Main Track

AAMAS 2022, May 9-13, 2022, Online

CAPS: Comprehensible Abstract Policy Summaries for
Explaining Reinforcement Learning Agents

Joe McCalmon
Wake Forest University
Winston-Salem, NC, USA
mccajli8@wfu.edu

Sarra Algahtani
Wake Forest University
Winston-Salem, NC, USA
sarra-alqahtani@wfu.edu

ABSTRACT

As reinforcement learning (RL) continues to improve and be applied
in situations alongside humans, the need to explain the learned be-
haviors of RL agents to end-users becomes more important. Strate-
gies for explaining the reasoning behind an agent’s policy, called
policy-level explanations, can lead to important insights about both
the task and the agent’s behaviors. Following this line of research,
in this work, we propose a novel approach, named as CAPS, that
summarizes an agent’s policy in the form of a directed graph with
natural language descriptions. A decision tree based clustering
method is utilized to abstract the state space of the task into fewer,
condensed states which makes the policy graphs more digestible to
end-users. This abstraction allows the users to control the size of the
policy graph to achieve their desired balance between comprehensi-
bility and accuracy. In addition, we develop a heuristic optimization
method to find the most explainable graph policy and present it
to the users. Finally, we use the user-defined predicates to enrich
the abstract states with semantic meaning. We test our approach
on 5 RL tasks, using both deterministic and stochastic policies, and
show that our method is: (1) agnostic to the algorithms used to
train the policies, and (2) comparable in accuracy and superior in
explanation capabilities to existing baselines. Especially, when pro-
vided with our explanation graph, end-users are able to accurately
interpret policies of trained RL agents 80% of the time, compared to
10% when provided with the next best baseline. We make our code
and datasets available to ensure the reproducibility of our research
findings: https://github.com/mccajl/CAPS

KEYWORDS

Reinforcement Learning, Explainable AI, XRL, Autonomous

ACM Reference Format:

Joe McCalmon, Thai Le, Sarra Alqahtani, and Dongwon Lee. 2022. CAPS:
Comprehensible Abstract Policy Summaries for Explaining Reinforcement
Learning Agents. In Proc. of the 21st International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2022), Online, May 9-13, 2022, IFAA-
MAS, 9 pages.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

889

Thai Le
The Pennsylvania State University
University Park, PA, USA
tql3@psu.edu

Dongwon Lee
The Pennsylvania State University
University Park, PA, USA
dongwon@psu.edu

1 INTRODUCTION

Neural networks have been successfully applied to reinforcement
learning (RL) problems in areas of control [2] and games [15]. Due to
impressive performance in these areas, RL has started appearing in
performance-sensitive real-world applications like chip design [14],
server management [11], and robotics [19]. However, the black-box
nature of neural network decisions increases the need for end-user
trust when deploying a new RL system [6]. Explainable reinforce-
ment learning (XRL) attempts to build this trust by explaining the
behavior of an RL agent that uses neural networks in its decision
making process.

In general, we argue that a truly useful XRL has to satisfy several
desiderata. First, XRL has to explain the entire policy (i.e., behavior)
of the agent to end-users who likely have insufficient knowledge
of RL. Policy-level explanations attempt to reveal the policy of an
agent for many different regions of the state space, and "before"
the agent has taken any actions [5, 23, 26]. However, existing XRL
methods often focus on explaining the decisions of an RL agent in
specific instances [8, 18]. Second, XRL needs to be generalizable
for both deterministic and stochastic RL policies in continuous or
discrete state spaces. However, existing XRL approaches explain
only deterministic policies [26] or discrete state spaces [23]. Third,
XRL needs to deliver explanations, which end-users can interpret,
with as minimal user intervention as possible. Moreover, the end-
users should be given control over the size and thoroughness of the
explanation based on their needs. Finally, the explanations must
accurately describe the agent’s policy, which can be evaluated using
the fidelity test [13].

In this paper, satisfying these desiderata, we propose a general-
izable policy-level explanation approach, named as Comprehen-
sible Abstract Policy Summaries (CAPS), that explains both
stochastic and deterministic policies of an RL agent and displays
the policy as a directed graph, embedded with intuitive natural lan-
guage (NL) explanations. CAPS first collects, from the user, simple
NL predicates which describe potential aspects of the agent’s state
(e.g., “car moves right" or “car stops at the stop sign"). CAPS then
collects no more than 500 timesteps from the RL agent trajectories.
In order to make the explanation process tractable, CAPS uses a
clustering algorithm, CLTree [9], that abstracts the agent’s states
into a hierarchy of different configurations of clusters (C). Each
cluster groups the similar states into one abstract state. A heuristic



Main Track

optimization technique is developed to select the best configura-
tion of the clusters, which is determined by the accuracy of the
state transitions and the end-user interpretability. For each cluster,
c € C, CAPS also identifies whether the agent considers the states
in the cluster to be critical, extending the methodology proposed in
[6]. Then, using the generated clusters C, CAPS forms the agent’s
policy () and transition function as a directed graph, where the
nodes are the clusters of states, forming abstract states, and the
edges represent the actions chosen by 7, as well as the probability
of transitioning from one abstract state to the next. To enrich the
generated graph with more semantic meaning, CAPS labels the ab-
stract states (i.e. graph nodes) with concise NL explanations using
the user-defined languange predicates and Boolean algebra. Lastly,
by controlling the height of the CLTree, CAPS gives the end-user
the choice of generating different policy graphs with different sizes
such that each size corresponds to different levels of abstraction.
To demonstrate the utility of CAPS, we use five popular RL en-
vironments. We trained the RL agents in the environments using
an algorithm for stochastic policies, PPO [21] and an algorithm
for deterministic policies, DQN [16]. Our experimental results indi-
cate that CAPS is generalizable with minimal user interventions.
To measure how close the explanation graphs are to the agent’s
policy, we ran fidelity testing for each environment and compared
it against two baselines which share the most in common with our
approach [23, 26]. The results show that the accuracy of the policy
graphs produced by CAPS is comparable to those produced by the
baselines. We also conducted a user study to test the “real” explain-
ability of the generated graphs with different abstraction levels
against the two baselines. Results show that users presented with
CAPS graphs identify the correct state and next action of an agent
80% of the time, compared to just 10% for the next best baseline.
Our contributions are summarized as follows:

e We introduce a policy explanation approach for creating
abstract policy graphs with different state abstraction levels,
which provides the end-users with more control over the
size of the graph.

e We provide an optimization heuristic for maximizing the
accuracy of our policy graphs, while minimizing the size of
the graph.

e We highlight which abstract states the agent considers most
important to the task which builds trust in end-users [6].

e We propose a novel algorithm for generating a single natural
language representation for each abstract state. Our method
overcomes the issue of previous natural language grounding
methods, where too many contradictory state regions can
degrade the quality of the explanation as in [5].

2 RELATED WORK

Researchers have highlighted important pixels in a frame of an
Atari game [7], [25], [4], and generated contrastive Atari frames
which would cause the agent to take another action [18] . [8] use
reward decomposition to identify the part of the goal a specific
action was meant to achieve. Other methods identify states which
an RL agent determines is important for the outcome of the episode.
The entropy of the agent’s policy and the maximum difference of the
value function have been used to determine states in which a certain

890

AAMAS 2022, May 9-13, 2022, Online

action needs to be taken to avoid failure [1], [6]. Highlighting such
states improves a user’s trust in the agent [6].

For policy-level explanations, Liu et al. in [10] generate decision
trees that mimic the agent’s policy, and then interpret the rules
formed by the learned tree.Structured models of the environment
have been created in [12] to trace the outcomes of the agent’s pol-
icy and produce explanations. These models are not generalizable
across tasks and are difficult to create in large environments, or in
environments where the complete state transition dynamics are
unknown. Another method has been proposed in [24] to generate
an explanation of a policy by comparing it to a user-generated *foil’
policy. It, however, requires the end-user to have a foil policy in
question and know the dynamics of the environment. In [5], policy-
level explanations have been generated in response to user queries.
They also propose a method for translating state regions to natu-
ral language. Our proposed approach improves their methods for
translating state regions, and generates policy explanations which
encompass more scenarios than just those that the user queries.

An abstracted Markov chain has been built in [23] and is dis-
played as a directed graph to explain the agent’s policy. This ap-
proach clearly visualizes the structure of the environment, and the
agent’s path while traversing it. However, the generated policy
graph is not interpretable beyond its shape, because the nodes rep-
resenting abstract states are not given natural language labels. For
stochastic policies and larger environments, the produced graphs
can quickly become too large [23].

Zahavy et.al [26] create state abstractions in Atari environments
using clustering. Their method produces abstract policy graphs,
but requires heavy manual feature engineering and knowledge of
the environment. In addition, the quality of the abstract groupings
is dependent on the engineered features, and they do not provide
a way to interpret their policy graphs beyond environments with
image representations. Our method alleviates these weaknesses
by clustering the state abstractions before any feature engineer-
ing is applied, but the two can be used in conjunction if the user
already has extensive knowledge of the environment. The compari-
son between our proposed CAPS and prior work is listed in Table
1.

3 BACKGROUND

3.1 Reinforcement Learning

An RL agent learns by acting within an environment. Their inter-
action can be characterized as a Markov Decision Process (MDP)
described by the tuple (S, A, P, R), where S is the set of states, A is
the set of actions available to the agent, P is the transition function
such that P(s;, a;) produces a distribution over all possible next
states at time ¢, and R is the set of all possible rewards that an agent
can receive for actions taken in states. The goal of an agent is to
learn the policy, 7(s;) = a;, which would maximize the total dis-
counted reward over the whole task. To help discover the optimal
policy, an agent learns to approximate the value function, o(s;),
which is the expected discounted reward that can be gained by
being in the state s; and following the policy, 7. Formally, the value
function is:

o(si) = E( Z Y R(se, 7(se), se41) o))

t=i



Main Track AAMAS 2022, May 9-13, 2022, Online
Algorithm Policy Explains the Targets Assumes Highlights Explains Explains Optimizes Natural
Explanation | Transition | End-users Minimal Critical Continuous | Stochastic Size of Language
Function End-user States State Spaces Policies Explanation | Explanations
Knowledge
Topin and Veloso [23] v v v
Hayes and Shah [5] v v v v
Zahavy et al. [26] v v v
Liu et al. [10] v v
Madumal et al. [12] v v v Vv
Van der Waa et al. [24] v v v
CAPS v v v v v v v v v
Table 1: Summary of Surveyed Related Works vs. CAPS
Note that the state-value function can be obtained from the action- D'“W'w"m {Data Colecton (Sec. 4. Abstraction (Sec. 42)

value function: V (so) = Q (s0, 7(s0)). These are used in methods
based on Q-Learning, Sarsa(A), and actor-critic methods [22]. There-
fore, the value-function is generally available alongside the policy
of a trained agent. In the case of stochastic policies, = produces a
probability distribution over A, 7(-|s), which can then be sampled
to choose a;. The goal of CAPS is to display information about the
policy, 7, and the transition function, P, to the user as an easily
understood directed graph.

3.2 CLTree

CAPS relies on clustering, an algorithm for finding the natural
groupings of data points within the entire set. Specifically, we use
the clustering algorithm, CLTree [9], which trains a decision tree
to separate the data that belongs to the set, from data which is
artificially inserted into the set uniformly. By learning the feature
boundaries which separate real data from fake data, the nodes in
the tree form natural clusters. In addition, these clusters can be
combined or separated by traversing up or down the tree. Therefore,
by pruning the tree, each cluster can be more inclusive or exclusive
according to the user’s needs.

4 THE PROPOSED APPROACH: CAPS

The main deliverable from CAPS is a directed graph to describe
the agent’s policy in NL predicates. We formulate the output graph
G as G = (V,E) to explain the RL policy components, states, ac-
tions, and transiting probabilities between the states. V is a set
of vertices representing the RL agent’s states S from the MDP
representation of the environment. E is the edges connecting the
vertices matching the actions A = 7(S) in the MDP and defined
as E C {(v1,02)|(v1,02) € V2. Since G is a directed graph, we can
annotate E with the transition probabilities P as defined in the MDP.

Directly mapping the states S, actions A, and transitions P from
the original MDP to V and E in G is intractable for the end-user
interpretation. For instance, generating G for an episode of 100
timesteps collected from a policy 7 could, in the worst case, include
100 vertices to represent each state in the episode. Given the defi-
nitions of the RL agent’s policy 7 and the graph G, we frame this
problem within CAPS framework as a four step process as depicted
in Figure 1 and explained in the following subsections.

891

Abstract Policy Graph (Sec. 4. a)

State Abstraction

via Clustering
a via CLTree
L 7= (8¢, ar,v(st),
o H(m(s)), 1)
i Abstract States in Boolean Formats:
Oﬁ P(edlcatesand - Eotlaen w( ) [1 0 0 ]
"\ (DD (el U Classifiers
a0 Generat|or:1> user's |  Generation_ w(ca) [0 1,1,..0] No Action
Dataset) [ =1.0)
End-Users >w( (1,0,0,. Ob (el

(e.g."Car is on the right",
"Car is moving quickly")

Natural Language Grounding (Sec. 4.4)

Figure 1: The overall architecture of the CAPS approach.
4.1 Data Collection

In this step, we collect two small datasets, U, from the end-user,
and D, from the RL agent’s execution. The user is asked to cre-
ate natural language predicates that concern them about the en-
vironment and the agent’s task. For example, for a self-driving
car agent, the user could give predicates like “the car is moving
fast”, “there is a stop sign”, or “car on the right”. Those predicates
will be used later to append G with semantic meaning that sup-
ports the end-user’s interpretation. For the agent’s dataset D, we
collect a small number (< 500) of timesteps from its execution
traces, possibly collected over multiple episodes, consisting of tu-
ples, © = (sy, ar, 0(st), H(x(st)),sr41) € D. st is the state of the
agent at time ¢, which will be used to form the vertices V of G,
while a; is the action that the agent’s policy chooses based on the
current state, a; = 7(s;), and will be mapped to the edges E in G.
The state value v(s;) is collected to estimate how good it is for the
agent to be in state s; for the future reward from Eq.1. This value
helps groups states which the agent views as similarly important
to the task’s success (Section 4.2). The policy entropy H (7(st))
defines the entropy of the probability distribution generated by
7 in state s;. We use the policy entropy to highlight clusters of
states as critical (Section 4.2.1). For deterministic policies which do
not output a probability distribution, we instead use the maximum
difference of the Q-function among actions as a proxy for policy en-
tropy, as in [6]. This is defined as maxa;.a; ca(Q(st, ai) — Q(sz, aj)),
where Q(s;, a;) is the learned value of taking action a; in state s;.

4.2 Policy State Abstraction via Clustering

The motivation of CAPS is to generate more human-interpretable
graphs than the Markov chains made from the base MDP and the



Main Track

AAMAS 2022, May 9-13, 2022, Online

p=t
Right

Righl;O

p=0.12

Rigm p=0.41 Righl/g;
p=0.03 f p0.56 Rignt

Right
Up

dp,‘

Down

=

Figure 2: Example of Abstract Policy Graphs produced by CAPS before translation for CLTree of height 4 and 5 (left, right)

RL agent’s policy. Therefore, the number of nodes in the resulted
graph of CAPS should be much lower than the number of distinct
states in the base MDP. To achieve this, we adopt the notion of state
abstraction from RL literature [17], [22]. State abstraction involves
grouping the grounded states of the agent’s MDP into groups of
similar states, reducing the size of the entire state space. Prior work
[23] has abstracted the states using feature importance or signifi-
cance. In CAPS, we instead use a clustering algorithm eliminating
the need to manually engineer the state features as in previous
work. We can directly apply clustering algorithms to abstract the
state space if we assume that groups of similar states Sj, S share
similar policies 7(S1) = 7(S2) or value functions v(S1) = v(S2) as
in [17]. This assumption, however, does not always hold, thus we
include the value function v(s;) and action a; from the collected
tuples 7 for more accurate clustering.

Using CLTree algorithm [9], we cluster each 7 € D into similar
groups. The generated leaf clusters C in the tree represent the
abstract states. As a result, each abstract state ¢ € C groups all
states which are interchangeable under the agent’s policy such that
either the agent behaves similarly when starting in any s € ¢, or
(Vs € ¢) = a [26], [23], or the agent assigns similar values to each
s € ¢ [23]. The advantage of using CLTree clustering over K-means
or a modified K-means [26] is that the user has direct control over
the size of the graph’s nodes V. From a finished CLTree pruned to
a specific depth, traversing the tree can increase or decrease the
level of abstraction, giving a dynamic understanding of the policy.
As an example, Figure 2 shows two policy graphs, without natural
language labels, at two sequential levels of the tree.

4.2.1 Heuristic Optimization for Clustering. To increase the usabil-
ity of CAPS for users with minimal to no knowledge about RL and
CLTree, we develop a heuristic optimization technique to find the
optimal set of clusters C*. Our heuristic is motivated by the fact
that as the policy graph G grows in the number of clusters C (i.e.
|[V]), the error between the true environment transition function
P from the MDP and the one estimated by G, as well as the error
between the agent’s true policy 7 and that presented in the graph,
decreases. However, in order for G to be interpretable to a human
end-user, we must limit the number of vertices V in the graph !.
Let L be the set of tree heights, and C; be the set of clusters
at a height, I € L. We wish to choose [ such that the clusters in
C* = C; form an accurate policy graph with respect to the value
function v(s) and the policy of the agent 7 within each cluster. In

1See Appendix B for the analysis study of the heuristic optimization

892

addition, we want to penalize the size of the graph, so that the
policy graph G remains interpretable for humans with less vertices
V. To achieve that, we introduce two heuristics; the value score and
the cluster policy. Informally, the value score represents the error
between the environment’s transition function P+ as estimated by
the clusters, and the true transition function P in the MDP. It does
this by comparing the true value functions of the states in each
cluster v(s)Vs € C and the estimated value function according to
the estimated transition function. This heuristic is inspired by the
Value Mean Square Error(VMSE) evaluation criterion in [26]. The
second heuristic is the entropy of the cluster policy. The cluster
policy, II(c) defines the probability of taking an action, a, given a
cluster, c, as the proportion of s € ¢ such that 7(s) = a. We minimize
the average entropy of the cluster policy, H(II(c)), across all ¢ € C,
so that it is clear to the end-user which action the agent will take
in the abstract state, c.

Recall, u(s) is the value of the state s, as determined by the agent’s
value function (Eq.1). We formally define the value score, {(C(1)),
as:

{EOE D (Vge(e) = Vest (€))?
ceC(l)
where Vgt(c) is the ground-truth value of an abstract state, ¢, found

by:

1
0] @

Vip(e) = 7 3 009

SEC
and Veg;(c) is the estimated value of an abstract state, ¢, found by:

Vest(e) =y ) P*(e,c)Vye(ci)
cieC(l)
where y is the discount factor from Eq. 1 and P*(c, ¢;) is the proba-
bility the agent transitioning from cluster ¢ € Cj to cluster ¢; € Cp,
estimated as the proportion of (s, a;) pairs € ¢ which transition to
St+1 € Cj:
. 1
Prlec)=m— > I(st1) 3)
|C| (s,a,s,
,4,S141) EC
where I is an indicator function deciding whether s;41 is in c;.
Then, we formally define the height of the tree, [, pertaining to
the optimal clusters as:

1
argmin |{(C(])) + (—
oL [ [20]
where « is a parameter controlling the penalty of larger policy
graphs and H (I1(c)) is the entropy of the cluster policy.

> Hawen|+aicol| @

ceC(l)



Main Track

4.3 Abstract Policy Graph

Given a set of abstract states, we create a policy-level explanation
by modeling the policy as a directed graph G. Each vertexv € V
represents an abstract state from the clusters generated by CLTree
and the edges E are transitions induced by a single action from
one abstract state to another, each accompanied by a transition
probability. We estimate the transition function P+ from Eq.3. We
use Algorithm2 in [23] to append the actions and transition proba-
bilities to our graph G. We, however, modify the graph generation
algorithm in [23] to include the stochastic transition functions by
attaching the actions taken to the edges with their probabilities,
instead of to the nodes. This change increases the readability of
CAPS’s generated graph since the nodes have the NL predicates to
describe the abstract states and the edges describe how likely the
agent will take certain actions. Figure 2 shows what an example G
looks like before incorporating the NL labels to the nodes, at two
different heights of the CLTree.

4.4 Natural Language Grounding

In order to provide interpretable explanations of the agent’s abstract
policy graph G, we ground the graph nodes (i.e. abstract states) in
NL. We use a set of Boolean classifiers that we build based on the
user’s given predicates in U. We use these classifiers to translate
internal knowledge of the MDP states within the abstract states
into NL through two levels of translations; MDP state translation
and abstract state translation.

4.4.1 MDP State Translation . We modify the method of [5] for
grounding state regions in NL to improve the explanation qual-
ity. Recall, our collected preliminary data U has the environment-
specific user-predicate. Those predicates are used to create binary
classifiers evaluating the features of each state. The semantic mean-
ing of the boolean predicates should correspond to some aspect of
the state space which we are interested in using to explain the
agent’s action. Unlike [26] which also uses feature engineering to
create semantic meaning, in CAPS, the set of predicates does not
affect the accuracy of the transition function, or the fidelity of the
policy graphs. This is because we apply the NL after clustering in-
stead of clustering the engineered features. Hence, only the quality
of the NL explanations given to each abstract state is affected by
the user-predicates.

Given a set of user-predicates,F, which are binary functions, we
map an MDP state s € ¢ into binary vector, w(s), with length |F|,
where each element represents whether s satisfies the particular
user-predicate, f € F.Vc € C,and Vs € ¢, we map s to w(s) through:

. 1,
©) = Ho

4.4.2  Abstract State Translation. In Eq.5, each grounded state in
the abstract state Vs € c is translated into a binary vector w(s) of
NL predicates. We then condense the set of all binary vectors in the
cluster {w(s)|s € c}, into a single vector of predicate values, w(c),
which provides a concise explanation of the cluster ¢ (Algorithm
1). Algorithm 1 has three steps; finding the frequent predicates
for each abstract state, calculating the correlation between those

if f(s) = True

otherwise

VfeF (5)

893

AAMAS 2022, May 9-13, 2022, Online

Algorithm 1 Condense Semantic Meanings into a Single, Trans-
lated Representation

: Input

w: Binary vectors Vs € ¢ computed by Eq.5

: B, 8: Predicate frequency and correlation threshold
: DG: The diverse groups for the user-predicates

N S Y

5. Output
6: Exp: The English explanation for each state in the graph G

7: procedure GENERATE EXPLANATION

8: for cin C do

9 for i in user-predicate do w(c)[i] « Eq.6

10: for i in user-predicate do

11: if w(c)[i]==1thenF « FUi

12: end for

13: for (i, j) in F do

14: if f;, fj € DG then Exp(c) < Exp(c) Uf; Uor U f;
15: elif p; j > 6 then Exp(c) < Exp(c)U fiUandU f;
16: else Exp(c) < Exp(c) U fi Uor U f;

17: end for

18: end for

19: return Exp

20: end procedure

predicates, and translating them into one NL sentence. We label a
predicate in a cluster as frequent or not with Eq.6.

1, if Zvsec @(s)[i] N ﬁ

le]

w(o)[i] = { (6)

0, otherwise

The result, w(c), is a binary vector that has 1 at the ith predicate if
the proportion of each predicate’s appearance in all the MDP states,
s, in this abstract state, c, is above a threshold f (lines 8-12). Unlike
[5], which only presents a predicate as part of the explanation
if it appears in all MDP states, our algorithm uses a threshold
B to control how frequent a predicate value must appear in the
grounded states Vs € c to be included in the explanation of the
abstract state c. Hence, CAPS guarantees presenting the user with
at least some relevant descriptions. We find that in practice, the
method of [5] often finds no commonalities between the grounded
states, especially as the amount of input data grows (Table.2). We
suspect this is because even a single contrastive state can invalidate
a predicate following their method.

The second step of Algorithm 1 (lines 13-16) decides which
Boolean algebra operators (i.e. or, and) should be used to connect
the frequent predicates, so that each node in the graph has a seman-
tically meaningful description. This is done by first requiring the
user to group their predicates into diverse groups such that no two
predicates in the same group can both be true in any grounded state.
For example, in a self-driving car, the predicates "car is moving fast"
and "car is moving slow" should be in the same group since the car
cannot be moving fast and slow simultaneously. If a pair of frequent
predicates for an abstract state are part of the same diverse group,
we connect those predicates with an "or" operator. Otherwise, we
use the Pearson correlation coefficient [20] to find how strong the
correlation between the expressive predicates. We use "and" for
strong correlations and "or" otherwise. For each pair of predicates



Main Track

AAMAS 2022, May 9-13, 2022, Online

CAPS

Hayes and Shah [5]

“Pole is standing up and cart is either moving left or right and cart is

either on the left or in the middle”

No Explanation Produced

“Pole is either stabilizing to the right or standing up and cart is
moving right and cart is in the middle”

“Pole is not falling left and cart is moving right and cart is in the
middle”

“Pole is either stabilizing to the left or standing up and cart is moving

left and cart is in the middle”

“Cart is moving left”

Table 2: Example labels for abstract states produced by CAPS vs. [5] for the Cartpole environment (Appendix A.3 describes

this environment and shows its policy graph).

i, j, we compute the Pearson correlation coefficient p as:

- cou(i, j)
B Stdistdj

™

where cov is the sample covariance, std; and std; are the sample
standard deviations of the predicates i and j in s,Vs € c. We use
a threshold § to control how correlated two predicates must be in
order to justify an "and" relationship between them. Algorithm 1
improves upon [5] by including the largest number of predicates
in the explanation as possible, while still presenting combinations
of predicates that actually occurred in the input data. Using the
diverse groups plays a crucial role, since we can still include two
predicates in the explanation which can never coexist in the same
state, simply by joining them with an “or” conjunction.

4.5 Highlighting Critical States

Critical states are defined as states in which it is important to take
a certain action [6]. To build trust in an end-user, it is helpful to
highlight what the agent does in these critical states, as well as
what situations the agent believes are critical. For stochastic policies,
such as PPO [21], the set of critical states under the policy K, have
been defined as [6]:

Kr = {s|H(x(:|s)) < t} ®)

where H (7(-|s)) is the entropy of the probability distribution gen-
erated by 7 in state s. Extending this to the setting of abstract states,
we define the critical value of an abstract state, x(c), as:

K(0) = 1o ) Ha(ls)

sec

©)

In this case, a lower critical score, and therefore a lower average
entropy, corresponds to a more critical state. We highlight ¢ as
a critical abstract state if its critical value is in the bottom n;,
percentile of the abstract states in its graph. n is arbitrary and only
affects the number of critical abstract states which are presented.
We chose to use n = 10 in our experiments.

5 EXPERIMENTS
5.1 Experimental Settings

We tested CAPS on five environments. Two environments have
discrete state spaces, namely Blackjack and Cliffworld [22]. The
other three environments - Cartpole, Lunar Lander, and Mountain
Car [3] - have continuous state spaces. In addition, Blackjack has a
stochastic transition function while the rest of the environments

894

Figure 3: The Mountain Car environment from Open Al
Gym

have deterministic transition functions (See the appendix for more
details about these environments). To test the generalizability of
CAPS, we tested the environments using two different RL agents:
one trained with a deterministic algorithm, DQN [16], and one with
a stochastic algorithm, PPO [21]. To preserve space, we discuss
Mountain Car in detail, and provide policy graphs for the other
environments in Appendix A.

5.2 Results

In the Mountain Car environment, a car starts at the bottom of a
valley, and must build up enough speed to reach the top of the hill
on the right Figure 3. The car has 3 actions, either accelerate left,
accelerate right, or choose to not accelerate. The state space consists
of two continuous features, car position, with 0 corresponding to
the bottom of the valley, and cart velocity. Figure 4 shows the policy
graph for Mountain Car, produced by CAPS. Nodes highlighted in
red are selected as critical by CAPS. The user-defined predicates
for this environment are broken up into two diverse groups. The
first describes the position of the car, and includes the predicates
"At the bottom", "On the left slope”, "On the right slope”, "High up
on the left slope”, and "High up on the right slope". The second
group describes the velocity of the car: "Not moving", "Moving right
slowly", "Moving left slowly", "Moving left quickly", and "Moving
right quickly".

Given only Figure 3 of the environment and a description of
the task, an end-user might suppose the best way to solve the
task is to have the car accelerate right until reaching the goal flag.
However, such a strategy does not work, because the car fails to
build up enough momentum to surmount the hill. The optimal
strategy, as discovered by the RL agent, is to first build momentum
by alternating its actions, and then to stop accelerating once the



Main Track

Car is on the

right slope. Car 50% Chance to
is moving right Accelerate Left

slowly.

Caris at the
bottom or on the

1% Chance to Caris at the

joft siope or on Right botiom. Car is
e right slope. vy s
Caris moving < 3% Chance to moving right

Not Accelerate slowly.

left slowly.

Car is high up on
the left slope. Car
is moving left
slowly.

Car is high up on
the left slope. Car
is moving left
slowly.

Caris on the
right slope. Car
is moving right
quickly.

Car has
reached
the goal.

Figure 4: Example of an explanation for Mountain Car pro-
duced by CAPS. Abstract states outlined in red are critical.

1.0 m CAPS
[ Topin et al. [24]
0.8 3 Zahavy et al. [27]
osl B |
o
=]
20, I B I‘
02 Iﬂﬂ I ‘ ‘ I‘ I‘ = W
o.oj : ‘ ‘ m i m ‘
Mountain Car Cartpole Blackjack Gridworld Lunar Lander

RL Environment

Figure 5: Fidelity for three baselines in the five baseline en-
vironments. Data was collected using a PPO policy.

car is high enough up the left hill. Momentum is then enough to
carry the car to the goal.

Such a strategy can be seen in the CAPS graph (Figure 4). The
car starts at the bottom, and has a stochastic policy which sees it
alternate between each action. Once it builds up enough momentum
to reach a position high up on the left slope, it identifies its current
state as critical, and stops accelerating with high probability. These
actions bring the car to a point in which it is rapidly rising up the
right slope, and eventually reaches the goal.

Alongside the policy graphs, we perform analysis on the different
scores defined in section 4.2.1 with respect to graph size (in nodes).
We present the analysis results in Appendix B. We also compare
the accuracy of CAPS policy graphs to baselines through a fidelity
metric. The fidelity of the policy graph is defined as the proportion
of actions taken by the trained RL agent that are the same as the

895

AAMAS 2022, May 9-13, 2022, Online

Il PPO
0.6 I DQN
2
0.4
S
i
0.2
0.

Mountain Car Cartpole Blackjack Gridworld Lunar Lander

RL Environment

Figure 6: Fidelity in the five baseline environments for two
RL agents. One was trained with PPO, and the other with
DON.

action the policy graph says the agent should take [23]. To calculate
fidelity for each environment, we simulate about 2000 timesteps
of environment interaction. We also average the fidelity of these
trials over 10 different generated graphs by each baseline. The
results for CAPS and the two baselines which produce policy graphs,
[23, 26], are shown in Figure 5. In Figure 5, we see that the fidelity
of CAPS is either superior or comparable to [23, 26], except in the
case of Gridworld. In the Gridworld environment, the policy is
deterministic enough that Topin and Veloso [23], which attempts
to memorize (s;, a;) pairs, can do so without loss of fidelity. We
construct CAPS graphs to favor interpretability and conciseness
over perfectly fitting the observed data, but we see that the fidelity
accuracy does not suffer under this approach. We also see in Figure
6 that CAPS policy graphs are similar in fidelity when the data was
generated with PPO versus with DQN. This indicates that CAPS is
invariant to the agent’s learning algorithm, and is compatible with
deterministic and stochastic policies.

6 USER STUDY

6.1 Design

Distinguished from previous XRL approaches, CAPS includes not
only developers and researchers, but also non-technical end-users
as its target audience. Therefore, we designed a user-study to quan-
titatively measure the amount of understanding a CAPS graph
provides over two other directly-comparable graph-based policy
explanation methods [23, 26] from the perspective of the end-users.

For this study, we present the Mountain Car environment to
Amazon Mechanical Turk (AMT) workers, along with a single frame
from an episode. Given an explanation graph, we then ask the
workers (i) Q1. Which state represents the current scenario of the
environment and (i) Q2. Which action the agent will likely execute
next. We reveal the correct answer to Q1 at the beginning of Q2. The
Mountain Car environment is selected because actions of a learned
RL agent can be counter-intuitive to a layperson, hence it requires
an explanation graph for correct interpretation. In fact, without
an explanation graph, AMT workers are only able to achieve an
overall accuracy of 3% on Q2 (Table 3). We then manually select
three frames (i.e., scenarios) from an episode, and test this same
set of frames across all baseline (Appendix C). The selected frames
represent a sequence of three distinctive locations of the car of
the environment (i.e., on the left slope, at the bottom and on the
right slope). We show workers either a graph from CAPS, a graph
from [23] (Topin and Veloso), a graph from [26] (Zahavy et al.), or
no graph, as a baseline. Note that the two baseline graphs do not



Main Track AAMAS 2022, May 9-13, 2022, Online
Method # Top 20 Longest Responses Top 30 Longest Responses All Responses
Ans. Time| ST AT S+AT S—AT Time| ST AT S+AT S—AT Time| ST AT S+AT S—A7
Without graph 33 41s - 0.05 - - 38s - 0.03 - - 37s - 0.03 - -
Topin and Veloso [23] 39 159s 0.05 0.40 0.05 1.0 (1/1) 141s 0.03 0.33 0.03 1.0(1/1) 130s 0.03 0.28 0.03 1.0 (1/1)
Zahavy et al. [26] 45 136s 045045 0.10 0.22(2/9) 125s 0.5 0.47 0.13 0.27 (4/15) 115s 0.42 0.47 0.16 0.37 (7/19)

CAPS (Optimal) 46

139s 0.85 0.95 0.80 0.94 (16/17) 126s 0.77 0.86 0.70 0.91(21/23) 114s 0.78 0.87 0.70 0.89 (32/36)

Table 3: Comparison of user-study results on (Time)-the total time spent on the task, accuracy of selecting the (S)-correct
abstract state, (A)-correct action, (S+A)—-correct abstract state and action, (S— A)-correct action after correctly selecting abstract

state.

N+2 No oo N2

Given the Correct States

Acc. of Actions Selection

010 012 014 0.16

Cluster Policy Entropy

010 012 014 016 0.08

Cluster Policy Entropy

0.08

Figure 7: Relationship between comprehensibility and clus-
ter policy entropy with varied CAPS graph sizes.

contain NL explanations. We show each graph used in this study
in Appendix C.

We recruited a total of 120 AMT workers who are English speak-
ers located in North America. We recruited general users and make
no assumption regarding the their knowledge and experience in ML
or RL. To ensure the quality of the workers and reduce possible
biases, we employ various recruitment criteria and experiment con-
trols and maintain these across all baselines. We refer the readers to
Appendix C for more details on the user-study (recruitment criteria,
payment, etc.). Our user-study is IRB-approved.

6.2 Results

Table 3 summarizes the results. First, all explanation methods help
the end-users to better understand the learned RL agent. Moreover,
it is statistically significant (p-value< 0.01) that CAPS performs
better than all baselines on average (Table 4). In fact, our method
is the most comprehensible, enabling the end-users to accurately
interpret both the current states and the agent’s next actions (S+A)
up to 70% accuracy, a four times improvement from the next best
baseline (Zahavy et al.) (Table 3). Interestingly, except for the Topin
and Veloso graph, the more time the AMT workers spent on the tasks,
the better their responses became. Particularly, the top 20 longest
responses recorded an accuracy of over 85% and 90% accuracy on
Q1 and Q2, respectively, when provided with CAPS graph (Table 3).
Furthermore, adding either NL texts (CAPS) or visual illustrations
(Zahavy et al.[26]) for each abstract state enables the end-users to
make decisions more promptly and effectively (Table 3).

Given the assumption that the end-users are involved in the
abstract state translation step of CAPS (Sec. 4.4.1), they should be
fully aware of the mapping from a given scenario of the car to its
respective abstract state on the CAPS graph. Table 3 shows that
those who fit into this assumption-i.e., users who selected the

896

CAPS >NoGraph >Topin and Veloso >Zahavy et al.
p-value (S) - 1.5e-17 1.6e-4
p-value (A) 2.3e-21 7.8e-10 1.1e-5
p-value (S+A) - 2.4e-13 1.1e-8

Table 4: p-values (all are <0.01) of hypothesis tests on
whether CAPS can provide the AMT workers with addi-
tional explanatory values to accurately select Q1 (S), 02 (A)
or both (S+A)

correct abstract state in Q1, are the most accurate in interpreting
the agent’s next actions, with an overall accuracy of around 90%
(S—A). Even though this accuracy is 100% in case of Topin and
Veloso, there was only 1 response that correctly answered Q1 (Table
3).

We also evaluate the trade-off between explainability of a gener-
ated CAPS graph, its size, and its cluster policy entropy (Section
4.2.1). Figure 7 (Left) shows that the optimal graph size found by
CAPS is best positioned in terms of both comprehensibility (the
higher the better) and the policy entropy (the lower the better).
Once an abstract state is correctly identified, it then becomes rela-
tively easy (>90% accuracy) for the end-users to correctly identify
the agent’s next action (Figure 7, Right).

7 CONCLUSION

We introduce a novel method, named as CAPS, for generating
comprehensible policy graphs, which can explain the policy of an RL
agent to an end-user with minimal knowledge of machine learning.
We present a state abstraction strategy that gives us control over
the abstraction and size of the policy graph, and allows us to gain
additional information by observing how the graph changes as we
make it more or less abstract. We also propose a novel method for
condensing entire abstract states into concise, natural language
descriptions.

ACKNOWLEDGEMENT

The work was in part supported by NSF awards #1950491, #1909702,
and #2105007.

REFERENCES

[1] Dan Amir and Ofra Amir. 2018. HIGHLIGHTS: Summarizing Agent Behavior to
People. In AAMAS.

[2] Hamid Benbrahim and Judy A. Franklin. 1997. Biped dynamic walking using
reinforcement learning. Robotics Auton. Syst. 22 (1997), 283-302.



Main Track AAMAS 2022, May 9-13, 2022, Online

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William Hang, Emre Tuncer, Anand

Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAl Gym.
arXiv:arXiv:1606.01540

Samuel Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. 2018. Visualiz-
ing and Understanding Atari Agents. In Proceedings of the 35th International Con-
ference on Machine Learning (Proceedings of Machine Learning Research, Vol. 80),

Babu, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter, and Jeff Dean. 2020.
Chip Placement with Deep Reinforcement Learning. arXiv:2004.10746 [cs.LG]
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. arXiv:1312.5602 [cs.LG]

Jennifer Dy and Andreas Krause (Eds.). PMLR, 1792-1801. [16
[5] Bradley Hayes and J. Shah. 2017. Improving Robot Controller Transparency

Through Autonomous Policy Explanation. 2017 12th ACM/IEEE International

Conference on Human-Robot Interaction (HRI (2017), 303-312. [17
[6] Sandy H. Huang, Kush Bhatia, Pieter Abbeel, and Anca D. Dragan. 2018. Es-

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. arXiv:1312.5602 [cs.LG]

A. Moore. 1995. Variable Resolution Reinforcement Learning.

Matthew L. Olson, Roli Khanna, Lawrence Neal, Fuxin Li, and Weng-Keen Wong.

puy
&

= =

tablishing Appropriate Trust via Critical States. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 3929-3936. https://doi.org/
10.1109/IR0OS.2018.8593649

Rahul Radhakrishnan Iyer, Yuezhang Li, Huao Li, Michael Lewis, Ramitha Sundar,
and Katia P. Sycara. 2018. Transparency and Explanation in Deep Reinforcement
Learning Neural Networks. Proceedings of the 2018 AAAI/ACM Conference on Al
Ethics, and Society (2018).

Zoe Juozapaitis, Anurag Koul, Alan Fern, M. Erwig, and Finale Doshi-Velez. 2019.
Explainable Reinforcement Learning via Reward Decomposition.

Bing Liu, Yiyuan Xia, and Philip S. Yu. 2004. Clustering Via Decision Tree
Construction.

Guiliang Liu, Oliver Schulte, Wang Zhu, and Qingcan Li. 2018. Toward
Interpretable Deep Reinforcement Learning with Linear Model U-Trees.
arXiv:1807.05887 [cs.LG]

Ning Liu, Zhe Li, Jielong Xu, Zhiyuan Xu, Sheng Lin, Qinru Qiu, Jian Tang, and
Yetang Wang. 2017. A Hierarchical Framework of Cloud Resource Allocation
and Power Management Using Deep Reinforcement Learning. 372-382. https:
//doi.org/10.1109/ICDCS.2017.123

Prashan Madumal, Tim Miller, Liz Sonenberg, and Frank Vetere. 2020. Explain-
able Reinforcement Learning through a Causal Lens. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020. AAAI Press, 2493-2500. https://aaai.org/ojs/index.
php/AAAT/article/view/5631

Aniek Markus, Jan Kors, and Peter Rijnbeek. 2021. The role of explainability
in creating trustworthy artificial intelligence for health care: A comprehensive
survey of the terminology, design choices, and evaluation strategies. Journal of
Biomedical Informatics 113 (Jan 2021), 103655. https://doi.org/10.1016/].jbi.2020.
103655

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim Songhori,
Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae, Azade

2021. Counterfactual state explanations for reinforcement learning agents via
generative deep learning. Artificial Intelligence 295 (2021), 103455. https://doi.
org/10.1016/j.artint.2021.103455

Jan Peters and Stefan Schaal. 2006. Policy Gradient Methods for Robotics. In 2006
IEEE/RS7 International Conference on Intelligent Robots and Systems. 2219-2225.
https://doi.org/10.1109/IROS.2006.282564

[20] JoeRodgers and Alan Nicewander. 1988. Thirteen Ways to Look at the Correlation

Coefficient. American Statistician - AMER STATIST 42 (02 1988), 59-66. https:
//doi.org/10.1080/00031305.1988.10475524

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG]
Richard S.Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and
semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning.
Artificial Intelligence 112 (1999), 181-211.

Nicholay Topin and Manuela Veloso. 2019. Generation of Policy-Level Expla-
nations for Reinforcement Learning. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artifi-
cial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27
- February 1, 2019. AAAI Press, 2514-2521. https://aaai.org/ojs/index.php/AAAI/
article/view/4097

Jasper van der Waa, Jurriaan van Diggelen, Karel van den Bosch, and Mark
Neerincx. 2018. Contrastive Explanations for Reinforcement Learning in terms

of Expected Consequences. arXiv:1807.08706 [cs.LG]
Zhao Yang, Song Bai, Li Zhang, and Philip H. S. Torr. 2019. Learn to Interpret

Atari Agents. arXiv:1812.11276 [cs.LG]

Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. 2016. Graying the black box:
Understanding DQNs. In Proceedings of The 33rd International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 48), Maria Flo-
rina Balcan and Kilian Q. Weinberger (Eds.). PMLR, New York, New York, USA,
1899-1908. https://proceedings.mlr.press/v48/zahavy16.html


https://arxiv.org/abs/arXiv:1606.01540
https://doi.org/10.1109/IROS.2018.8593649
https://doi.org/10.1109/IROS.2018.8593649
https://arxiv.org/abs/1807.05887
https://doi.org/10.1109/ICDCS.2017.123
https://doi.org/10.1109/ICDCS.2017.123
https://aaai.org/ojs/index.php/AAAI/article/view/5631
https://aaai.org/ojs/index.php/AAAI/article/view/5631
https://doi.org/10.1016/j.jbi.2020.103655
https://doi.org/10.1016/j.jbi.2020.103655
https://arxiv.org/abs/2004.10746
https://arxiv.org/abs/1312.5602
https://doi.org/10.1016/j.artint.2021.103455
https://doi.org/10.1016/j.artint.2021.103455
https://doi.org/10.1109/IROS.2006.282564
https://doi.org/10.1080/00031305.1988.10475524
https://doi.org/10.1080/00031305.1988.10475524
https://arxiv.org/abs/1707.06347
https://aaai.org/ojs/index.php/AAAI/article/view/4097
https://aaai.org/ojs/index.php/AAAI/article/view/4097
https://arxiv.org/abs/1807.08706
https://arxiv.org/abs/1812.11276
https://proceedings.mlr.press/v48/zahavy16.html

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Reinforcement Learning
	3.2 CLTree

	4 The Proposed Approach: CAPS
	4.1 Data Collection
	4.2 Policy State Abstraction via Clustering
	4.3 Abstract Policy Graph
	4.4 Natural Language Grounding
	4.5 Highlighting Critical States

	5 Experiments
	5.1 Experimental Settings
	5.2 Results

	6 User Study
	6.1 Design
	6.2 Results

	7 Conclusion
	References



