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ABSTRACT
Neural networks have become increasingly popular. Nevertheless,
understanding their decision process turns out to be complicated.
One vital method to explain a models’ behavior is feature attribu-
tion, i.e., attributing its decision to pivotal features. Although many
algorithms are proposed, most of them aim to improve the faithful-
ness (fidelity) to the model. However, the real environment contains
many random noises, which may cause the feature attribution maps
to be greatly perturbed for similar images. More seriously, recent
works show that explanation algorithms are vulnerable to adver-
sarial attacks, generating the same explanation for a maliciously
perturbed input. All of these make the explanation hard to trust in
real scenarios, especially in security-critical applications.

To bridge this gap, we propose Median Test for Feature Attribu-
tion (MeTFA) to quantify the uncertainty and increase the stabil-
ity of explanation algorithms with theoretical guarantees. MeTFA
is method-agnostic, i.e., it can be applied to any feature attribu-
tion method. MeTFA has the following two functions: (1) exam-
ine whether one feature is significantly important or unimportant
and generate a MeTFA-significant map to visualize the results; (2)
compute the confidence interval of a feature attribution score and
generate a MeTFA-smoothed map to increase the stability of the
explanation. Extensive experiments show that MeTFA improves the
visual quality of explanations and significantly reduces the insta-
bility while maintaining the faithfulness of the original method. To
quantitatively evaluate MeTFA’s faithfulness and stability, we fur-
ther propose several robust faithfulness metrics, which can evaluate
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the faithfulness of an explanation under different noise settings. Ex-
periment results show that the MeTFA-smoothed explanation can
significantly increase the robust faithfulness. In addition, we use two
typical applications to show MeTFA’s potential in the applications.
First, when being applied to the SOTA explanation method to locate
context bias for semantic segmentation models, MeTFA-significant
explanations use far smaller regions to maintain 99%+ faithfulness.
Second, when testing with different explanation-oriented attacks,
MeTFA can help defend vanilla, as well as adaptive, adversarial
attacks against explanations.
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1 INTRODUCTION
The extraordinary performance of deep neural networks (DNNs)
has led us to the era of deep learning [3][19][40][53]. While these
networks achieve human-level performance on various tasks, there
are many security crises in DNNs [24][28][15][27], which prevent
users from fully trusting the models’ output, raising concerns for
sensitive applications like autonomous driving. Many works are
proposed to make DNNs more safe and reliable [51][12][25], one of
which is to explain the action of model. By interpreting the black-
box model, we can detect biases and anomalies, and gain insights to
improve the model.

Feature attribution, which explains the model at instance level,
is a popular method to explain neural networks [31][41][17][23].
These explanations give each feature a feature score representing its
contribution to the model’s output. Features with high contribution
scores support the decision of the model, and thus we call them
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Figure 1: Example explanations on VGG16. (a) and (b) are the
explanations by two independent runs of LIME [34], a black-
box explanation method. (c) is the MeTFA-significant LIME
explanation, where the yellow area is significantly important,
the green area is significantly unimportant, and the rest region
is insignificant. (d) is the seed image of manipulation attack
[11], an attack that keeps the model’s prediction unchanged but
manipulates the explanation of the prediction. (e)Attack[11] for
LRP[4] shows the explanation of the LBP for the adversarial
image generated by manipulation attack from (d), where the
explanation is totally irrelevant to the prediction abacus. (f) is
the MeTFA-smoothed explanation of the same adversarial image,
where a plausible explanation is recovered.

supportive features. For instance, in the image domain, attribution
map is a common form of feature attribution. From the attribution
map, users can see which parts of the image are relied on by the
model to make the prediction. In addition, feature attribution meth-
ods help to create better models. For example, recent works use
feature attribution to debug errors [18], detect adversarial examples
[50], and check context bias [20].

However, the feature attribution methods used to explain neural
networks are still facing a reliability crisis. The feature attribution
methods can be roughly classified into two categories: black-box
methods and white-box methods. Black-box methods only have ac-
cess to the input and output of a network. Generally, such methods
apply various forms of sampling, which leads to uncertainty in the
explanation [18][30][34]. For example, as shown in Figure 1 (a) and
(b), LIME [34] gives different attribution maps for the same image
in independent runs. On the contrary, white-box methods mainly use
deterministic information, such as gradient [4][38] and activation
maps [52][42], to generate attribution maps, thus guarantee a deter-
ministic explanation for the same input. However, they still have
problems due to instability. For example, gradient-based methods
produce drastically different attribution maps for similar inputs [39];
optimization-based methods sometimes generate nonsensical or un-
expected attribution maps due to the instability of the non-robust
features [14]. Moreover, explanations with high sensitivity may be
more vulnerable to adversarial attacks [46]. For example, in Figure
1 (d) and (e), by adding human-imperceptible noise, the attacker can
manipulate an attribution map arbitrarily. These phenomena greatly
reduce our trust in explanation algorithms.

As illustrated above, existing feature attribution methods give un-
certain results due to the sampling process or the non-robust features.
Therefore, to make the explanations reliable, a method to reduce

and quantify the uncertainty involved in the explanation is required.
To increase the stability of the explanations, a promising way is to
sample inputs from the neighborhood of the original input and aver-
age all these explanations. When the explanation is Gradient [38],
this method is known as SmoothGrad [39]. Therefore, by the law of
large numbers, the smoothed explanation essentially converges to
the expectation of the distribution of the neighborhood explanations
of the original input, thus mitigating the uncertainty to some degree.

Although this method, along with its modification [47], are de-
signed only to produce stable results, it can be further extended to
quantify the uncertainty of the explanation by computing the stan-
dard deviation of the samples. Specifically, by the central limit theo-
rem, they can be extended to use the mean and standard deviation to
derive an asymptotic confidence bound of the explanation. Details
on how to derive the bound are included in Section 7. However,
the correctness of these bounds requires the law of large numbers,
i.e., they are only valid when the number of samples is extremely
large. This brings heavy computational overheads because sampling
explanations is computationally expensive. In addition, when the
number of samples is small, the mean value is sensitive to abnormal
extreme values. Since the underlying distribution of explanations
is unknown, it is difficult to get any theoretical guarantees for the
confidence bounds with such methods when the number of samples
is small. Therefore, how to efficiently quantify the uncertainty of the
explanations remains unresolved.

Our designs. To overcome the above challenges, we propose Median
Test for Feature Attribution (MeTFA). Instead of generating a single
score for each feature, MeTFA takes a novel perspective: a reliable
explanation should include the attribution score map together with
the confidence interval and the significance of the scores. The core
idea of MeTFA is to sample around the original data and conduct the
hypothesis test on the samples’ explanations to establish theoretical
guarantees. To tackle the problem of unknown distribution and the
impact of the abnormal extreme values, MeTFA approximates the
median of the explanation distribution instead of the expectation. In
this way, MeTFA converts the unknown distribution to a Bernoulli
distribution on a specific statistics without approximating the normal
distribution by the central limit theorem, thus allowing it to get exact
confidence bounds with a small number of samples. MeTFA con-
siders the following two scenarios: (1) the users only want to know
which features are significantly important or unimportant with regard
to a threshold of the feature score, and (2) the users wish to know the
confidence bounds for the feature score. The first scenario is more
general because many explanation algorithms, such as LIME [34],
only provide a discrete binary score as the feature attribution, while
the second scenario requires a continuous feature score in the range
of [0, 1]. For the first scenario, given a user-interested feature score
threshold and a confidence level 𝛼 , we design the one-sided MeTFA
to generate the MeTFA-significant map. This map shows whether
one feature is significantly important (the median of the explana-
tion distribution is higher than the threshold) or unimportant (the
median of the explanation distribution is lower than the threshold)
with regard to the confidence level 𝛼 . For the second scenario, we
design the two-sided MeTFA to compute the median’s 𝛼-confidence
interval for the features. Further, by averaging the sampled feature
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scores in the confidence interval, MeTFA generates the MeTFA-
smoothed explanation as the approximation of the median. This is
different from SmoothGrad which averages over all the sampled
scores. In Figure 1 (c) and (f), the results of LIME [34] with one-
sided MeTFA and LRP [4] with two-sided MeTFA show that MeTFA
can reveal the significantly important features and defend against the
explanation-oriented attacks. In addition, we prove by theoretical
and empirical findings that the variance of the MeTFA-smoothed
explanation shrinks to 0, which suggests the correctness of MeTFA.
Moreover, the variance shrinks with a same or faster speed than
SmoothGrad, which suggests that MeTFA-smoothed explanations
are more stable and efficient.

Evaluations. In the image domain, we evaluate our method on
representatives of the four main types of explanation methods: (1)
gradient-based method: Gradient [38], (2) sample-based method:
RISE [30] and LIME [34], (3) optimization-based method: IGOS
[33], and (4) activation-based method: ScoreCAM [42]. We use
the popular metrics insertion, deletion [30] and overall [48] as the
faithfulness metrics and standard deviation (std) of feature scores
as the stability metric. Further, we propose the robust insertion, ro-
bust deletion and robust overall metrics to measure the ability of
explanation to locate robust features. The results show that MeTFA
slightly affects the faithfulness for the orignal input but significantly
increases the robust faithfulness. In addition, we show that MeTFA is
better than SmoothGrad in stability. In the NLP domain, we evaluate
MeTFA with LEMNA [18], the SOTA explanation alogorithm target-
ing RNN. We use feature deduction test, feature augmentation test
and synthetic test proposed in [18] as the faithfulness metrics and
take std and the overlap of top n features as the stability evaluation
metrics. Similar to the image domain, we propose three correspond-
ing robust faithfulness metrics. Experiment results show that MeTFA
can improve all the faithfulness, stability and robust faithfulness met-
rics for LEMNA.

Applications. To illustrate the potential of MeTFA in practice, we
apply one-sided MeTFA and two-sided MeTFA, respectively, to two
applications closely related to security: detecting the context bias in
the semantic segmentation and defending the explanation-oriented
adversarial attack. We apply the one-sided MeTFA to GridSaliency
[20], the SOTA method to locate context bias for semantic segmen-
tation models. The results show that, in the environment with com-
mon noise distributions, MeTFA can greatly reduce the context bias
region while maintaining 99%+ faithfulness, which suggests the po-
tential of MeTFA to detect context bias in the real world. Moreover,
we demonstrate that two-sided MeTFA can defend both the attacks
that produce wanted explanations while keeping model’s predictions
unchanged and the attacks that produce unchanged explanations for
wanted predictions.

Contributions. (1) We propose a novel perspective: a reliable expla-
nation should include not only the attribution score map but also the
confidence interval and the significance of the scores. (2) We pro-
pose a framework MeTFA to quantify the uncertainty and increase
the stability of the feature attribution algorithm with theoretical guar-
antees. (3) We propose a series of robust metrics which consider the
neighborhood of the input instead of a single point. Experimental
results show that MeTFA increases the stability while maintaining
the faithfulness. (4) The application of MeTFA on detecting the

context bias in semantic segmentation and defending against the
adversarial examples with the explanation-oriented attack shows its
great potential in real practice.

2 RELATED WORK
Visual explanation. Visual explanation methods can be divided into
white-box methods and black-box methods. White-box explanations
are free to use all the information about the model, such as archi-
tecture and parameter. They can be roughly categorized into three
groups: gradient-based, activation-based and optimization-based.
Gradient-based methods [5] [38] use gradient information to gener-
ate the feature importance of pixels, known as saliency maps. These
methods are typically fast but may render volatile explanations due
to the sensitivity of the gradients of input samples [39]. Activation-
based methods [52] [37] [42] address this problem by using the
activations of convolutional layers instead. They apply upscaled lin-
ear combination of some layers’ output as the explanation and find
that it usually highlights the region of the correct object and is more
stable. Optimization-based methods [49] [41] [14] [33] do not gener-
ate feature importance for all the pixels but highlight a small area of
interest using optimization. They typically generate high-quality ex-
planations but are much slower, as the optimization process requires
multiple forward and backward propagations. Black-box explana-
tions [30] [34] [32] only require the access to the input and output
of the model. They randomly sample some features, modify these
features (e.g., LIME sets them to 0), put the modified inputs into
the model and explain using the outputs (e.g., LIME uses a linear
model to fit the outputs and the modified inputs). It can be found
that MeTFA and sample-based explanation methods use sampling in
different ways and for different purposes. MeTFA uses the common
noise in real life to sample inputs around the original input and then
conduct hypothetical testing on their explanations to increase the
stability of explanation methods in the real world.

Evaluation of visual explanation. Šikonja et al. [35] summarized
the required properties of explanations. Some of them are: (1) faith-
fulness to the model, (2) stability of the explanation when the input
is slightly perturbed, and (3) comprehensibility of the explanation
to humans. Unfortunately, current explanation algorithms are not
satisfactory at these properties. Ghorbani et al. [16] found that expla-
nations could be largely affected by adversarial perturbations which
do not change the model’s prediction. In addition, Kindermans et al.
[22] found that for two networks with provably same explanations,
the explanations for the two networks produced by current explana-
tion algorithms are different. Moreover, Adebayo et al. [1] found
that when the network is gradually randomized, many algorithms do
not produce randomized explanations. Instead, they highlight “edge
pixels”, which is similar to edge detectors. By evaluating recent
explanation algorithms, these works show that there is a large gap to
fulfill in the explanation algorithms.

Post hoc improvement on the explanation. There are some at-
tempts aiming at improving the stability of explanations by post
hoc improvements. They are built on a stability assumption that
the explanations should not vary greatly for similar inputs. Smilkov
et al. [39] first showed that the gradient-based explanations were
vulnerable to small perturbation to the input. They found by experi-
ment that adding Gaussian noises to the input and averaging their
explanations would provide an explanation with better visual quality.
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This method is called SmoothGrad. To understand why SmoothGrad
works, Yeh et al. [47] proposed a theoretical framework which justi-
fies that an extension of SmoothGrad using kernel functions could
improve the faithfulness of explanations as well. Agarwal et al. [2]
prove that SmoothGrad and a variant of LIME converge to the same
explanation in expectation. Our work targets post hoc improvement
of stability. While previous works only proposed usable heuristics,
our paper takes it further and first makes statistical tests possible for
feature attribution.

3 MEDIAN TEST FOR FEATURE
ATTRIBUTION

In this section, we first define some related concepts. Then we intro-
duce the one-sided MeTFA and two-sided MeTFA, respectively. All
proofs are included in Appendix A.1 due to the space limitation.

3.1 Overview
MeTFA can be applied to any algorithm that explains the predic-
tion by evaluating feature importance. Let the prediction function
be 𝐹 : (𝑋𝑖 )𝑖∈𝑆 → 𝑂 , where 𝑆 is the input feature set, 𝑋𝑖 is an in-
dividual feature and 𝑂 is the model’s output. Then an explanation
algorithm which assigns features with importance can be denoted
as 𝐸 : (𝐹, (𝑋𝑖 )𝑖∈𝑆 ) → [0, 1] |𝑆 | , where |𝑆 | is the number of features
included in 𝑆 . For example, in image classification, 𝑆 is the set of all
pixels, and |𝑆 | equals to 𝑤 × ℎ, where 𝑤 is the width, and ℎ is the
height of the image.

Following Smilkov et al. [39], MeTFA is built upon the axiom
that the generated explanation should be similar if the input and
the output of the prediction function are similar. Formally, let P
be the noise set under which we presume the prediction function
is robust, i.e., 𝑂 changes little for inputs after adding some noises
sampled from P. Similar to Smilkov et al. [39] and Yeh et al. [47],
the first step of MeTFA is to sample noises from P, add them to the
original input, pass these noisy inputs all through the explanation
algorithm and get explanations {𝑒𝑖 }, 𝑖 = 1, . . . 𝑁 ., which subject to
some unknown distributionD. We call {𝑒𝑖 } the sampled explanations.
𝑒𝑖 𝑗 is the sampled feature score in 𝑒𝑖 for feature 𝑗 .

We tackle the unknown distribution by converting D on the ex-
planations to a Bernoulli distribution on a specific statistics called
counting variable, based on the following two key properties of the
median 𝑉 :

• If most of the samples are greater than a fixed value ℎ, then𝑉
is more likely to be greater than ℎ, vice versa.
• For any continuous distribution D and 𝑥 ∼ D, we have 𝑃 (𝑥 ≥
𝑉 ) = 0.5 and 𝑃 (𝑥 ≤ 𝑉 ) = 0.5. Therefore, for any ℎ ≥ 𝑉 ,
𝑃 (𝑥 ≥ ℎ) ≤ 0.5, vice versa.

Based on the first property, we define the counting variable 𝑐𝑡 𝑗 (ℎ) =∑𝑁
𝑖=1 𝐼 (𝑒𝑖 𝑗 ≥ ℎ), where 𝐼 is the indicator function. Note that 𝐼 (𝑒𝑖 𝑗 ≥

ℎ) follows a Bernoulli distribution with parameter 𝑞 𝑗 (ℎ) = 𝑃 (𝑒𝑖 𝑗 ≥
ℎ). In addition, 𝑒𝑖 𝑗 , 𝑖 = 1, 2, ..., 𝑁 , is independent for any fixed 𝑗 .
Therefore, 𝑐𝑡 𝑗 (ℎ) ∼ 𝐵(𝑁,𝑞 𝑗 (ℎ)), where 𝐵 is a Binomial distribution.
Then we use 𝑐𝑡 𝑗 as the test statistic to design hypothesis testing.

The second property provides a way to estimate the p-value for
continuous explanation. In practice, D may be discrete for some ex-
planation methods, e.g., LIME. However, we can easily approximate
any discrete distribution by a continuous distribution to any precision.

Specifically, we add a very small continuous noise, e.g., N(0, 10−6),
to D. For example, consider LIME which gives 0-1 map of the pixels
as the explanation. The distribution of LIME’s explanation on noisy
inputs is discrete, as it can only be 0 or 1. Further, assume that given
a particular input and a particular pixel, the probability of being 0 is
0.6, and thus the median of the distribution of LIME’s explanation
is 0. Then, the probability of sampling a value greater than 0 is
only 0.4, not the 0.5 that we utilize. In this case, MeTFA has an
assumption violation. However, if we add a small noise to LIME’s
explanation, say N(0, 10−6), then the LIME’s explanation becomes
a sharp bi-modal distribution which is concentrated around 0 and
1. The modified distribution is continuous, and thus the assumption
that the probability of a sample greater than the median equals to 0.5
holds, which makes MeTFA applicable. In addition, as long as the
modification noise is continuous and very small, this approximation
only possibly changes the median by a tiny difference, thus the result
is not affected. In particular, applyingN(0, 10−6) orN(0, 10−8) does
not make a difference for LIME. Note that we add small perturbation
to the sampled explanations here rather than to the input, and this
only aims at making the distribution of {𝑒𝑖 } continuous. Therefore,
for simplicity, we assume D is continuous in the paper.

In the following, we describe two different processing of {𝑒𝑖 } to
perform the importance test (whether 𝑉 is greater or smaller than ℎ)
in Section 3.2 and bound test (the interval that 𝑉 most likely falls
into) in Section 3.3, respectively.

3.2 One-sided MeTFA
One-sided MeTFA is to test 𝐻0 : 𝑉 < ℎ or 𝐻0 : 𝑉 > ℎ for some
fixed ℎ. This can be broken down into two steps. First, convert D
to a Bernoulli distribution. Second, conduct the test based on the
Bernoulli distribution. Thus, in the following, we first derive how to
construct the Bernoulli distribution and then conduct the statistics
test.

We have derived in Section 3.1 that the counting variable 𝑐𝑡 𝑗 (ℎ) ∼
𝐵(𝑁,𝑞 𝑗 (ℎ)), where 𝑞 𝑗 (ℎ) = 𝑃 (𝑒𝑖 𝑗 ≥ ℎ). Using this property, we are
able to derive Proposition 1.

Proposition 1. Suppose 𝑉𝑗 is the median of D for feature 𝑗 . Then,
𝑃 (𝑐𝑡 𝑗 (ℎ) ≥ 𝑚) ≤ ∑𝑁

𝑖=𝑚

(𝑁
𝑖

)
× 𝑝𝑖∗ × (1 − 𝑝∗)𝑁−𝑖 for 𝑉𝑗 ≤ ℎ, where

𝑝∗ = min(0.5, 𝑖/𝑁 ), and 𝑁 is the number of sampled explanations.
Similarly, 𝑃 (𝑐𝑡 𝑗 (ℎ) ≤ 𝑚) ≤

∑𝑚
𝑖=0

(𝑁
𝑖

)
× 𝑝𝑖∗ × (1− 𝑝∗)𝑁−𝑖 for𝑉𝑗 ≥ ℎ,

where 𝑝∗ = max(0.5, 𝑖/𝑁 ). The proof is in Appendix A.1.1.

Using Proposition 1, we can get Theorem 1 which enables us to
perform the one-sided MeTFA.

Theorem 1. Suppose we observe 𝑐𝑡 𝑗 (ℎ) = 𝑘. Then, the p-value of
𝐻0 : 𝑉𝑗 ≤ ℎ is

∑𝑁
𝑖=𝑘

(𝑁
𝑖

)
×𝑝𝑖∗×(1−𝑝∗)𝑁−𝑖 , where 𝑝∗ = min(0.5, 𝑖/𝑁 ).

Similarly, the p-value of 𝐻0 : 𝑉𝑗 ≥ ℎ is
∑𝑘
𝑖=0

(𝑁
𝑖

)
× 𝑝𝑖∗ × (1− 𝑝∗)𝑁−𝑖 ,

where 𝑝∗ = max(0.5, 𝑖/𝑁 ). The proof is in Appendix A.1.2.

Therefore, to test whether 𝑉𝑗 is greater or smaller than ℎ, we
first count how many times 𝑒 𝑗 is greater than ℎ, compute the 𝑝-
values according to Theorem 1, and then compare the 𝑝-values with
user-interested confidence level 𝛼 . From the procedure described
above, we can see that the total complexity is𝑂 (𝑁 ) for the one-sided
MeTFA.
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3.3 Two-sided MeTFA
Two-sided MeTFA is to test 𝐻0 : 𝑉 = ℎ for some fixed ℎ. Under
𝐻0, we have 𝑞 𝑗 (ℎ) = 0.5 and a too large or too small 𝑐𝑡 𝑗 (ℎ) is rare.
Using this property, we are able to derive Proposition 2.

Proposition 2. 𝑃 (𝑐𝑡 𝑗 (ℎ) ≤ 𝑚1) + 𝑃 (𝑐𝑡 𝑗 (ℎ) ≥ 𝑚2) ≤∑
𝑖∈{0,...,𝑚1 }∪{𝑚2,...,𝑁 } 0.5

𝑁 ×
(𝑁
𝑖

)
for𝑉𝑗 = ℎ. The proof is in Appen-

dix A.1.3.

Proposition 2 directly suggests the two-sided MeTFA, as shown
in Theorem 2.

Theorem 2. Suppose we observe 𝑐𝑡 𝑗 (ℎ) = 𝑘. Let 𝑘1 = min(𝑘, 𝑁 −
𝑘) and 𝑘2 = max(𝑘, 𝑁 − 𝑘). Then, the p-value of 𝐻0 : 𝑉 = ℎ is∑

𝑖∈{0,...,𝑘1 }∪{𝑘2,...,𝑁 } 0.5
𝑁 ×

(𝑁
𝑖

)
. The proof is in Appendix A.1.4.

A direct application of Proposition 2 gives the confidence interval
of 𝑉 as well. It is shown in Theorem 3.

Theorem 3. Let 𝑘1 = argmax𝑘 {
∑𝑘
𝑖=0 0.5

𝑁 ×
(𝑁
𝑖

)
≤ 𝛼

2 } and 𝑘2 =

𝑁 − 𝑘1. Let ℎ1𝑗 be the 𝑘1-th smallest in {𝑒𝑖 𝑗 | 𝑖 = 1, . . . , 𝑁 } and ℎ2𝑗
be the 𝑘2-th smallest. Then (ℎ1𝑗 , ℎ2𝑗 ) is a 1 − 𝛼 confidence interval
for 𝑉𝑗 . The proof is in Appendix A.1.5.

Therefore, to test whether 𝑉𝑗 is equal to ℎ, we first count how
many times 𝑒 𝑗 are greater than ℎ, compute the 𝑝-values according to
Theorem 2, and then compare the 𝑝-values with custom confidence
levels. To obtain the confidence intervals, we need to find the maxi-
mum 𝑘1 that makes

∑𝑘1
𝑖=0 0.5

𝑁 ×
(𝑁
𝑖

)
smaller than 𝛼/2, compute 𝑘2

by 𝑁 − 𝑘1, and then get the interval from the sorted {𝑒𝑖 𝑗 }. We name
the map consisting of ℎ1𝑗 the lower bound map and the map con-
sisting of ℎ2𝑗 the upper bound map. From the procedure described
above, we can see that the complexity is 𝑂 (𝑁 ) for the two-sided
MeTFA and 𝑂 (𝑁 log𝑁 ) for computing the confidence interval. The
pure test takes a very short time compared to the sampling process,
which is bottlenecked by the speed of the explanation algorithm.
However, the sampling process can be fully parallelized to take a
constant time.

4 METFA-BASED ATTRIBUTION MAP
In this section, based on MeTFA, we first design two kinds of maps,
named MeTFA-significant map and MeTFA-smoothed map, to point
out the significant important (unimportant) supportive features and
quantify the stability of explanation, respectively. Then, we give the
lower bound of the number of samples to achieve a user-interested
confidence level 𝛼 .

4.1 MeTFA-Significance Map
While the attribution maps that show every feature’s importance are
informative, in many cases, we only want to know what features are
important and what features are unimportant. For example, when we
explain the prediction of an image classification model to laypersons,
they only want a subregion of the input image highlighting the im-
portant features, which motivates us to develop MeTFA-Significance
Maps to highlight the important features and unimportant features.
We use the task of image classification to show the core idea.

Formally, when trying to figure out the “important” and “unim-
portant” features, we are actually classifying these features into two
groups. Therefore, we first do a global one-dimensional two-group

Figure 2: The overview of MeTFA. First, in (a), we add some
noise from a specific distribution P (e.g., Normal, Uniform) to the
clean image. Then, in (b), we generate an explanation for each
noisy image using an existing attribution method (e.g., RISE,
IGOS). Finally, we use the one-sided MeTFA (in (c)) to generate
the MeTFA-significant map and use the two-sided MeTFA (in
(d)) to generate the MeTFA-smoothed map.

clustering using Jenks natural breaks algorithm [21] for the attribu-
tion values in the sampled {𝑒𝑖 𝑗 }. This allows us to find the optimal ℎ
for the two groups, i.e., ℎ is recommended to be the break threshold
of these two groups. Since the “best" ℎ varies from image to image,
compared with previous works, which set a fixed threshold ℎ [10]
based on their requirements, our clustering approach can select a
better ℎ adaptive to the image. Next, we perform one-sided MeTFA
for every feature with regard to the threshold ℎ. The features whose
scores are significantly greater than ℎ are classified as important,
and significantly smaller than ℎ are classified as unimportant. Others
are in the between, denoted as “undecided”, meaning that they are
neither significantly greater than ℎ nor significantly smaller than ℎ.
In the case of image classification, we paint the important features
in yellow, the unimportant features in dark green, and the undecided
features in dark purple. An example is presented in Figure 2.

4.2 MeTFA-smoothed Map
Two-sided MeTFA can deduct a stabilization method to stabilize
explanation algorithms. In the following, we first introduce the sta-
bilized explanation named MeTFA-smoothed map, and then, we
theoretically prove that the variance of theMeTFA-smoothed expla-
nation shrinks to 0 with a same or faster speed than the SmoothGrad
explanation.

The MeTFA-smoothed explanation uses the mean of the explana-
tions only included in the confidence interval rather than all of the
sampled explanations. The formal definition is shown in Definition
1.

Definition 1. Suppose we have the sampled explanations {𝑒𝑖 }, and
we have computed 𝑘1 and 𝑘2, respectively. Let 𝑒 (𝑎) 𝑗 be the 𝑎-th
smallest element in {𝑒𝑖 𝑗 }. Then the MeTFA-smoothed explanation is
calculated as follows: the attribution score of feature 𝑗 is defined to
be

∑𝑘2−1
𝑎=𝑘1+1 𝑒 (𝑎) 𝑗/(𝑘2 − 𝑘1 − 1). We denote it as S 𝑗 .
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The MeTFA-smoothed explanation has two important properties.
They are summarized in Theorem 4.

Theorem 4. S 𝑗 possesses the following properties. The proof is in
Appendix A.1.6:

(1) S 𝑗 converges to 𝑉𝑗 when 𝑁 is sufficiently large.
(2) Under the mild assumption that 𝑓𝑒 (𝑉𝑗 ) > 0, where 𝑓𝑒 is the

PDF of 𝑒, Var(𝑆 𝑗 ) converges to zero with a speed of at least
𝑂 (1/𝑁 ).

Theorem 4 tells us that the MeTFA-smoothed explanation is a
consistent estimator for𝑉𝑗 , the median of the distribution of the sam-
pled explanations. In addition, the variance of the MeTFA-smoothed
explanation shrinks to 0, which suggests the correctness of MeTFA.
Moreover, the variance shrinks with a same or faster speed than
SmoothGrad, which suggests that MeTFA-smoothed explanations
are more stable and efficient. In addition, to visualize the uncertainty
in the explanations, we define the upper bound map and lower bound
map to be the map visualizing the corresponding upper bound and
lower bound. By comparing these two bounds, one can easily find
the most uncertain features and locate the almost certain features.

We provide Algorithm 1 in the Appendix to demonstrate how
to compute the MeTFA-significant explanation, MeTFA-smoothed
explanation, upper bound map and lower bound map in more details.

4.3 Number of Sampled Explanations
The number of sampled explanations 𝑁 is a critical hyperparameter
for MeTFA. In fact, 𝑁 is closely related to the confidence level 𝛼
of the demand. For one-sided MeTFA, as shown in Theorem 1, for
a fixed 𝑁 , 𝑝 ≥

(𝑁
0
)
× 0.50 × 0.5𝑁 = 0.5𝑁 . In order to reject 𝐻0,

𝛼 ≥ 𝑝 ≥ 0.5𝑁 . Thus, the lower bound of 𝑁 to achieve a given 𝛼 is
⌈− log2 𝛼⌉. Similarly, for two-sided MeTFA, as shown in Theorem
2, for fixed 𝑁 , 𝑝 ≥

(𝑁
0
)
× 0.5𝑁 × 2 = 0.5𝑁−1. In order to reject 𝐻0,

𝛼 ≥ 𝑝 ≥ 0.5𝑁−1. Thus, the lower bound of 𝑁 to achieve a given 𝛼 is
⌈− log2 𝛼⌉ + 1. However, these are the minimum number of samples
required, and we recommend to use more samples whenever the
computational cost of the sampling explanations is acceptable.

5 EXPERIMENTS
In this section, we first explain the experiment settings in details.
Then, we demonstrate the quality of MeTFA explanations from three
perspectives: visualization, stability and faithfulness. Finally, we
discuss the impact of important hyperparameters for MeTFA.

5.1 Settings
We evaluate MeTFA on the image classification and the text classi-
fication task because most feature attribution methods target these
two tasks. The evaluation settings is as follows:

5.1.1 Datasets and Models. For the image classification task,
we use ILSVRC2012 validation set [36] as the source dataset, be-
cause it is the most evaluated dataset among explanation methods.
We use the pre-trained VGG16, Resnet50 and Densenet169 from
PyTorch [29] as the models to be explained.

For the text classification task, we choose the dataset from Toxic
Comment Classification Challenge1 which contains 159,571 training

1https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data

texts and 63,978 testing texts with six toxic comment classes includ-
ing toxic, severe toxic, obscene, threat, insult and identity hate. We
train a bidirectional LSTM concatenated with two fully connected
layers on the training set, which achieves an accuracy rate of 97.46%.
Since a sentence consisting of too many words will greatly increase
the number of samples required by LENMA, in the following exper-
iment, we only use the sentences of length between 40 and 80. We
extensively evaluate MeTFA on the IMDb Movie Reviews dataset
[26]. We split the 50000 reviews into training set (containing 40000
reviews) and test set (containing 10000 reviews), and the same model
is applied. The trained model achieves an accuracy rate of 88.39%
on the test set.

5.1.2 Explanation Algorithms. In the image domain, we apply
MeTFA to four types of mainstream feature attribution methods,
including Gradient (the most classic gradient-based method), RISE
and LIME (two most popular sample-based methods), IGOS (the
SOTA optimization-based method) and ScoreCAM (the SOTA CAM-
based method). In the text domain, we apply MeTFA to LENMA,
the SOTA explanation method designed for RNN.

5.1.3 Metrics. We introduce the metrics to evaluate the stability
of explanations and the faithfulness of explanations

Stability. The standard deviation is a good choice to measure the
variety of the output. To measure the stability of a feature attribution
method under noises, we use the mstd (short for the mean of std)
metric, defined to be the mean of the standard deviation of explana-
tions on noisy inputs sampled from the neighborhood of the original
input. The formal definition of mtsd is as follows:

mstd = 𝑀𝑒𝑎𝑛𝐼 ∈𝐷,𝑖∈𝑆 (𝑠𝑡𝑑𝑛∼O𝑛 (𝐸 (𝐼 + 𝑛)𝑖 ))

where 𝐸 (·)𝑖 returns the attribution score of feature 𝑋𝑖 and 𝐷 is the
test data set. The default number of noisy inputs is set to 10, i.e., for
every image, we sample 10 noises 𝑛 from O𝑛 . By the definition, a
lower mstd value means a more stable explanation.

Faithfulness. The faithfulness metric is used to measure whether
the features highlighted by an attribution map support a model’s
prediction. An explanation is called faithful if the generated attri-
bution maps highlight the supportive features. In our experiments,
we use two kinds of metrics to evaluate the faithfulness. One is the
most popular metric used in the image and text domain proposed in
the previous work, and the other one is our proposed more robust
faithfulness metric.

In the image domain, insertion, deletion [30] and overall [48] are
commonly used to estimate the faithfulness of an attribution map.
These metrics aim to measure whether the features highlighted by
an attribution map support a model’s prediction. If an attribution
map is faithful to the model, then removing the pixels with the
highest values from a full image will cause a big decrease on the
predicted score and conversely, inserting the pixels with the highest
values into a blank image will cause a big increase on the predicted
score. To formally illustrate this property, let 𝐼 be the original image,
𝑓𝑐 (·) returns the predicted score of label 𝑐 and 𝑀 is the attribution
map given by a explanation algorithm for 𝐼 . Then, the (normalized)
insertion and deletion are defined as follows:

𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝐼 , 𝑀) = 1
𝑓𝑐 (𝐼 )

∫ 100

0
𝑓𝑐 (𝐼𝑀+𝑛 )𝑑𝑛
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𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛(𝐼 , 𝑀) = 1
𝑓𝑐 (𝐼 )

∫ 100

0
𝑓𝑐 (𝐼𝑀−𝑛 )𝑑𝑛

where 𝐼𝑀+𝑛 keeps the 𝑛% pixels in 𝐼 with top attribution scores, and
𝐼𝑀−𝑛 deletes the 𝑛% pixels in 𝐼 with top attribution scores. A more
faithful attribution map can highlight the supportive features more
accurately and thus keeping the same number of pixels can get a
higher predicted score, resulting in a higher insertion value. Sim-
ilarly, a more faithful attribution map gets a lower deletion value.
To specifically show the process, we add an example in the appen-
dix (Figure 10). Besides, sometimes insertion and deletion give the
contradictory results. In such situation, overall, which is equal to
insertion minus deletion, is used to evaluate the faithfulness. How-
ever, the faithfulness metrics considering only a single point suffers
from the effect of non-robust features. Therefore, we take the neigh-
borhood of the input into consideration. Specifically, we propose
robust insertion (RI), robust deletion (RD) and robust overall (RO)
to further evaluate the faithfulness for the neighborhood of the clean
image, which are as follows.

𝑅𝐼 (𝑀, 𝐼,O𝑛) = E𝑛∼O𝑛 (𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝐼 + 𝑛,𝑀))

𝑅𝐼 (𝑀, 𝐼,O𝑛) = E𝑛∼O𝑛 (𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝐼 + 𝑛,𝑀))
where O𝑛 is the distribution of noise. The intuition behind the RI
(RD) metric is that if the attribution map finds the robust support-
ive features, then after adding a small random noise, the features
will still keep supporting and thus having a high insertion score or
low deletion score on the noisy images. Therefore, a higher robust
faithfulness means the explanation can locate the robust features
more precisely. In practice, we use 10 samples to approximate the
expectation. Correspondingly, RO is defined as RI minus RD. By the
definition, a lower value of deletion or RD suggests a more faithful
explanation while a higher value of insertion, overall, RI or RO
suggests a more faithful explanation.

In the text domain, we use Feature Deduction Test (FDT), Fea-
ture Augmentation Test (FAT) and Synthetic Test (ST) proposed in
LEMNA to estimate the faithfulness of an explanation. Similar to
the image task, let 𝑇 be the original text, 𝑓𝑐 (·) returns the predicted
score of label 𝑐 and 𝑀 is the attribution map given by a explanation
algorithm for 𝑇 . Then FDT, FAT, ST can be defined as follows:

𝐹𝐷𝑇 (𝑇,𝑀) = 𝑓𝑐 (𝑇𝑀−
𝑛 )

𝐹𝐴𝑇 (𝑇,𝑀,𝑇 ′) = 𝑓𝑐 (𝑇 ′ ◦𝑇𝑀+
𝑛 )

𝑆𝑇 (𝑇,𝑀) = 𝑓𝑐 (𝑇𝑀+
𝑛 )

where 𝑇𝑀−
𝑛 deletes the 𝑛 words in 𝑇 with top attribution scores,

𝑇 ′ ◦ 𝑇𝑀+
𝑛 retains the 𝑛 words with top attribution scores in 𝑇 but

replaces the other words by a randomly selected instance 𝑇 ′, and
𝑇𝑀+
𝑛 only keeps the 𝑛 words in𝑇 with top attribution scores. Similar

to the image domain, we extend these three metrics to the robust
faithfulness metrics, i.e., RFDT, RFAT and RST, and use 10 samples
for calculation. By the definition, a lower value of FDT or RFDT
suggests a more faithful explanation while a higher value of FAT,
ST, RFAT or RST suggests a more faithful explanation.

𝑅𝐹𝐷𝑇 (𝑇,𝑀,O𝑛) = E𝑛∼O𝑛 (𝐹𝐷𝑇 (𝑇 + 𝑛,𝑀))

𝑅𝐹𝐴𝑇 (𝑇,𝑀,O𝑛,𝑇
′) = E𝑛∼O𝑛 (𝐹𝐴𝑇 (𝑇 + 𝑛,𝑀,𝑇 ′))

𝑅𝑆𝑇 (𝑇,𝑀,O𝑛) = E𝑛∼O𝑛 (𝑆𝑇 (𝑇 + 𝑛,𝑀))

(a)

(b)

Figure 3: Visual examples for the original, the MeTFA-smoothed
and the MeTFA-significant explanations. (a) is the input image.
The columns of (b) show the explanations of RISE, IGOS, LIME,
Gradient and ScoreCAM, respectively.

The roles of the noise distribution P and O𝑛 are different. P is
used to sample around the original data, which is a core step of
MeTFA, while O𝑛 is used to compute the robust metrics. We take
RI as an example to show the difference more specifically and we
provide its algorithm in Algorithm 2 in the appendix.

5.1.4 Default Settings. Unless otherwise specified, all the hyper-
parameters are set as follows.

• The confidence level 𝛼 . We set a common choice 𝛼 = 0.05.
• The number of sampled explanations 𝑁 . As discussed in

Section 4.3, the minimum 𝑁 to achieve 𝛼 = 0.05 for MeTFA-
significant map is 5. However, this leads to too few features
being tested significant. Therefore, we choose 𝑁 = 10 as the
default.
• The number of samples for the sample-based methods. Typi-

cally, the more samples used by the sample-based method, the
more stable the generated explanation would be. For LIME,
we choose 1000 because this is the default in the LIME’s
open-source code. For RISE, we choose 1000 as well so that
it is consistent to LIME since they are compared to each other
in the image domain. For LEMNA, we use 500 and 2000 for
the Toxic Comments dataset and 2000 for the IMDb Reviews
dataset.
• For the other parameters, we use the same as the correspond-

ing open-source code.

5.2 Quality of Visualization
In this part, we illustrate the visualization effect of MeTFA in the
image domain. We use the pre-trained VGG16 network from the
Pytorch and an image from the source dataset as an example. The
predicted label of the image is “sea snake”, which is consistent to
the ground truth. We apply the five feature attribution methods, as
discussed in Section 5.1.2, to explain this prediction. The results are
shown in Figure 3.

The original explanations, shown in the first row of Figure 3,
are roughly located around the sea snake, which is intuitive. The
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Table 1: The mstd value of the MeTFA-smoothed RISE and
vanilla RISE for Densenet169. The last column is the average
mstd among three kinds of O𝑛 for a fixed P.

P\O𝑛 Normal Uniform Brightness Avg

Normal 0.0591 0.0491 0.0406 0.0496
Uniform 0.0613 0.0504 0.0413 0.051

Brightness 0.0668 0.0524 0.0366 0.0519

Vanilla RISE 0.1197 0.1219 0.1074 0.1163

second and the third row contains the MeTFA-smoothed and MeTFA-
significant maps, generated by applying the two-sided and the one-
sided MeTFA to Gradient, IGOS, LIME, RISE and ScoreCAM,
respectively. Apparently, the second and third row have better visual
quality than the first row. For example, the MeTFA-smoothed Gradi-
ent highlights the snake while the original explanation is scattered,
and the MeTFA-significant RISE shows that only the snake area
is significantly important while the original explanation contains a
lot of noises. In general, MeTFA leaves fewer pixels as “undecided”
if the original explanation is more stable, e.g., ScoreCAM, and a
less stable explanation can benefit more from applying MeTFA, e.g.,
Gradient. The last two rows show the upper bound maps and lower
bound maps. We can directly find which explanations are more sta-
ble and which features are uncertain by comparing these two maps.
For example, LIME has low stability as the lower bound map and
the upper bound map are greatly different while ScoreCAM has high
stability as the lower bound map.

5.3 Stability
In this part, we evaluate the stability of MeTFA in the image and
text domain. As discussed in Section 3.1, MeTFA samples noises
from a distribution P to estimate the distribution of the explanations.
In addition, as discussed in Section 5.1.3, the metric mstd measures
the stability of an attribution method by sampling from a noise
distribution O𝑛 . In practice, O𝑛 might be different to P. Therefore,
to make the setting more representative for the real applications, we
evaluate each combination of P and O with several common noises.

5.3.1 Stability in the Image Domain. In the image domain,
P and O𝑛 are selected from the following three noise distribu-
tions which are very common for images: (1) uniform distribution
𝑈 (−0.1, 0.1), (2) normal distribution 𝑁 (0, 0.01), (3) brightness, i.e.,
multiply by a factor 𝑛, 𝑛 ∼ 𝑈 (0.9, 1.1). Although real-world noises
may have joint patterns, we apply these perturbations independently
to each pixel of the image to simulate the noises introduced by the
image sensor [44], e.g., a camera. In addition, neural networks are
empirically robust to such random noises [13], thus the correct ex-
planation is probable to remain the same under the random noises,
which makes the median value suitable for explaining the original
input.

We compare the stability of the MeTFA-smoothed explanation
using different P with the vanilla explanation under different O𝑛 . To
compute the mstd, we randomly select 100 images as the test data
set 𝐷 . The results for Densenet169 with RISE algorithm are shown
in Table 1. Table 1 shows that every P can improve the stability
under every O𝑛 when compared to the vanilla RISE, decreasing the
mtsd by roughly a half. Therefore, MeTFA does not need to know
the “correct” O𝑛 , because the stability transfers across the noise

distributions. Extensive experiments on other algorithms and other
models are shown in Table 11, Table 12, Table 13 and Table 10 in the
Appendix. The results show that MeTFA can significantly increase
the stability of LIME, IGOS, Gradient and RISE but has slight effect
on ScoreCAM. This may be because LIME and RISE are affected by
the sampling process, while Gradient and IGOS are affected by the
non-robust features. MeTFA can attenuate the effects of these two
factors and thus shows significant increases in the stability. However,
ScoreCAM does not involve a sampling process and suffers little
from the non-robust features, as shown by a small mtsd for the
vanilla explanations. Therefore, ScoreCam benefit less from MeTFA
in this sense.

Further, as we can see, the best choice of P to increase the stability
varies for different O𝑛 . For example, when O𝑛 is Normal, the best P
is Normal; when O𝑛 is Brightness, the best P is Brightness. Since
the distribution of real-world noise is usually unknown, we take the
average among the mstd under three kinds of O𝑛 for every fixed P
to comprehensively compare the ability of each P to improve the
stability. The results are shown in the last column of Table 1. As
we can see, Normal is the best choice for P to increase the stability
under various noises. Extensive experiments on other algorithms and
models confirm this conclusion as well, as shown in Table 11, Table
12, Table 13 and Table 10 in the Appendix. Therefore, although
normal distribution is not always the best choice for P, it is a good
default for applying MeTFA.

Although we have established theoretical results that MeTFA
is able to quantify the uncertainty better and converges as fast
as SmoothGrad (short for SmoothGrad [39]), their stability under
noises on the input is not compared. Therefore, we empirically com-
pare the stability of MeTFA with SG in two settings: (1) there is
no noise on the input, which verifies our proof, and (2) there are
noises on the input. As we introduced in Section 2, SG samples
from the neighborhood of the original image and simply takes the
average of all the sampled explanations. However, MeTFA takes
the average of the explanations between the lower and upper bound
computed from the two-sided MeTFA. This is the only difference
between MeTFA-smoothed explanations and the SmoothGrad expla-
nations. For a fair comparison, MeTFA and SG use the same noises
sampled from P. Specifically, we randomly sample 100 images from
the source dataset as the test data set 𝐷 to compute mstd. As SG is
designed to remove the noise for the Gradient, we take the Gradient
as the representative explanation and then compare the stability for
MeTFA-smoothed Gradient and SG Gradient.

Since both MeTFA and SG use sampling, their outputs natu-
rally have randomness even if there is no external noise. Thus, we
first apply no noise on the input to test the stability of MeTFA and
SG, which should verify our proof about the stability advantage of
MeTFA. P is set to be Uniform or Normal. Table 2 shows the ratios
of the mstd of the MeTFA-smoothed Gradient over the SG Gradient,
i.e., 𝑚𝑠𝑡𝑑𝑀𝑒𝑇𝐹𝐴−𝐺𝑟𝑎𝑑/𝑚𝑠𝑡𝑑𝑆𝐺−𝐺𝑟𝑎𝑑 . It can be found that all the
ratios are lower than 1, which suggests that the MeTFA-smoothed
explanations are more stable than the SG explanations when there
is no external noise. Further experiments on the VGG16 model
confirms this conclusion, are shown in Table 17 in the appendix.
However, this ratio increases when 𝑁 becomes larger, thus empiri-
cally suggests that our asymptotic bound on the convergence is tight,
i.e., the lower bound for its convergence rate is 𝑂 (1/𝑁 ) as well.
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Table 2: The results of 𝑚𝑠𝑡𝑑𝑀𝑒𝑇𝐹𝐴−𝐺𝑟𝑎𝑑/𝑚𝑠𝑡𝑑𝑆𝐺−𝐺𝑟𝑎𝑑 for
Resnet50 under two settings: P is Normal or Uniform and no
external noise.

𝑁 Uniform Normal

10 0.9451 0.9372
30 0.9576 0.9452
50 0.9693 0.9560
70 0.9807 0.9673

Table 3: The results of 𝑚𝑠𝑡𝑑𝑀𝑒𝑇𝐹𝐴−𝐺𝑟𝑎𝑑/𝑚𝑠𝑡𝑑𝑆𝐺−𝐺𝑟𝑎𝑑 for
Resnet50 under two settings: P and O𝑛 are both Uniform or
Normal.

𝑁 Uniform Normal

10 0.9484 0.9437
30 0.9166 0.9097
50 0.9059 0.8983
70 0.8996 0.8915

Then we test the stability when there are external noises. Specifi-
cally, the O𝑛 and P are set to be the same and selected from Uniform
or Normal. Similar to the noise-free case, we record the ratios of
the mstd of the MeTFA-smoothed Gradient over the SG Gradient.
Table 3 shows that all the ratios are lower than 1, meaning that
MeTFA is always more stable than SG. Moreover, in Appendix
A.1.6, we prove that MeTFA only takes the average of 𝑂 (

√
𝑁 ) sam-

pled explanations to generate the MeTFA-smoothed explanation.
Therefore, the MeTFA-smoothed explanation averages far less sam-
pled explanations than SG (which takes the average of 𝑁 sampled
explanations) to obtain a higher stability because it automatically
filters out abnormal extreme values. This property helps MeTFA to
be even more stable than SG when the input is noisy.

In conclusion, MeTFA-smoothed explanations are more suitable
when the vanilla explanations are vulnerable to the effect of non-
robust features (e.g., Gradient, IGOS) or the sampling process (e.g.,
RISE, LIME).

5.3.2 Stability in the Text Domain. In the text domain, we use
synonym substitution as noise, because different words express sim-
ilar meanings in a sentence. Formally, this noise P(𝑝) replaces every
word by its synonym independently with probability 𝑝. In this exper-
iment, we set both P and O𝑛 to P(0.5). Specifically, we use wordnet
in nltk [7] for synonym substitution and do not require the predicted
class to keep the same in the experiment, as we want to simulate the
noise in the real world. As discussed in Section 5.1, we use LEMNA
as the target explanation and a bidirectional LSTM as the target
model. Similar to Section 5.3.1, We randomly select 100 toxic texts
whose number of words are between 40 and 80 as the test data set 𝐷 .

The result is shown in Table 4, where the number of samples of
LEMNA is 2000. It can be found that the mstd value of MeTFA-
smoothed LEMNA is significantly smaller than that of the vanilla
LEMNA, which means that MeTFA can increase the stability of
LEMNA as well. The results for the Toxic Commnet, where the
number of samples of LEMNA is 500, are shown in the appendix
(Table 19), and the conclusion is the same, i.e., MeTFA can increase
the stability of LEMNA.

Table 4: The mstd values for LEMNA and MeTFA-smoothed
LEMNA when P and O𝑛 are both P(0.5).

Dataset LEMNA MeTFA-smoothed LEMNA

Toxic Comment 0.1803 0.0891
IMDb Reviews 0.3012 0.1691

Table 5: The results with the faithfulness metrics. The tuple in
the table is structured as (the score of the MeTFA-smoothed
explanation, the score of the vanilla explanation).

method insertion deletion overall

ScoreCAM (0.5897,0.6101) (0.1571,0.1439) (0.4326,0.4662)
RISE (0.5508,0.5556) (0.1767,0.1550) (0.3741,0.4006)
IGOS (0.3881,0.3360) (0.1107,0.1002) (0.2774,0.2358)

Table 6: The results with the robust faithfulness metric. O𝑛 =

𝑁 (0, 0.1). The structure of the table is similar to Table 5.

method RI RD RO

ScoreCAM (1.2915,0.9429) (0.4279,0.4039) (0.8636,0.5390)
RISE (1.2959,0.8626) (0.4497,0.4846) (0.8462,0.3780)
IGOS (0.5061,0.4152) (0.2249,0.1640) (0.2812,0.2512)

5.4 Faithfulness
Faithfulness to the model is an essential property for an explanation.
The MeTFA-smoothed explanation approximates the median of the
attribution maps under some P. The following experiments shows
that MeTFA greatly increases the robust faithfulness while maintain-
ing the faithfulness level. Therefore, MeTFA-smoothed explanations
find more robust features used by the model.

5.4.1 Faithfulness in the Image Domain. In the image domain,
we use insertion, deletion, overall, RI, RD and RO to estimate the
faithfulness of an explanation which are used to measure whether
the features highlighted by an attribution map support a model’s pre-
diction. However, the gradient-based explanations are not designed
to highlight the supportive features, and thus these metrics are not
suitable for them. Moreover, these metrics can only evaluate the con-
tinuous attribution maps while LIME generates a discrete (in fact, a
binary) map. Therefore, we do not test these metrics for Gradient,
LRP and LIME and only test them for IGOS, ScoreCAM and RISE.
The result is evaluated on the VGG16 model, and the metrics are
averaged on 1000 randomly chosen images. In this experiment, P is
set to be Uniform, and O𝑛 is chosen from Uniform and Normal.

For the vanilla insertion, deletion and overall, the average scores
of the 1000 test images are shown in Table 5. The bold digits in the
table represent the higher faithfulness. It shows that, for ScoreCAM
and RISE, two-sided MeTFA slightly decreases the value of insertion
and increases the value of deletion, which suggests that two-sided
MeTFA slightly reduces the faithfulness of the vanilla explanation
algorithms. For IGOS, two-sided MeTFA slightly increases the value
of insertion and increases the value of deletion. Thus, for such
contradictory introduced in Section 5.1, overall is used to evaluate
the faithfulness, and the results show that the two-sided MeTFA
increases the faithfulness of IGOS. In general, the two-sided MeTFA
maintains the faithfulness because the overall score is similar to the
vanilla explanation.
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Figure 4: The MeTFA-significant RISE with ℎ from 0.1 to 0.9. The last column is the MeTFA-significant explanations with the
recommended threshold ℎ. The values under the images represent the predicted score of the original label, i.e., macaque, for the
significantly important areas.

For RI, RD and RO, the average scores of the 1000 test images are
shown in Table 6 where O𝑛 = 𝑁 (0, 1). As we can see, the two-sided
MeTFA significantly increases the robust faithfulness of the three
vanilla explanations. Further experiments that calculate the RI, RD
and RO with O𝑛 = 𝑈 (−0.1, 0.1) confirm this conclusion and the
results are shown in Table 15 in the appendix. All of these results
show that MeTFA significantly increases the robust faithfulness for
the three explanations, regardless of O𝑛 and P are the same or not.

As we can see, the vanilla RISE and ScoreCAM have higher
overall score than MeTFA-smoothed ones. The reason could be that
the explanations without MeTFA overfit the non-robust features or
artifacts [14], and thus receiving a higher faithfulness value, just as
some models have higher accuracy on clean images but are more vul-
nerable to noises. MeTFA eliminates the effect of some non-robust
features due to the sampling and the test. Thus, MeTFA slightly
decreases the faithfulness of some explanation methods using the
traditional metrics, but significantly increases the faithfulness using
the proposed robust metrics.

5.4.2 Faithfulness in the Text Domain. In the text domain, we
use FDT, FAT, ST and their corresponding robust metrics to estimate
the faithfulness of an explanation. Similar to Section 5.3, we use
synonym substitution to generate noise and set P andO𝑛 to be P(0.5).
As introduced in Section 5.1, the value of FDT changes with the
number of processed features, i.e., 𝑛. The results of FDT, FAT and ST
with different 𝑛 are shown in Figure 5 for Toxic Comment dataset,
where the number of samples of LEMNA is 2000. It can be found that
the FDT value (lower is better) of the MeTFA-smoothed LEMNA is
always lower while the other two values (higher is better) are always
higher, which suggests that the MeTFA-smoothed LEMNA is more
faithful. The results of RFDT, RFAT and RST with different 𝑛 are
shown in Figure 6 for Toxic Comment dataset, where the number of
samples of LEMNA is 2000. The results confirm that the two-sided
MeTFA increases the faithfulness of LEMNA. Further, we change
the strength of the noise by setting O𝑛 to P(0.3) and P(0.7). The
results of the three robust faithfulness metrics are shown in Figure
11 and Figure 12 in the appendix, respectively, which consistently
shows that MeTFA is better. Moreover, the results with another
dataset (i.e., IMDb Reviews) and another number of samples for
LEMNA (i.e., 500) are shown in Figure 13 and Figure 14 in the
appendix, respectively. All of these results show that MeTFA can
increase LEMNA’s faithfulness regardless of the existence of the
real-world noises and the strength of the random noises.

Figure 5: The results of FDT, FAT and ST with different 𝑛 when
O𝑛 is P(0.5). The results of FDT, FAT and ST are shown from
left to right, respectively.

Figure 6: The results of of RFDT, RFAT and RST with different
𝑛 when O𝑛 is P(0.5). The results of RFDT, RFAT and RST are
shown from left to right, respectively.

5.5 Impact of the Key Parameters
In this part, we discuss the impact of several key parameters on the
capabilities of MeTFA, including the threshold ℎ of the MeTFA-
significant map, the number of sampled explanations 𝑁 and the
confidence level 𝛼 .
5.5.1 Threshold ℎ. Although we recommend to determine the
threshold ℎ of the MeTFA-significant map by finding the optimal
break, as discussed in Section 4.1, ℎ is still a customizable parameter.
In this part, we illustrate how ℎ influences the MeTFA-significant ex-
planation and then show the advantage of applying the recommended
threshold.

Figure 4 shows the MeTFA-significant maps for RISE on an im-
age of a macaque. The first row highlights the significantly important
features, and the second row highlights the significantly unimpor-
tant features. When ℎ increases, the significantly important area
becomes smaller, and the significantly unimportant area becomes
larger, which is intuitive. To understand how well the highlighted
area represents the model’s prediction, we black out the image except
the significantly important area and record the model’s predicted
score of the original label. When ℎ = 0.1 and 0.2, the significantly
important region filters out the noisy features, leading to a higher
predicted score compared to the original image. When ℎ = 0.3 and
0.4, the significantly important map keeps the predicted score with a
smaller region. When ℎ = 0.5 and 0.6, the area of the significantly
important map is further reduced and the predicted score drops, but
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Figure 7: The results of𝑚𝑠𝑡𝑑𝑀𝑒𝑇𝐹𝐴−𝐺𝑟𝑎𝑑/𝑚𝑠𝑡𝑑𝐺𝑟𝑎𝑑 for Resnet-
50 when 𝑁 varies from 10 to 80.

the prediction remains the same as the score is still larger than 0.5.
Finally, when ℎ ≥ 0.7, the significantly important region is too small
to keep enough information which causes a quick decrease of the
predicted score. These phenomena show that the significantly impor-
tant map correctly points out the features supporting the prediction
of the model. In addition, when ℎ = 0.8, the significantly unimpor-
tant map covers almost the whole image but still gets a low score,
suggesting that the significantly unimportant map correctly points
out the features which do not support the prediction of the model.

By applying the optimal break method discussed in Section 4.1,
the recommended ℎ for this example is 0.4078. Using this threshold,
the significantly important map gets a high score with a small area. In
addition, this threshold is almost the same to the score-area margin,
ℎ = 0.4, as a smaller threshold keeps a much larger area and a higher
threshold gets a much smaller predicted score. This example shows
that the recommended method of determining the threshold is good
for usage. Therefore, in the following applications (Section 6.1), we
use the recommended way to determine ℎ for the MeTFA-significant
map.

5.5.2 Number of Sampled Explanations 𝑁 . Although we give
the lower bound for 𝑁 to achieve a confidence level 𝛼 in Section 4.3,
𝑁 is a customizable parameter as long as it is greater than the lower
bound. In this part, we demonstrate how 𝑁 influences the stability
of the MeTFA-smoothed explanation. As discussed in Section 5.3,
we set the P and O𝑛 to be the same and experiment with Normal
and Uniform distributions. The results for the ResNet-50 are shown
in Figure 7. As expected, the mstd of MeTFA-smoothed Gradient
decreases when 𝑁 increases, meaning that the explanation is more
stable with a larger 𝑁 . Therefore, a user can custom 𝑁 according
to the trade-off between the stability of the explanation and the
tolerance of computational costs. However, even a small 𝑁 , e.g.,
𝑁 = 10, can bring significant stability benefits, as the std is reduced
by over a half.

5.5.3 Confidence Level 𝛼 . 𝛼 is a core parameter for hypothesis
testing, and a lower 𝛼 causes a more stringent test result. As dis-
cussed in Section 4.3, a lower 𝛼 requires a higher 𝑁 . However, with a
fixed large 𝑁 , whether the choice of 𝛼 makes a significant difference
to the stability of the explanation remains unknown. To answer this
practical question, we fix 𝑁 = 50 and experiment with different 𝛼 .
Similar to the discussion of 𝑁 , we test the stability of the MeTFA-
smoothed Gradient for Resnet-50 by setting P and O𝑛 both to be
Normal and Uniform, respectively. The results are shown in Table
7. It shows that the stability does not change much with a smaller 𝛼
when we reduce 𝛼 from 0.05 to 0.0001. Therefore, MeTFA is insen-
sitive to the value of 𝛼 . Further experiments on Densenet-169 imply

Table 7: The results of 𝑚𝑠𝑡𝑑𝑀𝑒𝑇𝐹𝐴−𝐺𝑟𝑎𝑑/𝑚𝑠𝑡𝑑𝐺𝑟𝑎𝑑 for Resnet50
under two settings: P and O𝑛 are both Normal or Uniform.

𝛼 Uniform Normal

0.05 0.2558 0.2609
0.01 0.2553 0.2607
0.005 0.2552 0.2608
0.001 0.2552 0.2610

0.0005 0.2554 0.2613
0.0001 0.2557 0.2619

the same conclusion, as shown in Table 18 in the appendix. The
intuition of this result is that 𝛼 = 0.05 already implies the probability
of noises to be tested significant is very small, and thus reducing it
further does not benefit as much. Therefore, we set 𝛼 = 0.05 in the
following application, which is common for a hypothesis test.

6 APPLICATION
In this section, we apply MeTFA to two applications closely related
to security: detecting context bias in semantic segmentation and
defending adversarial examples against the explanation-oriented
attack. In this section, P is set to 𝑈 (−0.1, 0.1).

6.1 Context Bias Detection
As a component of the autonomous driving, semantic segmenta-
tion is of great importance. Formally, suppose that the class to be
segmented is 𝑐, e.g., rider, and 𝐼 is the input image. A semantic
segmentation model 𝐹𝑐 basically predicts for each pixel whether it
belongs to 𝑐, represented by a probability score, and the segmenta-
tion result, denoted by 𝑅, is the set of all pixels that are predicted to
be 𝑐. An explanation for the segmentation 𝑅 is an attribution map
that highlights the area 𝑅 that the segmentation is based on. The
highlighted area may include additional information that supports
the prediction, i.e., 𝑀 \ 𝑅. For example, it may highlight a bike that
supports the segmentation of a rider, but is not included in the seg-
mentation for the rider. This additional areas are called context bias
for class 𝑐. Similar to the image classification task, an explanation
for the segmentation is faithful if only keeping the highlighted areas
is sufficient to produce the correct segmentation for 𝑐. Formally, we
define the faithfulness value as follows:

𝑚𝑓 = 1 − 𝑆𝑢𝑚(𝑅𝑒𝑙𝑢 (𝑅 ⊙ (𝐹𝑐 (𝐼 ) − 𝐹𝑐 ((𝑅 ∪𝑀) ⊙ 𝐼 ))))
𝑆𝑢𝑚(𝑅)

Basically, this metric measures how much the segmentation scores
drop if we use only the explanation combined with the segmentation
area to produce a new segmentation. A high 𝑚𝑓 means the model
produces similar segmentation with the only area highlighted by
the explanation. Similarly, we measure the robust faithfulness under
noises sampled from 𝑂𝑛 , defined by 𝐸𝑛∼𝑂𝑛

𝑚𝑓 (𝐼 + 𝑛).
GridSaliency [20] is the SOTA explanation algorithm for semantic

segmentation. An example is shown in Figure 8 (a) and (b). Figure 8
(a) is the result of the model segmenting the rider class, and Figure 8
(b) highlights the context bias of the rider class using GridSaliency.
This result means that the model needs both the rider (Figure 8 (a))
and the bike (Figure 8 (b)) to recognize the rider. Using GridSaliency,
engineers can debug a model when the model relies on the wrong
context bias. However, the explanation of GridSaliency is vulnerable
to random noise, which may mislead the practice. For example, after
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Figure 8: An example of the explanation for the semantic seg-
mentation model. (a) and (b) are generated with the clean image.
(a) is the rider segmentation result and (b) is its explanation
generated by GridSaliency. (c) and (d) are the explanation of the
rider class with a noisy image. (c) is the original GridSaliency
map, while (d) is the MeTFA-significant map.

adding some noises to the original image, the attribution map for the
rider becomes irrelevent, as shown in Figure 8 (c).

We apply the MeTFA-significant map to fix this issue. As shown
in Figure 8 (d), the MeTFA-smoothed map correctly highlights
the bike again. We further evaluate the faithfulness of the MeTFA-
significant explanations using the popular semantic segmentation
dataset CityScapes [9] as the source dataset and the pre-trained PSP-
Net with R-50-D8 backbone [8] as the target model . We select
three classes, tree, rider and car, as the target classes because intu-
itively rider has a strong context bias (bike) while trees and cars
do not. For each class, we randomly select 100 test images where
the segmentation size is larger than 600 pixels, to ensure that there
exists at least one object segmented by the model as 𝑐 rather than
some misclassified noisy pixels. To test the faithfulness of an ex-
planation method in a noisy environment, we use noises sampled
from 𝑈 (−0.1, 0.1) to compute the robust𝑚𝑓 . For a fair comparison,
we apply the same ℎ for the vanilla GridSaliency as well, i.e., we
take the set of pixels with score higher than ℎ as the explanation of
the vanilla GridSaliency. The results are shown in Table 8. It can
be seen that the MeTFA-significant explanations highlight far less
pixels, e.g., about 2% for trees, to maintain 99%+ faithfulness, which
suggests that the one-sided MeTFA filters out many noisy pixels in
the vanilla GridSaliency map and keeps the pixels that the model
really relies on. This can help engineers confidently determine if
a model has context bias by looking at the the region the model
significantly relies on.

Furthermore, from Table 8, we can see that MeTFA filters out
most of the context biases for the class tree and car, at 98% and 92%,
respectively, while maintaining 40% of the context bias for the class
rider. This is intuitive because the model needs the context bias, e.g.,
bike, to determine whether a person is a rider. However, for trees and
cars, the model does not need context bias to do so. Therefore, this
results suggest that MeTFA is good at removing the false positives
for the target classes and keeping only the correct context biases.

In conclusion, the MeTFA-significant map can remove the noise
of the attribution map and point out the context bias more accurately
and confidently.

6.2 Defending Explanation-Oriented Attacks
Explanations are designed to help human understand and trust the
model. However, recent works show that the explanation can be
manipulated. Manipulation attack [11] is able to keep the model’s
prediction unchanged, but manipulate the attribution maps generated
by the explanation algorithms arbitrarily. As shown in the second row

Table 8: Evaluation of the highlighted area and the faithfulness
of the attribution map for the segmentation model PSPNet. The
second column is the faithfulness ratio of the MeTFA-significant
map divided over the GridSaliency map. The third column is
the ratio of the highlighted area.

classes 𝑚𝑀𝑒𝑇𝐹𝐴/𝑚𝐺𝑆 ∥𝑀𝑀𝑒𝑇𝐹𝐴 ∥/∥𝑀𝐺𝑆 ∥

tree 0.9983 0.0198
rider 0.9904 0.3955
car 0.9915 0.080

Figure 9: Examples of manipulation attack for MASK, CAM
and LRP attack. (a) are the target maps. The attacker uses the
vanilla attack (VA) to generate an adversarial example. Then the
defender uses the vanilla explanation (VE) to generate a map
for the adversarial example (b) or use the MeTFA-smoothed
explanation (ME) to generate a map for the adversarial example
(c). The attacker can also use adaptive attack against MeTFA
(MA) to generate an adversarial example. Then the defender
uses the MeTFA-smoothed explanation (ME) to generate a map
for the adversarial example (d).

of Figure 9 (a) and (b), an attacker can manipulate the explanation to
be similar to a target map. Moreover, some AI systems use feature
attribution to detect adversarial explanations, but ADV2 [50] can
evade such detection by manipulating the adversarial example’s
explanation to be similar to the benign one. As shown in the first row
of Figure 9 (a) and (b), an attacker changes the predicted label of the
image from check to sandbar while manipulating its explanation (b)
to be similar to the benign one (a). ADV2 attack can be decomposed
into two steps: an attacker first attacks the prediction of the model
only and then manipulates the explanation to the benign one while
maintaining the target label. Therefore, the core of the above two
attacks is the same, i.e., manipulate the explanation to a target map
while maintaining the predicted label.

We conduct experiments to test MeTFA’s ability to defend the
explanation-oriented attack quantitatively. Similar to Section 5.1.1,
we use ILSVRC2012 val as the source dataset. We test the attack on
MeTFA-smoothed CAM [50] (a CAM -based explanation), MeTFA-
smoothed LRP[11] (a gradient-based explanation) and MeTFA-
smoothed MASK [50] (an optimization-based explanation). Since
the existing attack methods rely on the gradient relation between
the attribution map and the input image, they could not attack the



13

Table 9: The distance between the maps for CAM, LRP and
MASK.

𝑑 (𝑚1,𝑚2) 𝑑 (𝑚1,𝑚3) 𝑑 (𝑚1,𝑚4)
CAM 0.0934 0.2785 0.1705
LRP 0.0340 0.0657 0.0635

MASK 0.1453 0.1667 0.1648

sample-based explanations, where no gradient information is avail-
able. All the attack methods follow the default settings of the original
paper.

The aim of the attacker is to manipulate the explanation to a target
pattern while keeping the predicted label. Correspondingly, the aim
of the defender is to make the generated explanation different from
the target pattern. We evaluate the defense capabilities of MeTFA
from two aspects: visual effects and quantitative analysis. For each
aspect, we conduct experiments for both conditions where the at-
tacker knows or does not know MeTFA. Formally, the objective
functions to optimize the adversarial example for the original attack
(Equation 1) and the adaptive attack (Equation 2) are as follows:

𝑥 = argmin
𝑥
(𝜆1∥ 𝑓𝑐 (𝑥) − 𝑓𝑐 (𝑥0)∥ + 𝜆2∥𝑥 − 𝑥0∥ + 𝜆3∥𝐸 (𝑓𝑐 , 𝑥) − 𝐸𝑡 ∥)

(1)

𝑥 = argmin
𝑥
(𝜆1∥ 𝑓𝑐 (𝑥) − 𝑓𝑐 (𝑥0)∥ + 𝜆2∥𝑥 − 𝑥0∥ + 𝜆3∥𝐸 (𝑓𝑐 , 𝑥) − 𝐸𝑡 ∥

+ 𝜆4∥𝐸𝑀 (𝑓𝑐 , 𝑥) − 𝐸𝑡 ∥)
(2)

where 𝑓𝑐 (𝑥) returns the predicted score of class 𝑐, 𝑥0 is the original
data, 𝐸 (𝑓𝑐 , 𝑥) returns the vanilla attribution map of 𝑥 , 𝐸𝑡 is the target
attribution map and 𝐸𝑀 (𝑓𝑐 , 𝑥) returns the MeTFA-Smoothed attribu-
tion map of 𝑥 . In the experiment, we consider the strongest adaptive
attacker, i.e., the attacker uses the hyperparameters exactly the same
as the defender who uses MeTFA to denfend against the adversarial
examples.

First, the visual results of MeTFA are shown in Figure 9 (c)
and (d) for MeTFA-smoothed explanation of the vanilla adversarial
examples and that of the adaptive adversarial examples. As we can
see, whether the attacker knows MeTFA, the MeTFA-smoothed
explanations are very different to the targets, which suggests the
ability of MeTFA to defend against adversarial examples in practice.

Second, we quantify the ability of the MeTFA to defend against
the attack. Formally, we denote the target map as 𝑚1 (e.g., Figure
9(a)), the map generated with vanilla explanation for the vanilla
adversarial example as 𝑚2 (e.g., Figure 9(b)), the map generated
with MeTFA-smoothed explanation for the vanilla adversarial exam-
ple as 𝑚3 (e.g., Figure 9(c)) and the map generated with MeTFA-
smoothed explanation for the adaptive adversarial example as 𝑚4
(e.g., Figure 9(d)). We define the distance between two maps as
𝑑 (𝑚,𝑛) = 1

|𝑆 |
∑
(𝑖, 𝑗) ∈𝑆 |𝑚𝑖 𝑗 − 𝑛𝑖 𝑗 |, where 𝑚𝑖 𝑗 is the value of the

pixel (𝑖, 𝑗) in 𝑚. To quantify the difference between these maps,
we test 100 random selected images from ImageNet and show the
average distance of the 100 images in Table 9. When the attacker is
not adaptive, we can see that 𝑑 (𝑚1,𝑚3) is significantly greater than
𝑑 (𝑚1,𝑚2), which suggest MeTFA can defend against such attack.
When the attacker is adaptive for MeTFA, we can see 𝑑 (𝑚1,𝑚4)
is still significantly greater than 𝑑 (𝑚1,𝑚2). Therefore, MeTFA can
weaken the attacker’s ability to manipulate the explanation even
when the attacker knows MeTFA.

7 DISCUSSION
Bonferoni correction. Bonferoni correction guides researchers to
use union bounds when computing confidence interval. We do not
do a Bonferoni correction for computing confidence intervals over
multiple features. Instead, MeTFA define a two-fold hypothesis
testing to generate confidence interval for each feature individually.
This is because Bonferoni correction requires a lot more queries for
high dimensional data (e.g., a 224×224-dimensional image) to get
tighter bounds and thus is inefficient in practice. For efficiency, we
consider the confidence interval for each feature individually and
the experiments show it works well.
Asymptotic Quantification from Extending SmoothGrad.
Although SmoothGrad does not quantify the uncertainty of explana-
tion, it can be extended to provide an asymptotic confidence bound.
Using Jackknife method [45], one can estimate the standard devia-
tion 𝜎 of the smoothed explanation 𝜇. By the central limit theorem
[43], the smoothed explanation asymptotically converges to a nor-
mal distribution N(𝜇, 𝜎2). Therefore, the 𝛼 confidence bound is
[𝜇 − 𝑝𝛼/2𝜎, 𝜇 + 𝑝𝛼/2𝜎], where 𝑝𝛼/2 is the upper 𝛼/2 quantitle of
the standard normal distribution. However, this bound is only valid
when 𝑁 is large, while our bound is valid for all 𝑁 .
Limitation of MeTFA. As illustrated in Section 5.4, if an expla-
nation algorithm produces unfaithful explanations due to the effec-
tiveness of non-robust features or the randomness in the algorithm,
then MeTFA can significantly help and produce better explanation.
However, if the explanation algorithm has major problems, such
as attributing all features with the same value, then MeTFA can
hardly generate faithful explanations. In other words, MeTFA can
only make weak explanations stronger, by removing noises in the
attribution maps.

8 CONCLUSION
In this paper, we propose MeTFA, the first work to quantify and
reduce the randomness in feature attribution methods with theo-
retical guarantees. By evaluating with extensive experiments, we
show that MeTFA can increase the stability of explanation while
maintaining the faithfulness. With the proposed robust faithfulness
metrics, we show that MeTFA-smoothed explanations significantly
increase the explanation’s ability to locate robust features. In ad-
dition, we demonstrate that MeTFA can detect context bias in the
semantic segmentation model more accurately and defend against
the explanation-oriented attack, which shows its great potential in
practice.

9 ACKNOWLEDGMENTS
We would like to gratefully thank the anonymous reviewers for their
helpful feedback. This work was partly supported by the Zhejiang
Provincial Natural Science Foundation for Distinguished Young
Scholars under No. LR19F020003, NSFC under No. 62102360,
U1936215, and U1836202, and the Open Research Projects of Zhe-
jiang Lab under No. 2022RC0AB01. Ting Wang is partially sup-
ported by the National Science Foundation under No. 1951729,
1953893, 2119331, and 2212323.

REFERENCES
[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz Hardt,

and Been Kim. 2018. Sanity Checks for Saliency Maps. In Advances in Neural



14 9 ACKNOWLEDGMENTS

Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
Cesa-Bianchi, and Roman Garnett (Eds.). 9525–9536. https://proceedings.neurips.
cc/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html

[2] Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven
Wu, and Himabindu Lakkaraju. 2021. Towards the unification and robustness
of perturbation and gradient based explanations. In International Conference on
Machine Learning. PMLR, 110–119.

[3] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and explainable detection of android
malware in your pocket.. In Ndss, Vol. 14. 23–26.

[4] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Müller, and Wojciech Samek. 2015. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance propagation. PloS one 10,
7 (2015), e0130140.

[5] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja
Hansen, and Klaus-Robert Müller. 2010. How to explain individual classification
decisions. The Journal of Machine Learning Research 11 (2010), 1803–1831.

[6] Jenny A. Baglivo. 2005. Mathematica laboratories for Mathematical Statistics:
Emphasizing simulation and computer intensive methods. Society for Industrial
and Applied Mathematics.

[7] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing
with Python: analyzing text with the natural language toolkit. " O’Reilly Media,
Inc.".

[8] MMSegmentation Contributors. 2020. MMSegmentation: OpenMMLab Se-
mantic Segmentation Toolbox and Benchmark. https://github.com/open-mmlab/
mmsegmentation.

[9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 2016.
The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10] Bao Gia Doan, Ehsan Abbasnejad, and Damith C Ranasinghe. 2020. Februus:
Input purification defense against trojan attacks on deep neural network systems.
In Annual Computer Security Applications Conference. 897–912.

[11] Ann-Kathrin Dombrowski, Maximilian Alber, Christopher J Anders, Marcel Ack-
ermann, Klaus-Robert Müller, and Pan Kessel. 2019. Explanations can be manip-
ulated and geometry is to blame. arXiv preprint arXiv:1906.07983 (2019).

[12] Tianyu Du, Shouling Ji, Lujia Shen, Yao Zhang, Jinfeng Li, Jie Shi, Chengfang
Fang, Jianwei Yin, Raheem Beyah, and Ting Wang. 2021. Cert-RNN: Towards
Certifying the Robustness of Recurrent Neural Networks.. In CCS. 516–534.

[13] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. 2016.
Robustness of Classifiers: From Adversarial to Random Noise. In Proceedings
of the 30th International Conference on Neural Information Processing Systems
(Barcelona, Spain) (NIPS’16). Curran Associates Inc., Red Hook, NY, USA,
1632–1640.

[14] Ruth C Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes
by meaningful perturbation. In Proceedings of the IEEE international conference
on computer vision. 3429–3437.

[15] Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing
Guo, Jun Zhou, Alex X Liu, and Ting Wang. 2022. Label inference attacks
against vertical federated learning. In 31st USENIX Security Symposium (USENIX
Security 22), Boston, MA.

[16] Amirata Ghorbani, Abubakar Abid, and James Y. Zou. 2019. Interpretation of
Neural Networks Is Fragile. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January
27 - February 1, 2019. AAAI Press, 3681–3688. https://doi.org/10.1609/aaai.
v33i01.33013681

[17] Jinjin Gu and Chao Dong. 2021. Interpreting Super-Resolution Networks With
Local Attribution Maps. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 9199–9208.

[18] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. 2018.
Lemna: Explaining deep learning based security applications. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security.
364–379.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 770–778.

[20] Lukas Hoyer, Mauricio Munoz, Prateek Katiyar, Anna Khoreva, and Volker Fis-
cher. 2019. Grid saliency for context explanations of semantic segmentation. arXiv
preprint arXiv:1907.13054 (2019).

[21] G. Jenks. 1967. The Data Model Concept in Statistical Mapping.
[22] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T.

Schütt, Sven Dähne, Dumitru Erhan, and Been Kim. 2019. The (Un)reliability of
Saliency Methods. In Explainable AI: Interpreting, Explaining and Visualizing
Deep Learning, Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai

Hansen, and Klaus-Robert Müller (Eds.). Lecture Notes in Computer Science,
Vol. 11700. Springer, 267–280. https://doi.org/10.1007/978-3-030-28954-6_14

[23] Jungbeom Lee, Jihun Yi, Chaehun Shin, and Sungroh Yoon. 2021. BBAM:
Bounding Box Attribution Map for Weakly Supervised Semantic and Instance
Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2643–2652.

[24] Changjiang Li, Li Wang, Shouling Ji, Xuhong Zhang, Zhaohan Xi, Shanqing Guo,
and Ting Wang. 2022. Seeing is living? rethinking the security of facial liveness
verification in the deepfake era. CoRR abs/2202.10673 (2022).

[25] Jinfeng Li, Tianyu Du, Shouling Ji, Rong Zhang, Quan Lu, Min Yang, and Ting
Wang. 2020. {TextShield}: Robust Text Classification Based on Multimodal
Embedding and Neural Machine Translation. In 29th USENIX Security Symposium
(USENIX Security 20). 1381–1398.

[26] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis. In
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Association for Computational Lin-
guistics, Portland, Oregon, USA, 142–150. http://www.aclweb.org/anthology/P11-
1015

[27] Yuhao Mao, Chong Fu, Saizhuo Wang, Shouling Ji, Xuhong Zhang, Zhenguang
Liu, Jun Zhou, Alex X Liu, Raheem Beyah, and Ting Wang. 2022. Transfer
Attacks Revisited: A Large-Scale Empirical Study in Real Computer Vision
Settings. arXiv preprint arXiv:2204.04063 (2022).

[28] Ren Pang, Zhaohan Xi, Shouling Ji, Xiapu Luo, and Ting Wang. 2022. On the
Security Risks of {AutoML}. In 31st USENIX Security Symposium (USENIX
Security 22). 3953–3970.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[30] Vitali Petsiuk, Abir Das, and Kate Saenko. 2018. Rise: Randomized input sampling
for explanation of black-box models. arXiv preprint arXiv:1806.07421 (2018).

[31] Vitali Petsiuk, Rajiv Jain, Varun Manjunatha, Vlad I. Morariu, Ashutosh Mehra,
Vicente Ordonez, and Kate Saenko. 2021. Black-Box Explanation of Object
Detectors via Saliency Maps. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 11443–11452.

[32] Vitali Petsiuk, Rajiv Jain, Varun Manjunatha, Vlad I Morariu, Ashutosh Mehra,
Vicente Ordonez, and Kate Saenko. 2021. Black-box explanation of object detec-
tors via saliency maps. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 11443–11452.

[33] Zhongang Qi, Saeed Khorram, and Fuxin Li. 2019. Visualizing Deep Networks
by Optimizing with Integrated Gradients.. In CVPR Workshops, Vol. 2.

[34] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i
trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
1135–1144.

[35] Marko Robnik-Šikonja and Marko Bohanec. 2018. Perturbation-Based Explana-
tions of Prediction Models. Springer International Publishing, Cham, 159–175.
https://doi.org/10.1007/978-3-319-90403-0_9

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–
252. https://doi.org/10.1007/s11263-015-0816-y

[37] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from
deep networks via gradient-based localization. In Proceedings of the IEEE inter-
national conference on computer vision. 618–626.

[38] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014. Deep inside
convolutional networks: Visualising image classification models and saliency
maps. In In Workshop at International Conference on Learning Representations.

[39] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wat-
tenberg. 2017. Smoothgrad: removing noise by adding noise. arXiv preprint
arXiv:1706.03825 (2017).

[40] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence
learning with neural networks. In Advances in neural information processing
systems. 3104–3112.

[41] Jorg Wagner, Jan Mathias Kohler, Tobias Gindele, Leon Hetzel, Jakob Thaddaus
Wiedemer, and Sven Behnke. 2019. Interpretable and fine-grained visual ex-
planations for convolutional neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 9097–9107.

[42] Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Pi-
otr Mardziel, and Xia Hu. 2020. Score-CAM: Score-weighted visual explanations
for convolutional neural networks. In Proceedings of the IEEE/CVF conference

https://proceedings.neurips.cc/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation
https://doi.org/10.1609/aaai.v33i01.33013681
https://doi.org/10.1609/aaai.v33i01.33013681
https://doi.org/10.1007/978-3-030-28954-6_14
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/978-3-319-90403-0_9
https://doi.org/10.1007/s11263-015-0816-y


15

on computer vision and pattern recognition workshops. 24–25.
[43] Wikipedia. 2022. Central limit theorem — Wikipedia, The Free Encyclope-

dia. http://en.wikipedia.org/w/index.php?title=Central%20limit%20theorem&
oldid=1080658839. [Online; accessed 03-April-2022].

[44] Wikipedia. 2022. Image noise — Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/w/index.php?title=Image%20noise&oldid=1080156929. [Online;
accessed 07-April-2022].

[45] Wikipedia. 2022. Jackknife resampling — Wikipedia, The Free Encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Jackknife%20resampling&oldid=
1076175481. [Online; accessed 03-April-2022].

[46] Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Sai Suggala, David I. Inouye, and
Pradeep Ravikumar. 2019. On the (In)fidelity and Sensitivity of Explanations.
In Advances in Neural Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019, NeurIPS 2019, Decem-
ber 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Gar-
nett (Eds.). 10965–10976. https://proceedings.neurips.cc/paper/2019/hash/
a7471fdc77b3435276507cc8f2dc2569-Abstract.html

[47] Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Suggala, David I Inouye, and Pradeep K
Ravikumar. 2019. On the (in) fidelity and sensitivity of explanations. Advances in
Neural Information Processing Systems 32 (2019), 10967–10978.

[48] Qinglong Zhang, Lu Rao, and Yubin Yang. 2021. Group-CAM: Group Score-
Weighted Visual Explanations for Deep Convolutional Networks. arXiv preprint
arXiv:2103.13859 (2021).

[49] Qinglong Zhang, Lu Rao, and Yubin Yang. 2021. A Novel Visual Interpretability
for Deep Neural Networks by Optimizing Activation Maps with Perturbation.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 3377–
3384.

[50] Xinyang Zhang, Ningfei Wang, Hua Shen, Shouling Ji, Xiapu Luo, and Ting
Wang. 2020. Interpretable deep learning under fire. In 29th {USENIX} Security
Symposium ({USENIX} Security 20).

[51] Haibin Zheng, Zhiqing Chen, Tianyu Du, Xuhong Zhang, Yao Cheng, Shouling Ti,
Jingyi Wang, Yue Yu, and Jinyin Chen. 2022. NeuronFair: interpretable white-box
fairness testing through biased neuron identification. In 2022 IEEE/ACM 44th
International Conference on Software Engineering (ICSE). IEEE, 1519–1531.

[52] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
2016. Learning deep features for discriminative localization. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 2921–2929.

[53] Kai Zhu and Tao Zhang. 2021. Deep reinforcement learning based mobile robot
navigation: A review. Tsinghua Science and Technology 26, 5 (2021), 674–691.
https://doi.org/10.26599/TST.2021.9010012

http://en.wikipedia.org/w/index.php?title=Central%20limit%20theorem&oldid=1080658839
http://en.wikipedia.org/w/index.php?title=Central%20limit%20theorem&oldid=1080658839
http://en.wikipedia.org/w/index.php?title=Image%20noise&oldid=1080156929
http://en.wikipedia.org/w/index.php?title=Image%20noise&oldid=1080156929
http://en.wikipedia.org/w/index.php?title=Jackknife%20resampling&oldid=1076175481
http://en.wikipedia.org/w/index.php?title=Jackknife%20resampling&oldid=1076175481
https://proceedings.neurips.cc/paper/2019/hash/a7471fdc77b3435276507cc8f2dc2569-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/a7471fdc77b3435276507cc8f2dc2569-Abstract.html
https://doi.org/10.26599/TST.2021.9010012


16 A ACKNOWLEDGMENTS

A APPENDIX
A.1 Proofs
A.1.1 Proof of Proposition 1. We only prove the case when
ℎ ≥ 𝑉 . The other case can be derived similarly. Since 𝑐𝑡 𝑗 (ℎ) :=∑𝑁

𝑖=1 𝐼 (𝑒𝑖 𝑗 ≥ ℎ) is the sum of i.i.d. Bernoulli variables, for a fixed
𝑞 𝑗 (ℎ) := 𝑃 (𝑒𝑖 𝑗 ≥ ℎ) we can easily obtain 𝑃 (𝑐𝑡 𝑗 (ℎ) ≥ 𝑚). The
problem here is that we do not know 𝑞 𝑗 (ℎ), except that 𝑞 𝑗 (ℎ) ≥ 0.5
for ℎ ≥ 𝑉 . Therefore, we can get the upper bound of 𝑃 (𝑐𝑡 𝑗 (ℎ) ≥ 𝑚)
via max𝑞 𝑗 (ℎ) ≥0.5 𝑃 (𝑐𝑡 𝑗 (ℎ) ≥ 𝑚).

We have known that 𝑐𝑡 𝑗 (ℎ) ∼ 𝐵(𝑝), where 𝑝 = 𝑞 𝑗 (ℎ) ≤ 𝑞 𝑗 (𝑉 ) =
0.5. Therefore, 𝑃 (𝑐𝑡 𝑗 (ℎ) = 𝑚) =

(𝑁
𝑚

)
× 𝑝𝑚 × (1 − 𝑝)𝑁−𝑚 . For a

fixed 𝑚, the probability increases monotonically for 𝑝 ∈ [0,𝑚/𝑁 )
and decreases monotonically for 𝑝 ∈ (𝑚/𝑁, 1]. Thus the probability
has and only has one maximal, achieved by 𝑝∗ = min(0.5,𝑚/𝑁 ).
Therefore, 𝑃 (𝑐𝑡 𝑗 (ℎ) =𝑚) ≤

(𝑁
𝑚

)
× 𝑝𝑚∗ × (1 − 𝑝∗)𝑁−𝑚 for every 𝑚.

Adding up this inequality w.r.t.𝑚 proves the statement.

A.1.2 Proof of Theorem 1. For 𝐻0 : 𝑉𝑗 ≤ ℎ, the 𝑝-value is
the probability of abnormal event 𝑃 (𝑐𝑡 𝑗 (ℎ) ≥ 𝑚) with a large 𝑚.
Therefore, according to Proposition 1, its 𝑝-value is less than or
equal to

∑𝑁
𝑖=𝑘

(𝑁
𝑖

)
× 𝑝𝑖∗ × (1 − 𝑝∗)𝑁−𝑖 . Similarly, for 𝐻0 : 𝑉𝑗 ≥ ℎ,

the 𝑝-value is the probability of abnormal event 𝑃 (𝑐𝑡 𝑗 (ℎ) ≤ 𝑚) with
a small 𝑚. Therefore, according to Proposition 1, its 𝑝-value is less
than or equal to

∑𝑘
𝑖=0

(𝑁
𝑖

)
× 𝑝𝑖∗ × (1 − 𝑝∗)𝑁−𝑖 .

A.1.3 Proof of Proposition 2. Since 𝑞 𝑗 (ℎ) = 0.5 and 𝑐𝑡 𝑗 (ℎ) ∼
𝐵(𝑞 𝑗 (ℎ)), we have 𝑃 (𝑐𝑡 𝑗 (ℎ) ≤ 𝑚1) ≤

∑𝑚1
𝑖=0

(𝑁
𝑖

)
×0.5𝑁 and 𝑃 (𝑐𝑡 𝑗 (ℎ) ≥

𝑚2) ≤
∑𝑁
𝑖=𝑚2

(𝑁
𝑖

)
×0.5𝑁 . Adding them together completes the proof.

A.1.4 Proof of Theorem 2. For 𝐻0 : 𝑉𝑗 = ℎ, the 𝑝-value is the
probability of abnormal event 𝑃 (𝑐𝑡 𝑗 (ℎ) ≥ 𝑚) with a large 𝑚 and
𝑃 (𝑐𝑡 𝑗 (ℎ) ≤ 𝑚) with a small𝑚. Therefore, according to Proposition 2,
its 𝑝-value is less than or equal to

∑
𝑖∈{0,...,𝑘1 }∪{𝑘2,...,𝑁 } 0.5

𝑁 ×
(𝑁
𝑖

)
.

A.1.5 Proof of Theorem 3. By Proposition 2, under 𝐻0 : 𝑉𝑗 = ℎ0,
𝑃ℎ0 (𝑐𝑡 𝑗 (ℎ0) ∈ (𝑘1, 𝑘2)) = 1 − 𝑃 (𝑐𝑡 𝑗 (ℎ0) ≤ 𝑘1) − 𝑃 (𝑐𝑡 𝑗 (ℎ0) ≥ 𝑘2) =
1 − 2 × 𝑃 (𝑐𝑡 𝑗 (ℎ0) ≤ 𝑘1) ≥ 1 − 2 × ∑𝑘1

𝑖=0 0.5
𝑁 ×

(𝑁
𝑖

)
≥ 1 − 𝛼 . By

the arbitrariness of ℎ0, we can write 𝑃ℎ (𝑐𝑡 𝑗 (ℎ) ∈ (𝑘1, 𝑘2)) ≥ 1 − 𝛼
for any ℎ. Furthermore, the defined ℎ1𝑗 and ℎ2𝑗 satisfies: ℎ1𝑗 =

argminℎ{𝑐𝑡 𝑗 (ℎ) ∈ (𝑘1, 𝑘2)} and ℎ2𝑗 = argmaxℎ{𝑐𝑡 𝑗 (ℎ) ∈ (𝑘1, 𝑘2)}.
Thus, 𝑐𝑡 𝑗 (ℎ) ∈ (𝑘1, 𝑘2) is equivalent to ℎ ∈ [ℎ1𝑗 , ℎ2𝑗 ] and 𝑃ℎ (ℎ ∈
[ℎ1𝑗 , ℎ2𝑗 ]) ≥ 1−𝛼 . Therefore, [ℎ1𝑗 , ℎ2𝑗 ] is a 1−𝛼 confidence interval
for 𝑉𝑗 .

A.1.6 Proof of Theorem 4. (1) First, we prove the convergence
of S 𝑗 . The main idea is to use the normal approximation of the
Bernoulli distribution which is exact when 𝑁 →∞, so that we can
explicitly write 𝑘1 and 𝑘2 in terms of 𝑁 and 𝛼 . Then we take the limit
𝑁 → ∞ to conclude both 𝑘1 and 𝑘2 converge to 𝑁 /2. Therefore,
it follows that the average of samples between the 𝑘1 and 𝑘2 index
converges to the median.

By applying the normal approximation of Bernoulli distribu-
tion, we have 𝛼/2 ≈ ∑𝑘1

𝑖=0 0.5
𝑁
(𝑁
𝑖

)
≈ 𝐹N(𝑁 /2,𝑁 /4) (𝑘1) for large

𝑁 , where 𝐹N(𝑁 /2,𝑁 /4) is the CDF of normal distribution with mean
𝑁 /2 and variance 𝑁 /4. In addition, we can write 𝐹N(𝑁 /2,𝑁 /4) (𝑘1) =
𝐹N(0,𝑁 /4) (𝑘1 − 𝑁

2 ) = 𝐹N(0,1) ((𝑘1 − 𝑁
2 )/(

√
𝑁
2 )). Therefore, (𝑘1 −

𝑁
2 )/(

√
𝑁
2 ) = −𝜇𝛼/2, where 𝜇𝛼/2 is the 𝛼/2 upper quantile of normal

distribution. By rearranging this equation, we have 𝑘1 ≈ −
√
𝑁
2 𝜇𝛼/2 +

𝑁
2 . Thus, 𝑘2 = 𝑁 − 𝑘1 ≈ 𝑁

2 +
√
𝑁
2 𝜇𝛼/2. Therefore, 𝑘1/𝑁 and

𝑘2/𝑁 converges to 1/2. Now, S 𝑗 =
∑𝑘2−1
𝑖=𝑘1+1 𝑒 (𝑖) 𝑗/(𝑘2 − 𝑘1 − 1) ≥∑𝑘2−1

𝑖=𝑘1+1 𝑒 (𝑘1) 𝑗/(𝑘2−𝑘1−1) = 𝑒 (𝑘1) 𝑗 → 𝑒 (𝑁 /2) 𝑗 = 𝑉𝑗 when 𝑁 →∞.

Similarly, S 𝑗 =
∑𝑘2−1
𝑖=𝑘1+1 𝑒 (𝑖) 𝑗/(𝑘2 − 𝑘1 − 1) ≤

∑𝑘2−1
𝑖=𝑘1+1 𝑒 (𝑘2) 𝑗/(𝑘2 −

𝑘1 − 1) → 𝑉𝑗 when 𝑁 → ∞. Using the pinching theorem, we get
S 𝑗 → 𝑉𝑗 when 𝑁 →∞.

(2) Second, we compute the lower bound of the convergence rate
for S 𝑗 . The main idea is to upper bound the variance of S 𝑗 , and then
show the upper bound decreases in the speed of 𝑂 (1/𝑁 ).

We will apply the approximate summaries theorem from Page
120 of Baglivo [6], which states that for any 𝑋𝑖 sampled from
some distribution, Var(𝑒 (𝑘) 𝑗 ) ≈

𝑝 (1−𝑝)
(𝑁+2) (𝑓𝑒 (𝜃 )2) where 𝑝 = 𝑘

𝑁+1 , 𝜃
is the 𝑝th lower quantile and 𝑓𝑒 is the PDF of 𝑒. Applying this
theorem directly to compute the variance of 𝑒 (𝑘1+𝑖) 𝑗 for 𝑖 from 1
to 𝑘2 − 𝑘1 − 1, we get Var(𝑒 (𝑘1+𝑖) 𝑗 ) ≈

(𝑘1+𝑖) (𝑁−𝑘1+1−𝑖)
(𝑁+1)2 (𝑁+2) × 1

𝑓𝑒 (𝜃 ) ≈
( 𝑁2 −

√
𝑁
2 𝜇𝛼/2+𝑖) ( 𝑁2 +

√
𝑁
2 𝜇𝛼/2−𝑖)

(𝑁+1)2 (𝑁+2) × 1
𝑓𝑒 (𝜃 ) . Since 𝑖 is in the order of𝑂 (

√
𝑁 ),

we have Var(𝑒 (𝑘1+𝑖) 𝑗 ) ≈
1
4𝑁 ×

1
𝑓𝑒 (𝜃 ) . In addition, 𝑝 =

𝑘1+𝑖
𝑁+1 →

1
2 , which means 𝜃 = 𝑉𝑗 . Therefore, under the mild assumption
that 𝑓𝑒 (𝑉𝑗 ) > 0, 1

𝑓𝑒 (𝜃 ) converges to a constant. Combining this
fact with the previous formula, we have 𝑉𝑎𝑟 (𝑒 (𝑘1+𝑖) 𝑗 ) = 𝑂 (1/𝑁 ).
Since Var(𝐴 + 𝐵) = Var(𝐴) + Var(𝐵) + 2 Cor(𝐴, 𝐵) ≤ (

√︁
Var(𝐴) +√︁

Var(𝐴))2 for any 𝐴 and 𝐵, using induction, we get Var(∑𝑘
𝑖=1 𝑋𝑖 ) ≤

(∑𝑘
𝑖=1

√︁
Var(𝑋𝑖 ))2. By applying this formula onS 𝑗 , we get Var(S 𝑗 ) ≈

1
𝜇2
𝛼/2𝑁

Var(∑𝑘2−1
𝑖=𝑘1+1 𝑒 (𝑖) 𝑗 ) ≤

(
𝑂 ( 1√

𝑁
) ×𝑂 (

√
𝑁 )

)2
×𝑂 ( 1

𝑁
) = 𝑂 ( 1

𝑁
) .

A.2 Additional Experimental Results
A.2.1 Examples. (1) An example to show the advantage of MeTFA
compared to LEMNA. We provide an example predicted by the
model as toxic as follows. The red words are the top 3 important
words found by the attribution map, and the yellow words are the
top 4-7 important words. As we can see, this text is misclassified by
the model, and MeTFA tells that ‘Dick’ misleads the model while
the vanilla LEMNA fails to find this.

LEMNA: "I’m pretty sure this is a joke. The other books for sale
are How to raise a Jewish dog and Yiddish for Dick and Jane. It is
an expensive and elaborate hoax. And, after the novelty wears off,
not even that funny."

MeTFA-smoothed LEMNA:"I’m pretty sure this is a joke. The
other books for sale are How to raise a Jewish dog and Yiddish for
Dick and Jane. It is an expensive and elaborate hoax. And, after the
novelty wears off, not even that funny."

(2) An example to show how the insertion and deletion calculate.
The example is shown in 10. For insertion, the chow chow’s pre-
dicted score increases while inserting the top 𝑛% important pixels
highlighted by the attribution map, where 𝑛 from 0 to 100. A more
faithful attribution map highlights the supportive features more ac-
curately, thus getting a higher area under the curve. On the opposite,
we gradually delete the important pixels, and hence the predicted
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Table 14: The mstd value of the MeTFA-smoothed Gradient and
the vanilla Gradient for Densenet169.

P\O𝑛 Normal Uniform Brightness Avg

Normal 0.0184 0.0164 0.0155 0.0167
Uniform 0.0217 0.0185 0.0155 0.0186

Brightness 0.0457 0.0445 0.0095 0.0332

Vanilla Gradient 0.0495 0.0489 0.0140 0.0374

Table 15: The results with the robust faithfulness metric with
O𝑛 = 𝑁 (0, 0.1). The tuple in the table is structured as (the score
of MeTFA-smoothed explanation, the score of the vanilla expla-
nation).

method RI RD RO

ScoreCAM (0.7718,0.6187) (0.2024,0.2068) (0.5694,0.4119)
RISE (0.6600,0.4738) (0.2645,0.1620) (0.3955,0.3118)
IGOS (0.4295,0.3288) (0.0953,0.0932) (0.3342,0.2356)

Table 16: The results of std𝑀𝑒𝑇𝐹𝐴−𝐺𝑟𝑎𝑑/std𝑆𝐺−𝐺𝑟𝑎𝑑 for
Densenet169 when P and O𝑛 are both Uniform or Normal.

Sampling number Uniform Normal

10 0.9550 0.9473
30 0.9280 0.9175
50 0.9171 0.9052
70 0.9093 0.8985

Table 17: The results of 𝑚𝑠𝑡𝑑𝑀𝑒𝑇𝐹𝐴−𝐺𝑟𝑎𝑑/𝑚𝑠𝑡𝑑𝑆𝐺−𝐺𝑟𝑎𝑑 for
VGG16 when P is Uniform and Normal.

𝑁 Uniform Normal

10 0.9361 0.9237
30 0.9374 0.9141
50 0.9478 0.9241
70 0.9603 0.9345

score of chow chow is reducing. A more faithful attribution map
should have a lower area under the deletion curve. Thus, we can

use the area under the insertion curve or deletion curve to reflect the
accuracy of the attribution map to highlight the supportive features.
Table 10: The mstd value of the MeTFA-smoothed Gradient and
the vanilla Gradient for Resnet50.

P\N Normal Uniform Brightness Avg

Normal 0.0176 0.0154 0.0142 0.0157
Uniform 0.0208 0.0171 0.0142 0.0173

Brightness 0.0409 0.0403 0.0104 0.0305

Vanilla Gradient 0.0457 0.0445 0.0170 0.0357

Table 11: The mstd value of the MeTFA-smoothed LIME and
the vanilla LIME for Resnet50.

P\O𝑛 Normal Uniform Brightness Avg

Normal 0.0868 0.0752 0.074 0.0786
Uniform 0.0907 0.0761 0.072 0.0796

Brightness 0.1524 0.1486 0.0698 0.1236

Vanilla 0.2148 0.1979 0.1193 0.1773

Table 12: The mstd value of the MeTFA-smoothed IGOS and
the vanilla IGOS for Resnet50.

P\O𝑛 Normal Uniform Brightness Avg

Normal 0.0278 0.0202 0.0156 0.0212
Uniform 0.0308 0.0214 0.0131 0.02176

Brightness 0.0341 0.0258 0.0093 0.0231

Vanilla 0.0437 0.0335 0.0184 0.0318

Table 13: The mstd value of the MeTFA-smoothed ScoreCAM
and the vanilla ScoreCAM for Resnet50.

P\O𝑛 Normal Uniform Brightness Avg

Normal 0.0469 0.033 0.0201 0.033
Uniform 0.0522 0.0344 0.0168 0.0341

Brightness 0.0583 0.0458 0.012 0.0387

Vanilla 0.0607 0.0465 0.0112 0.0395
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Figure 10: An example of the insertion metric and the deletion metric.
Table 18: The results of std𝑀𝑒𝑇𝐹𝐴−𝐺𝑟𝑎𝑑/std𝐺𝑟𝑎𝑑 for Densenet169
under two settings: P and O𝑛 are both Uniform or Normal.

𝛼 Uniform Normal

0.05 0.2558 0.2441
0.01 0.2553 0.2436
0.005 0.2552 0.2436
0.001 0.2552 0.2437

0.0005 0.2554 0.2439
0.0001 0.2557 0.2442

Table 19: The results for Toxic Comment dataset. The mstd
values for LEMNA(500), MeTFA-smoothed LEMNA(500),
smoothed LENMNA(500) when P and O𝑛 are both P(0.5).

noise mstd of LEMNA mstd of MeTFA-smoothed LEMNA mstd of smoothed LEMNA

P(0.5) 0.1531 0.05488 0.0667

Figure 14: The results of IMDb Reviews dataset where the num-
ber of samples for LEMNA is 2000. The rows are the results of
RFDT, RFAT and RST calculated with different O𝑛 . From top to
bottom, O𝑛 is P(0), P(0.3), P(0.5) and P(0.7), respectively. From
left to right, the results are RFDT, RFAT and RST, respectively.

Algorithm 1: Generate MeTFA maps.
Parameters :number of sampled explanation for MeTFA 𝑛,

vanilla explanation 𝐸, sampled distribution P,
target model 𝑀 , target class 𝑐, target data 𝐼 ,
confidence level 𝛼

Output: MeTFA-significant map𝑚1, MeTFA-smoothed map
𝑚2, higher bound map𝑚3 and lower bound map𝑚4

/* line 1 to 7 sample explanations

around 𝐼 */

1 expl_list=[]
2 for 𝑖 ← 0 to 𝑛 do
3 𝑖𝑛𝑛𝑒𝑟_𝑛𝑜𝑖𝑠𝑒 ∼ P
4 𝐼𝑠 = 𝐼 + 𝑖𝑛𝑛𝑒𝑟_𝑛𝑜𝑖𝑠𝑒
5 𝑒𝑥𝑝𝑙 = 𝐸 (𝑀, 𝐼𝑠 , 𝑐)
6 expl_list.append(expl)
7 end
/* line 8 to 15 generate 𝑚1 */

8 perform 1D clustering with all values in expl_list and get
break value ℎ

9 Compute 𝑐𝑡 𝑗 (ℎ) for every feature 𝑗

10 𝑘1 = argmax𝑘 {𝑝-value of (𝑉𝑗 ≤ ℎ) ≤ 𝛼}
11 𝑘2 = argmax𝑘 {𝑝-value of (𝑉𝑗 ≥ ℎ) ≤ 𝛼}
12 if 𝑐𝑡 𝑗 (ℎ) ≤ 𝑘1,𝑚1𝑗 = −1
13 if 𝑐𝑡 𝑗 (ℎ) ≥ 𝑘2,𝑚1𝑗 = 1
14 else,𝑚1𝑗 = 0
/* line 15 to 19 generate 𝑚2, 𝑚3 and 𝑚4

*/
15 𝑘1, 𝑘2 are calculated as above
16 for every feature 𝑗 , sort the value of expl_list
17 𝑚2𝑗 is the average of the values between the 𝑘1 th value and

𝑘2 th value of expl_list𝑗
18 𝑚3𝑗 is the 𝑘2 th value of expl_list𝑗
19 𝑚2𝑗 is the 𝑘1 th value of expl_list𝑗
20 Return𝑚1,𝑚2,𝑚3,𝑚4

Figure 11: The results of of RFDT, RFAT and RST with different
𝑛 where O𝑛 is P(0.3). From left to right, there are the results of
RFDT, RFAT and RST, respectively.
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Algorithm 2: The RI calculation for MeTFA-smoothed ex-
planation.

Parameters :𝑛 is the number of sampled explanation for
MeTFA, 𝑘 is the number of insertion for RI, the
vanilla explanation 𝐸, the outer noise
distribution O𝑛 , the inner noise distribution P,
the test dataset D, the target model 𝑀 , the
target class 𝑐

Output: RI
1 for image I in D do

/* line 2 to 11 generate the

MeTFA-smoothed explanation */

2 expl_list=[]
3 for 𝑖 ← 0 to 𝑛 do
4 𝑖𝑛𝑛𝑒𝑟_𝑛𝑜𝑖𝑠𝑒 ∼ P
5 𝐼𝑠 = 𝐼 + 𝑖𝑛𝑛𝑒𝑟_𝑛𝑜𝑖𝑠𝑒
6 𝑒𝑥𝑝𝑙 = 𝐸 (𝑀, 𝐼𝑠 , 𝑐)
7 expl_list.append(expl)
8 end
9 𝑘1, 𝑘2 are calculated from Theorem 3

10 for every pixel, sort the value of expl_list
11 for every pixel, take the average of the values between

the 𝑘1 th value and 𝑘2 th value and get MS_expl
/* line 12 to 17 calculate the RI

metric */

12 for 𝑖 ← 0 to 𝑘 do
13 𝑜𝑢𝑡𝑒𝑟_𝑛𝑜𝑖𝑠𝑒 ∼ O𝑛

14 𝐼𝑛 = 𝐼 + 𝑜𝑢𝑡𝑒𝑟_𝑛𝑜𝑖𝑠𝑒
15 insertion = Insertion(MS_expl, 𝐼𝑛 , 𝑀 , 𝑐)
16 end

/* use the average of k insertion as
the approximation of the
expectation */

17 take the average of 𝑘 insertion values to get RI value
18 end
19 Return the average of RI values

Figure 12: The results of of RFDT, RFAT and RST with different
𝑛 where O𝑛 is P(0.7). From left to right, there are the results of
RFDT, RFAT and RST, respectively.

Figure 13: The results of Toxic Comment dataset where the num-
ber of samples for LEMNA is 500. The rows are the results of
RFDT, RFAT and RST calculated with different O𝑛 . From top to
bottom, O𝑛 is P(0), P(0.3), P(0.5) and P(0.7), respectively. From
left to right, the results are RFDT, RFAT and RST, respectively.
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