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ABSTRACT

Multi-Agent Path Finding (MAPF) is a well studied problem with
many existing optimal algorithms capable of solving a wide variety
of instances, each with its own strengths and weaknesses. While
for some instances the fastest algorithm can be easily determined,
not enough is known about their performance to predict the fastest
algorithm for every MAPF instance, or what makes some instances
more difficult than others. There is no clear answer for which
features dominate the hardness of MAPF instances. In this work,
we study how betweenness centrality affects the empirical difficulty
of MAPF instances. To that end, we benchmark the largest and most
complete optimal MAPF algorithm portfolio to date. We analyze the
algorithms’ performance independently and as part of the portfolio,
and discuss how betweenness centrality can be used to improve
estimations of algorithm performance on a given instance of MAPF.
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1 INTRODUCTION

Path finding, the problem of finding a feasible path from a start posi-
tion to a goal position, is a fundamental problem in many real world
applications, including many applications in robotic navigation and
autonomy. Path finding becomes significantly more challenging
when multiple agents must plan paths together and cooperate with
other agents in their environment. In autonomous warehouses, for
instance, where hundreds of robots may be navigating the same
space, finding collision-free paths becomes a significant challenge.
In this work we study the discrete Multi-Agent Path Finding (MAPF)
problem, which is the computational foundation of many coordi-
nation tasks. Formally, an instance of MAPF is a 3-tuple (G, S, T),
where G = (V,E) is a connected graph, S = {s,...,Sp} is a set of
start vertices, and T = {t1, ..., t } is a set of goal vertices for n agents.
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When G is a 2-D grid graph it will generally be referred to as a
map. At every discrete timestep, an agent may traverse an edge
or wait at its current position. A solution to a MAPF instance is a
set of paths in G from s; to t; for every agent i. A MAPF solution
requires that no two paths collide with each other, meaning agents
do not occupy the same node nor traverse the same edge at the same
timestep. MAPF algorithms typically optimize either for makespan,
the time until the final agent reaches its goal, or sum-of-costs, the
sum of the number of time steps for each agent to reach its goal. In
this work we focus on algorithms that find optimal paths for the
sum-of-costs objective, which is NP-Hard on general graphs as well
as 2-D grids [1, 32].

Since MAPF is such a fundamental problem for many real world
applications, the research community has produced a number of
optimal algorithms that are able to efficiently solve many MAPF
instances. When new algorithms are introduced, they are typically
compared against existing algorithms on a dataset of maps and
random instances. Algorithms are primarily compared based on
their overall performance, measured by the completion rate within
some cutoff time for every algorithm. While these comparisons
give us some idea of how these algorithms perform as standalone
solvers, they miss the forest for the trees: they overlook how the
algorithms might work and perform differently on the dataset.
For this, it is best to consider how the individual algorithms (the
trees) affect the solvable space of MAPF problems (the forest). To
effectively evaluate a new MAPF algorithm, its performance should
be evaluated within a portfolio of existing MAPF algorithms rather
than by its overall individual performance.

In this work, we study the performance of a portfolio of algo-
rithms: how the strengths and weaknesses of algorithms comple-
ment each other, and what properties of MAPF instances affect the
performance of our portfolio. We use a portfolio of six state-of-the-
art algorithms, benchmarked on a dataset of over 20,000 diverse
MAPF instances.

One of the major factors contributing to MAPF instance diffi-
culty for algorithms in our portfolio is the number of potential
collisions found between agents. Instances with no potential con-
flicts between agents are as simple as generating shortest paths for
each agent to its goal. However, when a large number of agents are
all trying to traverse the same set of nodes, planning collision-free
paths is challenging. The graph centrality measure betweenness
centrality can help us predict the number of inter-agent conflicts.
The betweenness centrality of a node u € V is the fraction of all
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possible shortest paths in G that pass through u. Intuitively, be-
tweenness centrality is high in choke points that separate large
components of G. Betweenness centrality has previously been ap-
plied to a variety of network applications, including identifying key
individuals in social networks and measuring the interdisciplinary
level of academic journals using citation networks [7, 17]. Between-
ness centrality can be used to estimate the difficulty of MAPF maps
since it measures the probability that a shortest path will traverse
a node. Betweenness centrality can therefore be used to calculate
the probability that any pair of agents in a randomly generated
MAPF instance will traverse a node and potentially collide at that
point. Since it is computed using only G, it does not depend on a
particular instance of agent start and goal locations, therefore it
can be reused for multiple instances on the same map.

The main contribution of this work is the theoretical and em-
pirical analysis of the relationship between betweenness centrality
and difficulty of a MAPF instance. We find that as the average be-
tweenness centrality of a graph increases, the difficulty of a random
instance on the graph also increases for our portfolio. To measure
this, we first benchmark six of the strongest optimal MAPF algo-
rithms on an extensive and diverse set of MAPF instances. We
provide metrics for the performance of each algorithm as an in-
dividual and the impact it had on the performance of our overall
portfolio. Importantly, we show that MAPF algorithms need not be
the overall best algorithm to contribute to portfolio performance.
We then compare the performance of our portfolio on maps using
betweenness centrality, and show that maps with higher between-
ness centrality are harder for our portfolio overall. By investigating
what instance properties and map properties affect the performance
of our algorithms, we may be able to design MAPF environments
that are better suited for the algorithms in our portfolio. Environ-
ments with lower betweenness centrality will, in general, be better
suited for MAPF.

2 RELATED WORK

Previous work on betweenness centrality has identified the connec-
tion between betweenness centrality and congestion in networks.
Much attention has been paid to the connection between between-
ness centrality and road network congestion [8, 13, 14]. However,
results have also shown that betweenness centrality is actually
not a good predictor of congestion within road networks [6]. Opti-
mal MAPF differs from road network congestion, in part, because
agents in road networks make decisions distributively, while cen-
tralized algorithms are used for optimal MAPF. Humans can make
boundedly-rational decisions, whereas agents in optimal MAPF
problems always attempt to take the shortest path unless other
agents prohibit it. We seek not only to measure congestion in our
MAPF instances, but also how that congestion affects the perfor-
mance of MAPF algorithms.

There is currently no simple set of rules to predict which MAPF
algorithm will be most effective on a given instance or whether
an algorithm will even complete that instance. Several algorithm
selectors have been developed using machine learning techniques
to accurately predict the fastest algorithm from a pre-defined algo-
rithm portfolio given a MAPF instance. The first efforts at algorithm
selection for MAPF were made by Sigurdson et al. [24] by treating
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it as an image classification task using a version of AlexNet [15].
The MAPF instance is encoded as an RGB image with agents, goals,
and obstacles being different colors. Kaduri et al. [11] improved
performance with two new models: one based on VGGNet [25]
and a tree-based learning model using XGBoost [4]. The XGBoost-
based approach is trained on hand-crafted MAPF features, which is
considered to be more informative than RGB images, and outper-
forms the deep learning based approach. Ren et al’'s MAPFAST [22]
solved some of the earlier problems of deep learning approaches
by including optimal paths in the instance encoding. This provided
an efficient link between agents and their goals and outperformed
both the previous XGBoost and CNN based methods.

However, there is no clear answer for which features dominate
the empirical hardness of MAPF instances. Although the total num-
ber of agents plays an important role, the distribution of agents
and the map topology also affect the actual instance hardness dra-
matically [22]. An effective way to compare the expected hardness
of different maps is needed to provide guidance for various appli-
cations such as warehouse design and MAPF in re-configurable
environments. Previous research has shown it is possible to use
instance features to reliably estimate the difficulty of hard combina-
torial optimization problems, including boolean satasfiability and
the travelling salesman problem [9]. In this work, we demonstrate
that betweenness centrality is a useful metric to compare maps
and can provide a way to compare the hardness of different maps.
Additionally, we show that including a measure of betweenness
centrality in an existing algorithm selector can boost performance.

3 MAPF DATASET

Existing MAPF benchmarks have tended towards fewer maps, with
more instances on each map. In this work, we seek to characterize
and compare performance on a large number of maps. The larger
and more diverse dataset of maps helps to find inter-map trends
in performance. We therefore generated MAPF instances for our
benchmarking with the goal of testing algorithms on as wide a
variety of maps as possible, in terms of shape, size, and obstacle
distributions.

3.1

We include new procedurally generated random maps not found
in Stern et al’s standard MAPF benchmark dataset [27] to have
more diversity in the size, shape, and obstacle densities of our maps.
We introduce two new methods of generating random maps for
MAPF instances: a cellular automata method, and a fractal method
based on diffusion-limited aggregation. Compared with Stern et al’s
dataset, we include more medium sized maps, as well as more oblong
maps. Oblong shaped maps typically create more congestion than
similarly sized square counterparts without increasing the total
number of vertices in the environment. For example, a 4 X 25 map
will likely cause more inter-agent conflicts than a 10 X 10 map.
The first new map generation method is based on a cellular au-
tomata (CA) technique [10] used in games to procedurally generate
random caves. This method initially seeds the environment with
obstacles uniformly at random with density pca. Then, a cellular
automata rule is applied as follows: if a cell is adjacent to five ob-
stacles, it becomes or remains an obstacle, otherwise it becomes

Maps
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Figure 1: Selected examples of procedurally generated maps in our dataset. Fig. 1a and 1b are maps generated using CA, and
seeded with initial densities pc4 = 0.4 and 0.5 respectively to create different final map characteristics. Fig. 1b and 1d are maps
generated using fractal deposition methods until obstacle densities of pr = 0.3 and 0.5 were reached respectively.

free space. We repeat this process for five iterations, with each iter-
ation “smoothing” out the map. These environments are typically
characterized as open cave-like and can range from largely open
environments with smooth walls to maps with small chambers
connected by small tunnels, depending on the initial seeding. Fig-
ures la and 1c show two CA maps resulting from different initial
seed densities pca.

The second new map generation method uses the fractal mod-
eling technique named diffusion limited aggregation [31]. This
technique simulates physical processes common in crystal forma-
tion and the growth of dendritic structures. The method first places
one or more initial seed obstacles randomly on an empty map.
Then, a random walk is performed from a random initial open cell
until the walk reaches a cell adjacent to an obstacle; this obstacle-
adjacent cell is then turned into an obstacle and a new random walk
is started. This process is repeated until a set fraction of the map,
0 < pr < 1, is filled with obstacles. Fractal maps have many more
potential choke points with small hallways. Figures 1b and 1d show
two different examples of fractal maps in our dataset.

In addition to these new styles of maps, we also include 43 maps
from Stern et al’s benchmarking maps [27]. We have included
maps modeling automated warehouse environments, maps of real
cities, maps from video games, and maps with uniform random
obstacles. In total, 128 maps are included in our dataset. For every
map, we perform two postprocessing steps. First, we find all strongly
connected components (SCCs) in the map and make every SCC
other than the largest into obstacles. This is to ensure that agents
have a path to their goal and because a MAPF problem across
multiple SCCs can be solved as separate MAPF problems in each
SCC. For example, in Fig. 1c, the top middle section had additional
freespace that was disjoint from the largest SCC and therefore
removed from the map. The second postprocessing step is to remove
any full rows or columns of obstacles, thereby trimming the map.
Removing excess obstacles is important for accurately calculating
map metrics, such as obstacle density.
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3.2 Agent and Goal Distributions

The two most common means of generating start and goal lo-
cations for MAPF benchmarking instances are uniform random
and clustered distributions. Clustered distributions broadly refer
to distributions that group start and goal locations together or
in other ways attempt to make instances more difficult for algo-
rithms. Stern et al. [27] give a more thorough list of methods to
cluster start and goals. For our dataset, we use uniform random,
Gaussian, and multi-modal Gaussian distributions of start and goal
vertices. For each map, we generate ten instances for each “agent
tier”, n = 5,10,...,50 and n = 60,70, ...,400. To generate each
instance, we randomly select separate distributions for start and
goal vertices. We begin benchmarking with the fewest number of
agents, running each algorithm on every instance with a 5 minute
cutoff for each algorithm. We terminate benchmarking early on a
map if all algorithms fail to solve an instance for two consecutive
agent tiers. For example, if every algorithm fails to solve the ten
instances for 100 and 110 agents on a given map, we halt execution
on that map and do not benchmark for 120 agents. The primary
reason for stopping execution is the diminishing returns and high
costs of continuing. For instance, a single algorithm that completes
none of the instances on a map for an agent tier takes 50 minutes.
For an algorithm portfolio with six algorithms, a single tier of failed
instances takes 3 hours to complete.

4 ALGORITHM PORTFOLIO

We include six state-of-the-art MAPF algorithms across a variety of
approaches, including search based algorithms, SAT reduction algo-
rithms, and constraint and mixed-integer programming algorithms.
We now give a brief overview of each algorithm in our portfolio.
We include two popular search algorithms in our portfolio. The
first search algorithm is Conflict-Based Search (CBS) [23]. CBS has
been a standard of comparison among MAPF algorithms and has
become the base of many optimal and suboptimal algorithms. CBS
is a two-level search algorithm. A low level search, such as A*, finds
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Table 1: Performance of our portfolio algorithms and a hy-
pothetical Oracle algorithm that selects the fastest algo-
rithm for each individual instance. All values are for in-
stances where at least one algorithm completed.

Algorithm | Completion | Proportion| Total Run- | Marginal Con-
Rate Fastest time (hrs) | tribution (hrs)

CBS 0.31 0.0 816 0.0

CBSH 0.68 0.458 391 15.24

BCP 0.66 0.082 428 31.14

ID-SAT 0.43 0.002 712 1.96

SMT-CBS | 0.47 0.001 657 0.01

LazyCBS 0.95 0.458 115 243.41

Oracle 1.0 - 55 -

paths for agents to their goals. The high level search builds a conflict
tree, where each node in the tree is a conflict between agents found
by the low level planner. Each conflict node is expanded and gener-
ates constraints for the low level planner that prevent the previous
collision. CBS has been improved by many new advances, several
of which are included in our portfolio. The first such algorithm in
our portfolio is CBSH [18], which included heuristics in the high
level search of CBS to significantly improve performance. We use
the version of CBSH with rectangular reasoning [19].

We include two SAT reduction based algorithms in our portfolio.
We include an updated version of multi-decision diagram based
satisfiability reduction, MDD-SAT [29], that incorporates Indepen-
dence Detection (ID) [26], which we call ID-SAT [30]. The second
SAT based algorithm we include is SMT-CBS [28], which converts
CBS into a satisfiability modulo theory (SMT) style SAT algorithm.
We chose not to include the original boolean satasfiability algo-
rithm or an Answer Set Programming approach [2, 29]; while these
compilation methods are flexible and can be used with many off
the shelf solvers, their performance on MAPF instances is slower
than algorithms tailored specifically to MAPF.

The final two algorithms in our portfolio are Lam et al’s branch-
cut-and-price (BCP) algorithm [16] and Gange et al’s lazy-constraint
programming algorithm [5]. BCP formulates the instance as a
Mixed-Integer Program and solves it using a MAPF-specific version
of branch-cut-and-price. LazyCBS combines constraint program-
ming with CBS. CBS can often encounter the same conflict twice
at different points in the conflict tree, which requires fixing these
conflicts multiple times. LazyCBS fixes this issue by replacing the
standard high level search of CBS with a constraint programming
model.

For all algorithm implementations, we used original author code
or a standard public implementation. All experiments were con-
ducted on a Linux machine with an AMD Ryzen 9 3950X 16-Core
Processor and 64 GB of RAM. Algorithms were terminated after
300 seconds if they had not produced a solution.

5 MAPF ALGORITHM PERFORMANCE

The results generated by our benchmarking help us understand
how the strengths of certain algorithms overlap with the weak-
nesses of others. We include results of an Oracle algorithm, which
is the hypothetical algorithm that always selects and runs the best
algorithm in the portfolio for any given instance. The gap between
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Oracle and the other algorithms in the portfolio is the benefit gained
by using an algorithm portfolio rather than any single algorithm.
We measure algorithm performance along four metrics: completion
rate, proportion of instances where the algorithm is the fastest
algorithm, total runtime (hours), and marginal contribution (hours).
Marginal contribution for an algorithm a is the difference in perfor-
mance of an Oracle including algorithm a and an Oracle that does
not include a. Completion rate and the proportion fastest are both
measured in terms of completed instances, rather than attempted
instances. LazyCBS has a completion rate of 0.62 over all instances
attempted. Of these attempted instances, 35% were not solved by
any algorithm. On solved instances where at least one algorithm
completed, LazyCBS has a completion rate of 0.95. Table 1 shows
performance for these algorithms on the set of solved instances.
When algorithms do not complete an instance, 300 seconds is added
to their total runtime, the lower bound of their possible runtime on
that instance.

Our results show that LazyCBS is clearly the strongest algorithm
in our portfolio, solving the most instances and taking the least
cumulative time overall. However, CBSH is also the fastest algo-
rithm on 45.8% of all completed instances, the same as LazyCBS.
This is in large part due to CBSH’s speed on instances with fewer
agents. However, despite a much lower Faster metric, BCP scores
higher in marginal contribution than CBSH, meaning it actually
makes a larger difference to the performance of the portfolio than
CBSH. For most instances where CBSH is fastest, another algorithm
finishes marginally slower. However, for many instances where
BCP is fastest, no other algorithm is able to solve the instance under
the cutoff time.

When trying to select an algorithm to add to an algorithm port-
folio, the instances the algorithm is able to solve that were not
previously solvable by the portfolio are more important than the
individual runtime and completion rate of that algorithm. However,
previous evaluations of new MAPF algorithms typically consider
only completion rate. For new MAPF algorithms, it is important
to consider how the instances they solve complement existing al-
gorithms. The MAPF community may be filtering out innovative,
useful approaches that are not as strong when considered indepen-
dently, but are diverse from existing algorithms.

Figure 2 demonstrates other performance differences between al-
gorithms. This sorted-runtimes plot shows the number of instances
solved within a certain time on the x-axis for each algorithm. In
general, as the time given to an algorithm increases, the rate at
which additional new instances are solved decreases exponentially
(n.b. the log-scaled x-axis). While BCP gets off to slow start due to
higher overhead than the search-based algorithms, the number of
instances it solves is nearly that of CBSH as the cutoff time of 300
seconds is reached. It is possible that if a cutoff time larger than 300
seconds were used, BCP would have solved more instances than
CBSH. The choice of cutoff time when comparing algorithms is
important and can lead to different relative performances of algo-
rithms. If a cutoff time of 1 second was chosen, CBSH and LazyCBS
would have solved roughly the same number of instances. As the
cutoff time is increased, the performance of LazyCBS relative to
the other algorithms only increases. If a cutoff time of more than
five minutes were chosen, we would expect the performance of
LazyCBS relative to the rest of the portfolio to increase as well.
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Figure 2: The number of instances solved within certain
time for each algorithm. A point on the graph (x, y) indicates
that for a cutoff time of x, y instances were completed.

It is important to note that the relative strength of LazyCBS is
biased by our benchmarking procedure. As the number of agents
increases, the performance of LazyCBS increases relative to the
other algorithms in our portfolio. If we had chosen to stop all maps
at 100 agents and perform more benchmarking with fewer agents,
the relative performance of other algorithms would improve. In
fact, the performance of LazyCBS in our results appears signifi-
cantly stronger than it does in Gange et al’s original paper, where
experiments were on only four maps and experiments stopped at
120 agents [5].

6 BETWEENNESS CENTRALITY IN MAPF

We now turn our attention to characterizing the effect that be-
tweenness centrality has on the performance of MAPF algorithms.
We seek to characterize the empirical hardness of a given map
G = (V,E) for MAPF. The empirical hardness of G is the empirical
performance of algorithms in our portfolio. We make no claims on
the complexity of MAPF for any single map, as it could be possible
to highly tailor an algorithm to a single map if known ahead of
time. However, for the algorithms in our portfolio and other existing
MAPF algorithms, performance can vary widely between different
maps. On a specific warehouse environment, our portfolio com-
pleted instances up to 400 agents. On other similarly sized game and
city maps they only completed up to 100 agents. Additionally, the
difficulty of instances on a map can vary widely even for instances
with the same number of agents. We focus on the expected diffi-
culty of a random MAPF instance drawn from the space of possible
MAPF instances on G. A random instance on an easier map is more
likely to be completed than a random instance on a hard map. We
connect the graph metric betweenness centrality to the hardness
of G. Betweenness centrality is a measure of centrality for each
node u € V, defined as the fraction of all possible shortest paths
that u lies on. We will provide a formal justification for this trend
and identify the effects of betweenness centrality on the empirical
hardness of a map.

The primary driving force of runtime for algorithms in our port-
folio is the number of conflicts resolved when solving an instance.
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The CBS family of algorithms depends on building a conflict-tree
data structure and searching this tree until a conflict-free path is
found. The algorithms primarily differ in how they search this tree,
with the newer algorithms identifying branches which cannot lead
to feasible solutions thus reducing the search space. The runtime
of these algorithms generally grows exponentially with the depth
of the conflict tree, which itself grows with the number of con-
flicts resolved between agents. BCP also scales with the number
of conflicts resolved, adding constraints to a master problem and
re-solving when a conflict is found. The ID-SAT reduction algo-
rithm does not maintain a conflict tree, but still scales with conflicts
between agents both in the Independence Detection portion and
the SAT reduction portion. Maps with choke points, where many
agents traverse the same set of nodes, should generally be more
difficult for these algorithms to solve. We will use the betweenness
centrality graph metric to analyze the presence of choke points and
their effect on average difficulty of a map.

We begin by analyzing the expected number of shortest paths
traversing a single node u € V. For a start and goal node s,t € V
and a node u € V, let 05+ (u) be the number of shortest paths that
traverse from s to ¢ and pass through u. Let the total number of
shortest paths from s to t be o, ;. The probability that a shortest
path chosen uniformly at random from all possible shortest paths
from s to t passes through u is given by:

st (u)
Os,t '

Pr{xyls, t] = (1)
If s, t are chosen uniformly randomly from V, the normalized be-
tweenness centrality of node u, denoted BC(u), is the cumulative
probability over all possible combinations of s # t # u:

O'S,t(u)

BC(u) = Pr[xy] (2

1
~(VI-D(vI-2) Z Os,t

s#EL#FUEV >

The betweenness centrality of node u is the probability that a short-
est path chosen at random will traverse node u. Calculating BC
for every node in the graph can be done in O(|V||E|) time for
unweighted graphs using Brandes’ algorithm [3]. Betweenness cen-
trality is often used as a measure of influence of nodes in a graph,
often measuring the influence of individuals in social networks [7].
Computation of BC values can be further sped up by paralleliz-
ing shortest path computations with a GPU [21]. We used these
speed ups and for the largest maps in our dataset used sample
based approximations of betweenness centrality. In most cases the
calculations could be done within two minutes and in some cases
took up to five minutes. This is unreasonable to calculate for every
MAPF instance, but only needs to be computed once per map and
can be reused for multiple instances on that map.

Now we consider n agents with starts and goals chosen uniformly
randomly from V. We first investigate the probability of traversing
node u at any point in time on multiple agents’ paths. For simplicity
of analysis, we allow multiple agents to start from the same location
and multiple agents to end at the same location if chosen to do so.
When n < |V|, as is most often the case in MAPF, the impact of
sampling start and goal nodes with replacement is small compared
to sampling without replacement. The probability of traversing u is
always BC(u) for each of the n agents, making Pr(x,|n) a Bernoulli
distribution with p = BC(u). Let X;, be the number of agents to
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(b) CA_0.4

Figure 3: Heatmaps of betweenness centrality on two se-
lected maps. Three areas of interest with high betweenness
centrality are highlighted in Fig. 3a.

Table 2: Performance information for CA_0.4 and CA_0.5

Algorithm Completion Rate Max # Agents
CA 05| CA 04| CA 05| CA04
CBS 0.163 0.262 30 90
CBSH 0.513 0.556 80 200
BCP 0.543 0.396 920 170
ID-SAT 0.275 0.282 45 80
SMT-CBS 0.313 0.302 45 90
LazyCBS 0.506 0.809 80 210

traverse u. Then the expected number of agents to traverse u for
an instance with n agents is:

E[Xy] =n-BC(u).

The expected number of agents traversing node u grows linearly
with both the total number of agents and the BC of node u. As the
congestion on node u rises, so does the probability of collisions.
Computing the exact probability of two agents colliding at a node
requires knowledge of the underlying graph structure, specifically
the distribution of nodes d distance away from u for all distances
d from u. Two paths will collide at u if they both start d distance
from u. If the distribution of nodes d distance from u is known,
the probability of collision can be computed along the lines of the
birthday-paradox problem or a hash-collision problem.

6.1 Relationship to Map Topology

To help better explain the relationship of betweenness centrality
and map topology, we provide two examples in Fig. 3. Intuitively
speaking, betweenness centrality is high in choke points. Fig. 3a
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contains a single distinct path of high betweenness centrality, av-
eraging around BC(u) = 0.25 and peaking around BC(u) = 0.4 for
nodes on that path. Fig. 3b shows a more open map with maximum
betweenness centrality an order of magnitude lower than Fig. 3a.
The narrow corridors of Fig. 3a constrict the nodes that shortest
paths can travel on. However, it is possible to have nodes with
high BC(u) despite not being in a narrow corridor. The highlighted
regions of Fig. 3a show different situations that can lead to high be-
tweenness centrality values. Consider the three highlighted regions
of Fig. 3a: A, B, and C. Region B is easily recognizable as a location
of high betweenness centrality. It serves as the shortest connection
between two halves of a map and is only a few cells tall. Regions
A and C on the other hand, are less obvious locations for high
betweenness centralities. It is possible to have high betweenness
centrality even in relatively open locations. Shortest paths in A and
C are constricted to the high BC path not by immediately adjacent
obstacles, but by farther away structures. These different types of
locations with high betweenness centrality could lead to different
types of collisions between agents. If the optimality of the paths
used for calculating BC(u) were to be relaxed slightly, B would still
have a high BC(u), as the obstacles force the paths to travel on a
small set of nodes. However A and C would have less concentrated
BC(u) values. Resolving conflicts in A and C may be easier for
some algorithms than resolving conflicts in B. In B, agents must
wait for the choke point to be vacated before traversing through.
In A and C, agents may simply take a step out of their way to avoid
an oncoming agent and continue on their way.

Table 2 presents the performance of our portfolio on the two
maps in Fig. 3. In the more open and less constrained map CA_0.4,
LazyCBS performs best in terms of completion rate and the highest
number of agents solved for. However, in the highly constrained
map CA_0.5, LazyCBS is outperformed by BCP. Additionally, the
total number of instances solved by any algorithm was significantly
lower for CA_0.5, with BCP topping out at 90 agents. Some of the
performance difference is due to CA_0.5 having less open space
than CA_0.4, as the number of nodes in a map affect the difficulty
of MAPF instances, since agents tend to be more spread out on
larger maps. However, that does not explain the entire difference
in performance. In other maps with lower average betweenness
centrality and a similar number of nodes to CA_0.5, algorithms
were able to solve out to 200 agents, twice as many as for CA_0.5.

6.2 Empirical Relationship to Difficulty

We now turn our attention to measuring the empirical hardness for
all maps in our dataset. To empirically measure the hardness of a
map in our dataset, we use the number of instances solved for each
map. Overall completion rate between maps is not comparable for
our specific dataset because we terminate some maps early if our
portfolio fails too frequently. Ideally, we would run all maps for the
same number of instances and directly compare maps based on the
success rate of our algorithms. However, the cost of doing so is too
prohibitive, given a single instance takes on the order of half an hour
to complete with a 5 minute cutoff for each algorithm. We can be
fairly confident, given that maps are run until no instances complete
for two sequential agent tiers, that attempting the map with more
agents will lead to very few additional solved instances. Therefore,
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the number of instances attempted is at least an approximation to
the overall completion rate for running each algorithm out to 400
agents for every map. Fig. 4 shows the relationship of average BC
for a map and the empirical difficulty for our algorithm portfolio
on that map. As BC increases, the number of instances solved tends
to decrease, supporting the claim that the difficulty of an average
instance depends on the BC values of that map.

7 HARDNESS ESTIMATION

For certain applications, it is useful to know how long it will take
for a MAPF algorithm to run. Autonomous warehouse operators
may prefer to plan optimal paths, but if they predict a certain in-
stance will take too long to solve optimally, they can switch to a
suboptimal algorithm. We train a model to predict whether or not
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any algorithm in our portfolio will finish before the cutoff time.
Our model builds on the feature-based classification and runtime
estimation XGBoost models introduced by Kaduri et al. [11]. XG-
Boost [4] is a gradient-boosting tree algorithm capable of strong
performance in classification and regression tasks. Kaduri et al.
used a set of 12 features to describe a single MAPF instance. The
set of features includes information on the number of agents and
agent density, the size of the environment, and the distribution
of start and goal locations. To these we add three new features:
average betweenness centrality, max betweenness centrality, and
the number of collisions between single-agent shortest paths for
each agent to its goal.

We used the full dataset for our portfolio described in Section 5.
The dataset is made up of 65% instances where at least one algorithm
in the portfolio successfully solved the instance and 35% instances
where none of our algorithms finished. We trained two versions of
the XGBoost model, one with our centrality and conflict features,
and one that used only the original features introduced by Kaduri
et al. Data was divided into train, test, and validation sets and a
grid search over hyperparameters was performed for both models
to optimize performance. The XGBoost model with the additional
features predicted whether an instance would be completed by an
algorithm in our portfolio with 92.1% accuracy. The XGBoost model
with only the features of Kaduri et al. reached a peak accuracy of
91.0%.

To further explore the effect of the additional features, we per-
form a SHapley value Additive exPlanation (SHAP) value analy-
sis [20]. SHAP values measure the impact of each feature on the
final output value for a single instance. SHAP values are calculated
for every feature and every instance. SHAP values for our model
with additional betweenness centrality and conflict features are
presented in Fig. 5. Each point is the SHAP value of a given feature
on one specific instance. For binary classification tasks, negative
SHAP values for a specific feature indicate that feature pushed the
final output closer to 0, and a positive SHAP value means the fea-
ture pushed the final output closer to 1. The farther that a point is
from the center, the larger the impact that feature has. Additionally,
each point is also colored with the relative value of the feature for
that given instance. When the number of collisions feature is high,
the model is more likely to predict that the instance will not be
completed. Features are ordered by average absolute SHAP values.
On average, features towards the top have a higher impact than
features toward the bottom. Only the most impactful ten features
are shown, the remaining five features are on average less impactful
than the number of rows in the environment.

The features can be separated into two categories, instance-
specific and map-specific features. Instance specific features, like
the number of agents, collisions between agents, and information
about start and goal locations, tend to be more important than
map-specific features, like the size of the environment and obstacle
density. The mean betweenness centrality for a map is on average
the most impactful map-specific feature for our model. Figure 5
shows a clear trend of high average betweenness centrality having
a negative impact on SHAP values and vice versa. By measuring
the impact of map-specific features, we may be able to design maps
that are empirically easier for MAPF algorithms, for instance by
creating maps with lower mean betweenness centrality.
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8 CONCLUSION AND FUTURE WORK

In this work we have explored the relationship between between-
ness centrality and the difficulty of MAPF instances. Betweenness
centrality is correlated with the number of collisions expected in a
random MAPF instance. Maps with high betweenness centrality are
likely to lead to more inter-agent conflicts and result in MAPF in-
stances that are harder to solve optimally with existing algorithms.
We introduced two ways to procedurally generate new maps for
MAPF problems and performed an extensive benchmarking on an
algorithm portfolio on a large dataset of maps.

Measuring algorithm performance with respect to a portfolio of
algorithms will be important for finding new and useful algorithms
for MAPF. If algorithms are only compared directly to existing al-
gorithms using metrics such as completion rate, the community
may be filtering out specialist algorithms that would make a strong
addition to an algorithm portfolio. Specialist algorithms may be
able to excel on certain types of instances, but not be able to com-
pete with existing algorithms over a larger diverse set of instances.
These specialist algorithms would make a solid contribution to an
algorithm portfolio approach, as their weaknesses could be com-
pensated for by other algorithms in the portfolio. We therefore
believe that MAPF algorithms should not be compared only by the
number of total instances solved, but also the number of instances
they are able to solve that no other algorithm is capable of.

There are a number of directions for future research to build off
of our initial results. First, as discussed above concerning Fig. 3a,
not all nodes with high betweenness centrality will lead to the same
type of conflict; some conflicts may be easier to resolve than others
(i.e. open space conflicts vs. narrow corridor conflicts). Benchmark-
ing portfolios of algorithms has so far focused on optimal MAPF
algorithms, but we also need to gather more information on sub-
optimal algorithms and measure how their performance is affected
by map topological features such as betweenness centrality.

Moving forward, we will seek to combine the benchmarking
results of our own dataset with Ren et al’s [22], Kaduri et al’s [12],
and Sigurdson et al’s [24] datasets. While the datasets are difficult
to merge for their original intent of algorithm selection, as each
dataset contains different benchmarked algorithms, the data can still
provide information on the relative hardness of MAPF instances.
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