modeling

Vector Matrix Multiplications (VMM) in DNNs can be
mapped to RRAM crossbars, where the crossbar receives
inputs from Digital to Analog Converters (DACs) and the
outputs of the crossbar are converted to the digital domain
using Analog to Digital Converters (ADCs). Despite their
energy efficiency, RRAM crossbars suffer from a range of
nonidealities which degrade inference accuracy of RRAM-
based DNN accelerators [2], [3]. The goal of the variability
modeling framework is to quantify the impact of nonidealities
in DACs, process variations in a crossbar and operating
temperature by transforming an ideal weight matrix W; into
a nonideal matrix W,,. To design the crossbar, we use
HfO, based RRAM devices [9], which have a Low Resis-
tance State (Rprs = 50k()) and a High Resistance State
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(Rgrs = 1MQ). The effect of process variations on the
conductance of RRAM devices can be modeled by Gaussian
conductance distributions. Nonidealities of DACs are modeled
by perturbing the output voltages from their ideal values. The
range of operating temperature is between 273K to 373K. The
impact of derived nonideal voltages and process/temperature
variations on the dot product computation of the crossbar
is evaluated simultaneously. Finally, nonlinear quantization
effects are considered in ADC models.

Now, variability modeling is performed in three main steps
as follows to obtain the process-perturbed nonideal weights.
Step 1: We introduce systematic weight perturbation coeffi-
cient pf}’s and random weight perturbation coefficient pfj‘.‘”d
to model the effects of systematic and random RRAM con-
ductance variations on the ideal weight values used in vector
matrix multiplications. A distribution of such coefficient values
is generated from Monte-Carlo SPICE simulation of an RRAM
cell under assumed process statistics.

Step 2: We derive weight perturbation coefficient p;; as a
weighted sum of the systematic and random weight perturba-
tion coefficients as:

pij = api}” + (1= a)pij™ (M)

where « is a process-calibrated parameter, representing the
percentage contribution of systematic variability to overall
variability effects.

Step 3: An ensemble of weight matrices corresponding to
process-perturbed RRAM devices is generated by transforming
the ideal weight matrix W, to W,;. Each element of the
ideal weight matrix W; is scaled by the corresponding weight
perturbation coefficient p;; as,

W11 - P11 W1IN - PIN

Whi = =W;oP

WN1 " PN1 WNN "PNN

where o denotes the element-wise multiplication and P rep-
resents the matrix of weight perturbation coefficients. Finally,
process-perturbed RRAM-based DNN is generated by incor-
porating the nonideal weights back to the model.

B. Image Down-selection

The objective of image down-selection is to identify a
compact subset of test images of reduced size as opposed to
the entire test dataset that can be used to most efficiently pre-
dict the classification accuracy of a process-perturbed DNN.
A classification matrix, which represents the distribution of
classification outcomes for DNNs under the RRAM variability
modeling, is used for image down-selection. To obtain the
classification matrix, a benchmarking subset of RRAM-based
models is exhaustively tested across the entire test dataset. For
each model, the results of image classification across the test
dataset are constructed as a row vector in binary, with zero
when an applied image is misclassified and one for correctly
classified. For M images in the test dataset and N benchmark-
ing devices, an N x M dimensional classification matrix is
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Fig. 3: Example of performance prediction and classification.

obtained. The column vector of the matrix indicates a sequence
of classification outcomes across every device for a single
image. This is defined as an image vector. Selection of the
compact test subset is done using agglomerative hierarchical
clustering [10] of these image vectors. For a selected number
of clusters, an image vector per cluster is selected to be in the
compact image test subset.

C. Statistical modeling and Outlier Detection

A vector of extracted features from the final layer of the
DNN under application of the compact test image subset is
defined as the signature vector of a DUT. The goal of our
study is to predict DNN accuracy from its signature vector.
To do so, we analyze the statistical distribution of high-
dimensional signature vectors in advance. Statistical modeling
for outlier detection is performed to analyze the signature
vector space. An Elliptic Envelope (EE) outlier detector [11]
is fitted to the high dimensional signature vectors in order to
detect anomalous DUTs. The Elliptic Envelope fits an ellipse
around the data that contains the majority of given signatures.
Signature vectors outside the ellipse are considered outliers
and corresponding DUTs are subjected to a standard testing.

D. Performance prediction and classification

A classification module to distinguish good/bad RRAM-
based DNNs utilizes the prediction of DNN classification
accuracy from the signature vector using a trained regressor.
Performance Prediction: A multivariate regression spline
based regressor (MARS) [12], is used to learn the relationship
between the DNN signature vector and DNN classification
accuracy. Fig. 3 shows a performance prediction scatterplot,
predicted values @ against actual accuracy a with correlation
coefficient = 0.95, using RRAM-based CNNs on the MNIST
dataset with random process variations. Of the 1000 bench-
marking subset of process-perturbed ConvNet models, 80% of
devices are used for regressor training and 20% of devices are
used for regressor validation. The size of compact test image
subset is 300 out of 10K test images.
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Performance Classification: The mean and variance of the re-
gressor prediction error across the range of predicted accuracy
values, are computed as,

Ej = {ele = a; — a;, a; € [l, hy]} ~ N(pj,04)

where E; is j-th set of Gaussian prediction error and [I;, h;]
represents the range of the j-th sub-interval over which the
error statistics is computed across the PRI.

From the prediction result shown in Fig. 3a, a prediction
error model shown in Fig. 3b is obtained, where the mean
of the predicted accuracy (black solid) follows the ideal
regression (red). The two dotted lines represent the 20 decision
boundaries for DNN accuracy prediction. To classify a device
as ’good”, its predicted value, taking into account the predic-
tion uncertainty, must lie above the required accuracy threshold
asp, by more than a specific margin. Gaussian confidence
intervals drawn from Student’s ¢ test [13] are used to make
this decision based on the mean u, and standard deviation
o, of the distribution around the predicted accuracy. If this
distribution indicates that model accuracy is greater than a.p
by an acceptable margin, i.e. a;p, < p, — ko, where k is a
confidence interval parameter of classification, the model is
classified as “good”. Similarly if the accuracy is less than ayy,
by an acceptable confidence margin, i.e. ap > p + ko, the
device is classified as “bad”. If there is insufficient confidence,
ie. py —koy < ayp < phge + ko, the model requires further
testing. For instance in Fig. 3b, the accuracy threshold of
testing is 86%. A device is passed if its accuracy is above the
threshold and failed below it. Based on the derived statistical
model for predicted accuracy, any DUT with a prediction
below 83% and above 89% can be confidently classified as
bad and good devices, respectively. The range (83%, 89%) is
defined as the uncertain range. Devices within this range (i.e.,
Jfuzzy devices) must be subjected to standard testing.

E. Standard testing and Machine Learning kernel retraining

In Block 5 of Fig. 2, outlier and fuzzy devices are tested
using standard testing procedures to get the precise accuracy.
The results of standard testing of remaining outlier and fuzzy
devices combined with prior training data are used to retrain
the ML kernels, outlier detector and regressor.

V. EXPERIMENTAL METHODOLOGY

In this section, we describe the experimental methodology
and setup used to evaluate the proposed alternative testing.
Two metrics are used for evaluation: (1) test speedup and (2)
test quality. Test speedup is defined as a ratio of Ngp/Nar
where Ngr and N4 represent the total number of applied
images to test a device under Standard Testing and Alternate
Testing, respectively. Therefore, the test speedup demonstrates
a rate of test efficiency of proposed testing over standard
testing in the aspect of a computational cost. Test quality is
defined as the percentage of false positives (bad devices that
passed the test) among all classified devices.

The proposed testing framework is evaluated on benchmark
DNN applications with a variety of datasets. Table I provides

TABLE I: Benchmark DNN applications

Dataset Network #Conv #FC  Systematic
MobileNet [15] 27 1 0 %
IFAR-10 [14
¢ 0 [14] VGGI6 [16] 13 1 50 %
ResNet18 [17] 17 1 50 %
CIFAR-100 [14
[14] VGG16 [16] 13 3 50 %

details of the models, dataset, and corresponding variability
modeling. The term systematic in Table I represents the per-
centage contribution of systematic variabilty within the total
variability effects and is given by the value of a in Equation
1 (see Section IV-A). The DNN models used are written
in PyTorch and trained assuming ideal weights. Variability
modeling framework is performed in HSPICE using PTM
model [18] at 65 nm CMOS technology transforming the
ideal weights of each DNN layer to a corresponding nonideal
weight matrix. We generate equivalent process-perturbed DNN
by incorporating these nonideal weights back to the model
to evaluate our testing scheme. For all benchmark DNN
applications, 16 bit precision is used for computations.

VI. RESULTS

Among four benchmark DNN applications, we present the
test result of VGG16 on CIFARI1O0 for brievty in this paper.

A. Compact Test Image Subset Analysis

Fig. 4 shows the standard deviation (SD) of prediction error
and test speedup when varying the size of compact image
subset. A performance of regressor is evaluated by the error SD
and an overall test efficiency of proposed scheme is measured
by the test speedup. The size of the compact image subset is
increased from 10 to 1000 under the proposed testing using
VGG16 on CIFAR10, which is 0.1% to 10% of entire test
dataset. We represent the size of applied compact image subset
as a normalized percentage over the size of entire test dataset.
The accuracy threshold is 85% and the PRI is [75%, 100%].

As the size of compact test subset increases to 3%, the
performance of regressor improves (i.e., SD of prediction error
decreases) as shown in Fig. 4a. Once the size of compact
subset surpasses 3% of the test set, the improvement of
regressor saturates and slowly increases. This is due to the
MARS regressor used for performance prediction utilizing a
finite number of basis functions to fit the signature to predict
model accuracy. Larger compact image subsets generate longer
signature vector to reach the limit of improvement of this
formulation. Test speedup is slowly reduced after its rapid
growth to a maximum at 3% image subset in Fig. 4b because
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Fig. 4: Sensitivity of compact test image subset.
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the increment of test cost dominates the marginal improvement
of regressor performance as we increase the test subset size.

B. ML Kernel Retraining Analysis

The testing performance with ML kernel retraining is evalu-
ated using VGG16 on CIFAR-10. In this experiment, a single
test module is initially trained on 500 benchmarking devices
with a compact image subset size of 3% (i.e., 300 images
out of 10K test images). In total, 6000 DUTs are tested with
the retraining process under a batch size of 100, which after
every 100 DUTs, the ML kernels are retrained for the next test
run (see Section IV-D). The accuracy threshold is 84% and the
PRI is assigned as [75%, 100%]. Permanent faults are injected
concurrently with process variations to test the scheme in the
presence of defects. Stuck-at-faults are injected in 10% of the
initial benchmarking devices and each batch of DUTSs. Faults
are injected into 10% of the memristors in the RRAM crossbar.
Stuck-at-zero (SAOQ) faults, the RRAM device is always at its
low resistance state representing a maximum weight value, and
stuck-at-one (SA1) faults, the memristor is stuck at its high
resistance state representing a minimum weight are used for
a fault injection.

Fig. 5 shows test speedup and test quality for devices with
and without injection of permanent faults. For devices without
stuck-at-faults, the test speedup (square marker) gradually
improves to achieve 4.2x computational efficiency compared
to the standard testing. The test quality (dotted) is fine-tuned
within 3 iterations and is maintained below 1% throughout the
testing process. In the presence of faults, test speedup (triangle
marker) shows a comparable trend of improvement to a test
case without fault injection, achieving 3.9x test efficiency at
the end of the retraining, which is marginally degraded. This is
because defective devices, 10% of total DUTsS, are detected by
the outlier detector and have to be tested by expensive standard
testing, which degrades the test speedup. The test quality for
faulty devices (dash) shows significant improvement during
retraining. At the initial test runs, the test result with the
presence of faults has high false positive rate (i.e., initial test
quality = 4.6%) because ML kernels of test modules lack
statistics of faulty devices. Our retraining process expands the
operating space of outlier detector and regressor using the data
of fault injected devices within PRI for every iteration. After
the 4th iteration, the test modules start to learn the statistics of
moderate faulty devices (i.e., outliers within PRI), as shown
by a decline in test quality in Fig. 5. The testing modules for

faulty devices are simultaneously trained on nonidealities and
permanent faults.

VII. CONCLUSION

This paper presents an alternative testing framework to
accelerate evaluation of DNN models realized on resistive
crossbar arrays. Our proposed alternative testing significantly
reduces the computational cost of DNN testing. The viability
of this work is verified in the presence of permanent faults
under recursive retraining and over multiple test cases.
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