2203.13921v1 [cs.AR] 25 Mar 2022

arxiv

A Semi-Decoupled Approach to Fast and Optimal
Hardware-Software Co-Design of Neural Accelerators

Bingqian Lu
UC Riverside

Yiyu Shi

Notre Dame

ABSTRACT

In view of the performance limitations of fully-decoupled designs
for neural architectures and accelerators, hardware-software co-
design has been emerging to fully reap the benefits of flexible de-
sign spaces and optimize neural network performance. Nonetheless,
such co-design also enlarges the total search space to practically
infinity and presents substantial challenges. While the prior studies
have been focusing on improving the search efficiency (e.g., via
reinforcement learning), they commonly rely on co-searches over
the entire architecture-accelerator design space. In this paper, we
propose a semi-decoupled approach to reduce the size of the total
design space by orders of magnitude, yet without losing optimal-
ity. We first perform neural architecture search to obtain a small
set of optimal architectures for one accelerator candidate. Impor-
tantly, this is also the set of (close-to-)optimal architectures for
other accelerator designs based on the property that neural archi-
tectures’ ranking orders in terms of inference latency and energy
consumption on different accelerator designs are highly similar.
Then, instead of considering all the possible architectures, we opti-
mize the accelerator design only in combination with this small set
of architectures, thus significantly reducing the total search cost.
We validate our approach by conducting experiments on various
architecture spaces for accelerator designs with different dataflows.
Our results highlight that we can obtain the optimal design by only
navigating over the reduced search space. The source code of this
work is at https://github.com/Ren-Research/CoDesign.

KEYWORDS

Hardware-software co-design, neural accelerator, performance mono-
tonicity

ACM Reference Format:

Bingqian Lu, Zheyu Yan, Yiyu Shi, and Shaolei Ren. 2022. A Semi-Decoupled
Approach to Fast and Optimal Hardware-Software Co-Design of Neural

Accelerators. In Proceedings of tinyML Research Symposium (tinyML Research
Symposium’22). ACM, New York, NY, USA, 9 pages.

1 INTRODUCTION

Neural architecture search (NAS) has been commonly used as a pow-
erful tool to automate the design of efficient deep neural network

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

tinyML Research Symposium’22, March 2022, San Jose, CA

© 2022 Copyright held by the owner/author(s).

Zheyu Yan

Notre Dame

Shaolei Ren
UC Riverside

(DNN) models [36]. As DNNs are being deployed on increasingly
diverse devices such as tiny Internet-of-Things devices, state-of-the-
art (SOTA) NAS is turning hardware-aware by further taking into
consideration the target hardware as a crucial factor that affects
the resulting performance (e.g., inference latency) of NAS-designed
models [4, 8, 15, 25, 26, 30, 32]

Likewise, optimizing hardware accelerators built on Field Pro-
grammable Gate Array (FPGA) or Application-Specific Integrated
Circuit (ASIC), as well as the corresponding dataflows (e.g., sched-
uling DNN computations and mapping them on hardware), is also
critical for speeding up DNN execution [1, 11, 33].

While both NAS and accelerator optimization can effectively
improve the DNN performance (in terms of, e.g., accuracy and la-
tency), they are traditionally performed in a siloed manner, without
fully unleashing the potential of design flexibilities. As shown in
recent studies [16, 19], such a decoupled approach does not explore
potentially better combinations of architecture-accelerator designs,
leading to highly sub-optimal DNN performance. As a result, co-
design of neural architectures and accelerators (a.k.a., hardware-
software co-design) has been emerging to discover jointly optimal
architecture-accelerator designs [3, 11, 12, 19, 20, 33].

A common approach to hardware-software co-design is to use
a nested loop: the outer loop searches over the hardware space
while the inner loop searches for the optimal architecture given the
hardware choice in the outer loop, or vice versa (i.e., outer loop for
architectures and inner loops for hardware) [12, 13]. Alternatively,
one can also simultaneously search over the neural architecture
and hardware spaces as a combined design choice [16].

While hardware-software co-design can further optimize DNN
performance [34], it also exponentially enlarges the search space,
presenting significant challenges. For example, the combination of
architecture and accelerator design spaces can be up to 10361 [16].
Concretely, letting M and N be the sizes of the architecture space
and hardware/accelerator space, respectively, the total search com-
plexity is in the order of O(MN). By contrast, the fully-decoupled
approach (i.e., separately performing NAS and accelerator optimiza-
tion) has a total complexity of O(M + N), although it only results
in sub-optimal designs.

Consequently, many studies have been focusing on speeding
up the evaluation of co-design choices (e.g., using accuracy predic-
tor and latency/energy simulation instead of actual measurement
[5, 19, 29, 33]), and/or improving the search efficiency (e.g., rein-
forcement learning or evolutionary search to co-optimize architec-
ture and hardware [11, 16, 19]). Nonetheless, due to the O(MN)
search space, the SOTA hardware-software co-design is still a time-
consuming process, taking up a few or even tens of GPU hours for

https://github.com/Ren-Research/CoDesign

tinyML Research Symposium’22, March 2022, San Jose, CA

each new deployment scenario (e.g., changing the latency and/or
energy constraints) [12, 16].

Contributions. By settling in-between the fully-decoupled ap-
proach and the fully-coupled co-design approach, we propose a
new semi-decoupled approach to reduce the size of the total co-
search space O(MN) by orders of magnitude, yet without losing
design optimality. Our approach builds on the latency and energy
monotonicity — the architectures’ ranking orders in terms of infer-
ence latency and energy consumption on different accelerators are
highly correlated — and includes two stages. In Stage 1, we ran-
domly choose a sample accelerator (a.k.a., a proxy accelerator), and
then run hardware-aware NAS for K times to find a set consisting
of K = |P| optimal architectures for this proxy. Clearly, compared
to M and N, the size of P is orders-of-magnitude smaller (e.g., 10-20
vs. 10'8 [17]). Then, in Stage 2, instead of the entire architecture
space as in the SOTA co-design, we only jointly search over the
hardware space combined with the small set #, which significantly
reduces the total search space. Crucially, by latency and energy
monotonicity, the set of optimal architectures is (approximately)
the same for all accelerator designs, and hence selecting architec-
tures out of P can still yield the optimal or very close-to-optimal
architecture design.

We validate our approach by conducting experiments on a state-
of-the-art neural accelerator simulator MAESTRO [14]. Our results
confirm that strong latency and energy monotonicity exist among
different accelerator designs. More importantly, by using one candi-
date accelerator as the proxy and obtaining its small set of optimal
architectures, we can reuse the same architecture set for other
accelerator candidates during the hardware search stage.

2 PROBLEM FORMULATION

We focus on the design of a single neural architecture-accelerator
pair. The main goal is to maximize the inference accuracy subject
to a few design constraints such as inference latency, energy, and
area [12]. Next, by denoting the neural architecture and hardware
as a and h, respectively, we formulate the problem as follows:

maXge 7, he Accuracy(a) (1)

s.t., Latency(a,h) < L (2)
Energy(a,h) < E (3)
HardwareResource(h) < H, (4)

where the objective Accuracy(a) depends on the architecture,! the
first two constraints are set on the inference latency and energy
consumption that depend on both the architecture and hardware
choices, and the last constraint is on the hardware configuration
itself (e.g., area) and hence independent of the architecture. We
denote the optimal design as (a*, h*) which solves the optimization
problem Eqns. (1)—(4). Note that, because of the combinatorial
nature of the problem, optimality is not in a mathematically strict
sense; instead, a design (a, h) is often considered as optimal if it
is good enough in practice (e.g., better than or competitive with
SOTA designs).

Suppose that the architecture space A and hardware space H
have M = |A| and N = |H| design choices, respectively, which

!The inference accuracy also depends on the network weight trained on a dataset,
which is not a decision variable in hardware-software co-design and hence omitted.

Binggqian Lu, et al.

are both extremely large in practice. Thus, the co-design space
A xH has a total of MN architecture-hardware combinations. This
makes exhaustive search virtually impossible and adds significant
challenges to co-design over the joint search space.

Remark. In our formulation, the notation of neural “architec-
ture” a € A can also broadly include other applicable design factors
for the DNN model (e.g., weight quantization). Moreover, the hard-
ware h implicitly includes the dataflow design, which is a down-
stream task based on the architecture and hardware choices. In the
following, we also interchangeably use “accelerator” and “hardware”
to refer to the hardware-dataflow combination unless otherwise
specified. Thus, with different dataflows, the same hardware con-
figuration will be considered as different h € H.

3 A SEMI-DECOUPLED APPROACH

In this section, we first review the existing architecture-accelerator
design approaches, and then present our semi-decoupled approach.

3.1 Overview of Existing Approaches

3.1.1 Fully decoupled approach. A straightforward approach is
to separately optimize architectures and accelerators in a siloed
manner by decoupling NAS from accelerator design [9, 29, 33]: first
perform NAS to find one optimal architecture é@ € A, and then
optimize the accelerator design for this particular architecture g; or,
alteratively, first optimize the accelerator h € H, and then perform
NAS to find the optimal architecture for this particular accelerator
h. This approach has a total complexity in the order of O(M + N)
where M = |A| and N = |H|. But, the drawback is also significant:
it does not fully exploit the flexibility of the co-design space and,
as shown in several prior studies [12, 16, 19], can result in highly
sub-optimal architecture-accelerator designs.

3.1.2 Fully coupled approach. As can be seen in Eqns. (2) and (3),
the inference latency and energy consumption is jointly determined
by the architecture and hardware choices. Such entanglement of
architecture and hardware is the key reason for the SOTA hardware-
software co-design.

Concretely, a general co-design approach is to use a nested loop
[19]. For example, the outer loop searches over the hardware space,
whereas the inner loop searches for the optimal architecture given
the hardware choice in the outer loop. Alternatively, another equiv-
alent approach is to first search for neural architectures in the outer
loop and then search for accelerators in the inner loop.

Here, we use “outer loop for hardware and inner loop for archi-
tecture” as an example. While the actual search method can differ
from one study to another (e.g., reinforcement learning vs. evolu-
tionary search [5, 19]), this nested search can be mathematically
formulated as a bi-level optimization problem below:

Outer: maxycqy Accuracy(a® (h)) (5)
s.t., HardwareResource(h) < H, (6)

where, given a choice of h, the architecture a*(h) = a*(h; L, E)
solves the inner hardware-aware NAS problem:

Inner: max,c g Accuracy(a) (7)
s.t., Latency(a,h) < L (8)
Energy(a,h) < E. (9)

A Semi-Decoupled Approach to Fast and Optimal Hardware-Software Co-Design of Neural Accelerators

Table 1: Comparison of Different Approaches

Approach Optimality | Complexity
Fully-decoupled separate design No O(M+N)
Fullly-coupled co-design Yes O(MN)
Semi-decoupled co-design Yes O(K(M+N))

In Eqn. (5), Accuracy(-) is still decided by the architecture, although
we use a*(h) = a*(h; L, E) to emphasize that the architecture is
specifically optimized for the given hardware candidate h.

We see that, during the search for the optimal hardware A* in
the outer problem, the inner NAS problem is repeatedly solved as a
subroutine and yields the optimal architecture a*(h) = a*(h; L, E)
given each hardware choice h set by the outer search. For notational
convenience, we also use a*(h) to represent a*(h; L, E) without
causing ambiguity.

The focus of SOTA hardware-software co-design approaches
have been primarily on speeding up the evaluation of architecture-
hardware choices (e.g., using accuracy predictor and latency/energy
simulation instead of actual measurement [5, 19, 29, 33]), and/or
improving the search efficiency (e.g., reinforcement learning or
evolutionary search to co-optimize architecture and hardware [11,
16, 19]). Nonetheless, evaluating one architecture-accelerator com-
bination can still take up a few seconds in total (e.g., running MAE-
STRO to perform mapping/scheduling and estimate the latency
and energy consumption takes 2-5 seconds on average [14]). Then,
compounded by the exponentially large architecture and hardware
space in the order of O(MN), the total hardware-software co-design
cost is very high (e.g., a few or even tens of GPU hours for each
deployment scenario [16, 19]).

3.2 Semi-Decoupled Co-Design

We propose a semi-decoupled approach — partially decoupling
NAS from hardware search to reduce the total co-search cost from
O(MN) to O(K(M+N)) in a principled manner, where K is orders-
of-magnitude less than M and N.

Performance monotonicity. The key intuition underlying our
semi-decoupled approach is the latency and energy performance
monotonicity — given different accelerators, the architectures’ rank-
ing orders in terms of both the inference latency and energy con-
sumption are highly correlated. We can measure the ranking cor-
relation in terms of the Spearman’s rank correlation coefficient
(SRCC), whose value lies within [—1, 1] with “1” representing the
identical ranking orders [2].

It has been shown in a recent hardware-aware NAS study [18]
that the architectures’ ranking orders in terms of inference latency
are highly similar on different devices, with SRCCs often close to
0.9 or higher, especially among devices of the same platform (e.g.,
mobile phones). For example, if one architecture a; is faster than
another architecture a; on one mobile phone, then it is very likely
that a; is still faster than az on another phone. One reason is that
architectures are typically either computing-bound or memory-
bound on devices of the same platform, which, by roofline analysis,
results in similar rankings of their latencies [31]. Based on this
property (a.k.a., latency monotonicity), it has been theoretically
and empirically proved that the Pareto-optimal architectures on
different devices are highly overlapping if not identical [18].

tinyML Research Symposium’22, March 2022, San Jose, CA

»Lilillo Architecture Space
oIR||e=
™

‘Pzist’ @O %@ o@%
Proxy

Accelerator

~212

Stage 1:
NAS

Stage 2: I ceentenas .
: Optimal :
HW SearchE Model Set

Hardware Space

:I‘}’if]‘i i}'{:jg& . :E‘[?j?‘i (for proxy)
T8 £ o\ :
T5ist P\ 7 %‘

Vgtat ltata?

Figure 1: Overview of our semi-decoupled approach.

While the target hardware space chosen by the designer has
many choices, it essentially covers one platform — neural accel-
erator under a set of hardware constraints. As a result, we expect
latency monotonicity to be satisfied in our problem. Additionally,
beyond the findings in [18], we observe in our experiments that en-
ergy monotonicity also holds: if one architecture a; is more energy-
efficient than another architecture as for one hardware choice, then
it is very likely that a; is still more energy-efficient than ay for
another hardware choice. Along with latency monotonicity, energy
monotonicity will be later validated in our experiments. One reason
for the energy monotonicity is that energy consumption is highly
related to the inference latency with a strong correlation [15].

For simplicity, we use performance monotonicity to collectively
refer to both latency and energy monotonicity.

Insights. The performance monotonicity leads to the following
proposition, which generalizes the statement in [18] by consid-
ering both latency and energy monotonicity. We first note that,
by solving the inner NAS problem under a set of latency and en-
ergy constraints in Eqns. (7)—(9), we can construct a set P (h) =
(aj(h;L1, E1), - -+, ag (h; L, Ek)) of optimal architectures covering
the architectures along the Pareto boundary. The size K = |P (h)| of
the optimal architecture set depends on the granularity of latency
and energy constraints we choose. In practice, K in the order of a
few tens (e.g., 10 — 30) is sufficient to cover a wide range of latency
and energy constraints for our design target.

PROPOSITION 3.1. Given performance monotonicity, the set of op-
timal architectures P (h) = (a’lk(h;Ll,El), e ,a}}(h; Lk, Ex)) found
by the inner hardware-aware NAS problem in Eqns. (7)—(9) is the
same for all hardware choices, i.e., P (h1) = P (hz), forallhy, hy € H.

Proor. Consider two hardware choices hi, hy € H. By perfor-
mance monotonicity, we can replace the constraints Latency(a, h1) <
Ly and Energy(a, hy) < E1 with another two equivalent constraints
Latency(a,h2) < L1’ and Energy(a,hy) < Ep’, respectively. By
varying E; and Ly over their feasible ranges, we obtain the optimal
architecture set (hq) for h. Accordingly, due to the equivalent
latency and energy constraints for hy, we also obtain the optimal
architecture set $(hz) for hy, thus completing the proof. []

Proposition 3.1 ensures that in the presence of performance
monotonicity, the same set P (h) of optimal architectures apply
to all h € H. Thus, we can also simply use P to denote the set
of optimal architectures, which are essentially shared by h € H.

tinyML Research Symposium’22, March 2022, San Jose, CA

Algorithm 1 Semi-Decoupled Architecture-Accelerator Co-Design

1: Input: Architecture space A, hardware space H, sample hard-
ware hyg € H, and design constraints L, E, H in Equs. (2), (3), (4)

2. Output: Optimal co-design (a*, h*)

3. Initilization: Choose K latency and energy constraints
(L, Ex) for k=1,---,K, set P =@, and randomly
choose (a*, h*);

4: fork=1,--- , Kdo

5. For constraints (Lg, Ex), run hardware-aware NAS to

get optimal architecture a;;(ho;Lk,Ek)

6 P =P U{ag(ho; Ly, Ex)};

7. end for

8: for each candidate hardware h € H do

9. if HardwareResource(h) < H then

10: Find optimal architecture a*(h) € P satisfying
the latency and energy constraint (L, E)

11 if Accuracy(a*(h)) > Accuracy(a®) then

12: (a*,h*) « (a*(h),h)

13: end if

14: endif

15: end for

Note carefully that Proposition 3.1 does not mean that, given a spe-
cific pair of latency and energy constraints, we will have the same
architecture a* (hy; L, E) = a*(hy; L, E) for two hardware choices
hl, hz eH.

Nonetheless, once we have found P C A, there is no need to
jointly search over the entire architecture-hardware space A X
H any more. Instead, it is sufficient to merely search over the
restricted architecture-hardware space $ x H. Importantly, the set
% of optimal arachitectures is orders-of-magnitude smaller than
the entire architecture space A (e.g., a few tens vs. 10!8 in the
DARTS architecture space [17]), thus significantly reducing the
total hardware-software co-design cost without losing optimality.

Algorithm. Our semi-decoupled approach has two stages, as
illustrated in Fig. 1 and summarized in Algorithm 1.

Stage 1: We randomly choose a sample accelerator hy € H,
which we refer to as the proxy accelerator, and run hardware-aware
NAS for K times to find a set of optimal architectures P = P (hg) =
(ai(ho; L1, E1), - - - , ag (ho; Lk, Ek)). Specifically, # is constructed
by setting K different latency and energy constraints and accord-
ingly solving the inner NAS problem in Eqns. (7)—(9) for K times.
Thus, the search cost in Stage 1 is O(KM) where M = |A|.

Stage 2: We search for the optimal accelerator h* € H. Specifi-
cally, given each candidate h € H (selected by, e.g., reinforcement
learning or evolutionary search [16, 19]), instead of searching over
the entire architecture set A, we obtain its corresponding optimal
architecture a* (h) from the set # C A constructed in Stage 1. Thus,
the search cost in Stage 2 is O(KN) where N = |H]|.

3.3 Discussion

In practice, performance monotonicity may not be perfectly sat-
isfied. Thus, the optimal architecture a*(h) corresponding to a
candidate accelerator h € ¥ may not always strictly belong to
the optimal architecture set # that is pre-constructed based on the

Binggqian Lu, et al.

proxy hg. Nonetheless, by only searching over # for this candidate
accelerator h, we can still find an architecture a € P that is close-to-
optimal. In fact, to speed up the NAS process and find competitive
architectures, it is very common to use proxy/substitute metrics
(such as accuracy predictor or the neural tangent kernel [6]) which
only have SRCC of around 0.5-0.9 with the true performance. In
our problem, we can also view the architectures’ latency and en-
ergy performance on the proxy accelerator hy as the substitute
performance on other accelerator candidates. Therefore, given the
good albeit not necessarily close-to-perfect performance mono-
tonicity, the architectures optimized specifically for the proxy are
also sufficiently competitive ones for other accelerator candidates.

In [18], scalable hardware-aware NAS is proposed by utilizing la-
tency monotonicity on various devices. Without considering energy
consumption, a high SRCC (>0.9) for latency is needed to ensure
that one proxy device’s optimal architectures are still close to op-
timal on another device. In our problem, such high SRCC values
are not necessarily needed, because we consider both energy and
latency — moderate SRCC values on two performance metrics are
enough. This is reflected in both our experiments and prior studies
(e.g., two proxy metrics having moderate SRCC values with the true
accuracy can estimate the accuracy performance very well [6]).

In the highly unlikely event of very low SRCCs (e.g., 0.2) between
the proxy and other accelerator candidates, we can enlarge # by
adding some approximately optimal architectures near the Pareto
boundary (for the chosen proxy), such that they can be competitive
choices for other candidate accelerators. Alternatively, we could
use a few proxy accelerators, each having good latency and energy
monotonicity with a subspace of accelerator design, and jointly
construct an expanded set # of optimal architectures in Stage 1. In
any case, the set P is orders-of-magnitude smaller than the entire
architecture space or accelerator space.

Summary. The essence of our semi-decoupled approach is to
use a proxy hg to find a small set of optimal architectures that
also includes the actual optimal or close-to-optimal architectures
for different accelerator candidates, thus reducing the total co-
design complexity without losing optimality. This is significantly
different from a typical fully-decoupled approach that pre-searches
for one architecture and then find the matching accelerator, and also
has a sharp contrast with a fully-coupled co-design approach that
jointly searches over the entire architecture-accelerator space. The
comparison of different approaches is also summarized in Table 1.
Importantly, our approach focuses on reducing the search space
complexity, and can be integrated with any actual NAS (Stage 1)
and accelerator exploration techniques (Stage 2).

4 EXPERIMENT SETUP

We provide details of our experiment setup as follows.
Accelerator hardware space. We employ an open-source tool
MAESTRO [14] to simulate DNNs on the accelerator and measure
inference metrics (e.g., latency and energy). MAESTRO supports a
wide range of accelerators, including global shared scratchpad (i.e.,
L2 scratchapd), local PE scratchpad (i.e., L1 scratchpad), NoC, and
a PE array organized into different hierarchies or dimensions.
DNN dataflow. Dataflow decides the DNN partitioning and
scheduling strategies, which affects inference latency and energy

A Semi-Decoupled Approach to Fast and Optimal Hardware-Software Co-Design of Neural Accelerators

performance. We consider three template dataflows: KC-P (mo-
tivated by NVDLA [21]), YR-P (motivated by Eyeriss [7]), and
X-P (weight-stationary). Exhibiting different characteristics (e.g.,
temporal reuse of input activation and filter in YR-P vs. spatial
reuse of input activation in KC-P), these representative dataflows
are all supported by MAESTRO [14] and commonly used in SOTA
hardware-software co-design [34].

Architecture space. We consider the following two spaces.

o NAS-Bench-301: It is a SOTA surrogate NAS benchmark built
via deep ensembles and modeling uncertainty, which provides close-
to-real predicted performances (i.e., accuracy and training time) of
108 architectures on CIFAR-10 [24]. We consider the DARTS space
[17], where each architecture is a stack of 20 convolutional cells,
and each cell consists of seven nodes.

e AlphaNet: It is a new family of architectures on ImageNet
discovered by applying a generalized a-divergence to supernet
training [27]. Our search space is based on Table 7 of [27], with a
slight variation that the channel width is fixed as "16, 16, 24, 32, 64,
112, 192, 216, 1792", and depth, kernel size, expansion ratio of the
first and last inverted residual blocks are fixed as "1, 1", "3, 3", "1,
6", respectively. For other searchable inverted residual blocks, the
candidate depth, kernel size, and expansion ratio are "2, 3, 4, 5, 6",
"3,5,7" and "3, 4, 6", respectively.

Search strategy. Our approach can be integrated with any NAS
and hardware search strategies. Here, we consider exhaustive search
over a pre-sampled subspace. Specifically, for the NAS-Bench-301,
we first sample 10k models. Then, based on the accuracy given by
NAS-Bench-301 and FLOPs of these 10k models, we select 1017
models, including the Pareto-optimal front (in terms of predicted
accuracy and FLOPs) and some random architectures. Similarly, for
the AlphaNet space, we first sample 10k models and then select
1046 models based on the predicted accuracy given by the released
accuracy predictor [10] and FLOPs. We consider a filtered space
of 1k+ architectures (which include the Pareto-optimal ones out
of the 10k sampled architectures), because using MAESTRO to
measure the latency and energy of 10k models on thousands of
different hardware-dataflow combinations is beyond our computa-
tional resource limit. For each of the three template dataflows, we
sample 51 neural accelerators with different number of PEs, NoC
bandwidth, and off-chip bandwidth per the MAESTRO document
[22]. Specifically, the number of PEs can be chosen from “512, 256,
128, 64, 32, 16", candidate NoC bandwidths are from “300, 400, 500,
600, 700, 800, 900, 1000", and off-chip bandwidths are from “50, 100,
150, 200, 250, 275, 300, 325, 350". Note that some of our sampled
hardware-dataflow pairs are not supported when running with
KC-P and YR-P dataflows on MAESTRO. Thus, the actual numbers
of sampled accelerators (i.e., hardware-dataflow combinations) are
133 for NAS-Bench-301 and 132 for AlphaNet, respectively. We also
consider layer-wise mixture of different dataflows (Section 5.3) to
create 5000 different hardware-dataflow combinations.

5 EXPERIMENTAL RESULTS

In this section, we present our experimental results. We show that
strong performance monotonicity exists in the hardware design
space, and highlight that our semi-decoupled approach can identify
the optimal design at a much lower search complexity.

tinyML Research Symposium’22, March 2022, San Jose, CA

‘1.0 : : ‘10 1.0
0.8-| - ‘Energy
1.0.6
Q
©0.41

0.8 0.8

0.6 0.6

0.4 0.4

0.2

02 0.2 0.0
0.8 0.9 1.0
Average SRCC

(c) CDF of SRCC

0.0 0.0

(a) Latency SRCC (b) Energy SRCC

Figure 2: Performance monotonicity. We test 1017 models
sampled in DARTS search space on 133 accelerators.

1216 95 94475 — 1.0
§1.0- @__._ ------ I 521_—%5:213_9; a -
gﬁ,o.s- | A i ;3__-? 0.5
0675 f ------- | & S

T3 3 4 5 6 93.85-; 30 60 9'(; ' 133

Runtime (cycles)le6 Accelerator Index

Figure 3: NAS-Bench-301. Left: The optimal models are
marked in blue, and the grey scale indicates accuracy. Right:
The accuracy of the model selected from the proxy’s opti-
mal model set. We test each accelerator as a different proxy.
We also select two proxy accelerators (indexes 95 and 107)
that have the lowest SRCCs with the target, and show the
detailed results in Table 2.

5.1 NAS-Bench-301

5.1.1 Performance monotonicity. We first validate that strong la-
tency and energy performance monotonicity, quantified in SRCC,
holds between different accelerators. The results are shown in Fig. 2.
We see that, except for two accelerator choices that have SRCC less
than 0.6 with others, all the other accelerators have almost perfect
performance monotonicity with SRCC greater than 0.97. We also
plot in Fig. 2(c) the cumulative distribution function (CDF) of the
average SRCC values for all the sampled accelerators, where for
each accelerator h the “average” is over the SRCC values of all the
accelerator pairs that include h. We see that the vast majority of
the accelerators have average SRCC close to 1.

5.1.2 Effectiveness. To demonstrate the effectiveness, suppose that
we have an optimal architecture-accelerator pair (a*, h*) produced
by the SOTA hardware-software co-design. We refer to the optimal
accelerator as the “Target”. By using our approach, in Stage 1, we
first randomly choose a non-target accelerator hy as our proxy,
and run hardware-aware NAS on this proxy to obtain the set of
optimal architectures. Next, in Stage 2, we will search over the ac-
celerator space, retrieve the corresponding architecture aj from #
that best satisfies the latency and energy constraints, and keep the
accelerator, whose corresponding architecture a; has the highest
accuracy, as the optimal accelerator. Thus, we prove the effective-
ness of our approach if the architecture aj € P corresponding to
the optimal accelerator found in Stage 2 produces (approximately)
the same accuracy as a* obtained using the SOTA co-design.

In our experiment, we consider a target optimal accelerator h* as
follows: 512 PEs, NoC bandwidth constraint 900, off-chip bandwidth

tinyML Research Symposium’22, March 2022, San Jose, CA

Binggqian Lu, et al.

Accelerator SRCC Hardware Config. Model Performance
Index Latency Energy PEs NoC Off-chip Dataflow Latency (cycles) Energy (n]J) Accuracy (%)
1 (target) 1 1 512 900 350 KC-p 2279256 626090 93.85
""""" 107 055 0567 64 400 250 YR-P 2279256 626090 9385
""""" 95 0595 0595 256 800 35 X-P 2279256 626090 9385
1 (target) 1 1 512 900 350 KC-P 3027992 758928 94.30
""""" 107 055 0567 64 400 250 YRP 3027992 758928 9430
""""" 95 0595 0595 256 800 350 X-P 3027992 758928 9430
1 (target) 1 1 512 900 350 KC-P 4130699 964783 94.47
""""" 107 055 0567 64 400 250 YR-P 4130699 964783 9447
""""" 95 0595 059 256 800 350 X-P 4130699 964783 9447

Table 2: Hardware configuration of the target and two proxy accelerators, and performance metrics of the selected optimal
models on each of them. “Accelerator Index" corresponds to the x-axis in right of Fig. 3, the models on the target accelerator
correspond to the circled ones in left of Fig. 3, while the models on the two proxy accelerators correspond to the diamond
marks located on the accelerator indexes. The architecture configuration of the target models is further illustrated in Table 3.

Tarset Model Model Architecture
& Normal Cell Config. Normal Cell Concat. Reduce Cell Config. Reduce Cell Concat.
(skip_connect, 0), (skip_connect, 1), (sep_conv_3x3, 1), (sep_conv_3x3, 0),
(skip_connect, 0), (skip_connect, 2), (dil_conv_3x3, 2), (skip_connect, 0),
#
! (sep_conv_5x5, 0), (skip_connect, 1), (2.3, 4,5] (sep_conv_5x5, 2), (avg_pool_3x3, 0), (2.3, 4,5]
,,,,,,,,,,,,,,,,,,,,,,,,,, (dil_conv_5x5, 4), (skip_connect,2) (dil conv_3x3,3) (sep_conv 3x3,1)
(skip_connect, 0), (max_pool_3x3, 1), (sep_conv_3x3, 1), (sep_conv_5x5, 0),
(sep_conv_3x3, 0), (skip_connect, 1), (avg_pool_3x3, 0), (sep_conv_5x5, 1),
" (skip_connect, 0), (‘sep_conv_5x5, 3), [2.3.4,5] (dil_conv_5x5, 3), (sep_conv_3x3, 2), (2.3,4,5]
(avg_pool_3x3, 4), (sep_conv_5x5, 1) (avg_pool_3x3, 4), (sep_conv_3x3, 0)
"""""""""""""" (dil_conv_5x5, 0), (skip_connect, 1), 7 (skip_connect, 0), (dil_conv_3x3,1),
3 (max_pool_3x3, 0), (max_pool_3x3, 2), 23,4,5] (sep_conv_3x3, 1), (sep_conv_5x5, 2), 23,4,5]

(sep_conv_5x5, 0), (dil_conv_3x3, 3),
(dil_conv_5x5, 3), (dil_conv_5x5, 4)

(skip_connect, 1), (max_pool_3x3, 0),
(skip_connect, 1), (sep_conv_5x5, 2)

Table 3: Architecture configuration of the target models in Fig. 3. The first row (i.e., target model #1) corresponds to the leftmost
circled model in Fig. 3, and second row corresponds to the middle circled model, etc. These are the configurations for each
convolutional cell constructing a complete model, which is a stack of 20 cells. For detailed explanation of the operations in

the DARTS search space, please refer to [17] and [24].

constraint 350, and KC-P dataflow. In Fig. 3, we plot all the opti-
mal architectures under various latency and energy constraints.?
Then, we set three representative latency and energy consumption
constraints, with their corresponding optimal models circled in
red. Next, we test each of the other 132 accelerators as the proxy,
and find the corresponding set , which includes about 20 optimal
architectures for that proxy. Then, we select the architecture from
P whose latency and energy are closest to the design constraints
on the target accelerator. We see that by using any of the 132 ac-
celerators as the proxy, our approach can still find the optimal
architecture that has (nearly) the same accuracy as that found by
using SOTA hardware-software co-design. Importantly, even the
proxy accelerator that has the lowest SRCC with the target can
yield an competitive architecture with a good accuracy.

5.1.3 Total search cost. We now compare the total search cost
incurred by exhaustive search over our sampled space. Using the
coupled SOTA approach, the co-serach evaluates 133%¥1017~135K
architecture-accelerator designs. In Stage 1 of our approach, we

2MAESTRO returns the runtime cycles, instead of actual time, for the inference latency.

choose one proxy and evaluate 1017 architectures to obtain 20
optimal architectures for different latency and energy constraints.
As we use exhaustive search, we do not need to run 20 times. In
Stage 2, we evaluate the remaining 132 accelerators combined with
the selected 20 architectures. Thus, the total search cost of our
approach is 132%20+1017~3.7K, which is significantly less than
135K. While reinforcement learning or evolutionary search can
improve the efficiency (especially on larger spaces), the order of the
total cost remains the same. Moreover, when the architecture and
accelerator spaces are larger, the relative advantage of our approach
is even more significant.

5.2 AlphaNet

We now turn to the AlphaNet architecture space, and show the
results in Fig. 4 and Fig. 5. While the SRCC values are lower than
those in the NAS-Bench-301 case, they are still generally very high
(e.g., mostly >0.9). Crucially, as shown in Fig. 5, our approach can
successfully find an architecture that has (almost) the same accuracy
as that obtained by using the SOTA coupled approach.

A Semi-Decoupled Approach to Fast and Optimal Hardware-Software Co-Design of Neural Accelerators tinyML Research Symposium’22, March 2022, San Jose, CA

Accelerator SRCC Hardware Config. Model Config.
Index Latency Energy PEs NoC Off-chip Dataflow Latency (cycles) Energy (n]J) Accuracy (%)
1 (target) 1 1 512 900 350 2061611 614779

""""" 64 0638 0945 512 400 35 X-P 2061611 602782 69.58

""""" 91 0775 0945 32 800 250 X-P 2046476 610891 69.60
1 (target) 1 1 512 900 350 3367489 965462

""""" 64 0638 0945 512 400 350 X-P 3367489 965462 7118

""""" 91 0775 0945 32 80 250 X-P 3367489 965462 7118
1 (target) 1 1 512 900 350 5923046 1858261

""""" 64 0638 0945 512 400 350 X-P 5923046 1858261 7176

""""" 91 0775 0945 32 800 250 X-P 5923046 1858261 7176

Table 4: Hardware configuration of the target and two proxy accelerators, and performance metrics of the selected optimal
models on each of them. “Accelerator Index" corresponds to the x-axis in right of Fig. 5, models on the target accelerator
correspond to the circled ones in left of Fig. 5, while the selected optimal models on proxy accelerators correspond to the
diamond marks locating on the accelerator indexes. The architecture configuration of the target models is further illustrated
in Table 5.

Tareet Model Model Architecture
& Resolution Width Kernel Size Expansion Ratio Depth
B4 S 224 16,16, 24,32, 64, 112,192, 216, 1792 3,3,3,3,3,3,3 1,446,656 1,3,4,3,3,3,1
#2 288 16, 16, 24, 32, 64, 112, 192, 216, 1792 3,3,3,3,3,7,3 1,4,4,5,4,5,6 1,3,3,3,4,4,1
#3 288 16, 16, 24, 32, 64, 112, 192, 216, 1792 3,3,5,7,7,7,3 1,6,6,6,5,5,6 1,6,6,3,6,6,1

Table 5: Architecture configuration of target models in Fig. 5. The first row (i.e., target model #1) corresponds to the leftmost
circled model in Fig. 5, and second row corresponds to the middle circled model, etc. For detailed explanation of the operations

in AlphaNet search space, please refer to [28].

. X 1e6
X YRRl 0 10 2.27] 72 71.76 J xeaucmaameaecmee 1.0
-e-Latency| o M 1 || ==
ve 06T E 31.6' . L] "’Zl’lg; P ITCRRY TR ENTTT I
Q - 70 >~
0.4 l > L=
02 8 o & i s 0.5
“07 08 09 1.0 w 68 <
0.0 Average SRCC -
04 ; ; . . GBIV s vonnimaiienioas | lf) o
(a) SRCC of Latency (b) SRCC of Energy Con- (c) CDF of SRCC 14 24 34 44 54 6.4 1 30 60 90 132

sumption

Figure 4: Performance monotonicity. We test 1046 models
sampled in AlphaNet search space on 132 accelerators.

5.3 Layer-wise Mixed Dataflow

Ideally, each layer of a DNN model can be switched between accel-
erator hardware and dataflows to search for the best combination
(especially in the multi-accelerator design case) [34]. To account for
this, we divide each model into 22 parts: first and last convolutional
layer, and evenly into 20 groups for all intermediate layers. For
each part, it can be executed on any of our 51 sampled hardware
configurations following any dataflow. We sample 5000 different
mixtures for our models in NAS-Bench-301 and AlphaNet spaces,
and report the SRCC results in Fig. 6 and 7, respectively. The results
confirm again that strong performance monotonicity exists and
ensures the effectiveness of our approach. We omit the optimal
accuracy results due to the lack of space, while noting that they are
similar to Figs. 3 and 5.

Runtime (cycles)le6 Accelerator Index

Figure 5: AlphaNet. Left: The optimal models are marked in
blue, and the grey scale indicates accuracy. Right: The accu-
racy of the model selected from the proxy’s optimal model
set. We test each accelerator as a different proxy. We select
two proxy accelerators (indexes 64 and 91) and show the de-
tailed results in Table 4.

6 RELATED WORK

NAS and accelerator design. Hardware-aware NAS has been
actively studied to incorporate characteristics of target device and
automate the design of optimal architectures subject to latency
and/or energy constraints [4, 8, 15, 19, 23, 25, 32, 35]. These studies
do not explore the hardware design space. A recent NAS study
[18] explores latency monotonicity to scale up NAS across different
devices, but it only considers latency constraints and, like other NAS
studies, does explore the hardware design space. In parallel, there
have also been studies on automating the design of accelerators for

tinyML Research Symposium’22, March 2022, San Jose, CA

’ Latency
0.8 0.8 0.8| T ‘Energy
0.6
0.6 0.6 3
©0.41 E
04 04
0.2 =
u]
02 02 00 T -
0.8 0.9 1.0
0.0 0.0 Average SRCC

(a) Latency SRCC (b) Energy SRCC (c) CDF of SRCC

Figure 6: Performance monotonicity. We test 1017 models
sampled in DARTS on 5000 accelerators with layer-wise
mixed dataflows.

" |[~e-Latency S
0.8 0.8 0.8| -2 ‘Energy
0.6 S
0.6 0.6 5}
©0.41 E
04 04
0.2 E
02 0z 0.0 J T -
0.4 0.6 0.8 1.0
0.0 0.0 Average SRCC

(a) Latency SRCC (b) Energy SRCC (c) CDF of SRCC

Figure 7: Performance monotonicity. We test 1046 models
sampled in AlphaNet on 5000 accelerators with layer-wise
mixed dataflows.

DNNss [33]. But, NAS and accelerator design have been traditionally
studied in a siloed manner, resulting in sub-optimal designs.

Architecture-accelerator co-design. The studies on jointly
optimizing architectures and accelerators have been quickly ex-
panding. For example, [34] jointly optimizes neural architectures
and ASIC accelerators using reinforcement learning, [13] performs
a two-level (fast and slow) hardware exploration for each candidate
neural architecture, [12] adopts a set of manually selected models as
the hot start state for acceleration exploration, and [16] co-designs
neural architecture, hardware configuration and dataflow, and em-
ploys evolutionary search to reduce the search cost. These studies
primarily focus on improving the search efficiency given a certain
search space. By contrast, we use a principled approach to reducing
the total search space, without losing optimality.

7 CONCLUSION

In this paper, we reduce the total hardware-software co-design
cost by semi-decoupling NAS from accelerator design. Concretely,
we demonstrate latency and energy monotonicity among different
accelerators, and use just one proxy accelerator’s optimal archi-
tecture set to avoid searching over the entire architecture space.
Compared to the SOTA co-designs, our approach can reduce the
total design complexity by orders of magnitude, without losing
optimality. Finally, we validate our approach via experiments on
two search spaces — NAS-Bench-301 and AlphaNet.

ACKNOWLEDGEMENT

B. Lu and S. Ren were supported in part by the U.S. National Sci-
ence Foundation under grant CNS-1910208. Z. Yan and S. Shi were
supported in part by the U.S. National Science Foundation under
grant CNS-1822099.

Binggqian Lu, et al.

REFERENCES

[1] Byung Hoon Ahn, Prannoy Pilligundla, Amir Yazdanbakhsh, and Hadi Es-
maeilzadeh. 2020. Chameleon: Adaptive Code Optimization for Expedited Deep
Neural Network Compilation. In ICLR.

[2] Haldun Akoglu. 2018. User’s guide to correlation coefficients. Turkish journal of
emergency medicine (2018).

[3] Amazon. 2019. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/instance-
types/f1/.

[4] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan
Kindermans, and Quoc V Le. 2020. Can weight sharing outperform random
architecture search? an investigation with tunas. In CVPR.

[5] Han Cai, Chuang Gan, and Song Han. 2019. Once for All: Train One Network
and Specialize it for Efficient Deployment. In ICLR.

[6] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. 2021. Neural Architecture
Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective.
In ICLR. https://openreview.net/forum?id=Cnon5ezMHtu

[7] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH
Computer Architecture News (2016).

[8] Grace Chu, Okan Arikan, Gabriel Bender, Weijun Wang, Achille Brighton, Pieter-
Jan Kindermans, Hanxiao Liu, Berkin Akin, Suyog Gupta, and Andrew Howard.
2021. Discovering multi-hardware mobile models via architecture search. In
CVPR.

[9] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan Wang,
Marat Dukhan, Yunqing Hu, Yiming Wu, Yangqing Jia, et al. 2019. ChamNet:
Towards Efficient Network Design Through Platform-Aware Model Adaptation.
In CVPR.

[10] Facebook. 2021. AlphaNet: Improved Training of Supernet with Alpha-
Divergence. https://github.com/facebookresearch/AlphaNet.

[11] Weiwen Jiang, Edwin H.-M. Sha, Xinyi Zhang, Lei Yang, Qingfeng Zhuge, Yiyu

Shi, and Jingtong Hu. 2019. Achieving Super-Linear Speedup Across Multi-FPGA

for Real-Time DNN Inference. ACM Trans. Embed. Comput. Syst. 18, 5s, Article

67 (Oct. 2019), 67:1-67:23 pages.

Weiwen Jiang, Lei Yang, Sakyasingha Dasgupta, Jingtong Hu, and Yiyu Shi. 2020.

Standing on the Shoulders of giants: Hardware and neural architecture co-search

with hot start. IEEE Transactions on Computer-Aided Design of Integrated Clrcuits

and Systems (2020).

[13] Weiwen Jiang, Lei Yang, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Shouzhen

Gu, Sakyasingha Dasgupta, Yiyu Shi, and Jingtong Hu. 2020. Hardware/software

co-exploration of neural architectures. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (2020).

Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar,

Vivek Sarkar, and Tushar Krishna. 2019. Understanding Reuse, Performance, and

Hardware Cost of DNN Dataflow: A Data-Centric Approach. In MICRO.

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You,

Qixuan Yu, Yue Wang, Cong Hao, and Yingyan Lin. 2021. HW-NAS-Bench:

Hardware-Aware Neural Architecture Search Benchmark. In ICLR. https://

openreview.net/forum?id=_0kaDkv3dVf

[16] Yujun Lin, Mengtian Yang, and Song Han. 2021. NAAS: Neural Accelerator

Architecture Search. In 2021 58th ACM/ESDA/IEEE Design Automation Conference

(DAC).

Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable

architecture search. arXiv preprint arXiv:1806.09055 (2018).

[18] Binggian Lu, Jianyi Yang, Weiwen Jiang, Yiyu Shi, and Shaolei Ren. 2021. One
Proxy Device Is Enough for Hardware-Aware Neural Architecture Search. Proc.
ACM Meas. Anal. Comput. Syst. 5, 3, Article 34 (dec 2021), 34 pages.

[19] Qing Lu, Weiwen Jiang, Xiaowei Xu, Yiyu Shi, and Jingtong Hu. 2019. On Neural
Architecture Search for Resource-Constrained Hardware Platforms. In ICCAD.

[20] Microsoft. 2019. Microsoft Project Brainwave. https://www.microsoft.com/en-
us/research/project/project-brainwave/.

[21] NVIDIA. 2018. NVDLA Deep Learning Accelerator. http://nvdla.org.

[22] Georgia Institute of Technology. 2019. MAESTRO’s documentation. http://
maestro.ece.gatech.edu/docs/build/html/examples/running_maestro.html.

[23] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang
Chen, and Xin Wang. 2020. A comprehensive survey of neural architecture
search: Challenges and solutions. arXiv preprint arXiv:2006.02903 (2020).

[24] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and

Frank Hutter. 2020. NAS-Bench-301 and the Case for Surrogate Benchmarks for

Neural Architecture Search. arXiv preprint arXiv:2008.09777 (2020).

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew

Howard, and Quoc V. Le. 2019. MnasNet: Platform-Aware Neural Architecture

Search for Mobile. In CVPR.

Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model Scaling for

Convolutional Neural Networks. In ICML. http://proceedings.mlr.press/v97/

tan19a.html

Dilin Wang, Chengyue Gong, Meng Li, Qiang Liu, and Vikas Chandra. 2021.

AlphaNet: Improved Training of Supernet with Alpha-Divergence. arXiv preprint

[12

[14

=
i)

o
)

[25

[26

[27

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://openreview.net/forum?id=Cnon5ezMHtu
https://github.com/facebookresearch/AlphaNet
https://openreview.net/forum?id=_0kaDkv3dVf
https://openreview.net/forum?id=_0kaDkv3dVf
https://www.microsoft.com/en-us/research/project/project-brainwave/
https://www.microsoft.com/en-us/research/project/project-brainwave/
http://nvdla.org
http://maestro.ece.gatech.edu/docs/build/html/examples/running_maestro.html
http://maestro.ece.gatech.edu/docs/build/html/examples/running_maestro.html
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html

A Semi-Decoupled Approach to Fast and Optimal Hardware-Software Co-Design of Neural Accelerators

arXiv:2102.07954 (2021).

Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chandra. 2021. Attentivenas:
Improving neural architecture search via attentive sampling. In CVPR.

Tianzhe Wang, Kuan Wang, Han Cali, Ji Lin, Zhijian Liu, Hanrui Wang, Yujun
Lin, and Song Han. 2020. APQ: Joint Search for Network Architecture, Pruning
and Quantization Policy. In CVPR.

Wei Wen, Hanxiao Liu, Hai Li, Yiran Chen, Gabriel Bender, and Pieter-Jan Kin-
dermans. 2019. Neural Predictor for Neural Architecture Search. arXiv preprint
arXiv:1912.00848 (2019).

Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
Insightful Visual Performance Model for Multicore Architectures. Commun. ACM
52, 4 (apr 2009), 65-76. https://doi.org/10.1145/1498765.1498785

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming
Wu, Yuandong Tian, Peter Vajda, Yangging Jia, and Kurt Keutzer. 2019. FBNet:
Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture

tinyML Research Symposium’22, March 2022, San Jose, CA

Search. In CVPR.

Pengfei Xu, Xiaofan Zhang, Cong Hao, Yang Zhao, Yongan Zhang, Yue Wang,
Chaojian Li, Zetong Guan, Deming Chen, and Yingyan Lin. 2020. AutoDNNchip:
An Automated DNN Chip Predictor and Builder for Both FPGAs and ASICs. In
FPGA.

Lei Yang, Zheyu Yan, Meng Li, Hyoukjun Kwon, Liangzhen Lai, Tushar Krishna,
Vikas Chandra, Weiwen Jiang, and Yiyu Shi. 2020. Co-exploration of neural
architectures and heterogeneous asic accelerator designs targeting multiple tasks.
In DAC.

Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler,
Vivienne Sze, and Hartwig Adam. 2018. NetAdapt: Platform-Aware Neural
Network Adaptation for Mobile Applications. In ECCV.

Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578 (2016).

https://doi.org/10.1145/1498765.1498785

	Abstract
	1 Introduction
	2 Problem Formulation
	3 A Semi-Decoupled Approach
	3.1 Overview of Existing Approaches
	3.2 Semi-Decoupled Co-Design
	3.3 Discussion

	4 Experiment Setup
	5 Experimental Results
	5.1 NAS-Bench-301
	5.2 AlphaNet
	5.3 Layer-wise Mixed Dataflow

	6 Related Work
	7 Conclusion
	References

