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Abstract

By integrating domain knowledge with labeled
samples, informed machine learning has been
emerging to improve the learning performance
for a wide range of applications. Nonetheless, rig-
orous understanding of the role of injected domain
knowledge has been under-explored. In this pa-
per, we consider an informed deep neural network
(DNN) with over-parameterization and domain
knowledge integrated into its training objective
function, and study how and why domain knowl-
edge benefits the performance. Concretely, we
quantitatively demonstrate the two benefits of do-
main knowledge in informed learning — regu-
larizing the label-based supervision and supple-
menting the labeled samples — and reveal the
trade-off between label and knowledge imperfect-
ness in the bound of the population risk. Based on
the theoretical analysis, we propose a generalized
informed training objective to better exploit the
benefits of knowledge and balance the label and
knowledge imperfectness, which is validated by
the population risk bound. Our analysis on sam-
pling complexity sheds lights on how to choose
the hyper-parameters for informed learning, and
further justifies the advantages of knowledge in-
formed learning.

1. Introduction

The remarkable success of deep neural networks (DNNs),
or more generally machine learning, largely relies on the
proliferation of data samples with ground-truth labels for
supervised learning. Nonetheless, labeled data of high qual-
ity can often be very limited and/or extremely expensive
to collect in real application domains, including medical
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sciences, security-related fields, and specialized engineering
areas (von Rueden et al., 2021).

In parallel with the data-driven learning paradigm, domain
knowledge (which we simply refer to as knowledge) has
been utilized to assist with decision making and system de-
signs, with a long history of success. As its name would
suggest, domain knowledge is naturally domain-specific and
can come from various sources in multiple forms, such as
subjective experiences (e.g., medical prognosis), external
sources, and scientific laws. For example, partial differen-
tial equations are used to govern many flow dynamics in
physics, and the Shannon channel capacity is the fundamen-
tal principle to guide the design of modern communications
systems (Goldsmith, 2005; Willard et al., 2020).

Importantly, domain knowledge has already been, some-
times implicitly, integrated into every stage of the machine
learning pipeline, including training data augmentation, hy-
pothesis set selection, model training and hypothesis final-
ization (more details in Appendix E). For example, differen-
tial equations and logic rules from physical sciences and/or
common knowledge provide additional constraints or new
functional regularization terms for model training (Battaglia
et al., 2016; Borghesi et al., 2020; Silvestri et al., 2021;
Muralidhar et al., 2018; Xu et al., 2018).

Despite the numerous successful examples (von Rueden
et al., 2021; Deng et al., 2020), there still lacks a rigorous
understanding of the role of domain knowledge in informed
learning. In this paper, we focus on informed DNNs —
DNNs with domain knowledge explicitly integrated into the
training risk/loss function. Concretely, we consider an over-
parameterized DNN with a sufficiently large network width
(Neyshabur et al., 2018), and study how domain knowl-
edge affects the DNN from three complementary aspects:
convergence, generalization, and sampling complexity.

Convergence (Theorem 4.1): We show the convergence
of training an informed risk function under milder techni-
cal assumptions than the prior works (Section 4.1). More
specifically, we show that for inputs within a smooth set
(Definition 1), the network outputs converge to the optimal
solution jointly determined by all the samples in the set.

Generalization (Theorems 4.2 and 5.1): We show in Theo-
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rem 4.2 that the population risk relies on the knowledge im-
perfectness (Definition 3) as well as knowledge-regularized
label imperfectness (Definition 4). Specifically, knowledge
has two benefits: regularization for noisy labels and sup-
plementing labels. We propose a generalized informed risk
function which disentangles the two effects by introducing
another hyper-weight 3, followed by the population risk
bounds in Theorem 5.1 and Corollary 5.2.

Sampling Complexity (Corollay 5.3): By establishing a
quantitative equivalence between domain knowledge and
labeled samples, we show that domain knowledge (with a
reasonable quality) can effectively reduce the number of
labeled samples while achieving the same generalization
performance, compared to the no-knowledge case.

2. Related Work

Informed Machine Learning. The broad paradigm of
informed machine learning (von Rueden et al., 2021) in-
cludes several existing learning frameworks, such as learn-
ing using privileged information (LUPI) (Vapnik & Vashist,
2009) where side knowledge is available for labeled samples
(Vapnik & Vashist, 2009; Motiian et al., 2016; Sharmanska
etal., 2013). Likewise, knowledge distillation (Rahbar et al.,
2020; Hinton et al., 2014; Gou et al., 2021; Cho & Hariha-
ran, 2019) transfers prior knowledge from teacher networks
to a student network. Some recent studies have also fo-
cused on understanding knowledge distillation (Allen-Zhu
& Li, 2020). In (Phuong & Lampert, 2019), a general-
ization bound is derived for knowledge distillation based
on linear classifiers and deep linear classifiers, providing
insights towards the mechanism of knowledge distillation.
The subsequent analysis (Ji & Zhu, 2020; Rahbar et al.,
2020) extends to neural networks, showing that the student
network may generalize better by exploiting soft labels from
the teacher model. Teacher imperfectness is investigated
in (Dao et al., 2021), which bounds the learning error and
proposes enhanced methods to address imperfect teachers.

Physics-informed neural networks (PINNs) have been re-
cently proposed to solve partial differential equations
(PDEs) (Yin et al., 2021; Institute, 2020; Raissi et al., 2017,
Baker et al., 2019; Deng et al., 2020; Willard et al., 2020).
Besides empirical studies, (Shin et al., 2020) bounds the
expected PINN loss, showing that the minimizer of the reg-
ularized loss converges to the PDE solution.

More broadly, informed machine learning also includes
weakly-supervised learning (Zhou, 2018; Robinson et al.,
2020) and few-shot learning (Wang et al., 2020), where
knowledge provides weak supervision. Domain-specific
constraints (Muralidhar et al., 2018) and semantic informa-
tion (Xu et al., 2018; Diligenti et al., 2017a) can also be
viewed as knowledge injected into training. Our work com-

plements these empirical studies and provides a rigorous
understanding of knowledge in a unified framework.

Over-parameterized neural networks. Several recent stud-
ies (Bahri et al., 2021; Song et al., 2021; Gao et al., 2021;
Khanduri et al., 2021; Jacot et al., 2018; Lee et al., 2019;
Yang, 2019; Allen-Zhu et al., 2019b; Arora et al., 2019b;a;
Cao & Gu, 2019; Allen-Zhu et al., 2019a; Neyshabur et al.,
2018) show that over-parameterized neural networks have
good convergence and generalization performance. In ad-
dition to assuming data separability in a strong sense, an-
other crucial assumption often made in the existing studies
is that the network widths increase polynomially with the
total number of training samples. In informed DNNs, how-
ever, we can have many (unlabeled) training samples fed
into the knowledge risk, which hence may not satisfy these
assumptions. Thus, we analyze knowledge-informed over-
parameterized neural networks under relaxed assumptions
(Section 4).

Regularization. In the broad context of regularization, (Wei
et al., 2019) shows that over-parameterized neural networks
with [o-regularization can achieve a larger margin and thus
better generalization, (Blanc et al., 2020) proves that SGD
with label noise is equivalent to an implicit regularization
term, while (Wei et al., 2020) shows that the drop-out opera-
tion for neural networks has both explicit and implicit regu-
larization effects. These regularizers are usually imposed on
the network weights, whereas the knowledge-based regular-
izer in informed machine learning also incorporates inputs
and directly regularizes the network output.

3. Informed Neural Network

Notations: We use the expression [L] to denote the set
{1,2,---, L} for a positive integer L. Denote the indicator
function as 1(x) = 1if > 0, and 1(x) = 0 otherwise. E
is the expectation operator and P is a probability measure.
R is d-dimensional real number space. A (x,c?) is the
Gaussian distribution with mean x and variance o2. Denote
|A| as the size of a set A. For a vector z, ||z|| is lo-norm and
[x]; is the jth entry. For a matrix X, || X ||2 represents the
spectral norm, and || X || is the Frobenius norm. B(z,7) =
{y | ||z — y|| < 7} is the neighborhood domain.

3.1. Preliminaries of Neural Networks

Consider a supervised learning task to learn a relationship
mapping the input z € X C R toits output y € Y C
R?. The pair of input and output (x,y) follows a joint
distribution Pxy. More concretely, we consider a fully-
connected DNN with an input layer, L > 1 hidden layers,
and an output layer. Each hidden layer has m neurons,
followed by ReLu activation denoted as o (+). Denote Wy, €
RP*™ as the weights for the input layer, W, € R™*™ as
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the weights for the [-th layer for [ € [L], and V' € R¥*™ ag
the weights for the output layer. We denote the output of the
I-th layer as h; = o (W;h;_1), for I € [L], where hy is the
input 2. The output of the neural network can be expressed
as hw = Vhp, where W = {Wy, Wy, --- ,Wp}. Thus,
the DNN can be expressed as

hw (£) = Vo (Wro(Wp_1---0 (Wio(Wha)))). (1)

Given a DNN hyy, the risk for a labeled sample (x,y) is
denoted as r (hw (), y). The goal of the learning task is
to learn a DNN that minimizes the population risk:

R(h) =E[r(h(z),y)]- 2

3.2. Integration of Knowledge

We consider a commonly-used informed learning method,
i.e., integrating knowledge into the neural network during
the training stage (von Rueden et al., 2021). During training,
a labeled dataset S, = {(x1,21), -, (®n,, 2n.)} Withn,
samples drawn from Py is provided. We assume x;,7 €
[n] are drawn from the distribution Px, but the training label
z; € Y may not be the same as the true label y; for the input
x;, because the training label may be of low quality (e.g.,
corrupted, noisy, and/or quantized)(Cannings et al., 2020;
Zhou, 2018). Denote hw ; = hw (z;) as the output of the
neural network with respect to the input z;. Based on the
labeled dataset, the empirical label-based risk can be written

as Rs. (W) = i dos. T (hw iy 2i) -

The domain knowledge includes a knowledge-based model
g(x) regarding the input 2 and a knowledge-based risk
function rk (hw (), g(x)) that relates the DNN’s output
hw () to g(x). More concrete examples of risk functions
for domain knowledge can be found in Appendix F.

For the ease of analysis, we assume that both the risk func-
tion r and the knowledge-based risk function rk are Lips-
chitz continuous, upper bounded, and strongly convex with
respect to the network output, and the eigenvalues of their
Hessian matrix regarding the network output lie in [p, 1]
for p € (0, 1]. Note that the incorporated domain knowl-
edge may not necessarily be perfect since it can be obtained
based on subjective experiences (e.g., medical prognosis)
(Muralidhar et al., 2018; Bica et al., 2020), pre-existing ma-
chine learning models (Hinton et al., 2014) or theoretical
models which itself can deviate from the real physical world
(Institute, 2020).

For training, in addition to the labeled dataset S, a dataset
Sy with n, unlabeled samples is generated for knowledge-
based supervision. Note that .S, can also include inputs in
S, and n, can be sufficiently large since unlabeled samples
are typically easier to obtain than labeled ones. The training
risk of the informed neural network, which we simply refer

to as informed risk, is

- 1-A
R

Nz

A
> T(hw,i,zi)Jrnfz rk(hw i.9i)  (3)

S, 9s,

where A € [0, 1] is a hyper-weight, hyw ; = hw (z;), and
gi; = g(z;). Note that Eqn. (3) can also be re-written as

R(W) =Y [ir (hw i, z:) + itk (hw i, 93)] (4)

5.US,
with hyper-parameters chosen as y; = 1;—’\11(% €5S,)
and \; = > 1(x; € S,). Eqn. (4) is used for convergence

Ng
analysis.

To train the informed DNN, we consider a gradient descent
approach in Algorithm 1 shown in Appendix A. This train-
ing approach has also been commonly considered in the
literature (Allen-Zhu et al., 2019b; Zou & Gu, 2019; Du
et al., 2019) for theoretical analysis of standard DNNs with-
out domain knowledge. For the sake of analysis, we also
define a hypothesis space H = {hw | W € B(W () 1)}
where W (%) is the initialized weight and 7 is the maximum
distance between the weights in gradient descent and the
initialized weights. We denote hl(o) (x),1 € [L] as the output
of the [-th layer for an input x at initialization.

Remark 1. The considered informed learning is relevant
to several other frameworks. For example, it can model
weakly-supervised learning (Zhou, 2018; Wang et al., 2020)
with a few (possibly imperfectly) labeled samples as well as
other weak supervision signals (i.e., knowledge). Besides,
by viewing {z;} as hard labels and the knowledge-based
model g(z) as soft labels provided by a teacher model, the
informed learning captures knowledge distillation (Hinton
et al., 2014; Phuong & Lampert, 2019; Rahbar et al., 2020).
Thus, our work can complement the existing analysis for the
aforementioned learning frameworks from a different and
more unified perspective. Additionally, PAC-Bayesian learn-
ing optimizes the PAC-Bayesian bound which is a trade-off
between the empirical error and a regularization term based
on a prior distribution given by knowledge (Guedj, 2019;
Amit & Meir, 2018; Germain et al., 2016). But, different
from PAC-Bayesian learning which considers random hy-
pothesis, we analyze an over-parameterized neural network
with a predetermined architecture.

4. Effects of Domain Knowledge
4.1. Convergence

Since the domain knowledge is integrated into a neural
network during training, it is important to analyze the con-
vergence to understand how the label and knowledge su-
pervision jointly determine the network output. While con-
vergence based on gradient descent for over-parameterized
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neural networks has been studied extensively (Bahri et al.,
2021; Allen-Zhu et al., 2019b; Zou & Gu, 2019; Arora et al.,
2019a; Du et al., 2019), the current analysis is not suitable
to study the convergence of informed over-parameterized
neural networks. The reasons are summarized as follows.

e Inapplicable for multiple supervisions. Typically, as-
suming one unique label for each distinct training sample
and a large enough network width, the prior studies show
that the neural network can fit to the labels, i.e., the network
output for each training input converges to the correspond-
ing label (Zhang et al., 2021; Arora et al., 2019a; Zou &
Gu, 2019; Oymak & Soltanolkotabi, 2020). But, in our case,
one training input can have multiple supervisions from both
label and knowledge with possibly different forms of risks.
Thus, the network output for an input may not be necessarily
determined by a unique label. The convergence of knowl-
edge distillation supervised by both hard and soft labels is
studied by (Rahbar et al., 2020), but only the quadratic risk
and shallow networks are considered.

e Strong data separability assumption. Some prior stud-
ies require a lower-bounded distance of any two samples
(Allen-Zhu et al., 2019b; Zou & Gu, 2019; Du et al., 2019),
but this may not be satisfied for an informed DNN because
the input samples for label-based and knowledge-based risks
can be very close or even the same. Other studies assume
data separability by a neural tangent model (Chen et al.,
2021b; Ji & Telgarsky, 2020; Cao & Gu, 2020; Nitanda
et al., 2019), but data separability by a neural tangent model
is not well defined for training with multiple supervisions
in informed DNNSs.

To address these challenges, we provide convergence analy-
sis for informed over-parameterized neural networks based
on a new data separability assumption of smooth sets. The
construction of smooth sets approximates the space X with
discrete pieces, each containing samples that jointly satisfy
the smooth properties. The smooth sets are formally defined
below, followed by the data separability assumption.

Definition 1 (Smooth sets). Given ¢ > 0, construct a
¢—net (Clarkson, 2006) X, = {xk,k‘ € [N], xk € X}
with N ~ O(1/¢") such that Va!, 2 j € X, and z} #

[z} — %] > ¢ holds, and Vz; € S, S, there ex1sts
at least one zj, € X, satisfying ||z; — z}|| < ¢. Each
input zj, € Xy, referred to as a representative input, de-

6 llx — || > ¢/2,¥j # k,aj,«, € Xz} The in-
dex set of training samples within the kth smooth set is
I¢,;€ = {Z ‘ x; € SZUSg,xi S Cd,,;g},k‘ S [N]

Assumption 1 (Data separability by smooth sets). For
each smooth set k& with representative sample z},, there
exists a non-empty subset of neuron indices G, € [m]
with size |Gy o| = am,a € (0,1] such that at initial-

ization, Vi € Ty i, Vj € Gra, 1 ({h(Lo)(xl)} > 0) =
J

1 ({h(LO)(x;C)L > 0) ,and Vj ¢ Gy, o, the pre-activation of

the L-th layer ‘ [WL(O)hE;OZl(:Ci)] ‘ > 3\{267\7;;:1'

Instead of requiring a lower-bounded distance of any two
training samples, the data separability assumption requires
that, at initialization, for samples in one smooth set, the
outputs of the last hidden layer either have the same signs
as those of the representative sample, or their absolute val-
ues are larger than a very small threshold. Thus, this data
separability assumption is set-wise and addresses the cases
where two training inputs are very close or the same, and
hence is milder than the one in existing studies (e.g., (Allen-
Zhu et al., 2019b)). The parameter « indicates slackness:
with larger o, more neurons have the same signs. Actually,
data separation by smooth set with ¢ > 0 in Assumption 1
always exists: when ¢ is small enough such that only one
inputs or several same inputs are included in a smooth set,
Assumption 1 is satisfied with @ = 1. Even in this worst
case, our assumption is still milder than the data separa-
bility assumption considered in (Allen-Zhu et al., 2019b;
Zou & Gu, 2019) that excludes the existence of two training
samples with the same inputs but different supervisions.

With the data-separability assumption by smooth sets, we
are ready to show the labels and knowledge jointly deter-
mine the network output for training inputs. We introduce
the notation effective label, as formally defined below.

Definition 2 (Effective label). For the k-th
smooth set, define the effective label as yegr =
arg miny, Z’LGI o Apir(ho zi) + Airk (h, gi) } with
i, A; defined in Eqn. (3) and h in the space of
network output, and the effective optimal risk as

Toff k= Ziezw {167 (Yest k> 2i) + NiT ik (Yett k, Gi) }-

Next, we show the convergence analysis. Note that the proof
based on the data separability by smooth sets (Assumption
1) invalidates the proofs in previous studies, and we need
new lemmas that lead to novel convergence to effective
labels in Definition 2. In particular, in Lemma B.1, to ap-
proximate the outputs in the smooth set k by the output of
the representative input z}, we need to bound the differ-
ence of the outputs with respect to zj, and an input in the
smooth set k. Also, based on Assumption 1, we derive in
Lemma B.4 the gradient lower bound which relies on the
number of smooth sets NV instead of the sample size n, +ny,
in the previous analysis. This makes the network width m
in our analysis directly rely on the smooth set size ¢. More-
over, in Lemma B.5, we prove based on the definition of
smooth sets that the first-order approximation error of the
total informed risk depends on the difference between the
risk and effective risk in Definition 2. This is important to
prove the convergence to the effective labels. The details of
the convergence analysis are deferred to Appendix B.4.
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Theorem 4.1. Assume that the network width satisfies m >
Q (¢’11b*4L15dp’4)\*4a’4 10g3(m)), and the step size
is set asn = O(L%mz With Assumptions 1 satisfied, for
any e > 0and ¢ < O (€L79/2 log_3(m)), we have with
probability at least 1 — O(¢), by gradient descent after

T=0 (% log(e? log(qﬁ’l))) steps, the informed
risk in Eqn. (4) is bounded as: Ry(W ™)) — R.g < O(e),
where Ry = Z,ivzl Teff gy A = Q(min(1 — A\, )1\ €
(0,1)) + L(X € {0,1})). Also, the DNN outputs satisfy:

* <0,

Z (i + X)) || hwery (20) = Yett (o)
5.US,

where k(x;) is the index of the smooth set that includes x;,
i = %]l(ml €S,)and \; = nig]l(xl €5y).

Remark 2. The convergence analysis in Theorem 4.1 ad-
dresses the limitations mentioned at the beginning of this
section. First, instead of fitting a unique label for each in-
put, the informed neural network with multiple supervisions
converges to effective labels. Second, the data separability
assumption is enough for convergence analysis of informed
neural networks. Another observation is that with smaller ¢
and smaller «, Assumption 1 becomes milder, but a larger
network width and more training steps are needed to guar-
antee convergence.

Additionally, different from previous convergence analy-
sis where the width m increases directly with the sample
size, the network width m in our analysis depends on the
smooth set size ¢ and is non-decreasing with sample size
(i.e., m may not always increase with the sample size). To
see this, given a construction of smooth sets by size ¢ that
meets Assumption 1, if we continue to add (either labeled
or knowledge-supervised) training samples that lie in the
existing smooth sets and satisfy Assumption 1, the width
m remains the same, and smaller ¢ (larger m) is needed to
guarantee the convergence only when the added samples
violate Assumption 1 under the current ¢. The large net-
work width needed for analysis is due to the limitation of
over-parameterization techniques, while in practice a much
smaller network width is enough. Albeit beyond the scope
of our study, addressing the gap between theory and practice
is clearly important and still active research in the commu-
nity (Bahri et al., 2021).

Remark 3. We can get more insights about the effects of
labels and knowledge from the conclusion that the network
outputs converge to the corresponding effective labels in
Definition 2. On the one hand, if knowledge is applied to
the samples within the same smooth sets as labeled samples,
knowledge-based supervision and label-based supervision
jointly determine the network output together: knowledge
serves as a regularization for labels in this case. On the other
hand, if a smooth set only contains knowledge-supervised

samples, the network output is determined solely by knowl-
edge: knowledge supplements labeled samples (albeit possi-
bly imperfectly) to provide additional supervision.

4.2. Generalization

We now formally analyze how the domain knowledge af-
fects the generalization performance. From our conver-
gence analysis, there are two different effects of knowl-
edge (Remark 3). We characterize the two effects by for-
mally defining knowledge imperfectness and knowledge-
regularized label imperfectness. Before this, we list some
notations for further analysis. Given a ¢—net X (Definition
D), Up(S.) = {k € [N] |3z € S,,x € Cy 1} is the index
collection of smooth sets that contain at least one labeled
sample, and X4(S.) = Ujey, (52)Co,k is the region cov-
ered by the smooth sets in Uy (S5,). Sy = Sy (| Xy(S-) is
the knowledge supervised dataset with samples share the
common smooth sets with labeled samples in S, while the
samples in S = .5, \ S lie in smooth sets without labeled
samples. Denote n;, = |S;| and ng = [S7].

Definition 3 (Knowledge imperfectness). Let hi =

miny, = 3¢ [rk(h(2;), g(x;))] be the optimal hypothesis
g g

for the knowledge-based risk on the dataset S;’ . The imper-

fectness of domain knowledge K applied to the dataset S| ;’

is defined as @K,Sg = 5 Y cqn (b (x), ;) where
y; is the true label of z;. Correspondingly, let hj; =
ming, E [rk (h(x), g(x))] be the optimal hypothesis for the
expected knowledge-based risk, and the expected imper-
fectness of domain knowledge K is defined as Qg =

E [r(hi(x),y)] -

The (empirical or expected) knowledge imperfectness is
defined as the risk under the hypothesis optimally learned by
knowledge-based supervision. Thus, it measures the extent
to which the domain knowledge is inconsistent with the true
labels, measured in terms of the risk over the hypothesis
set H. Besides knowledge-based supervision, the network
outputs for some smooth sets that contain both samples for
knowledge risks and labeled samples are jointly determined
by label-based and knowledge-based supervisions. Thus,
we define knowledge-regularized label imperfectness below.

Definition 4 (Knowledge-regularized label imperfect-
ness). Let hy 5 = argminhlg—ﬁzsz r(h(zi),zi) +
%ZS; ri(h(x;),g(x;)) be the optimal hypothesis
[0,1].
imperfectness  is

for the knowledge-regularized risk and 8 €
The knowledge-regularized label

Qrs.s:(B) = =g r(his(wi),yi), where y;
is the true label regarding ;. Correspondingly,
with h 5 = argminy, ]E[lrjzﬂ g, r(h(xi),z:) +

n% > st rk (h(z;), g(x;))] being the optimal hypothesis for
the regularized risk, the expected knowledge regularized
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label imperfectness is Qr(8) = E [r(fﬁﬂ(x), y)] .

Like knowledge imperfectness, knowledge-regularized la-
bel imperfectness indicates the risk of the hypothesis opti-
mally learned by joint supervision from labels and knowl-
edge. We see that when 3 = 0, QR( ) (or Qr(0)) is the
imperfectness of pure label-based supervision. Thus, the
gain due to knowledge is AQgr g = Qr(0) — Qr(B) (or
AQr g = Qr(0) — Qr(p) for the expected version). We
show in the following theorem how the two types of imper-
fectness affect the population risk trained on the informed
risk in Eqn. (3). The details are deferred to Appendix B.5.1.

Theorem 4.2. With W'T) trained on Eqn. (3), ¢ <
O (2L792 10g73(m)) .0 < (Ve/n)Y®, and other as-
sumptions the same as Theorem 4.1, with probability at
least 1 — O(¢) — 6,6 € (0,1), the population risk satisfies

R (hym)<O(ve) + (1 — A)Qr, s.,s;(Bx)

+AQK5~+O(<I>+\/W)<r })

An' ~ .
where By = W, QR,SZ’S; (By) is the knowledge-
regularized label imperfectness in Definition 4 and Qx s
is the knowledge imperfectness in Definition 3 applied to S, g’ ,

and ® = O (4LL3/2m1/2¢_b_1/2dp_1/25\_1/2a_1/2).

Remark 4. Theorem 4.2 shows that by training on the in-
formed risk (3), knowledge affects the generation perfor-
mance in the following two ways.

o Knowledge for regularization. When knowledge is ap-
plied to sample inputs inside the same smooth sets as la-
beled samples, it serves as an explicit regularization for
label-based supervision, possibly reducing the label imper-
fectness from QR,SZ,S; (0) to QR,SZ,S; (By)-

o Knowledge for supplementing labels. The general-

W+f) When

0), the order is as large as

ization error is in the order of O (
no knowledge is used ( A =
0] (\/%) If knowledge is applied (A > 0), then the gener-

alization error decreases with the increasing of knowledge-
supervised sample size ny. Thus, when knowledge is ap-
plied to smooth sets without labeled samples, it serves as an
(possibly imperfect) supplement for labels, while introduc-
ing knowledge imperfectness QK sy-

The hyper-parameter A can be used to balance the intro-
duced imperfectness and generalization error from label and
knowledge supervision. However, by the risk bound, it is
hard to use one hyper-parameter A to control the two effects
of knowledge, which will be further discussed in the next
section.

5. A Generalized Training Objective

In the informed risk in Eqn. (3), only one hyper-weight A
is present, controlling the two different effects of knowl-
edge (Remark 4). To better reap the benefits of knowledge,
we consider a generalized informed risk in Eqn.(5) by in-
troducing another hyper-weight 3, which introduces more
flexibility to govern the roles of domain knowledge.

RI,G(W)ZWZT (hw i, 2i)+

R 5)
1-— A
(Gt 2 ZTK (hwir9:)+—5 > rx(hw iy gi)
Q g S”

where 3, A € [0,1], hw ; = hw (), 9i = g(z;).

In Eqn. (5), the two hyper-parameters A and J can jointly
control the knowledge effects (and the introduced imperfect-
ness) when knowledge is applied. The hyperparameter 3
is used to controls the knowledge regularization strength.
By Remark 4, knowledge-supervised samples in .S ; serve
as an explicit regularization for label-based supervision
while introducing knowledge-regularized label imperfect-
ness Qr (). Thus, when 3 is larger, more effects from S,
are incorporated and the regularization effect from knowl-
edge is stronger. Also, we use )\ to adjust the effect of sup-
plementing labels and the introduction of Q. By Remark 4,
Sy serves as an supplement for labels while introducing the
knowledge imperfectness QQk. Thus, with larger A, more
effects from S !’]’ are incorporated, which means we incor-
porate more effects of data supplement from knowledge
and also knowledge imperfectness Qk but less effect of
knowledge regularization and knowledge-regularized label
imperfectness (Qr. The benefit of the training objective in
Eqn. (5) will be explained formally in Theorem 5.1 and
Corollary 5.2.

Compared with the objective in Eqn. (3) with only one
hyper-parameter A, Eqn. (5) introduces another hyper-
parameter (3 to independently adjust the degree of the knowl-
edge regularization, making Eqn. (5) more general and flex-
ible. To train on Eqn. (5), we need to separate dataset for
knowledge supervision into two datasets S and S based
on whether an input is close to a labeled input and assign dif-
ferent hyper-weights to them. The knowledge-based dataset
separation is determined by ¢ in Definition 1. Specifically,
when the network width goes to infinity (¢ goes to zero),
S; shares the same inputs as S, but S; and S, are su-
pervised by knowledge and labels, respectively. We have
Sy = 84\ S; = Sy \ S. which supplements the labels
as shown in Remark 4. Note that when the knowledge is
perfect and knowledge-supervised samples are sufficient,
we do not need labeled samples, i.e., S, = () and we set
A = 1,8 = 1. Then, we have Si/ = S, and Eqn. (5) be-
comes a purely knowledge-based risk. When no knowledge
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is applied, we set A = 0,3 = 0, and Eqn. (5) becomes a
purely lable-based risk. In general cases when labels and
knowledge are both used, hyper-parameters A and § are
used to control the effects of knowledge.

5.1. Population Risk

Note that Eqn. (5) can also be written as the form of Eqn. (4)
with hyper-parameters chosen as p; = Wl(zl €
S.)and A = N2 € 8) + AA(z; € SY), so
Theorem 4.1 for co%vergence still holds. Next, we bound
the population risk based on the generalized informed risk.
The details are given in Appendix B.5.2.

Theorem 5.1. Assume that WD) trained on Egn. (5)
and other assumptions are the same with those of The-
orem 4.1, setting ¢ : ¢ < O (62L’9/2 log_?’(m)) and
b < (Ve/n.)/®, with probability at least 1 —O(¢) — 6,6 €
(0,1), the population risk satisfies

R(hyyr)) < O(Ve) + (1 — A)©R,sz,5f (8) + AQx. s+

(¢+\/W)< \})

where 3 and \ are trade-off hyper-parameters in Egn. (5)

Additionally, to obtain more insights for sampling com-
plexity, we further bound the population risk in terms of
expected imperfectness, at the expense of some tightness.
The proof details are deferred to Appendix B.5.3.

Corollary 5.2. With the same assumptions as in Theo-

rem 5.1, with probability at least 1 — O(¢) — 0,0 € (0, 1),
the population risk satisfies
R(hw ) < O(Ve) + (1 = N)Qr(B) + A\Qx+
1—A A

0 (@ + 1og1/4(1/5))

where Qr () is the expected knowledge-regularized label
imperfectness in Definition 4, Qx is the expected knowledge
imperfectness in Definition 3.

Remark 5. Theorem 5.1 and Corollary 5.2 show that by
training on the generalized informed risk in Eqn. (5), label
and knowledge supervision jointly affect the population risk
while introducing a combination of knowledge-regularized
label imperfectness Qg () and knowledge imperfectness
Qxk- The effect of knowledge regularization is controlled
by /3 and the trade-off between the two imperfectness terms

and the trade-off between the two generalization errors iﬁA

and are both controlled by A. Thus, this gives us

ng
more flexibility to adjust how much domain knowledge
is incorporated when it plays different roles in informed

learning as discussed in Remark 4. Also, as shown by

the population risk bounds, we can tune the two hyper-
parameters separately — we can first tune 5 to minimize
Qr(8), and then tune A to balance Qr () and Qx, and also
balance the generalization errors due to sizes of datasets.

5.2. Sampling Complexity

We discuss the choices of hyper-parameters S and A in
different cases to guarantee a small population risk, and
give the sampling complexity in each case, whose details
are deferred to Appendix B.5.4.

Corollary 5.3 (Sampling Complexity). With the same set
of assumptions as in Corollary 5.2 and setting 3*
arg mingepo,1] Qr(3), with probability at least 1 — O($) —
3,0 € (0,1), to guarantee a population risk no larger than
V€, we have the following cases:

(a) If Qx < /e, set A = 1, the sampling complexity
for labels is n, = 0 and the sampling complexity for
knowledge-supervision is ng ~ O(1/(€* — €3)).

(b) If Qx > ﬁand%—i—% > 1, set
A= %, the sampling complexity for labels

is n, ~ O ((l/e— 1/ (ﬁQK))z) and the sam-
pling complexity for knowledge-supervision is ng ~

O(1/ ((e = )Q%))-

(c) IfQ—\/i + % < 1, a population risk as low as /¢
cannot be achieved no matter what X is and how many
samples are used.

Remark 6. In practice, unlabeled samples are typically
cheaper to obtain than labeled samples. If Qx < 4/,
the domain knowledge is good enough for supervision,
and thus we can perform purely knowledge-based train-
ing without any labeled samples and guarantee a popu-
lation risk no larger than /e with n) ~ O(1/€®), and
hence n, ~ O(1/(e? — €*)). When the knowledge im-
perfectness Qx > +/€, we discuss the following two

cases. First, if \[ + QR\{[; 5 > 1, we can choose A from
[1 QR\{; oF éf } to control the risk from knowledge and

label imperfectness as low as y/e. We thus choose the
largest A = i}i to reduce the label sampling complex-
ity. In this case, knowledge is not good enough, but la-
bel imperfectness is not too large. Thus, we can guaran-
tee a population risk no larger than /e with labeled sam-

ples n. ~ O ((1/e =1/ (VeQx))")
pervised samples ny, ~ O(1/ ((e —

and knowledge su-
€2)Q%)). Finally, if
f + QI\(B* < 1, we cannot guarantee a population risk

less than /€ no matter what X is and how many samples
are used since the neither knowledge nor labels are of high
enough quality.
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In summary, the extreme cases are: Case (a) where the
knowledge supervision alone is nearly perfect, and Case
(c) where the knowledge and labels are both of low quality.
Usually, we are in Case (b) where knowledge is imper-
fect but labels (after knowledge regularization) are good
enough. In contrast, DNNs without using domain knowl-
edge requires the label imperfectness (Jr o not to exceed
\/€; otherwise, the population risk cannot be guaranteed to
be no greater than /e. The informed DNNs relaxes this

requirement by requiring Q—f; + QR\{Z*) > 1. In addition,
the incorporation of domain knowledge reduces the labeled

sampling complexity from n. ~ O(Z%) in the traditional
no-knowledge setting to n, ~ O ((1/6 -1/ (ﬁQK))2>
In other words, the incorporation of knowledge is equiva-
lent to O(ﬁ - tei ) labeled samples, establishing a
quantitative comparison between knowledge supervision
and labeled samples.

6. Further Discussions

Summary of analysis. The convergence analysis in Theo-
rem 4.1 introduces the concept of smooth sets and explains
how the neural network output behaves by training on an
informed risk. The generalization analysis in Theorem 4.2
explicitly shows the two different effects the domain knowl-
edge has on the population risk (i.e., regularizing labels
and supplementing labels). Based on this observation, we
propose a generalized informed risk in Eqn. 5 to get more
flexibility to control the two effects of knowledge, which is
validated by Theorem 5.1 and its Corollary 5.2. Finally, the
sampling complexity in Corollary 5.3 shows the effects of
joint knowledge and label supervision in a quantitative way.

Understanding knowledge distillation from the perspec-
tive of informed learning. Knowledge distillation is ex-
tremely useful in practice (e.g., for model compression (Hin-
ton et al., 2014)). Here, we show how our analysis comple-
ment the existing understanding of knowledge distillation
(Hinton et al., 2014; Phuong & Lampert, 2019; Rahbar et al.,
2020; Dao et al., 2021; Ji & Zhu, 2020) from the perspective
of hard label and teacher’s knowledge imperfectness. In
our formulation, hard labels are {z;} in the labeled dataset,
whose imperfectness (non-softness) is measured by Qg (0).
In Theorems 4.2, 5.1, and Corollary 5.2, by viewing the
teacher model g(x) as domain knowledge, we show the
teacher benefits the student training by providing a regular-
ization gain AQR, s, and reducing the sampling complexity
of hard labels by Corollary 5.3. The knowledge-regularized
label imperfectness Jr,s can be less than pure lable im-
perfectness Qi (0) because the soft label can smooth the
network output within each smooth set. But, given the
teacher (knowledge) imperfectness QQk, there exists a trade-
off between hard label and teacher supervision.

Importantly, our results are in line with the observations and
also complement the analysis in (Ji & Zhu, 2020). Specif-
ically, (Ji & Zhu, 2020) uses NTK to show that the soft
labels provided by a teacher model (knowledge) are easier
to learn than hard labels while hard labels can correct imper-
fect teachers pointwise, exhibiting a trade-off between hard
labels and the imperfect teacher. We define the hard label
and teacher (knowledge) imperfectness, and show that for a
neural network with finite width, hard labels and teacher’s
knowledge compensate for each other within each smooth
set. In consistency with our results, (Rahbar et al., 2020)
based on NTK also presents a trade-off between labels and
the imperfect teacher. The teacher model imperfectness is
also observed by (Dao et al., 2021) which measures the
teacher imperfectness by the squared norm of the differ-
ence of the soft label and the true Bayesian class probability.
Note, however, that our analysis cannot adequately explain
the benefit of knowledge distillation for the perspective
of feature learning due to the inherent limitations of over-
parameterization techniques, which are further discussed in
(Allen-Zhu & Li, 2020).

7. Numerical Results
7.1. Problem Setup

We consider an informed DNN with domain knowledge
in the form of constraints to learn a Bohachevsky func-
tion. The learning task is to learn a relationship y(z).
The learner is provided with a dataset with labeled sam-
ples S, = {(zi, 2:),¢ € [nz]}, having possibly noisy labels
2 = y(z;) + ny,ni ~ N(0,02), and an unlabeled dataset
Sy = {(xs),1 € [ng]}. Additionally, the learner is informed
with the constraint knowledge, which includes an upper
bound g1, (x) and an lower bound gy, () on the true label
corresponding to input z, i.e. gip(z) < y(x) < gup().
A neural network hwy () is used for learning and the met-
ric of interest is the mean square error (MSE) of the net-
work output hy (x) with respect to the true label y(z)
on a test dataset S, which is expressed as IA%St (hw) =
ﬁ > teryoyes, (hw (@) — y;)? . Assume that the rela-
tionship to be learned is governed by a multi-dimensional
Bohachevsky function y(z) = zAATz " —ccos (a"z)+c,
where A is a b x b matrix, a is a b-dimensional vector and ¢
is a constant. The constraint knowledge includes an upper
bound model gy, () = xAA Tz T + ub with ub > 2¢, and
an lower bound model gy, (z) = zAA Tz T +1b. with [b < 0.
While it is not strongly convex and hence deviates from the
assumptions in our theoretical analysis, we use ReLU as the
knowledge-based risk function, i.e., the knowledge-based
risk is written as 7k (hw (x)) = relu (hw () — gun(z)) +
relu (gi(x) — hw (z)) . If ub — 1b is larger, the uncertainty
of the label given the knowledge is larger — the knowledge
imperfectness is higher. We choose (1, ub) as (0, 0.6) and
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Figure 1. Test MSE under different hyper-parameters. o2 = 0 means using perfect labels; o2 = 0.1 means using imperfect labels with
noise variance 0.1; knowledge imperfectness is determined by ub and [b in the problem setting. (a) Training on the standard informed
objective Eqn. (3) using knowledge with high imperfectness; (b) Training on the standard informed objective Eqn. (3) using knowledge
with low imperfectness; (c) Training on the generalized informed objective Eqn. (5) using knowledge with low imperfectness and 400

labels.

(0,0.8) respectively to show the performances under low
and high knowledge imperfectness. More details of the
setup are in Appendix G.1.

7.2. Results

The curves of test MSE with different knowledge and label
settings are shown in Fig. 1. In all the three figures, test MSE
in A = 0 approximately measures knowledge-regularized
label imperfectness in Definition. 4, while test MSE in
A = 1 approximately measures knowledge imperfectness
in Definition 3. We first use the training objective Eqn.(3)
in Fig. 1(a) and Fig. 1(b) to show the effect of adjusting A,
which controls the knowledge effects (see Remark 4). From
both Fig. 1(a) and Fig. 1(b), we see that the test MSE is
smaller when there are more labeled samples and when la-
bel noise variance is lower. Importantly, domain knowledge
helps reduce the MSE compared with pure label-supervised
learning, especially for the cases with fewer labels and high
label noise variance. Also, by comparing Fig. 1(a) and
Fig. 1(b), we can find that the test MSE is lower when the
knowledge imperfectness is lower. Additionally, Fig. 1(c)
gives the test MSEs training on the generalized objective (5)
under different 3 when the labeled dataset size is 400, show-
ing that the test risk can be reduced by adjusting 8 which
controls the knowledge regularization effect (see Remark 5).
We can find that by properly adjusting 3, the test MSEs
under label noise are very close to that without label noise
(the blue line). When 3 = 1, the test MSE is the highest
since no labeled data is used to provide supervision.

More results, including another application of learning to
manage wireless spectrum, are available in Appendix G.2.

8. Conclusion

In this paper, we consider an informed DNN with domain
knowledge integrated with its training risk function. We
quantitatively demonstrate that domain knowledge can im-
prove the generalization performance and reduce the sam-

pling complexity, while also impacting the point to which
the network output converges. Our analysis also reveals that
knowledge affects the generalization performance in two
ways: regularizing the label supervision, and supplementing
the labeled samples. Finally, we discuss how an informed
DNN relates to other learning frameworks.
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Appendix
A. Training Algorithm

To train the knowledge-informed DNN, we consider a gradient descent approach in Algorithm 1. This training approach has
also been commonly considered in the literature (Allen-Zhu et al., 2019b; Zou & Gu, 2019; Du et al., 2019) for theoretical
analysis of standard DNNs without domain knowledge.

Algorithm 1 Informed Neural Network Training by Gradient Descent

Initialization: Initialize each entry of weights VVO(O), VVI(O), I € [L] independently by N/ (O, 7%) and each entry of V(0)
independently by A (0, %) .
fort=0,---, T —1do
Update the weights as W+ = W®) ) 7y Ry (WO).
end for
Output: W(T),

B. Notations, Key Lemmas and Proofs of Main Results in Section 4 and Section 5
B.1. Further Notations

Before the proofs, we list some additional notations as below. Denote n’ = |S| 4 |Sy| = n, + ngy. We assign the samples
in the dataset S, with indices from 1 to n, and the samples in the dataset .S, with indices from n, + 1 to n'. The informed
risk of an informed DNN in Eqns. (3),(5) can be re-written as

Ry (W) = Z [wir (hw (5) , 2:) + Nirk (hw (23) , 9(24))] (6)

where Z:il (i + A\;) = 1. Thus, in Eqn. (3), we have p; = =21 (2; € S.) and \; = 2 1(z; € S,); in Eqn. (5), we have
i = (17’\71&]1@Z €S5,)and \; = (17,\)5]1(% €S, + 2 1(x; € Sy). We prove convergence for the above three risks.

7 77
ﬂ,g ng

For any input z;, ¢ € [n’], we denote the DNN output with respect to weight W as hyw ; = hw (z;). To express the output
of the ReLu activation of the [-th layer for an input sample x;, for [ € [L] and i € [n], we denote a diagonal matrix D; ; with

its j-th (for j € [m]) diagonal entry as 1 ([VV; hia]; > 0). Thus, given the input x;, the DNN outpoput can be expressed
as
hw:=VDr WrDy_s;--- Dy ;Wyx;. @)

Also, we denote the informed risk for hypothesis h € H and input x; as
i = i (h(23), 2i) + Nirk (h(z3), g(x;)) )

The gradient of informed risk with respect to the hypothesis output is
ui(h(zi)) = Vnrvi(h(@i) = pi 7 r (M), 2i) + X Vn e ((24), 9(24)) - 9)

After constructing the smooth sets, denote for the kth smooth set, the sum of indices as M}, = Z% . (i + ;). Denote the
sum risk of the kth smooth set for hypothesis h € H as ’

rLi(h(z:) = > ri(h(a:). (10)
1€y K

Thus, the effective label given in Definition 2 is written as yeg = arg miny, 71 (k) with A in the space of network output,
and the optimal effective risk is written as reg , = FLk(yeff,k).

We then give some key technical lemmas which are the foundations for our further analysis. The proofs for these lemmas
are shown in Appendix C.
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B.2. Forward Perturbation Regarding Inputs

The forward perturbation for weights in the weight update range is proved in (Allen-Zhu et al., 2019b), However, to
characterize the smooth sets, it is important to prove forward perturbation for inputs in a smooth set, which is given as
follows.

Lemma B.1. Forany i € Ly, k € [N], let hy, = hi(x},), iy = hi(z;), and fi, = Wihi—1(x},), fii = Wihi—i(x;)
and denote Dy ; , € R™*™ as the diagonal matrix with [D; ; ,];; = 1(] 1(3)]j > 0) — 1(] l(’(,?]j > 0). Assuming
¢ < O(L=210og3(m)log~>/4(1/$)), we have with probability at least 1 — ¢ over the randomness of W),

Likllo < O(m¢?*/3Llog'/*(1/9))

(b) For W € B(W©) 1) with T < O(¢%/2) we have ||h; — hi x| < O(L2¢\/log(m)log(1/8)) and || f1.: — fix| <

O(L??¢+/1og(m) log(1/9))-

The proof of Lemma B.1 is given in Section C.1. The forward perturbation regarding inputs indicates the smoothness property
of neural networks with respect to inputs. For compactness, we absorb the logarithmically increasing terms into O and
denote O(L¥2 log"/(m)) = O(L*/2¢/log(m) log(1/9)). O(L~"/21og ™~ (m)) = O(L=*/2log~*(m) log*/*(1/9))
in the following analysis.

B.3. Properties of Strong Convexity

Since our analysis is based on strongly convex risk functions, we give some key properties of strongly convex functions.

Lemma B.2 (Properties of Strong Convexity). If a strongly convex function r(h) has a minimum value of r(h*) = ruyin and
the eigenvalues of its Hessian matrix lie in [p, 1], then we have||7r(h) ||2 < 2(r(h) — rmin), [|Vr(h) H2 > 2p (r (h) — Tmin)
and |[* — h|| < 2 ||r ()]

Lemma B.3. [f the risk functions r and r are strongly convex with their eigenvalues of Hessian matrices in [p, 1], then we
have for hypothesis h € H, if |h(z;) — h(z})|| < O(L5/2¢log"/?(m)) fori € Ty 1, k € [N), the sum risk gradient for a
smooth set with ¢ < O(L~9/%log™>(m)) with respect to h satisfies,

H Z UL 7, >2Mkp(TIk—Teffk) ]\42 (L5/2¢)10g1/2( ))

€T
H Z u’L 1 <2Mk: (rlk_reffk>+M2 (L5/2¢10g1/2( ))
1€Ly 1
1 ~
7 (i + X) h () — yes el < FO (ﬁ,k — Tt + MkO(L5/2¢IOg1/2(m))) 7
1€L4 K

where u; is defined in Eqn. (9) and My, = Z% . (i + i)

Lemma B.2 and B.3 are proved in Section C.2.

B.4. Proof of Theorem 4.1.

In this section, we prove the convergence for informed risks in Eqn. (3), Eqn. (5). First, the gradient lower bound,
semi-smoothness of the risk function, and initialized risk bound are proved.

Lemma B.4 (Gradient Lower Bound). . For any W . |W — WO < 71 17 =
O(N‘9/2¢3/2p3/2;\3/2a3/2L_15/2 10g73/2(m)) and ¢ < O(L_g/2 10g73(m)), with Assumption 1 satisfied, we
have with probability at least 1 — O(¢@) over the randomness of WO, the gradient of label-based data risk satisfies

[t W[, = 0 (P58 ) (8 W)~ R — O 0108 2(m)).

where Rog = 22;1 Teft k» and X is a parameter with lower bound Q(min(1 — A\, \)1(X € (0,1)) + 1(X € {0,1})).

The proof of Lemma B.4 can be found in Section C.3.
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Lemma B.5. Forany W, W' € B(W©) 1), 7 € {Q(d3/2771_3/2L‘5"/2 log=%/2(m)), O(L‘9/2[log73(m)})} and ¢ <
O(L=9/210g™%(m)), with probability at least 1 — O($) over the randomness of W ©), we have

R (W) <By (W) + (vwBa (W) W' =W ) + 0(L%m/a) W]

+ <\/<RI (W) — Reg — 5(L5/2¢1og1/2(m)))> 0 (N1/271/3L5/2\/md*1/2) HWH

The proof of Lemma B.5 can be found in Section C.4.
Lemma B.6. If m > Q (Llog(NL¢~')) and ¢ < O(L™9/? log—?(m)), with probability at least 1 — O(¢) over the
randomness of W), at initialization, we have for any ;i € [n'],

o] < 0 (tog"(1/6)
and RI (W(O)> - Reff <0 (1og1/2(1/¢)) .

The proof of Lemma B.6 can be found in Section C.5.

Proof of Theorem 4.1.

Proof. Convergence of the informed risk. We first assume 7 = \/% with T’ = Nd'/2¢=1/2p=1/2X~1/2q=1/2 Hence,

with the choice of m, we have 7 = O(N~9/2¢3/2p3/2)3/23/2 [, =15/210g73/2(1m)). We get the recursion inequality based
on gradient descent. By the weight update rule of gradient descent, we have W) — W(-1) = _p 7 R; (W(tfl)). Let
U = O(L5%¢log'/?(m)). By Lemma B.5, we have

o (W)~ g

<Ry (W(“) — R — U — (7 — O(n?L*m/d)) ‘VRI (W(t)) Hz

o2 (R (W19) — g~ #)0 (#2172 Toglamya %) [ ()|

’ 2

(11)
<R (W(t)) —Reg — ¥ —Q (n) HVRI (W(t)>

90 (N3/271/3L5/2 log1/2(m)¢’1/2p’1/25\’1/2a*1/2> HVRI (W(t)) H2

<R (W(t)) — Reg — U — Q(n) HvRI (W(t)) ‘2

)

where the second inequality holds by the choice of = O(+Z-) such that O(nL?m/d) = O(1) and the gradient lower

L2m

bound in Lemma B.4, and the last inequality holds by the choice of m > Q (N L®dp~4p~*A~4a~*log®(m)) such that
0 (N3/2T1/3L5/2 1og1/2(m)¢‘1/2p_1/25\_1/2a_1/2) <0(1).

Further, by Lemma B.4, we have

B (WD) — R — 0 < (1 o (W)) (7 (W) ~ Fug — ¥).

Based on the iteration of the recursion inequality, with probability at least 1 — O(¢), we have

(W)~ g v
(o0 (75 () )

< (1 0 (W}) Ollog!/(1/4)),
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where the last inequality comes from Lemma B.6. Then, by taking logarithm, we get

i (A (W) = n = 0)) <o (10 (02 ) ) D mtos 0

) (W) + %lnlog(l/gb).

Since n = O(£4-), after T = O (éiyj In(e~? log(qS_l))) iterations, for any e > 0, we have

By (W<T>) — R < O(L%2410g"/%(1/¢) log*m) + .

By setting ¢ as ¢ 10g1/2(1/¢)) < eL=5/? logfl/2 m (which satisfies the assumption of ¢ in Theorem 4.1), we can bound
Ry (W) — Reg by a small positive quantity e.

Verify the weight update range. Now, we verify that the assumption |[W () — WO || < % holds. Denote Ry (W) =
Ry (W(t)) — Rer — U. By Eqn. (11), we have

R (WD) — Ry (W) <~ () HvRI (w®) H2

Then, we have

R; (W(t+1)) — R (W(t))
\/RI (W(t+1)) + \/RI (W(t))

\/RI (WD) — \/RI (W) =

fQ()vR(W(”)2 1241/251/231/201/ ,
R o (marn iy (o)

where the last inequality follows from Lemma B.4.

By the triangle inequality, for any ¢ € [T'], we have
t A
[ -wOl < X |no f (w)|
s=0

d1/2N — o r
<0 m1/2¢1/2p1/25\1/2a1/2 Ry (W )SO ﬁ 7

where T' = NdY2¢p=1/2p=1/2)=1/2=1/2, Hence, with the choice of m, we have 7
O(N=9/243/23/238/23/2[~15/2 1653/ (1) ).

(12)

Convergence of network output. By Lemma B.3,we have

S5 st A e (00— sl < 50 (R (W) = Ras) + O 20108 2(m))) < O

k=14i€Zly i

Denoting k(x;) as the index of the cell containing x; and rearranging the above summation, we have

> i (26) = Yot ian) * 4 > A Jhwer () - Yett (ay)||” < O(e).

x;, €S, z;€Sy
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B.5. Proof of Generalization

In this section, we prove the generalization bound based on Rademacher complexity. We first present the bound of
Rademacher complexity for neural networks.

Lemma B.7. [Theorem 3.3 in (Bartlett et al., 2017),Lemma A.3 in (Chen et al., 2021b)] If risk functions are 1-
Lipschitz continuous, with probability at least 1 — Lexp(—Q(m)), the Rademacher complexity Rg(F) for the risk
set F = {r (hw (z),y) : (z,y) € X x Y, |[|[W — W(O)H <thT= % withT = Nd'/2¢=1/2p=1/2\=1/2q=1/2 given
a dataset S of n samples is bounded as

Ns(F) < @/Vn, (13)
where ® = O (4LL3/2m1/2¢5_b_1/2dp_1/2;\_1/2a_1/2).

Then, we need to bound the error between effective labels in Definition 2 and the output of optimal hypothesis in Definitions 3
and 4.

Lemma B.8. Consistent with Definition 2, assume that for any smooth set k € U,(S) (containing at least one labeled

sample), Yot 1, equivalently minimizes Ziel¢,k %1(% € S.)r(h,z) + n%]l(m,- € S;)rx (h, i), and for any smooth set

k € [N]\ Uy (S-) (not containing labeled sample), yess,i. equivalently minimizes 3 e, %TK (h, gi).
(a) Letting hi and hy, 4 be the optimal hypothesis for empirical risks in Definitions 3 and 4, respectively, we have with
probability at least 1 — O(¢) over the randomness of W (9,

1
n!! § : Hhikﬁi = Yeft k()
g S;’

2 < ) (L5/4¢1/2 log1/4(m)> ’

and

2 B
+or 2

gsé7

* * 2 ~
hR g, = Yeft k(i) hRpi— ycﬁ,k(zi)H <0 (L5/4qbl/2 log1/4(m)) )

18
2|

where O (L5/ 1912 log"/ 4(m)) = O(L5/*¢"? log"*(1/) log"/* m).

(b) Letting ﬁi} and BR 3 be the optimal hypothesis for the expected risks in Definitions 3 and 4, respectively, we have with
probability at least 1 — O(¢) — 6,

! h 0 log(1/6
= 2 i = e e |” < O (L5/4¢1/2 10g1/4(m)) +0( &/))’

g Sé’ g

and

1 ’2 <0 (L5/4¢1/2 log1/4(m)> +O( M)7

Nz

ﬁ 7 %
|2 + . Z HhRﬁz — Yeff k(z;)

g /
Sg

i Z ||B§,6,i = Yeft k(x;)
n, 5.

where O (L5/4¢1/2 1og1/4(m)> = O(L5/4¢ 2 10g*(1/¢) log** m).
Proof of Lemma B.8 is given in Section C.6.

B.5.1. PROOF OF THEOREM 4.2

Proof. By generalization bound with Rademacher complexity and Lemma B.7, the population risk is bounded with
probability at least 1 — 6,5 € (0,1) as

R(W@D)
=1 = NRWD) £ AR(W D))

§1; A Zr(hW(T),iayi) + ni ZT(hW(Tu,yi) + 0 (CID + \/W) ((1 _ )\)\/nT+ /\\/nT>
Sz Sq z g

(14)

z g
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For the empirical risk, we have

1-A
> rlhwer ) + Z r(hw ) i, Yi)
"= 5 Mg Sg

11—
= n Z (r(yCﬁ',k(m,;)7yi) + HhW(T)J — Yeft k(x;) Z ycf'f k(z;) yl + ||hW(T) i Yeff k(x; ] (15)
s, g Sg
- A A
> et () Vi) + - > ekt k) i)
s, 9 s,

where the first inequality holds because of the 1-Lipschitz of risk functions such that r(hyy« 4, ¥i) = 7(Yest k(2:), ¥i) <

||hw(i)7i - yeff,k(l'qz) ’

Any
(I-Mng+Ang >

An’ _
(1 -+ 7%’) (% Yg. 7 (hw i) + % ng K (hW,iagi>) +

Uy (S,) (containing at least one labeled sample), yer , equivalently minimizes Zie% ) 1;& 1(z; € S.)r (h,Zi)-i-%]l(Jii c
ko n .

Since with 8, = the training objective in Eqn.(3) can also be written as Ry w) =

(hw ., 9:), for any smooth set k €

Sg)rk (h, gi) by Definition 2. Thus, the bounds of the differences between optimal hypothesis and effective labels in Lemma
B.8 hold for 8 = ) and hj; 4, . Next, we can bound the total effective risk in terms of label and knowledge imperfectness,
with probability at least 1 — O(¢),

1—A A
Z r(ycﬂ',k(xi)a yz) + — Z r(ycﬁ',k(miﬁ yz)
n, 5 Ng 5,
1—A A A
= D rWett p(wn) ¥i) + DT Wett (o) Ui) T T (Yett(or)s i)
Nz S, ng S; 9 S"
1—A . A A
s > (kg i) + - D i py i) + = D r(hici, ui) (16)
z S, g S/ g S”
- A A . A .
17 1. = Yest ko || + n Basi — Yeffk(@a) || T > i = ver ke

S, g S'_:] g S_(’]’
<(1- )\)Q&Sz,s'g (Br) + A@Kﬁsg + O(Ve)

)\n;
(I=Mng+Any>
risk functions, and the last inequality holds by Lemma B.8 and the assumption ¢

0] (€ 2L’g/2 log_s(m)) such  that @ Y5 |PRogsi = Yelk(zn)|| + 2 ZS; PR i — Vel k(xs)
(1 — 50 ) TR T W — Vet wieo 1P+ 2 L, I — et vt < O(Ve)  and
= ZS, < Tg\/rTg' ng [hi i = Yert k(x> < O(Ve). In the last inequality of (16), we
absorb E 57 7(hk g, i ¥i) into O(y/€) because the risk functions are upper bounded and Sy is the set of samples sharing

the same smooth sets with S, and so 7;\—9 Y5 T(hi gy i ¥i) < O( ) < O(n.¢?) < O(\/e).

where [\ the first inequality comes from the Lipschitz continuity of

IAIA

)hR Bx,i yeff,k(a:i)

Substituting Eqn.(16) and (15) into Eqn. (14), the population risk is bounded with probability at least 1 — O(¢) — 4,9 € (0,1)
as

RW D) = (1 = N)RWD)) £ AR(W D)

<Ve+ (1—NQros..s (Br) + A@Kﬁﬁo(@ + JW)(O _ A)\/nT n A\/?) .
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B.5.2. PROOF OF THEOREM 5.1

Proof. Based on the construction of smooth sets in Definition 1, denote X' = X,(S,) = U keuqb(sz)aﬁ,k as the region
covered by the smooth sets containing at least one sample in .S, and let X" = X' /X', Let Px» = | xy Py | z)dyp(x)dx
and Py = [, y P(y | z)dyp(x)da where p(z) and p(y | x) are probability densities. Then we have Px < O(n./N) =

O(n.¢®) = O(y/€) by the assumption that ¢ < (v/e/n.)"/?, and E[r (hyy o (2),y)] = Ep, [r (hy o (2),9)] Par +
Ep.,, [r (hyw ) (x),y)] Pxr. By generalization bound with Rademacher complexity and Lemma B.7, the population risk is
bounded with probability at least 1 — 4,5 € (0,1) as

RW D)) = (1 = NE[r (b (2),y)] + AE [ (hyy oy (2), )]
:(1—>\)E[r(hwm(x)7y)]+>\EPX~[ r (hw o (@),9)] + A (Ery, [r (hwo (2),9)] = Br, [r <hW<T><> vl) Par
—|—)\

- ) A
Zr hyy ) 5, Yi) + = Sor (hwm)z,yl)—&—)\O(\f)—i—O((I)—F\/log 1/6) (1— 1/ ,,>
S

S
Nz . g S”
(17
Then for the empirical risk, we have
1-X A
o SZ r (hW(T),i, yi) + 777;/ ; T (hw(T),i» yz)
z ’ g
1-A A 1—A A
< ZT (yeff,k(xi)yi) +— ZT (yeff,k(xi)7 yz) +— Z thm,i - yeﬂ,i” +— Z thm,i - yeff,i”
n. 4 ny s n. 4 ny s
1-A A
<O(Ve) + - ZT (Yott k(z0) Vi) + v ZT (Yett k(z:)> Vi) »
s, 9 8y
(18)

where the first inequality holds because of the Lipschitz continuity of risk functions such that r(hyy ) ;, i) —
(Yeft, k(i) yi) < thm i~ Yot k() f, and the second inequality follows from the convergence of network output in The-

orem 4.1 (By Theorem 4.1, we have w Zsz thwu — yemH2 < O(e) and ﬁ Yo ||hwer i — yeg,i|‘2 < O(e),
and so 12 g [lhyr ;s —vera]| < /IZ30(VE) = O(VE) and 2 Yy || s = werril| < VAO(V/E) = O(/e)).

Next, we bound the empirical risk in terms of label and knowledge imperfectness as follows:

1—-A A
" ZT (yeﬁ,k(xi)yi) + o ZT (yeff,k’(xi)v yz)

*s, 9 38y
1-\ § A 1— A\
< ZT(hRﬁ,iayi) +— ZT(thyi) + — = Yeff k(x;) i Z HhK i Yeff k(x;) (19)
n, s, ng Sg z S, g S,,

<(1- A)@R,sz,sg (B)+ )‘@K,S;’ + O(Ve)

where the first inequality comes from the Lipschitz continuity of risk functions, and the concavity of squared

root, the last inequality holds by Definitions 3 and 4, and Lemma B.8 and the assumption of ¢ such that
2

plog'?(1/¢) <O (€2L75/2 log_l/z(m)) Concretely, by Lemma B.8 (a), we have 1;—’3 dos. |(hRpi —

<
5<L5/4¢1/210g1/4(m)) and = Yo hics = verren|” < 5(L5/4¢1/210g1/4(m)), and so it holds
g g ’

that L2y thﬁ’i—ycff,k(mi) < 120 <L5/8¢1/4 logl/S(m)) and 2 gy [Ihics = verneeo | <
2O (L5/8¢1/4 1og1/8(m)>. Thus we obtain the last inequality of (19) by the assumption ¢log'/?(1/¢) <

0 <62L_5/2 log71/2(m)).
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Substituting Eqns. (19) and (18) into Eqn. (17), we have
RW®) = (1= ME[r (hy (), y)] + AE [r (hyen (@), 9)]

<OV + (1~ N@n.s..5,(8) + AQicsy +0 (@ +v/10s(1/5)) ((1 - A>\/nT + A\/nT> -

O
B.5.3. PROOF OF COROLLARY 5.2
Proof. First, following (17), with probability at least 1 — O(¢) — §, 6 € (0, 1), it holds that
Ty 1= A
RW') < n Z (hW(T> “yz) + — Z (hw(T)’i, yz) + A0 (\/E)
z g S”
(20)
<<I>+\/log 1/6) < (1— A ,/ N )
With the same reason as in Eqn. (18), we have
1—A A
o Z r (hw(T),i; yz) + v ZT (hw(T),ia yi)
S, 9 sy
(21)

1-—A A
SO(\/E> + n Zr (yeff,k(:ri)7 yz) + m ZT (yeﬁ,k(zi)vyi) .

z
Sz 9 Sy

Then, unlike in the proof of Theorem 5.1, we need to bound the risk in (21) in terms of expected label and knowledge
imperfectness. Thus, replacing hy 5 and h in Eqn. (19) with h R, and hj, we have

A
Z r (ycff,k(zi)yz) + — Z (ycff,k(:ci)a yz)

Sz g S”

<(1- /\)@R,Sz,sg (B) + /\@Kvséf

1—A

ny

(22)

— Yeft, k(z;)

//ZHh’Kl Yeff k(x

g S”

. 1
By Lemma B.8 (b), it holds that ngs;,

hK7; - yeff,k:(wi)’ ?

2 ~
and 250 (AR g0 — Yeft k(e < O (L5/4¢1/2 log'/*(m ))
2 ZS// < A (0(L5736 M 108" 8(m)) + O ( (5L
and A Zs H R84 — Yeff,k(z;) < \};—ﬂ ( (L5/8¢)1/4 log!/8(
A) (O( ) +0 ((10g 1/@)%))_ Therefore, continuing with (22), it holds that

ny

© 5 (e g o) + o
+

O( log(1/5)). Thus we have

Nz

0(e) + 0 (225 1))

g

i <
)eo () < -

h i T Yeff k(x;

1-A A
D7 (et yi) + o D7 (Ve k) 9i)
ne 4 ng sy
) R log(1/6)\* | [log(1/0)\ *
<(1 = N@r,s..5,(8) + AQx s + O(Ve) + O <(1 - <()g7(l/)> ) (Og’(w/)) > )
z g

O3+ (1= NOn(B) + X0 +.0 ((H) (b (w)>

1
., n,
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where the second inequality holds by Lemma B.8 and the last inequality holds by McDiarmid’s inequality. Finally,
substituting Eqns. (23) and (21) into Eqn. (20), with probability at least 1 — O(¢) — 6,9 € (0, 1), it holds that

1-A A
(T) _ 1/4 AN
RW™) < O(Ve) + (1 = NQr(B) + AQx + 0 (@ +10g'/4(1/3)) N2
This completes the proof. ]

B.5.4. PROOF OF COROLLARY 5.3

Proof. Proof of (a). If Qx < /€ and )\ is set as 1, it holds by Corollary 5.2 that

RW ™) < 0(ve) +Q + 0 (@ +log!/(1/5)) (711//)1/4

g

<O(\/>+O<1,,)1/4,

Ny

where in the last inequality we absorb the scales of the last term by O notation. Thus, n” < O( ) guarantees that

R(W(T)) < \/e. In the proof of Theorem 5.1, we prove that the probability that a sample belongs to the region covered
by the smooth sets containing at least one labeled sample is Py: = O(n./N) = O(n.¢®) = O(y/€). Thus we have

m_qf&_quﬁmmW%fﬁquuf(»~mmé%m.

Proof of (b). If Qk > /e and A = X<, then by Corollary 5.2, we have

R(W(T))SO(\/E)JrQR(B*)—ngf*)ﬁ+ﬁ+0<\/(1—\/E) — )

Ok’ yn: @k /n
Ve, 1 Ve 1
SO(\@HO(\/O—QK) s ﬁng)

where the second inequality holds because 82/ + QR‘(@ 5 > 1 such that Qr(8*) — M\f < y/e. Then to guarantee
R(W M) < /e, we require that (1 — Q—\/}i) 1nz < e and \f W < e. Thus, we have n, ~ O ((l/e —1/(VeQk)) ),
ny ~ O(@) and ng = n) /(1 —O(e)) ~ O(1/ ((e — €)Q%)).

Proof of (c). We prove (c) by contradiction. If R(W (7)) < /e, we have (1 — \)Qr(5*) < v/c and A\Qk < \/e. Then

QR\{;} 5+ éf > 1— A+ A = 1. This is contradictory to the condition @) ‘{;3 5+ c\g[ < 1. Thus completes the proof.

O

C. Proofs of Lemmas in Appendix B

We now show the proofs of lemmas in Appendix B, while the proofs of lemmas newly introduced in this section are deferred
to Appendix D.

C.1. Proof of Lemma B.1

In this section, we prove the forward perturbation with respect to inputs. We first recall some important notations. For

the smooth set k € [N], layer I € [L], let h;, = hi(x}), hi; = hi(x;) be the activated output of [th layer, and

fie = Wihi_a(2),), fii = Wihi—1(z;) be the pre activated output of /th layer for some weight W € B (W(O),T).

At initialization, denote hl(, =h 0)( L) h(o) ( i) f(0 VVl(O)hl(g) (x},), fz(,[;) = (O)hgg)l (z;), the diagonal

matrices Dl((;c) € R™*™ and Dl( i) R™*™ with [Dl(ok)} = ﬂ([fl((,?]j 0) and [ (0)} = ﬂ([fl(g)]j > 0) for
’ ’ RV ’ JJ ’

i € Zyk,j € [m]. Then we denote for initialization f;; = l(f;) — fl(’(,? and the diagonal matrix D; € R™*™ with

(D}, ;= {Dl(ok)} o [Dl(g)L E omitting the notation (0) and 1, k.
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Lemma C.1. If f]; can be written as f); = f;,, + fi,o with || f; || < O(L3/2¢log1/2(1/¢)) and || f] ; olloo <
O(L¢?/310g"?(1/$)m=1/2), then with probability at least 1 — exp(—Q(m¢2/3L)) over the randomness of W'®), we
have

1Dl < I1Dflo < O(mé?>Llog(1/)),

IIDZfz(ff)II < O(¢L**log"/?(1/4)).

Proof Lemma C.1 is given in Section D.1.

Proof of Lemma B.1

Proof. We first prove the following three conclusions by induction under the assumptions in Lemma B.1: fori € Zy 1, k €

[N], with probability at least 1 — O(&),

(a)f],; at initialization can be written as f/,, + f{,, with |[f/,,]| < O(L*?¢log"?(1/¢)) and ||f{, ;s
O(Lg? ™12 log!%(1/0))

(b) At initialization, || D} f; 1)||0 < || Djllo < O(m¢?/3Llog?(1/4)), ||D’fl(?)|| < O(¢L3?10g?(1/9)).

@11 = W < O(L/20\/log(m) 1og(1/6)) and || £ ~ {5/ < O(L3/6+/log(m) log(1/5))

When ! = 0, we have \|h(()?37héol)€|| = ||lz;— k|| < O(¢). Since {Wl(o)} ~N(0,2),j € [m], we have ||f1(0i) (0)|| <
: i ;

O(¢log?(1/¢)) with probability at least 1 — O(¢) over the randomness of W(O) By Lemma C.1, the above three
conclusions hold. Then we assume the conclusions (a) holds for layer a,a < [ — 1 and prove (a)(b)(c) hold for [.

First, we re-write f; ; as
0 0 0 0) 19(0 0
=10 = 15 =W (D + DIy ) (£ + fios) = WD 1

0) 0) (0)
:Vvl Dl/—l (fl(—l,k Jrfl/—l,i) + W( )D( il

! 1
Z ( H Wb(O)DLSO)Lk> wD, (f(q p + fa1 z) + W1( )( — )

a=2 \b=a+1

By Lemma C.1, and the inductive assumption (a) for layer a,a < [ — 1, we have with probability at least
1 — exp(—Q (m¢?/3L)),
104 (£0 + fi.) llo < O(ma*>L1og!2(1/9)), (24)

1D, (F0)+ f23) I < 062108 2(1/9)), (25)

50 (b) holds for layer I. Then let ¢, = (ng:a » WJO)D@M) wD! ( £+ f(;_u). By Eqn.(24), (25), and
Claim 8.5 (s = O(m¢?/3L)) in (Allen-Zhu et al., 2019b), with probability at least 1 — exp(—Q (m¢?/3Llog(m))), we
can write g, = ¢q,1 + ¢q,2 With

lga. ]| < O(6Y°L? log(m)log®*(1/¢)) and  |ga2lloc < O(SL**\/log(m)/mlog'/*(1/)).  (26)
Letff,, = ZZZQ Qa1 + Wl(o)(xi — ) and f]; , = 22:2 qa,2- Then we have f;, = f/, | + f;; ». Since ||W1(0) (z; —
z})|| < O(¢+/log(1/¢)) with probability at least 1 — ¢, ¢ € (0, 1), by triangle inequality, we can write

ES = Q1 = Wl = s+ Flial
<O(¢**L?log(m) log®*(1/¢) + ¢1/log(1/¢)) + O(¢L>/*\/log(m) log"*(1/4))
<O(L*?$/1og(m) log(1/4))
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where the first inequality comes from inequalities 26, and the last inequality holds by the as-
sumption ¢ < O(L™%2log™3(m)log=/*(1/9)). Also, by the requirement of ¢, we have with
Ifial < 0617 log(m)log**(1/0) + ¢\/log(1/)) < O(L*/*¢log!’?(1/¢)) and |fi;sllee <
O(¢L5/2flog(m)/mlog'/?(1/¢)) < O(L¢p?/3m=1/210g'/?(1/4)). Thus (a) holds for layer I. And by Lemma
C.1, we have with probability at least 1 — ¢,

0 0 0 0 0 0
I =m0 = 1D+ Dpy (9 + £1:) = DA
< IDIS+ (D) + D) £ i1l < O(L3?¢\/log(m) log(1/9))

where the second inequality comes from Lemma C.1. Thus, conclusion (c) holds for layer /.

Finally, by Lemma 8.2 in (Allen-Zhu et al., 2019b) which gives forward perturbation regarding weights, we have with
probability at least 1 — O(¢),

i = furll < IFS = £S5+ i = 21+ o = £33
< O(L**¢log'*(1/4)) + O(TL*/*\/log(m)) < O(L*"*¢+/log(m) 1og(1/4))
where the last probability holds by the assumption 7 < O(¢?/?). Similarly, we have with probability at least 1 — O(¢),
i = hugll < IS = B + i = BN+ s = BRI
< O(L**¢log"?(1/¢)) + O(TL>/?\/log(m)) < O(L*?¢/1og(m) log(1/9))

O
C.2. Proofs of Lemma B.2 and Lemma B.3
Proof of Lemma B.2
Proof. By the mean value theorem, r can be represented as
P = (B) + () (B B (0 — )T 7 () (0~ B, @n

where 2 lies in the line segment between i’ and h.

Since the maximum eigenvalue of the Hessian matrix of r is bounded by 1, for any output of the neural network h and i’ ,
we have

1
r(h) <r(h)+vrh)" (W —h)+ I =l (28)
Let i’ = h — syr(h). We have
1
Tmin <7 (R') <7 (h) - 5” v r(h)l3- (29)

Thus, we get the first inequality of the lemma ||57r(h)||> < 2 (7 (h) — Fmin).

By strong convexity, for any h and A’ in the domain of risk function r, we have
’ T 70 Pyt 2
r() 27 (h)+vr(h) (A" —h)+ Sl — hll

1 , (30)
zr(h) =g Iz rMIF,

where the first inequality comes from strong convexity and the second inequality holds by choosing i’ = vr(h) that
minimizes the right hand side. Then letting /4’ in the left hand side equals to h* such that r (h*) = ryn, we get the second
inequality of the lemma ||7r(h)||> > 2p (r (h) — rmin)-
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Also, letting ' in Eqn. (30) be h*, we have

rmin = 7 (%) = (k) = [[7r (A)[H[(R" = h)[| + gllh* —h|? 3D

By the fact that 7, < r (h), we have
I* bl < = [ ()] (32)
We thus get the third inequality. [

Proof of Lemma B.3

Proof. Denote the risk of the kth cell £ € [N] with respect to the input z} € X, for hypothesis h € H as
Tr= Y ri(h(ay).
€Ly 1

Recall that M, = ", €T, n (i 4+ ;). By 1-Lipschitz continuity of risk functions and their gradients, we have with probability
atleast 1 — O(¢),

P =il D (i + N () = b))l < O(MyL*?¢log"?(m),
iEI@k

and || Vnrk — Vafrgl| < D (i + X [1h(a) — h(a))|| < O(MyL>*¢log"?(m)).
1€Ly k

Since the eigenvalues of V%Fik is no less than Myp and rgg ;. is the minimum value of ZIW r1,;(h), by Lemma B.2, we
have

|70 P2 ll? = 2Myp (75 — 1igs) = 2Mip (Fui — 1ig,) — O(MEpL® ¢ log!/?(m)).

Therefore, we have

1Y wilh@)® = Il Vol = | vn el = O(ME L¥2log!?(m))

1€Ly 1

> 2Myp (Fl,k — r:ff’k) — 6(M§L5/2¢logl/2(m))

Also, since the eigenvalues of /277, is no larger than M}, we have

|7 P ll? < 2My (7D — et ) < 2My (Fre — rest,n) + O(MELY 2 ¢ log'/?(m)).
Therefore, it holds that

[ Z wi(h(z:))[|* =

1€Ly K

< | Zn il + O(MEpL> 2 plog! 2 (m)

<2My (Fr g — Teft ) + O(MZL5?¢log"/*(m)).

Applying Lemma B.2 for 7 ., we have

2 1 _ ~
R (x}) — yess, kII M2 5 th IkH < Mep? (m,k — Teff,k + O(MkL5/2qblog1/2(m))) .
By applying Lemma B.1 to h(x;), we have
1P (:) = yesr k| < 211P (@:) = h (2)|* + 2 |11 (},) -

1 _ A 5/2 1/2 (7542
1570 (71 = 7o + O(MLY2g10g"/2(m)) ) + O(L°¢* log(m)).

<

Taking weighted summation in the cell Z, j, since Zie% N (i + A;) = My, we have

> (i X () —

1€Ly 1

1 ~
P< 50 (7 = rern + O(MLLY 26 10g!2(m)) ) .
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C.3. Proof of Lemma B.4

Lemma C.2. Suppose that m > Q(N2d?¢=1). For any u; : |Ju;|| < pi + Xiyi € [0/] and v; ~ N (0,(1/d)]),
wj ~ N (0, (2/m)I), with Assumption 1 satisfied, with probability at least 1 — O(¢), we have

Zm:ZN: Z (ui, vj) o (<wj»h(L°31(wi)>)h (@ )II2>Q(am¢) ZII > wl|? = O(L*2plog"?(m))

k=1 €Ly k

Lemma C.2 is proved in Section D.2

Lemma C.3 (Lemma 8.7, Lemma 8.2c in (Allen-Zhu et al., 2019b)). Forany W € B (W(O), 7), with probability at least
1—exp (—O (m72/3L)),

HVDLL . VDS)L)HQ <0 (T1/3L2 mlog(m) /d) :

and vl € [L],

|

hit — h(ol)H <0 (TL5/2\/10g(m)) .

Proof of Lemma B.4
Proof. Denote u; = u;(hw (x;)). The gradient of the empirical informed risk can be expressed as

Tw Bt (W) =Y (VDL Wi, Wig1:D) iy (33)
i=1

“ T
Let G = vw, Bt (W) =330, Yieq,, (wVDL)) {21, By Lemma C.2, with probability at least 1 — O(6), we
have

k=1 €Ty

||G||F>Q(“m¢’) (Zn S w2 = O(L72glog!*(m))

N
EQ (a;n]\g;)p) (Z Mk (TiLk — Tefﬂk:) - 6(L5/2¢10g1/2(m))> (34)

=1

k
>0 (am¢pA) (EI _ Reff _ 6(L5/2¢10g1/2(m))) )

where Reg = Zszl Teff, and the second inequality comes from Lemma B.3 and the last inequality holds because
legvzl M, (Fl,k — Teff,k) > MZZkV=1 (Fl,k — Teff“l{;) with M = ming My, M = sz)’k(,u,i + )\1), and NM = \.

Here, we need to discuss more about A which is different for different objectives. Denote p, = miny |S, N Sz o [, Dy =

minyg, [SyN Sz, . |and py/. = miny |[(Sy\S.)NSz, | When A # Lor A # 0, A = Nmm{%er )‘ﬂ} > QN

ng ' ng

for objective (3),A = N min { (1= /\)(12 Bp: | (= A)Bpg /:T_} > Q(min(1 — A, \)) for objective (5)'. Beside, the cases
when A = 0 or A = 1 mean the corresponding datasets are empty (e.g. when A = 1in (5), S, = () and Sy, = (), so we have
A = 1. In conclusion, we have A = Q(min(1 — A\, \)1(A € (0,1)) + 1(\ € {0, 1})) for two objectlves

'Here, Sz, is the set of samples with their indices in Zy . Thus, there exists a constant C' such that n, < CNp., ny < CNpy,
(ng —n.) < CNpy,, where C relies on the input distribution.
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Next we bound the difference of |G| and || 7w, Ri(W)| with W € B(W(®) 7). By definition, we have

N
o= vwdiw], =[S S (uvD) -3 S vDu)Th L,
k=14i€Ty4 ), k=14i€Ty4 ), »
v N 69
<X S (wvD® - wvpy) B0 IS v (h0, - b
k=1i€Zy,s . k=14€Ty x .

(a) (b)

For the term (a) in the above inequality, denoting iz, _1 , = hr_1(z)) and letting (a) be the kth item in the summation,
we have

@k <[ > (D(Lo)k - DL,k) VIl b

’L‘€I¢)k F
| X (DY - D) Vel w2 - Y (DY) - D) VIl n,
IS €Ly K P
<0 (L2 mlog(m)/d) | 3 wil| + Y ||V (D) = Do) |l |2

i€Ty 1 i€Tyn

+ Z HV( DLk)H s | HhL 1k

<0 <71/3L2 mlog(m)/d) Z wi|| + My |,

1€Ly k

where the second inequality comes from Lemma C.3 and Cauchy-Schwartz inequality, and the last inequality comes from

Lemma C.3 and ZzEI  lluill < M), and Lemma B.6 such that Hh(o) “H < O(1) with probability at least 1 — O(¢).

For the term (b), it holds that

T
O <|| 3o (VDL wl (h 1 —hek)
i€T4 1 .
1SS (D) T (B —h A Tul (B0 — !
Li) U L—1,i L—1,i Z (VDprk) u; hL—l,k hp—1.k
€Ly 1 €Ly k F

<0 (TLEI/2 mlog(m)/d) 3w+ Y VDLl luill th”“th_L,-

1€y K 1€Ly k

+ 3 VDLl il [ —
€Ly 1

<0 (TL5/2 mlog(m)/d) Z ui|| + My |,

iEI(b,k

where the second inequality comes from Lemma C.3 and Cauchy-Schwartz inequality, and the last inequality comes from

LemmaC3and } ;.7 . |luil < My and Lemma B.6 such that th)luH < O(1) with probability at least 1 — O(¢b).
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Therefore, we can bound Eqn. (35) as

|G = vw, (W) < 0 (72172 /imlog(m) /d) ZN: S w|+1
k=1 ||[i€Ty

<0 (N1/271/3L5/2 mlog(m)/d) (\/(RI — Regp + 6(L5/2¢10g1/2(m))) + 1/\/ﬁ> (36)

<0 <N1/271/3L5/2 mlog(m)/d) (\/<]:21 — Regr — 6(L5/2¢10g1/2(m)))> ,

where the second inequality holds by Lemma B.3 and the last inequality holds because ¢ is small enough such that
Rt (W) = Regr + O(L?2¢log'/?(m)) < 2(R1 (W) — Renr — O(L*?¢log"*(m))).

Combining Eqn. (36) with Eqn. (34), we have

|vw e w)| =161~ || & = v, W) ||

>0 (\/ agﬁg)\ -0 (Tl/?’Nl/QLS’/2 mlog(m)/d)) (RI — Regg — 6(L5/2¢10g1/2(m)))

N . ~ .
>0 ( azljj;g (RI — Regt — O(L°/2¢log1/2(m)))> 7

where the last inequality holds by the choice of m > Q) (N N de=4p=4A"4a4 log3(m)) and the weight update range
in the proof of Theorem 4.1 such that 71/3 = O(N=3/2¢1/2p /2 X1/241/2[,=5/2 10g /2 (m)).

[t )} = [ (W) = 0 (S50 ) (o= s = G2 2105 ().

C.4. Proof of Lemma B.5
Proof of Lemma B.5

Proof. Since the maximum eigenvalue of the second order derivation of the informed risk function 71 ;(hw ;) with respect
to h is less than p; + A;, we have

it i
rri(hwe i) — ri(hw ) < uilhw )" (hw i — hw i) + O (M > lhw ;i — th||2) . 37
Then denote W = W’ — W. We have
Z rii(hw ) — ri(hw i) — <VWTI,i<hW,i)7 ﬁ\/>
i€Ly K
T = i + A 2
< Z ui(hw i) (hW’,i —hw,i— <VWhW,iaW>) +0 Z 5w = hwl
1€I¢1k 1€I¢),k
T (38)
= it A
< Z ui(hw i) (hW’Jc —hw i — <VWhW,ka W>) +0 Z = lhw i — hw >
7;614),)@ ieI(b,k

+ Z [[wi(hw i)l H [(hw/ﬂ; —hw.,i— <VWbW,i»W>) - (hW/v’f ~hwk - <thw,k, W>>} H ’

1€Ly K
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where Cauchy-Schwartz inequality is used in the last inequality. By Theorem 4 in (Allen-Zhu et al., 2019b), we have with
probability at least 1 — exp(—Q(m7%/3L)),

HhW’,i —hw,— <VWhW,ia W>H
<o (v watie ) [#] <o (12 )
By Claim 11.2 in (Allen-Zhu et al., 2019b), we have
Ilowwrs = hw | < O(Ly/m/d) | W]|.
Thus since ||u; (hw ;)| < O(p: + A;), we have

Z rii(hwe i) — rLi(hw i) — <VW7"I,i(hW,i)a ﬁ\/>

IS
<0 <\/Mk (ﬁ,k = Teff,k + 5(L5/2¢10g1/2(m))) + Mk) © (71/3L5/2\/W(m)d71/2) HWH &

+ O(M;,L*m)/d) HVT/H2

where the inequality comes from Lemma B.3. Taking summation over i € [N], we have

Ri(W') = By (W) < (YwRi (W), W = W) + O(L*m/d) HVAVH2

! <\/(RI (W) = Rt + O(L3/2¢ log"/*(m)) + 1/ W) O (NY2r1 21302 fmlogm)d /2 ) || W |

< <VWRI W), W' — W> +0(L?m/d) HVAVHQ

" <\/(RI (W)~ R — O(L5/26 105" 2(m>>)> O (N2t L2/2 mTog(m)d ™12 |[W

9

where the second inequality comes from the choice of ¢ such that Ry (W) — Reg + O(L%/2¢log"/?(m)) < 2(R; (W) —
Reg — O(L%2plog*?(m))) and 1/v/N < /& < \/(RI — Regr + 6(L5/2¢1og1/2(m))).

C.5. Proof of Lemma B.6

Proof. By Lemma 7.1 in (Allen-Zhu et al., 2019b), with probability at least 1 — O(NL)exp (—Q (m/L)), we have
Vk € [N], h,(CO)L H < 2.. Thus by Lemma B.1, we have with probability at least 1 — O(¢),

Vk € [N],VZ S I(j)’k,

B | < 2+ O 26 108" 2(m)).

Then since each entry of V satisfies N (0, 1) and O(NL) exp (—Q (m/L)) < O(¢), we have with probability at least

1-0(9),
|| Vis(176) = 0 (Vies(175)).

Let 71 i (Yot k(z1)) = Mt (Yeff k(z1)> Yi) + T K (Yoft k(i) 9(24)). Thus with probability at least 1 — O(¢), by 1-Lipschitz
continuity of risk functions, we have

0
D = 1L et ko)) < (i + Ao) | By ) 5 = Yett k(o)

< (i + X) ([[rwo ]| + ||vett k(an |])
<O (i + M) og"2(1/9) ).

v = [V <2]
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Taking summation for ¢ € [n’], we have

By (W(°>) “Rg <O <log1/2(1 /(b)) .

O
C.6. Proof of Lemma B.8
Proof. Proof of (a): Denote U, = Uy(S.) = {k € [N] | Jx € S,z € Cy 1} as the index collection of smooth sets that
contain at least one labeled sample and U, = [N]\ U, as the index collection of smooth sets that only contain knowledge-

supervised samples. Denote hy; ; = hi (z;) for notation simplicity, and recall that x}, € X is the representative input of the
smooth set &, so we have

/ZTK hKZ’gl - Z ZTK thvgz

/)
g S// g keu// I¢ "

> LS S i (hiclah). ) - O (£ 20108 2(m)

nl
9 keUy Ipx

% Z Z TK (Yett &, Gi) + i Z <Vh, z K (Yeft k> 9i) » Pic (23,) — yeff,k>
g

keU? Ty.x ng keu! Tk

n

(40)

v

5o O ol Ihic(ah) = vl * = O (226 10g(m) )

gkeu”
where the first inequality holds by Lemma B.1 and Lipschitz continuity of the risk function, and the second inequality holds

by the strongly convexity of Z% . Tk (h, g;) with respect to h. By subtracting L heur 27, "K (Yett & 9;) from both
: . f :
sides of (40), we have

1 *
= > [Zonl i () -

9 keuy
Vn Y i (ert k6 || 1P () — verr k]l + 0 (L5/2¢10g1/2(m)>
Pitg keuy Zs .k
<0 1 O (15241002 41)
<O D> |Vn Do (wermrro i) | + ¢log'/?(m)
9 keuy Ty ke

<2

keu}

=0 <LO/4¢1/2 10g1/4(m)) + O(L?plog"?(m)) < O (L5/4¢1/2 10g1/4(m)) ,

2|Z, 7T ~ [/ =
\/ | ¢ k' (yeff,kagi) —TK (yefr,mgi)) + |7f7,’,k‘0 <L°/4¢1/2 10g1/4(m)>
g

+0 (L5/2¢10g1/2(m))

where the first inequality holds since {hf; ;,i € S, } minimizes > >, rk (h(z;), g;), the second inequality holds since
g 9

1hi (2%) = Vst k|l < R (@) || + 1| Yett k|| < O(1) by Lemma B.6 and Lemma 8.2(c) in (Allen-Zhu et al., 2019b), and the
third inequality holds by applying Lemma B.3 for ZIM TK (Yeft &, §i) With reg jp = ZIM K (Yett k, 9i). Therefore, by
Lemma B.1, we have

= > i - P < S ol hic(ah) — v sl® +0 (126 10g2(m)) < G (L3462 108" (m))
g sy g keuy

(42)
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Similarly, denote rr s (h(x;)) = LLr(h(x;), yi)1 (z; € S.) + nﬁ,rK(h(zi),g(xi))]l (zi € 5). We have
g9

Nz

Z TR,8 (hﬁ’ﬁ(m)) > Z ZTR,B (hl*:{ﬁ(x;)) -0 <L5/2¢log1/2(m))

SzUSé keu;] Ton
2> D e (ern) = 2 | Vn D ra(yers) | 1B (k) — v 3)
k€U, Ty i keu!, Tox
+ g Z My, ||hi 5 (1) = yerr, kH (L5/2¢log1/2( )> 7
keu,,

where My, = 5,07 [%1 (v; € S.)+ |5%]1 (z; € S;)}, the first inequality holds by Lemma B.1 and Lipschitz

continuity of the risk function, and the second inequality holds by the strongly convexity of rr g (hf{, ﬁ) with respect to
hf - Then, subtracting Y keur Z% . TR,3 (Yeft 1) from both sides of (43), similarly as Eqn. (41),it holds that
. 4 &

Z My ||hk 5 (2) — yeff,kH2

=
2 ~
S; Z Vh Z TR.8 (Yeri k)|| ||k 5 (2h) — e k|| + O (L5/2¢10g1/4(m)) “4)
keuy Lo,k

<O (L7/12 1og"*(m))
where the first inequality holds because } g ;¢ TR,8 (hﬁﬁ(a:i)> = 2kewr 27, , "R,8 (Yeti,k) < 0, and the second

inequality holds since ||hj (z}.) — Yest k|| < O(1) by Lemma B.6 and Lemma 8.2(c) in (Allen-Zhu et al., 2019b) and then
applying Lemma B.3. Therefore, by Lemma B.1, we have

]_ —
.
z S,

BZHhRBz Yett k() “<o ZMthRﬂ y,) — yefka
"9 S! kel

<0 <L5/4¢>1/2 10g1/4(m)) '

Proof of (b): Replacing hj; in Eqn. (40) with Bi‘; and applying the second and third inequality in Eqn. (41), we have

Z \Zo, k] || i (23 ycfkaHz
9 keuy

<0 (L5/4¢1/210g1/4 ) ZTK (hi(2:), 9:) Z ZTK (Yeft k> 9i)

g su g k€Ul Ty,

<O (171621084 (m)) + 1 (i), 9(0))] ~ E [ (o )] + 0,/ 220/

"
g

log(1/96) )

g

<0 (L5/4¢1/2 1og1/4(m)) +0(

where the second inequality follows from McDiarmid’s inequality and the last inequality is because hj;(x) minimizes
E [rk (h,, g(z))]. Therefore, by Lemma B.1 and with the same reason as (42), we have
~ log(1/6
2 §O<L5/4¢1/210g1/4(m)> +O( Og( / ))

1 _
*
i 2 : HhKJi T Yeft k() ]
g S;’ g
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Similarly, replacing hg g in Eqns. (43) with hy; 5 and with the same reason as the second inequality in (44), we have

> My || p(wh) = yesr||”
keu,

<0 (L5/4¢1/210g1/4(m)) + 3 e (Ris@) = 305 rros (errn) -

s-Us, keU! Ly x

(45)

Continuing with (45) and by McDiarmid’s inequality, we have

> M |[Bi () — yern ]|

keu,
A (75/4 1/27. 1/4 Tk log(1/6)
<O (L6210 (m)) +E | 3 rrs (i (@) | =B | 30D rrys (o) | + 00 =2 22)
s.Us, keUy Ty, z
Sé (L5/4¢1/210g1/4(m))+0( log(]‘/é))7
n.

where the second inequality is because BR () minimizes E [Z s.Us; RS (ﬁ}‘{’ B(ml))] . And thus by Lemma B.1, we

have
1= B 2, B - 2_5 log(1/4)
3 B s = et + 2 Do i s~ et aien | < O (L2461 2 108" (m)) + O( | 2E=2).
Z S g sy z
O
D. Proof of Lemmas in Appendix C
D.1. Proof of Lemma C.1
Proof. We simply use D’ to denote D;. If for some j € [m], [D’]; ; # 0, then it holds that
0
\fralil = 1Ufraali + [fa2il > 1l l(,k)}j" (46)

Letf: &< 2\}5 and £ < 2[/f/, 5|lc be a parameter to be chosen later. We then discuss the zero norm of D’ in the

following two cases.

First, we consider the case that || fl(f,?] ;| < & Inthis case, (46) is easy to be satisfied. Denote 51 = { jem]ll] fl(f,?] il <e }

Since [f{]; ~ N(0,2). we have B{[fi})]; < &} < O(¢vm). Since [Si] = S, 1]y < €). we have
Elexp(|S1])] < exp(ém?/?(e — 1)). Thus, by Chernoff bound, P(|S;| > 2¢6m?3/?) < % < exp(ém?/?(e — 3)).
Hence, with probability at least 1 — exp(—Q(m?/2¢)), we have

|S1] < O(Em*?).

Then, for j € Sy such that [D']; ; # 0, we have |[D’ {15 < |Uf0 151+ 17 513l + 107 o2l < NUf75 151+ 3¢/2. Further,
we have o

ST DR <O 412 + 151 < O iall? + €21S11) < O(If ;1% + EmP/2).

JEST

Second, we consider the case that |[flE[;€)]j| > . Denote Sy = {j € [m] | |[fl(7?€)]j| > ¢, D', # 0}. Then, (46) requires
that

U aalil = Uil = U aalall = 1L = Uil = 1S = 1 a2lsl = € = Il ialloe > €/2.



Informed Learning by Wide Neural Networks: Convergence, Generalization and Sampling Complexity

Thus we have
A f 117

&

Then since for j € Sy such that [D’]; ; # 0, the signs of [fl(’?c)]j + [flialj + [fii2]; and [fl(’(,)c)]j are opposite, we have

|S2| <

0 0
D" 011 = 1S + Uil + Uil S AUl + Ut aalil S Ualil +€/2 < 201051
Therefore, it holds that
0
STIDEPE <A )P < Al

jESS jESz

Combining the two cases, we have

ajp ALl
||D||OS|SI|+|SQ|SO &m +§72 ’

1D £ 012 < O(If 31112 + E3m®/?).

IN

. li 2/3 .
mmm5=mwhwmmmﬁﬂ2ﬁJMMm%wmn<mW%mWWWmmmmm

O(Le*/3 /m"/?10g"/?(1/9)), we get | Dl < O(mLg*/1og'/*(1/¢)). Choosing & = 2[|f{.; ,ls. we get [|D'£7|
O($L*?log'/?(1/¢)).

O IA

D.2. Proof of Lemma C.2
Lemma D.1 (Lemma B.1 in (Zou et al., 2020)). Assume m > Q (Llog(NL)). For any =,z € X4, 1,5 € [N],l € [L],

R}
with probability at least 1 — exp (—O(m/L)) over the randomness of W9, it holds that 1/2 < ||h(z})| < 2 and
() / || (a})]] — hi(%)/ ||hl(:17;) || = /2, where hy(x}) is the output of the I—th layer at initialization.

Denote b; = hyy 1 _1(x;) and b; = b;/||b;| for x; € X, and b = hyyo 1 (2}) and b = b} /||b]]| for 2} € X,
By Lemma D.1, we have Vi ¢ Ty, ||b; — b},|| > ¢/4 . Moreover, by Lemma B.1, we have Vi € Ty, ||b; — b;|| <
O(L¥2$log"2(m)).

Then we construct several sets for the vector w € R™ subject to N (0, (2/m)I). Given bl,, we construct an orthogonal
matrix Qy, = [b},Q}] € R™ ™ and let ¢ = Q] w ~ N(0,(2/m)I). In this way, the vector w is decomposed as two

orthogonal vector: w = Qrqr = q,(cl)l_agc + Q).q), where q,(:) is the first element of gy. Letting v = v/27¢/(32N/m), we
construct the set

W = {w e R? | g"] <7, 1(Qhai b)) | = 29,¥) # b @7)

where [q,(cl)7 a.] = qk.

Lemma D.2 (Lemma C.1 in (Zou & Gu, 2019)). For any W; and W, j # k, we have W; Wy, = 0 and P(w € W) >
o

Lemma D.3. Let f(w;) = E]kvz1 >iez, , @0 ((wj,bi))bi where wj, j € [m] is drawn from N(0,(2/m)I),
o ((ul + Al)/\/cj) If for each smooth set k, there exists a subset G o, € [m] with size am,a € (0,1) such that
Vi € Ik, ¥Vj € Grar o' ((wy,0:)) = o' ((w;,b))) and V5 & G o, [(wj,b;)] > 32O e have for any j € Gr.a

16 N/m’
P (Hf(wj)u > | Ayl /4 — My /VAO (L5 ¢ log"* (m)) | w; € wk) > 1/2 where A, = Y, .7 aik € [N].

a;| <

1€y K

Proof. For j € Gy, let g = Qlw; ~ N(0,(2/m)I). Then we have w; = Qpqi = ql(ﬁl)l;;C + Q).q;.- We decompose
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f(wj) as

flw)) = > o ((w,bi)bi+ > > a0’ ((w,b:))bs

i€Tg k k'K €T, 4

= Y aio (W )b+ > > aio ((w,b)b; 48)

1€Ly K k'#£k iEI(p,k’

= 3w’ @i+ Y Y aio! ((w,bi)bi,

i€T4 1, k' £k (€T, 4

where the second equality holds by the assumption Vj € Gy o, 0’ ((w;, b;)) = o' ((w;, b},))-
Then for the second term of (48), if j € Gy o, we have for ¢ € Z,, 1/, o' ((wy, b;)) = o’ ({w,, b},/)) and thus

ST ad((wbi))bi =Y > a0’ ((w, by))bi

k' £k €Ty 1 k' Ak i€T, 1
1)
ZZ Z a’io-/(q](g I /> (Q > b)) bi
k' £k €T, 4
—Z Z ;o' ({Q%qx, i) )bi
K £k €T, 4

where the last equality holds by the condition w; € W), such that for &' # k, | (Q.q, bl..) | > 27||b}. || > |q,(€1)|||b’ A >
|q,(€1) < b}, b}, > | and thus the sign is determined by (Q}.q}, b} ). Therefore, if j € Gy, we can write (48) as

flw;) = Z am/(qz(gl))biJr Z Z a;0" ({Q Qs Vi) ) bi- 49)

i€T4 .k k' £k €T, 1

In the other case with j ¢ Gy o, by assumption Vi € Ty, 5/, [(w;, b;)| > 1%‘1/\%% = 6, we have with probability at least

1 — exp (—O(m/L)), |{w;,b;)| = [{w;, b;)| m > 3~ by Lemma D.1. Then Vi € Z, 4/, we have
(Qidhsbi) | =1 (w;,Bi) = (0B )|
(s Bi) | = (a0 Bi ) 2 [ (s Bi) | = Jaf|

| (wj, bi) | —~ > 27
1 1 T
> 2| || > lai 1B | > gt < B, b > |,

v

v

where the first inequality comes from triangle inequality, the second inequality holds by | <l_);€, 51-> | < 1, and the last
inequality holds by the condition w; € Wj,. Therefore if j ¢ G/ o, we can write the second term in (48) as

Z Z CLZ'U/(<’LU, bl>)bl

k' £k €T, 4
1
_Z Zaz () b, bi) + (Qkdk, bi))bs
k' #k €T, 4
= Z Z a;0" ((Q)k, bi))bs
k' £k €T, 4

Therefore, if j ¢ G’ o> We can write (48) as

Fw) =" ad' @b+ Y Y o’ ((Qhdh bi))bi. 50)

€Tk k' #k €T, 4
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Note that (49) and (50) are different only in terms of whether b}, or b;,7 € Zy ;s determines the second term, but for both of
them, the second term does not rely on q( )

Since q,(C ) > 0and q,(C )

. We thus proceed as follows.

< 0 occurs with equal probability conditioned on the event w € Wy, we have

P Hf(wJ)HQ > q1>i0n§2<0max{||f ((1162 ka) I 11.f (Q2b ka) ||}> |weWk| >1/2.

Thus, with probability at least 1/2 conditioned on the event w € Wj,, we have

1wl >~ _inf _ max {[If (qa0} + Qkar) I, IS (a2bk + Qrar) II}

q1>0,92<0

> inf || (@b + Qkai) — f (a2b + Qhar) || /2

q1>0,92<0

> abi

i€Ty k

i1€Ly p LtVill T €Ly LVEI = i€y g Pi\Vi T V)l = Zijezy  [PelllYe T Upll = Mk e :
12 ez, , aibill = | Xiez, , @ibill| < 12 sez, , ai(bi = VI < Xiez, , lailllbs — bl < M VdO(L?¢log'/?(m))
Thus,

Since |a;| < O((uiJr)\i)/\/;l) and ||b; — bl < O(L2¢log'/?(m)) for i € Zsk, we have,

IS abl > 1S athl Il S abill — 1 Y aih

€Ly 1 €Ly 1 €Ly 1 1€Ly K
> Y aiby] — MeVdO(L*?plog'/? (m))
i€y

> |Ag|/4 — My, /VAO(LY?$log*(m)),

where the last inequality follows from Lemma D.1. The proof is completed. O
Lemma D.4 (Bernstein inequality). Let X1,--- , X, be independent zero-mean random variables. If | X;| < 1 almost
surely for all i, then ¥t > 0,
(ZX > t> < exp (—t2 (ZE (X2 + t>>
i=1
Proof of Lemma C.2
Proof. Denote b; = hfll(xi), ) [hg))(:ri)]j = (wj,b;). For any fixed [ui,--- ,u,], denote a;(v;) = (u;,v;),i €

[n'],j € [m] and Ay(vy) = iz, , aivy). Let f(uvj,w)) = Sy >iet, ,, 4i(vj)o’ ((wj, b;))b;. Define the event for
k € [N]

Ex =5 € Gt wy € Wi, [f(vj,w))ll || Y will/(4Vd) — Myd ™ /2O(L%* ¢ log"/*(m))

1€y K

Since v; ~ N(0, (1/d)I), we have A (v;) = <Zi€IM U, ’Uj> ~ N(O, || DieT, u;||?/d). Thus, we have

P Y will/Vd <Al <20 Y wll/Vd | >1/4.
iqub,k iEI(pyk
Note that when | A (v;)| < 2|| Z7€I¢ X w;||/V/d, we have Vi € Ty k. |a;(v;)] < |Ar(v)|/|Zox| — O(L52¢log"/?(m)) <

2| Yiez, , will /VA/|To k| = O(L72¢10g"2(m)) < 2(ps + Ai)/Vd = BO(L?/2¢log!/?(m)) < 3(u; + Ai)v/d when ¢
is small enough, so the condition about |a,(v;)| in Lemma D.3 is met.
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Since Assumption 1 is satisfied, we have for each smooth set k, there exists a subset Gy, o € [m] with size am, o € (0, 1)
such that Vi € Zy 1., Vj € Gy 0. 0'((wj, ;) = o' ((w;, b)) and Vj ¢ G o, [(wj,b;)| > 1‘2‘1/\?;% so the assumption in
Lemma D.3 is satisfied. Then by Lemma D.2, Lemma D.3 and the fact that w; and v; are independent, we have for j € Gy,

B(j € &) = P {170y, wy)l| > [Ax(e)|/4 — Myd ™ 2O(L3plog! () | w; € Wi }

Plw; e WP | I D will/Vd < |Ar(vy)l <20 Y will/Vd

Ss__ % _ o
1€Ly K 1€Ly K N256\/%

and &, (&g, = 0 for any k; # ko.

For smooth set k, denote Bernoulli random variables 1(j ¢ &) for j € Gy o. Then we have E [1(j ¢ &£;)] =1 — py and
var [1(j ¢ &)] = ps(1—pe). By Bernstein inequality in Lemma D.4 for random variables 1(j ¢ &) — (1 —pg), j € [am)],
it holds that

1
. amp Lamp 3
P Z 1(j & &) — am(l —pg) > 5 2] <exp <4¢1> SGXP< 14amp¢)

J€Gk,a 1 —Ps T 6

Thus, by union bounds, with probability at least 1 — O(N) exp (—O (am¢/N)), we have forany k € [N], > .., 1(j ¢
&) < am — ampy/2 and

GeaNE| = Y TG ca) =am— > 1 ¢ &) = ampy/2. 51)

J€GkK o J€GK, o

Therefore, with probability at least 1 — O(¢), it holds that

N m
(5, w;)|1? >Z||f vy, w; )| Zﬂ Je&) =D > Ifwjwy)l*1( € &)

k=1j=1

Z £ (g, wy) | 105 € &) Z S f i w)?
&,

k=15€Gk, a,JEEK

J€EGk,aJEEK 1€1g,k

21
N
Z
k=1
N
>y > I will/(4Vd) = Myd = O(L>?¢ log!/*(m))
k=1
N
>
k=1
N
>

1 .
> Yoo | el Do wl® - MEaTIOLY 2 log! 2 (m)) (52)
JEGk,aJEEK €Ly 1
1
= Toa! > will* = MR O(L**plog'?(m ’gkaﬂgk’
k=1 €Ly 1
N
Oémp¢ 12 _ Ar2g-10(75/2 1/2
S| el 3wl - MO g 1og )
k=1 €Ly 1
me
> (% S wll - 010 m) |
k=1 €Ly

where the first inequality comes from the fact that &, [ €k, = (0 such that Zszl 1(5 € &) < 1 and the second inequality
comes from the fact that G, , € [m], and the third inequality holds by the definition of event £, and the forth inequality

comes from the fact that (a — b)? > a? — 2ab and || Zie% L Wi |/(4v/d) < Mj;d='/?/4, and the fifth inequality comes
from (51) and the last inequality holds by the fact that 30 | M2 < (Yr_, M;)% = 1. O
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E. Preliminaries on Informed Machine Learning

Informed machine learning is rapidly emerging as a broad paradigm that incorporates domain knowledge, either directly
or indirectly, to augment the purely data-driven approach and better accomplish a machine learning task. We provide a
summary of how domain knowledge is integrated with machine learning (von Rueden et al., 2021).

¢ Training Dataset. A straightforward approach to utilizing domain knowledge is to generate (sometimes synthetic) data
and enlarge the otherwise limited training dataset. For example, based on the simple knowledge of image invariance,
cropping(Gao et al., 2018a), scaling(Zhang et al., 2018), flipping(Benaim & Wolf, 2018) and many other image
pre-processing methods have been used to augment the training data for image classification tasks. As another example,
in reinforcement learning (e.g., robot control and autonomous driving) where initial pre-training is crucial to avoid
arbitrarily bad decisions in the real world, simulated environments can be built based on domain knowledge, providing
simulations or demonstrations to generate training data (Gao et al., 2018b; Hester et al., 2018). Additionally, generative
models constructed based on specific knowledge have been shown useful for increasing training data to improve model
performance and robustness (Gao et al., 2018a; Goodfellow et al., 2016).

* Hypothesis Set. The goal of a machine learning task is to search for an optimal hypothesis that correctly expresses the
relationships between input and output. To reduce the training complexity, the target hypothesis set (decided by, e.g.,
different neural architectures) should contain the optimal hypothesis and preferably be small enough. Thus, domain
knowledge can be employed for hypothesis set selection. For example, (Chen et al., 2021a) makes use of the prior
knowledge from the existing neural architectures to design new architectures (and hence, new hypothesis sets) for
DNNSs. As implicit domain knowledge, long short-term memory recurrent neural networks are commonly used for time
series prediction (Goodfellow et al., 2016). Also, the structure of a knowledge graph helps to determine the hypothesis
set of graph learning (Marino et al., 2016; Battaglia et al., 2018), while (Towell & Shavlik, 1994) maps the domain
knowledge represented in propositional logic into neural networks.

* Model Training. Domain knowledge can be integrated, either implicitly or explicitly, with the model training procedure
in various ways. First, domain knowledge can assist with the initialization of training. For example, (Ramsey &
Grefenstette, 1993) provides a case-based method to initialize genetic algorithms (i.e., generating the initial population
based on different cases), while (Husken & Goerick, 2000; Kurata et al., 2016; Humbird et al., 2018) initialize neural
network training with various domain knowledge such as label co-occurrence and decision trees. Second, domain
knowledge can be used to better tune the hyper-parameters (Bardenet et al., 2013; Van Rijn & Hutter, 2018; Maher &
Sakr, 2019; Bamler et al., 2020). In (Bardenet et al., 2013), implicit knowledge from previous training is incorporated
to improve hyper-parameter tuning, and (Van Rijn & Hutter, 2018) extracts knowledge from multiple datasets to
determine the most important hyper-parameters. In addition, a more explicit way to integrate domain knowledge is
to directly modify the training objective function (i.e., risk function) based on rigorous characterization of the model
output (von Rueden et al., 2021). For example, in (Muralidhar et al., 2018), the knowledge of constraints is incorporated
into neural networks expressing the knowledge based loss by the ReLu function. For another example, when learning
to optimally schedule transmissions for rate maximization in multi-user wireless networks, the communication channel
capacity can be added as domain knowledge to the standard label-based loss to guide scheduling decisions; in physics,
the analytical expression of a partial differential equation can be utilized as domain knowledge on top of labeled data to
better learn the solution to the equation given different inputs; more examples are shown in Section F. Such integration
of explicit and rigorous domain knowledge can significantly benefit machine learning tasks (e.g., fewer labels needed
than otherwise). Thus, it is crucial and being actively studied in informed machine learning (von Rueden et al., 2021;
Willard et al., 2020), which is also the focus of our work. Note that using domain knowlege to generate pseudo labeled
data to augment the training dataset is a special case of integrating domain knowledge into the training risk function
(i.e., the knowledge-based risk is the same as the data-based risk, except that its labels are generated based on domain
knowledge).

* Final Hypothesis. Domain knowledge can also be used for consistency check on the final learnt hypothesis or model
(von Rueden et al., 2021). For example, (Karpatne et al., 2017) employs physics domain knowledge to construct the
final model, (Pfrommer et al., 2018) builds simulators to validate results of learned model, and (Fang et al., 2017)
leverages semantic consistency is used to refine the predicted probabilities.
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F. Application Examples

We now present a few application examples to explain domain knowledge-informed DNNss.

F.1. Learning for resource management in communications networks

Optimizing resource management is crucial to improve the system performance in communications networks (Chiang
et al., 2008; Goldsmith, 2005; Zappone et al., 2019). Well-known examples include power allocation (Hong & Luo, 2014;
Chiang et al., 2008; Liang et al., 2019), link scheduling (Gore & Karandikar, 2010; Cui et al., 2019), antenna or beam
selection (Sanayei & Nosratinia, 2004; Klautau et al., 2018), among others. While many of the problems were studied using
theoretical model-based approaches in the past, machine learning has been increasingly employed, in view of the rapidly
growing complexity of communications technologies that theoretical models are often incapable of capturing accurately
(Zappone et al., 2019). Let us take power allocation in multi-user wireless interference networks as an example. The recent
work (Sun et al., 2018) uses a pure data-driven approach for power allocation to maximize the sum rate: a labeled dataset
containing channel state information (CSI) and the corresponding power allocation decisions is collected in advance, and a
neural network is trained to learn the optimal power allocation. On the other hand, Shannon-based transmission rate has
been extensively as an analytical objective function to optimize power allocation, and (Liang et al., 2019) exploits this
domain knowledge to train an ensemble of neural networks that directly learn the optimal power allocation for Shannon rate
maximization.

The data-driven approach (Sun et al., 2018) can maximize the practically achievable rate (if labels are collected from real
systems), but is significantly constrained by the limited amount of training samples. Meanwhile, the knowledge-based
approach (Liang et al., 2019) can utilize a large number of input samples (at the expense of higher training complexity), but
the resulting power allocation decisions may not maximize the sum rate in real systems. The reason is that the Shannon
formula for interference channels, albeit commonly used for analysis, only represents an approximation of the achievable
rate which is subject to finite channel code lengths and modulation schemes (Goldsmith, 2005). In other words, even an
oracle DNN that minimizes this knowledge-based loss may not maximize the achievable rate in practice.

To reap the benefit of both labeled data and domain knowledge, informed machine learning can be adopted, resulting in a
new informed loss as follows:

. 1 2 1
}Lrél;{l(l -7) - ( z):es [h(z) —y]” p +7- = zg: Shannon_rate[h(x)] + constant » | (53)
T,y TESX

where z is the input (e.g., channel state information), h(x) is the learned power allocation given x, the two loss terms
represent label-based loss and knowledge-based loss, and n and 7 are the numbers of labeled data samples and (possibly
unlabled) knowledge samples, respectively. The detailed Shannon formula for wireless networks can be found in (Liang
et al., 2019; Goldsmith, 2005).

F.2. Image classification based on semantic knowledge

Typical image classifiers rely on labeled training data, but labels can be difficult and expensive to collect in practice
(Goodfellow et al., 2016). As a result, few-shot learning (Wang et al., 2020; Sung et al., 2018; Garcia & Bruna, 2018) that
only needs a small number of labeled samples has been proposed. Informed machine learning under our consideration can
be viewed as few-shot learning. Concretely, semantic knowledge formulated as the first-order logic clauses/sentences (Xu
et al., 2018; Diligenti et al., 2017b) can be incorporated to improve learning performance given limited labeled samples. An
example logic clause is “if it is an animal and has wings, then it is a bird”. By a logic clause K, a knowledge-based loss can
be defined as Fi (h(x), g(x)) for an (possibly unlabled) input image « and a certain logic clause g(x) that the output class
h(zx) needs to satisfy. Then, combining the standard label-based loss with knowledge-based loss, the model performance
can be improved by minimizing the informed loss Eqn. (3) given limited labeled samples.

F.3. Learning to solve PDEs in scientific and engineering fields

Partial differential equations (PDEs) are classic problems in many scientific and engineering fields, such as physics and
mechanical engineering, but are notoriously difficult to solve in most practical settings (Institute, 2020; Baker et al., 2019). In
recent years, physics knowledge-informed machine learning has been suggested as a promising approach to augment or even
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replace classic PDE solution approaches (Deng et al., 2020; Willard et al., 2020; Khoo et al., 2021; Beck et al., 2019; Raissi
et al., 2019; Lu et al., 2021). For example, (Raissi et al., 2019; Lu et al., 2021) proposes a physics-informed neural network
(PINN) to solve PDEs by minimizing the PDE residual and penalties of boundary/initial conditions, which correspond
to the knowledge-based loss Fi(h, g(h)) in our framework. Additionally, we can combine the knowledge-based loss
with labeled-based loss, achieving faster convergence and better performances in practice (especially when the PDE-based
knowledge does not perfectly represent the real physical world). Take magnetic field strength estimation for magnetic
materials as an example. If a few measured magnetic field strengths are provided as labels combined with the knowledge of
Maxwell equations, the model trained by minimizing the informed loss can perform better in the real world. The measured
labels can partly correct the imperfectness of physics knowledge, while the knowledge can improve the generalization in the
presence of limited labels.

F.4. Knowledge distillation and transfer

Knowledge distillation (Hinton et al., 2014; Furlanello et al., 2018; Phuong & Lampert, 2019; Allen-Zhu & Li, 2020) is
an important technique to transfer prior knowledge from a pre-trained neural network (a.k.a. teacher network) to another
network (a.k.a. student network), with the same or different architectures. Typically, given an (possibly unlabled) input,
knowledge distillation is performed by matching the output of the student network with the output of the teacher network. In
addition, labeled samples can also be included to introduce a label-based loss. Thus, by formulating g(X) as the output of
the teacher network, knowledge distillation can be viewed as a particular instance of informed machine learning, where the
knowledge comes from a teacher network and is usually assumed to be perfect.

G. Numerical Results

We consider two specific applications — learning a multi-dimensional Bohachevsky function and learning to manage
wireless spectrum.

G.1. Settings of Learning with Constraint Knowledge in Section 7

We consider an informed DNN with domain knowledge in the form of constraints to learn a Bohachevsky function.
The learning task is to learn a relationship y(«). The learner is provided with a dataset with labeled samples S, =
{(24,2:),1 € [n.]}, having possibly noisy labels

zi = y(x;) + niyn; ~ N(0,02),

and an unlabeled dataset S, = {(x;),% € [ny]}. Additionally, the learner is informed with the constraint knowledge, which
includes an upper bound ¢, () and an lower bound gy, () on the true label corresponding to input z, i.e. gip(x) < y(x) <
gub (). A neural network hy () is used to learn the relationship y(x), and the metric of interest is the mean square error
(MSE) of the network output hyy () with respect to the true label y(z) on a test dataset .Sy, which is expressed as

Rs, (hw) = ! Z mse (hw (7:),Yi) ,

2|St‘ (-’I:myi)est

where mse (hw (2:),y:) = (hw (%) — y;)° with y; as the true test label with respect to 2;;. Assume that the relationship to
be learned is governed by a multi-dimensional Bohachevsky function

y(x) =2AA Tz — ccos (aTx) + e

where A is a b x b matrix, a is a b-dimensional vector and c is a constant. The learner has no access to the values of these
parameters or the exact form of the relationship, but is empowered with the constraint knowledge in the form of an upper
bound model

g (z) = zAA Tz +ub

with ub > 2¢, and an lower bound model
gb(x) = zAA Tz + b

with [b < 0. While it is not strongly convex and hence deviates from the assumptions in our theoretical analysis, we use
ReLU as the knowledge-based risk function, i.e., the knowledge-based risk is written as

rk(hw (z)) = relu (hw (z) — gup(x)) + relu (g, (z) — hw (2)) .
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And the label supervised risk given a sample pair (z, z) is r(hw (2)) = mse (hw (z), 2).

To show the performance under different levels of imperfectness, we consider labels with different noise variances and
different knowledge-informed constraints. For training, the labeled dataset S, contains n, € {200,400} labeled samples
with label noise variance 02 € {0, 0.1}, and the unlabeled dataset S, for the knowledge risk contains n, = 1000 input
samples. The parameters for knowledge-informed constraint models include Ib = 0 and ub € {0.6,0.8}. Naturally, the
higher variance o2, the worse label quality; and the greater ub, the worse knowledge quality. The test dataset S; contains
1000 samples with labels calculated as y; = y(x;), z; € S;.

For training, we use a neural network with two hidden layers, each having 2048 neurons and ReLU activations. Note that for
the large network width needed for analysis to gain insights is not necessary in practice. The network is initialized based on
Algorithm A. The training procedure is performed by Adam optimizer for 3000 steps with batch size 100. The learning rate
is set as 107C for the first 2000 steps, 5 x 10~° for the following 500 steps, and 10~° for the remaining 500 steps. We run
the network training with 10 random seeds. We run the simulations on a HPC cluster with GPUs of type P100.

G.2. Learning for Resource Management in Wireless Networks

We apply an informed DNN to the problem of learning for resource management in wireless networks — wireless link
scheduling in interference channels. We first describe problem setup, then present our method by informed DNN, and finally
show the experiment results.

G.2.1. PROBLEM SETUP

Link scheduling is a classic and important problem in wireless interference channels, with the objective of maximizing
the sum throughput of wireless links. Consider a time-slotted wireless network consisting of a transmitter-receiver set
U=1{1,2,---, N} with N links (i.e., transmitter-receiver pairs) subject to cross-link interference. At the beginning of each
time slot, the scheduler needs to decide a subset of links Ug C U to transmit depending on the channel state information
(CSI).

We assume Rayleigh fading channels with interference across different links. If a link v € U is scheduled, the channel gain
iS gy, subject to Rayleigh fading. For notational convenience, we omit the time slot index. Multiple links can be scheduled
at the same time slot, creating interference to each other. For example, if link « and link v are scheduled simultaneously, the
interference channel gain from the transmitter w to receiver v is g, ., and the interference channel gain from the transmitter
v to receiver u is g, .. Thus, the received signal at receiver u can be expressed as g, Sy + ZUGL{S Ju Jv,uSv + noise,,
where noise,, ~ N (0, aﬁ) is an additive white Gaussian noise and the transmit signals s,, and s,, are normalized with unit
power. Considering a centralized setting as in (Liang et al., 2019), the scheduler has access to the direct transmit channel
gains as well as interference channel gains at the beginning of each time slot, which are contained in a NV x N dimensional
CSIvectorz = [g1,1," "+ ,§1,N, 92,1 s GN—1,N:gN,1," " s IN,N]-

The scheduling decision can be represented by a N dimensional scheduling vector y. Specifically, if the link u is scheduled,

then the u-th entry of y is one, and zero otherwise. By the Shannon rate formula in the communications theory (Goldsmith,
2005), the achievable rate for link u can be expressed as

11y ()| gu,ull?
Cu annon (x7 y’ /"'L) = log 1 J’» ’ ) (54)
Sh 0121 + Zveu/u y(v>||gv,u |2

where 1(0, 1] is a parameter subject to real communication systems, with C&, . (x,y,1) representing the standard
Shannon rate (i.e., when p = 1). The sum rate is Cshannon (%, %) = > ,cir Cohannon (T ¥)-

In practice, given the CSI vector x and the corresponding decision vector y, the real sum rate is denoted as Cieqa1(z,y) =
> weu Crear(z, ). The real rate is difficult to express analytically in view of the complex factors in real environments
including various schemes of modulation, finite channel coding and quality of service (QoS) guarantee In fact, except for a
few special cases, the exact channel capacity for general interference channels (even for two links) is still an open problem.
Thus, while the Shannon rate is useful and has been utilized to design various systems, it only represents an approximation
of the practically achievable rate
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Next, we formulate the link scheduling problem as

max Z Cra(z,y), st y(u)e{0,1},ueld. (55)
ueU

The scheduling objective is the real sum rate in a practical environment. The challenge of this problem is that the real rate in
terms of the CSI z and scheduling decision y is too complex to express precisely, let alone the longstanding challenges of
deriving the exact interference channel capacity (Goldsmith, 2005).

G.2.2. INFORMED DNN FOR WIRELESS LINK SCHEDULING

DNNSs have strong representation power to learn the optimal scheduling decisions given CSI input (Sun et al., 2018), but
they typically require a large number of labeled samples (x, y) for training. On the other hand, domain knowledge (i.e.,
Shannon rate formula ) is also useful, but it may not capture the real achievable rate in practice (Liang et al., 2019). Thus,
informed DNN, which exploits domain knowledge to complement labeled samples, has the potential to reap the benefits of
both approaches.

Concretely, we use a DNN to represent the relationship between the scheduling decision y and CSI z. Given N links, the
input dimension is N x N, which is the dimension of vectorized CSI x and the scheduling decision y is a N —dimensional
binary vector. The training is based on a labeled dataset S, = {(x;,y;),% = 1,2, - ,n,} collected from real systems or
field studies, where y; is the true label (i.e., optimal scheduling decision) given x;, along with the domain knowledge of
Shannon rate. Also, we use Yomp € {0, 1}1"'6‘x XN Tmax = 2N —1to represent all the possible decision combinations.
Denote I(y) as the index of a scheduling decision y in Yeomb, i.. ¥ = [Yeomp) ()" The output dimension of the DNN is

Inax = 2V — 1 with each entry representing an index for a scheduling decision.

The label-based risk is the cross-entropy loss between the output of the DNN and one-hot encoding labels, which is expressed

as
Ty

Rs (W)= — Z cross_entropy (softmax(hw (z;)), one_hot(I(y;))), (56)

Yy
n
Yoi=1

where one_hot(I(y;)) is the one-hot encoding of the index of y;. Given an CSI input x and setting p = pux
based on domain experience, we can compute the sum rate of all possible scheduling decisions by the Shan-
non equation in Eqn. (54) as Cshannon(Z, [Yeomb] j JUK),J € [Imax] and get the vector of sum rate as c(x) =
[Cshannon (5 [Yeombly s #K) 5 -+ » Cshannon (2, [Yeomb];_» px)]. Taking the softmax operation on T'c(x) with T' as
a scaling hyper-parameter, we get softmax (T'c(z)), which is essentially soft encoding of scheduling decisions based on
the Shannon rate knowledge. Therefore, given an input dataset S, = {x;,i = 1,2, -- ,ny}, the knowledge-based risk is
designed as
g

Rx (W) = S Z cross_entropy (softmax(hw (x;)), softmax (Te(x))) . (57)

n
9 =1

Thus, the DNN can be trained to minimize the informed risk combining both label-based and knowledge-based risks:
Ri(W)=(1- )\)Rsy (W)+ ARk (W). That is, the informed DNN uses hard labels for direct supervision, while exploiting
domain knowledge in the form of soft labels for indirect supervision on unlabeled inputs. After training the network, the
scheduling decision for CSI  is calculated as yw () = [Yeomb) 1y, () With I (z) = arg max;e(z,,..] [hw(z)]j

G.2.3. RESULTS

Now, we show the simulation results for the wireless link scheduling problem based on our informed DNN. We first give the
simulation settings and then show the results of classification accuracy as well as the sum rate.

Simulation Settings. For illustration, we consider a simulation scenario with N = 4 wireless links for scheduling, which is
a reasonable setting for many practical ad hoc networks (Goldsmith, 2005). Given the CSI, the scheduler needs to choose
one out of 15 scheduling combinations. To evaluate the performance of our informed DNN when the domain knowledge of
Shannon rate is not perfect, we construct a synthetic dataset as the ground truth. The direct link channel gain of a wireless
link g, is subject to Rayleigh distribution, with an expected power gain of 100 dB. The cross-link interference channel
gain is also subject to Rayleigh distribution with an expected power gain of 10 dB. The labels in the labeled training dataset
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Figure 2. Test accuracy under different knowledge qualities and numbers of labels.
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Figure 3. Sum rate under different knowledge qualities and numbers of labels.

and test dataset are generated by a pseudo-real rate expression to reflect some practical constraints:

Cpscudofrcal = Cthannon (.’E, Y, /~LR)7 (58)

which differs from the standard Shannon formula by using a factor ug € (0, 1) to account for achievable rate degradation.
Note that the pseudo-real rate is only defined to generate synthetic real rate different from the standard Shannon rate for
evaluation purposes. In practice, the achievable rate is even more complex. In the simulations, we set ug = 0.5 to generate
the training and testing labels as ground truth, while the value of g = 0.5 is not available to the learner.

Based on the pseudo-real rate expression, we find the optimal labels (i.e., optimal scheduling decision y) via exhaustive
search, while labels are actually be collected by field measurement in a practical environment. We have n, = 2000 unlabeled
CSI input samples in the training dataset .S, for knowledge-based supervision, and n; = 10000 samples in the test dataset.
The test accuracy is defined as the percentage of DNN outputs that are identical to the optimal scheduling decision label,
i.e. for samples in the test dataset, acc = Y. 1 (Iw (z;) = I(y;))/n:. We compare the results when the labeled training
dataset has 100, 500 and 1000 samples, respectively. Also, we compare the results obtained by setting different parameters
pux € {1.0,0.4,0.1} in the knowledge-based Shannon rate in Eqn. (54). The parameter ux € {1.0,0.4,0.1} results in a
test accuracy of {71.4%,91.2%, 52.8%}, which is the maximum test accuracy obtained by directly solving the scheduling
problem based on Eqn. (54) and can be used to informally indicate the knowledge quality. Thus, yx = 0.4 represents the
best knowledge quality, whereas px = 0.1 is the worst.

Now we list the settings for training. The neural network has three hidden layers with 512, 1024 and 512 neurons,
respectively, followed by ReLu activations. The network is initialized based on Algorithm 1. The training is performed by
the Adam optimizer with learning rate 10~ for 2000 steps on a HPC cluster with GPU type P100. We use 5 random seeds
for each setting to evaluate the performance error.

Results. The results, including the test accuracy and the test sum rate under different knowledge quality, numbers of labels
and weights A, are shown in Fig. 2 and Fig. 3. The test sum rate is the (pseudo) real sum rate defined in Eqn. (58) with
pr = 0.5. We can find that the sum rate expectedly increases if the test accuracy increases. From Fig. 2(a) and Fig. 3(a),
we see that if the domain knowledge quality is only 52.8% (i.e., ux = 0.1), it has bad effects on learning when labels are
enough. Nevertheless, it still benefits the performance when there are only 100 labels and, if we place a less weight on the
knowledge-based risk, the accuracy and sum rate is higher.

If the knowledge quality is 71.4% (i.e., ux = 1.0), as shown in Fig. 2(b) and Fig. 3(b), the domain knowledge has significant
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benefits when there are only 100 labeled samples. When there are 500 labeled samples, the domain knowledge and labels
complement each other and get a better performance than pure label-based and knowledge-based learning. When the number
of labeled samples is even higher and reaches 1000, the integration of domain knowledge cannot benefit the learning further.
In Fig. 2(c) and Fig. 3(c), when the domain knowledge quality further improves, we can see that the domain knowledge can
still bring benefits even in the presence of 1000 labeled samples.

From these results, we see that labels and domain knowledge can complement each other. The domain knowledge plays an
important role when labels are relatively scarce, while labels, even only a few, help improve the learning performance when
domain knowledge has a low quality. Additionally, it is important to achieve a balance between label-based supervision and
knowledge-based supervision. In general, we place more weight on the knowledge-based risk if knowledge quality is good
enough and the number of labels is small, and vice versa.



