
A preliminary version of this paper appears in the proceedings of the 42nd International Cryptology
Conference (Crypto 2022). This is the full version.

A New Approach to E�cient Non-Malleable Zero-Knowledge?

Allen Kim, Xiao Liang, Omkant Pandey

Stony Brook University, Stony Brook, USA
{allekim,liang1,omkant}@cs.stonybrook.edu

Abstract. Non-malleable zero-knowledge, originally introduced in the context of man-in-the-middle
attacks, serves as an important building block to protect against concurrent attacks where di↵erent
protocols may coexist and interleave. While this primitive admits almost optimal constructions in the
plain model, they are several orders of magnitude slower in practice than standalone zero-knowledge.
This is in sharp contrast to non-malleable commitments where practical constructions (under the DDH
assumption) have been known for a while.

We present a new approach for constructing e�cient non-malleable zero-knowledge for all languages
in NP, based on a new primitive called instance-based non-malleable commitment (IB-NMC). We show
how to construct practical IB-NMC by leveraging the fact that simulators of sub-linear zero-knowledge
protocols can be much faster than the honest prover algorithm. With an e�cient implementation of
IB-NMC, our approach yields the first general-purpose non-malleable zero-knowledge protocol that
achieves practical e�ciency in the plain model.

All of our protocols can be instantiated from symmetric primitives such as block-ciphers and collision-
resistant hash functions, have reasonable e�ciency in practice, and are general-purpose. Our techniques
also yield the first e�cient non-malleable commitment scheme without public-key assumptions.
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1 Introduction

Non-malleable Zero-Knowledge. Dolev, Dwork, and Naor [DDN91] introduced the notion on
non-malleable cryptography. They also provided constructions of non-malleable zero-knowledge and
non-malleable commitments in the plain model assuming only the existence of one-way functions
(OWFs). While these primitives were originally introduced in the context of “man-in-the-middle”
attacks, they were soon used as a building block for constructing secure computation protocols.
For example, non-malleable commitments were used extensively to improve their round-e�ciency
[KOS03, PPV08, Wee10, Goy11, GMPP16, BGJ+18, CCG+20], and non-malleable zero-knowledge
played a central role in protecting them against concurrent attacks [Can00, Can01, CLOS02, Pas03b,
PS04, MPR06, BDH+17].

A long line of research has since focused on several aspects of these primitives, including
their round-complexity [DDN91, Bar02, PR05b, LPV08, LP09, Wee10, LP11b, Goy11, COSV17,
Khu17], black-box usage of underlying primitives [GLOV12, GRRV14], and even concrete e�ciency
[BGR+15] without assuming any trusted setup. Notably, constant-round non-malleable commit-
ments assuming only OWFs were first constructed in independent and concurrent works of Goyal
[Goy11] and Lin and Pass [LP11b]. Finally, four-round non-malleable zero-knowledge assuming
only OWFs was first achieved by Goyal et al. [GRRV14] for all of NP ; and three-round non-
malleable commitments assuming injective OWFs were constructed by Goyal, Pandey, and Richel-
son [GPR16, GR19]. Under falsifiable assumptions [Nao03, GW11], these rounds are optimal for
commitments [Pas11], and likely to be optimal for zero-knowledge as well [GO94, FGJ18]. Stronger
forms of this notion such as concurrent non-malleability, eventually achieved optimally in a series
of works [PR05a, LPV08, COSV17], are not considered in this work. We note that non-malleability
has been explored in several other contexts as well [DDN91, BCFW09, DW09, DPW10].

E�cient Constructions. While the aforementioned results are almost optimal for non-malleable
zero-knowledge, their focus is primarily on feasibility as opposed to actual e�ciency. To the best
of our knowledge, the actual e�ciency of non-malleable zero-knowledge has been less addressed.
Garay, MacKenzie, and Yang [GMY03] proposed a framework for non-malleable (and simulation-
sound) zero-knowledge using signatures and sigma-protocols1 in the common reference string (CRS)
model. Their template can be instantiated e�ciently with signature schemes that admit fast sigma-
protocols for proving knowledge of signatures, (e.g., the Cramer-Shoup signature [CS99]). Prac-
tical constructions of non-malleable zero-knowledge in the plain model has never been explicitly
addressed before. This is in sharp contrast to non-malleable commitments, for which e�cient plain-
model constructions are known (under the DDH assumption) [BGR+15].

We therefore consider the e�ciency of some of the main approaches for non-malleable zero-
knowledge. Unless stated otherwise, we are concerned with general-purpose protocols (that work
for all languages in NP) in the plain model.

– The most common approach for non-malleable zero-knowledge is “commit-and-prove.” At a
high level, the prover first sends a non-malleable commitment to the witness, and then uses
(ordinary) zero-knowledge to prove that the committed value is a valid witness [DDN91, BPS06,
GRRV14, COSV17]. If the commitment supports k-bit identities and has �-bit security, the

1 More accurately, the authors of [GMY03] use sigma-protocols to build simulation-sound zero-knowledge. Their
construction of non-malleable zero-knowledge makes use of a new notion called “omega-protocols”. We refer the
reader to [GMY03] for details.
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circuit corresponding to the state-of-the-art non-malleable commitment [BGR+15] is at least
16k2�2, or over 100 million gates for k = 32,� = 80. Zero-knowledge proofs for such circuits
would take more than one minute using state-of-the-art (plain-model) protocols such as Ligero
[AHIV17] (even taking advantage of the amortization admitted by Ligero). This is true even if
the actual statement, say proving y = SHA256(x), requires less than a second [AHIV17] in the
standalone case.2

It is worth noting that using state-of-the-art commitments [BGR+15] additionally requires as-
suming DDH, whereas “symmetric assumptions” such as OWFs are su�cient in theory. E�cient
non-malleable commitments without relying on public-key assumptions such as DDH are there-
fore also not known. One option here is to implement the consistency proofs in [BGR+15] with
Ligero to avoid DDH. However, this also results in large circuits.3 Jumping ahead, our techniques
o↵er new results for e�cient non-malleable commitments, too.

– Non-malleable zero-knowledge without relying on non-malleable commitments was first con-
structed by Barak [Bar02], and by Pass and Rosen [PR05b] under improved assumptions. Both
of these constructions were based on Barak’s non-black-box simulation [Bar01]. A critical com-
ponent of these protocols is a universal argument [BG08], which consists of a Merkle tree
commitment to a Probabilistically Checkable Proof (PCP), parts of which are opened later in
the protocol. Unfortunately, as shown by Ben-Sasson et al. [BCGT13], the underlying PCP
proof in the universal argument can be astronomically large even for moderate parameters. To
the best of our knowledge, the true e�ciency of non-black-box simulation based constructions
is currently not well understood.

– A third approach, due to Ostrovsky, Pandey, and Visconti [OPV10], relies on the DDH as-
sumption, and e�ciently converts any public-coin honest-verifier statistical zero-knowledge ar-
gument into a (concurrent) non-malleable one [BPS06]. While this approach uses non-malleable
commitments, it avoids general-purpose proofs over them using ideas from the “simulatable
commitment” of Micciancio and Petrank [MP03]. Though e�cient, this transformation quickly
becomes pretty slow. For example, for the standalone setting, it requires roughly 20k� log �
group exponentiations to support k bit identities at 2�� security level;4 this is roughly 0.32
million exponentiations for k = 32,� = 80. In addition, it requires e�cient non-malleable com-
mitments as well as e�cient (and compatible) simulatable commitments, both of which are only
known from DDH. Ideally, we would like to use only symmetric assumptions.

Constructions in the Random Oracle Model (ROM). The protocols we seek are straightfor-
ward to construct in the ROM [BR93] (see, e.g., [Pas03a, FKMV12]). Briefly, a random oracle (RO)
is non-malleable by design, which completely sidesteps this issue. Furthermore, zero-knowledge is
also trivial since the simulator and the reduction are allowed to see adversary’s queries to the oracle
and control the responses. In the real world, a cryptographic hash function is used to replace the

2 Although details may vary, known protocols in this paradigm generally require some form of non-algebraic consis-
tency proof over a non-malleable commitment supporting large identities and message spaces.

3 We remark that for non-malleable commitments based on non-malleable codes such as [GPR16], it is hard to
estimate the overall complexity; the asymptotic analysis of underlying codes such as [ADL14] has astronomically
large constants, making them unsuitable in practice.

4 The analysis in [OPV10] does not separate identity lengths from security levels; it further provides only asymptotic
analysis which hides multiplicative constants and does not specify the exact negligible and super-logarithmic
functions. This makes it di�cult to assess the security level supported by their protocol. If the analysis is performed
to support �-bit security and k-bit identities, the overhead is at least 20k� log � group exponentiations.
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RO, thus providing a concrete construction. This is an attractive methodology that often leads
to practical constructions. That being so, there are several reasons to pursue constructions in the
plain model, even if e�cient constructions are already known in the ROM. We highlight some of
them here.

– A protocol such as a zero-knowledge proof in the ROM can be particularly troublesome when
it is used as a sub-protocol in a larger protocol. If the RO is shared by other parts of the
larger protocol, the security is jeopardized since the security reduction for the sub-protocol
does not hold when a particular RO has already been selected by the larger protocol (see, e.g.,
[Pas03a, CDPW07, Unr07]). In addition, security proofs in this model often program the oracle,
resulting in loss of properties such as deniability, which are otherwise implied by zero-knowledge
(see [Pas03a, Wee09]). Deniability is a natural and useful property that has been explored in
other contexts as well [CDNO97, DS98, OPW11, SW14].

– Using random oracles often sidesteps the main di�culty in achieving a particular task, such as
CCA secure encryption or non-malleable commitments from standard assumption. Therefore,
a construction or security proof in the ROM, while valuable, is usually not as insightful as its
plain-model counterparts.

– Finally, while security proofs in the ROM are valuable, it requires a leap of faith to believe that
instantiating the random oracle with a real world hash function maintains the claimed security.
Indeed, this is not always the case [CGH98, DNRS99, Nie02, GK03]. It stands to reason that
whenever possible the ROM should be avoided.

Improved constructions can be achieved in other trusted setup models as well. Di Crescenzo, Ishai,
and Ostrovsky [DIO98] construct non-interactive non-malleable commitments in the CRS model,
and Di Crescenzo et al. [DKOS01] do so e�ciently under DDH. Lower rounds can also be achieved
in the plain model under non-falsifiable assumptions [PPV08, Pas11, LPS17, KS17].

1.1 Our Results

We present a new approach for constructing e�cient and general-purpose non-malleable zero-
knowledge in the plain model. Our protocols can be viewed as a transformation which takes as
input an e�cient general-purpose zero-knowledge protocol, such as Ligero [AHIV17], and yields
a non-malleable zero-knowledge protocol of (less but still) comparable e�ciency. To the best of
our knowledge, this is the first construction of general-purpose non-malleable zero-knowledge that
achieves practical e�ciency in the plain model. Our approach has the additional benefit of requiring
only symmetric assumptions (in addition to the assumptions of the given proof system). Specifically,
it su�ces to assume collision-resistant hash functions.

While our primary focus is on non-malleable zero-knowledge, we also get new results for non-
malleable commitments. Specifically, we get the first e�cient construction of non-malleable commit-
ments with large identities and message space under symmetric assumptions. Though this improves
upon the DDH assumption required by the state-of-the-art construction [BGR+15], our construc-
tion is somewhat slower in comparison.

Even though our focus is on e�ciency, our results are theoretical in nature. Our transforma-
tion makes use of non-malleable commitments in a fundamentally new way. We define and con-
struct a new primitive called instance-based non-malleable commitments (IB-NMC), which admit
more e�cient modes than a traditional non-malleable commitment. We show how IB-NMC can
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Table 1: Performance of our protocols for �-bit security and k-bit identities. NMZK proves a witness
for SHA256.

Param. NMZK NMCom

(k,�) P time (s) V time (s) Comm. (MB) P time (s) V time (s) Comm. (MB)

(32, 40) 1.68 0.74 19.68 2.52 1.12 19.74

(32, 80) 3.56 1.49 24.88 4.68 2.06 24.97

(64, 80) 5.04 2.23 28.84 6.72 3.09 28.93

be used in conjunction with the OR-Composition technique from [CDS94, Dam02] to obtain ef-
ficient simulation-sound protocols, which in turn yields e�cient non-malleable protocols for both
zero-knowledge and commitments. This primitive may be useful in other contexts as well.

The overhead of our transformation is within reach of practical computing. Table 1 shows the
running times and communication for our non-malleable protocols for some sample parameters. A
detailed analysis of the empirical results is presented in Sec. 6.

1.2 Overview of Techniques

We start by recalling the central e�ciency bottleneck in constructing non-malleable zero-knowledge
for NP . We assume that e�cient standalone zero-knowledge (ZK) proofs already exist for all
languages L 2 NP in the plain model such as [GMO16, AHIV17]. For concreteness, we will use
Ligero [AHIV17].

The main ine�ciency of non-malleable zero-knowledge stems from the fact that almost all known
constructions [BPS06, LPTV10, LP11a] make a non-black-box use of non-malleable commitments.
More specifically, the prover commits to a witness or a trapdoor string using a non-malleable
commitment and later relies on expensive NP reductions to prove that it either committed a
valid witness or a trapdoor (i.e., an OR-statement); the latter is shown di�cult to do for the
man-in-the-middle adversary M by relying on the non-malleability of the commitment. The NP

reduction corresponding to the OR-statement typically results in a circuit description of formidable
size since the non-malleable commitment usually contains many calls to cryptographic functions
such as block-ciphers. The resulting protocols are prohibitively ine�cient even with state-of-the-art
ZK constructions. Other approaches (based on non-black-box simulation or DDH outlined earlier)
are irrelevant to our construction.

The starting point of our work is the observation that the use of non-malleable commitments in
these protocols is merely a means to an end. In particular, the honest prover generally commits to
a random or an all-zero string in these commitments; it is the simulator who makes real use of their
non-malleable properties. Therefore, if we can create a situation in our protocols where the honest
prover does not have to execute even a single full non-malleable commitment, we can improve the
computational e�ciency of these protocols. Let us briefly highlight why achieving this property
is extremely important for our goals: As noted above, e�cient non-malleable commitments in the
plain model are based on DDH [OPV10, BGR+15]. One option to avoid public-key assumptions
is to instantiate the scheme in [BGR+15] with Ligero; However, the running time of the resulting
commitment scheme alone (under moderate parameters) will run in more than one minutes. The
actual non-malleable zero-knowledge protocol which depends on these commitments in a non-black-
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box way will be much worse. We therefore seek to avoid even one full execution of a non-malleable
commitment in our ZK protocol.

It is worthwhile to note that black-box constructions of non-malleable ZK from non-malleable
commitments are (surprisingly) not known. The closest work in this regard is by Jain and Pandey
[JP14], who construct simulation-sound ZK from a stronger version of non-malleable commitments
(called 1-1 CCA [CLP10, Kiy14]) in black-box. Currently, it is unclear if their approach can yield
an e�cient protocol that avoids even one execution of the non-malleable commitment.

Instance-Based Non-Malleable Commitments. Returning back to our goal of avoiding even
one execution of full non-malleable commitment during the proof, we consider a new relaxation of
such commitments which we call instance-based non-malleable commitments (IB-NMCs). Roughly
speaking, an IB-NMC is just like an ordinary non-malleable commitment except that it takes as
input a statement y (from an implicit NP language Y ). The commitment has two modes: if y /2 Y ,
then it is an ordinary non-malleable commitment, and the committer commits to any desired value
v by following the actual commitment algorithm C. Otherwise, if y 2 Y , then the commitment is
not guaranteed to have any non-malleability property. However, in this case, there exists a much
faster algorithm C⇤ that, with the help of a witness for y 2 Y , can fake (or simulate) an execution
that looks indistinguishable from the real execution with C for any value v.

To construct IB-NMC, we combine the following key ideas:

– The simulator of a general-purpose zero-knowledge proof can be much faster than the real
prover algorithm. This is best seen by considering the sub-linear zero-knowledge arguments
based on PCPs [Kil92, Mic94]. In such protocols, a prover commits to a full Merkle tree over
the PCP proof; but note that the simulator does not have to construct the whole tree. Instead,
the simulator can simply prepare the nodes of the opened paths in a consistent manner, which
is much faster. In particular, this is true for our chosen ZK system Ligero.

– The well-known OR-Composition technique developed for ⌃-protocols [CDS94, Dam02] can be
applied in our setting to give proofs for statements of the type “either x 2 L or y 2 Y .” Recall
that under this technique, a prover with a witness for x constructs proofs correctly for the
“x 2 L” part, but uses the simulator of the ⌃-protocol for the “y 2 Y ” part. Observe that if the
simulator for the “y 2 Y ” part is fast (as discussed in the previous item), then the composed
proofs can be almost as fast as a proof only for x 2 L.

– Finally, we apply the aforementioned observations to a suitable non-malleable commitment
scheme to get an e�cient IB-NMC. In particular, we apply it to a modification of the BGRRV
protocol [BGR+15], leading to a construction based solely on symmetric-key (or Minicrypt)
assumptions (referred to as ⇧Mini

bgrrv). More specifically, ⇧Mini
bgrrv has a commit phase and a proof

phase where the latter proves the “consistency” of the former. To get IB-NMC, we simply
change the proof phase to prove that either the first phase is consistent or y 2 Y (where y is an
additional input to the committer); this proof is done using the OR-composition of two Ligero
protocols as described above.

We remark that this approach runs into several other issues that are not discussed here, e.g., OR-
composition in general applies only to ⌃-protocols but Ligero is not a ⌃-protocol, the role of Y
and how to choose it, etc. We will handle them in Sec. 5. The use of a honest-verifier simulator to
protect against malicious attacks first appears in the work of Cramer, Damg̊ard, and Schoenmakers
[CDS94].
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Non-Malleability via Simulation Soundness. While IB-NMC is an interesting primitive, it is
not clear how to use it at all to construct non-malleable zero knowledge. Instead, we show that
IB-NMC can be used successfully to construct a fast simulation-sound ZK protocol [Sah99, JP14].
Constructing this protocol requires repeated applications of the OR composition and the fake-proof
technique discussed above. The simulation-sound protocol can be directly useful in larger protocols
since this notion su�ces for typical applications of non-malleability. Finally, we show how to use this
protocol to get an e�cient and full-fledged non-malleable ZK as well as an e�cient non-malleable
commitment. In both cases, the transformation inherits the assumptions of the underlying zero-
knowledge and IB-NMC, which in our case, are symmetric primitives only.

2 Preliminaries

We use � 2 N to denote the security parameter. Symbols
c
⇡,

s
⇡, and

id
= are used to denote com-

putational, statistical, and perfect indistinguishability respectively. Let negl(�) denote negligible
functions. Familiarity with basic definitions including commitments, witness indistinguishability,
zero-knowledge, arguments of knowledge, etc. is assumed; we refer to [Gol01, Gol04] for formal
treatment of these notions. We also recall the definitions of CRHFs, extractable commitments, and
statistically-hiding commitments in Appx. A.

Non-Malleable Interactive Proofs. We work with identity-based (or “tag-based”) definitions of
non-malleability and follow the definitions and conventions from [PR05b]. Let A be a (non-uniform)
probabilistic Turing machine, specifying a man-in-the-middle strategy. A runs in time polynomial
in the security parameter �. Let z 2 {0, 1}⇤ be an arbitrary string (denoting the non-uniform
“advice” for A). Let hP, V, i be an interactive proof system for an NP complete language L. Let
x 2 L be a statement of length �; we assume that P is PPT and receives a witness w 2 RL(x) as its
auxiliary input. The definition is based on the comparison between a man-in-the-middle execution
and a stand-alone execution among the above parties.

The man-in-the-middle experiment begins by selecting uniform randomness for A, and honest
parties P and V . A(x, z) interacts with P (x,w) on left acting as a verifier in the proof for x 2 L; A
simultaneously participates in a right proof with V , proving a related statement ex, supposedly in L.5

Let the tag (or “identity”) strings on left and right be id and eid respectively with |id| = |eid| = �. We
let mimA

V (id, eid, x, ex,w, z) be a random variable describing the output of V in the man-in-the-middle
execution.

In the stand-alone execution, a machine S interacts with the honest verifier V . As in the man-
in-the-middle execution, V receives as input an instance ex and the identity eid. S receives x, an
auxiliary input z and id as input. We let staSV (id,

eid, x, ex, z) be a random variable describing the
output of V in the stand-alone execution.

Definition 1 (Non-Malleable Interactive Proof). An interactive proof hP, V i for language L
is said to be non-malleable w.r.t. tags of length m if for every PPT man-in-the-middle adversary
A, there exists a PPT stand-alone prover S and a negligible function negl such that for every x 2 L,
every w 2 RL(x), every ex 2 {0, 1}|x|, every id, eid 2 {0, 1}m so that id 6= eid, and every z 2 {0, 1}⇤, it
holds that

Pr[mimA
V (id, eid, x, ex,w, z) = 1] < Pr[staSV (id, eid, x, ex, z) = 1] + negl(|x|).

5 We remark that statement ex may be chosen either adaptively depending on the left execution, or statically by
announcing it before the left execution begins.
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We will refer to synchronizing adversaries: they are the man-in-the-middle attackers who, upon
receiving a message in one session, immediately respond with the corresponding message in the
other session. An adversary is said to be non-synchronizing if it is not synchronizing.

Definition 2 (Non-Malleable Zero Knowledge). An interactive proof between prover P and
verifier V is said to be non-malleable zero knowledge if it is a non-malleable interactive proof that
also has the zero-knowledge property.

Simulation Soundness. The notion of simulation soundness [Sah99] is a form of non-malleable
ZK. Typically it is all one needs when building higher-level constructs using non-malleable ZK. In
the non-interactive setting, it requires that a man-in-the-middle adversary cannot generate con-
vincing proofs for false statements, even given access to a simulator who can generate false proofs.

The definition for the interactive setting appears in [JP14]. It requires a single machine S—the
simulator—which guarantees indistinguishability of the view for true statements (to capture ZK),
and the soundness for statements on the right hand side even in the presence of simulated false
proofs on the left hand side. We use MIMA

hP,V i(x,w, z, id) to denote the joint view of the adversary
A in the same man-in-the-middle execution described above.

Definition 3 (Simulation-Sound Zero-Knowledge). An interactive argument hP, V i for a lan-
guage L is said to be a simulation-sound zero-knowledge argument if for every PPT man-in-the-
middle algorithm A, there exists a expected PPT algorithm S (the simulator) such that:

– (Indistinguishable Simulation) For every x 2 L, every w 2 RL(x), every id 2 {0, 1}�, and
every (auxiliary input) z 2 {0, 1}⇤:

S(x, z, id)
c
⇡ MIMA

hP,V i(x,w, z, id)

– (Simulation Soundness) There exists a negligible function negl(·) such that for every x 2
{0, 1}�, every id 2 {0, 1}�, and every z 2 {0, 1}⇤:

Pr
h
⌫  S(x, z, id) : ex /2 L ^ eid 6= id ^eb = 1

i
 negl(�)

where ex, eid and eb denote the statement, identity, and verifier’s decision in the right-side view of
the simulated joint-view ⌫.

Non-Malleable Commitments. We use the tag-based definition from [LPV08, GPR16]. Specifi-
cally, we compare an ideal interaction with a real one. In the ideal interaction, a man-in-the-middle
adversary A interacting with a committer C in the left session, and a receiver R in the right. We
denote the relevant entities used in the right interaction as “tilde’d” version of the corresponding
entities on the left. In particular, suppose that C commits to v in the left interaction, and A com-
mits to ev on the right. Let MIMv denote the random variable that is the pair (View, ev), consisting
of the adversary’s entire view of the man-in-the-middle execution as well as the value committed
to by A on the right (assuming C commits to v on the left). The ideal interaction is similar, except
that C commits to some arbitrary fixed value (say 0|v|, i.e. an all-zero string of length |v|) on the
left. Let MIM0 denote the pair (View, ev) in the ideal interaction. We ensure that A uses a distinct
identity (or “tag”) eid on the right from the identity id it uses on the left. This is done by stipulating
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that MIMv and MIM0 both output a special value ?id when A uses the same identity in both the
left and right executions. Let MIMv(z) and MIM0(z) denote real and ideal interactions resp., when
A’s auxiliary input is z.

Definition 4 (Non-Malleable Commitments). A tag-based statistically binding commitment
scheme hC,Ri is non-malleable if for every PPT man-in-the-middle adversary A, and for all values
v 2 {0, 1}�, it holds that

{MIMv(z)}�2N,z2{0,1}⇤
c
⇡ {MIM0(z)}�2N,z2{0,1}⇤ .

3 Preparatory Work

In this section, we prepare the ingredients for use in the construction of our non-malleable zero-
knowledge protocol. More specifically, we recall how Ligero’s ZK simulator works (from [AHIV17]).
Also, we show a slightly-modified version of the non-malleable commitment from [BGR+15]. We
will recall related notation/techniques only to the extent that is adequate to understand our con-
struction. For completeness, we include a more detailed review of Ligero in Appx. B.

On Notation. In [AHIV17], the authors first built a public-coin zero-knowledge interactive PCP
(ZKIPCP) scheme. They then converted the ZKIPCP to a 6-round honest-verifier ZK protocol
relying on Kilian’s transformation [Kil92, Mic94]. Finally, they further converted it to a 7-round
(fully) zero-knowledge protocol using the techniques from [IMS12, IW14]6. Henceforth, we will use
Ligero to denote their honest-verifier ZK protocol (shown in Prot. 8), and use Ligero0 to denote
their fully ZK construction (shown in Prot. 9).

Simulator HVSim for Ligero. We will use the fact that simulating a Ligero (i.e., the honest-verifier
version of [AHIV17]) proof is much faster than the real prover algorithm if the challenge of the
verifier is known. The simulator’s algorithm will be denoted by HVSim (HV for “honest-verifier”).
There are two parts to be simulated: the first one is simulating the ZKIPCP interaction (a.k.a.
the challenge-response slot); and the second one is simulating paths of the Merkle tree that are
consistent with opened parts of the ZKIPCP proof string ⇡ (a.k.a. the oracle query-answer slot).
The full description of HVSim is presented in Algo. 1.

Algorithm 1: HVSim: Honest-Verifier Zero-Knowledge Simulator for Ligero

Input: a statement x, a collision-resistant hash function h, and a ZKIPCP query b.

1. Run the honest-verifier simulator algorithm corresponding to the ZKIPCP system for statement
x and verifier randomness (h, b) to obtain a (perfectly) simulated ZKIPCP transcript. By
definition, the transcript contains simulated parts of the “proof string” ⇡. Let L = {(i,⇡i)}
denote these simulated parts where i 2 [|⇡|] denotes position in the proof. Thus, L is simply
the list of opened leaves in a Merkle tree (constructed below). Note that n = |⇡| is the total
number of leaves and known in advance. The simulated transcript also contains the honest
verfier’s challenge, which is simuilated as a random string b, and the corresponding (simulated)
response c.

6 We remark that [AHIV17] also presented another approach—applying Fiat-Shamir transformation to their ZKIPCP
will give a (fully) ZK protocol directly; moreover, the resulting protocol will be non-interactive. But this approach
is irrelevant in the current paper as we are interested in constructions in the plain model (without random oracles).
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2. Generate the paths of the Merkle tree that are consistent with L = {(i,⇡i)}. This is straight-
forward, we provide the steps below for completeness:

(a) For every element z = (i,⇡i) in L, let i0 represent the index corresponding to the sibling
of z in the Merkle tree (note that i0 exists for every i by definition). We first check if the
sibling of z exists in L by checking if any element in L contains index i0. If no sibling for
z exists in L, we add a new element z0 = (i0, ri) into L, where ri is a random string with
length equal to the output length of h.

(b) Let L⇤ be the empty set. For every z, along with its sibling z0, in L, we let z⇤ = h(z||z0).
We add z⇤ to L⇤. In the end, the cardinality of L⇤ is equal to |L|/2.

(c) Set L = L⇤ and L⇤ = ;. Repeat Steps 2a to 2c while |L| > 1.

(d) The remaining element in L is the root of the Merkle tree.

Instantiating BGRRV with Symmetric Primitives.We will need an extractable non-malleable
commitment (ENMC) that is fast and, preferably, based only on symmetric-key primitives. We work
with a modified version of Brenner et al.’s protocol [BGR+15] (which is in turn based on [GRRV14]).
This modified version uses Ligero0 (the malicious-verifier version of Ligero) as the ZK proof system
in the consistency-proof stage of the protocol. For concreteness, this instantiation is completely
specified in Prot. 1. We refer to it as ⇧Mini

bgrrv.

Protocol 1: ⇧Mini
bgrrv: Extractable Non-Malleable Commitment in Minicrypt

Public Input: an identity id 2 {0, 1}k, a large prime q, an integer `, and vector spaces
V1, . . . , Vn ⇢ Z`

q which are derived from id. These parameters satisfy the following relation:
` = 2(k + 1) and n = k + 1. (For the meanings of these parameters, we refer the readers to
[BGR+15].)

Private Input: commiter C takes m 2 Z`�1
q as its private input (i.e., the value to commit to).

Committing Stage. The committing stage consists of the following steps.

1. R! C: Send the first message ⇢ of the Naor’s commitment scheme [Nao90].

2. C ! R: C chooses random values r1, . . . , rn 2 Zq. This defines vectors z1, . . . , zn 2 Z`
q where

zi = (ri,m). C sends commitments ( bm,br) where:

bm =
�
Com⇢(m1; s1), . . . ,Com⇢(m`�1; s`�1)

�
, br =

�
Com⇢(r1; s

0
1), . . . ,Com⇢(rn; s

0
n)
�
,

where Com⇢ denotes the second round of Naor’s commitment w.r.t. first message ⇢. Note that
this commits C to every coordinate of zi. For future reference, define the following language
which contains valid commitment and message pairs:

LCom⇢ :=
�
(c, a) : 9b s.t. c = Com⇢(a; b)

 
.

3. R! C: Send random challenge vectors {vi}i=1,...,n where each vi 2 Vi ⇢ Z`
q.

4. C ! R: C sends evaluations {wi}, where each wi = hvi, zii 2 Zq.

Consistency Proof. Using Ligero0, C proves that the preamble was executed correctly. That is,
C proves the following statement: 9

�
(m1, s1), . . . , (m`�1, s`�1), (r1, s01), . . . , (rn, s

0
n)
�
such that
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– bm =
�
Com⇢(m1; s1), . . . ,Com⇢(m`�1; s`�1)

�
, and

– br =
�
Com⇢(r1; s01), . . . ,Com⇢(rn; s0n)

�
, and

– wi = hzi,vii 8i 2 [n] where zi = (ri,m1, . . . ,m`�1).

Notation: Henceforth, we denote the above language as L⇢
consis. We say that the above Consis-

tency Proof stage is proving that the statement ( bm,br, {wi}i2[n]) is in language L⇢
consis.

Observe that each message from the ⇧Mini
bgrrv receiver, informally speaking, is e�ciently simulat-

able during “rewindings” given all prior information. That is, each message must be of one of the
following three types:

1. It is a public random string;

2. It can be sampled from scratch; or

3. It is simply a complete opening of a previous commitment (and thus repeatable in rewind
threads if needed).

This observation will play an important role later when we prove the non-malleability of our ZK
protocol (more specifically, when proving Claim 1). But we also emphasize that this observation is
crucial only in the non-synchronous setting (but not in the synchronous setting).

Extractability of BGRRV. We remark that BGRRV is an extractable commitment scheme.
Extraction can be performed from the preamble stage by simply rewinding to the second message,
obtaining a valid answer for a di↵erent challenge, and then solving two equations in Zp.

4 Our Non-Malleable Zero Knowledge Protocol

In this section, we present the generic framework of our non-malleable zero-knowledge. Later in
Sec. 5, we will instantiate each component of this protocol in special ways so that the final proto-
col admits an e�cient implementation using only symmetric-key primitives. We use the following
ingredients:

1. An extractable commitment scheme ExtCom. We will use the standard 3-round scheme (see
Prot. 7, Appx. A.2). Note that the first committer message of this scheme is statistically-binding.

2. A tag-based commitment scheme ENMC that is both non-malleable and extractable; for con-
creteness, we will use scheme ⇧Mini

bgrrv specified in Prot. 1. We assume for convenience that the
commitments are generated using Naor’s scheme [Nao90] w.r.t. an implicit first string ⇢ chosen
by the receiver of the commitment (and dropped from the notation henceforth).
We assume that the first committer message of ENMC is statistically binding. For concreteness,
we say that a string c is an honest ENMC commitment to a value v with tag id if there
exists randomness r such that c is the first committer message of ENMC produced by the honest
committer algorithm on input value v, tag id, and randomness r.

3. A statistically witness-indistinguishable argument of knowledge sWIAoK.

Our construction is shown in Prot. 2 below. At a high level, the protocol is as follows: V starts
by committing to a random string �. P then uses an extractable non-malleable commitment ENMC
to commit to an all-zero string. Then V decommits to its commitment made at the beginning of the
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protocol. Finally, P and V execute a sWIAoK protocol, where P proves to V that either it knows
a witness to x, or that the commitment in ENMC equals �.

Protocol 2: hP, V iNMZK: Non-Malleable Zero-Knowledge

Public input: Security parameter �, statement x (supposedly in an NP language L), and a tag
id 2 {0, 1}�.

Private input: P takes the witness w as its private input.

1. V commits to a random string �  {0, 1}�, using the extractable commitment scheme ExtCom.
We denote the first committer message by com1.

2. P commits to �0 = 0� using the extractable non-malleable commitment ENMC with tag id.
We denote the first committer message of this stage by com2.

3. V sends � along with decommitment information for com1.

4. If Step 3 decommitment is valid, P proves the following compound statement to V using a
statistical witness-indistinguishable argument of knowledge sWIAoK:

– there exists a w such that R(x,w) = 1; or

– com2 is an honest ENMC commitment to � with tag id.

For future reference (�0, r) is called the trapdoor witness for statement (com2, id) if r is s.t. com2

is the 1st committer message of ENMC on input �0, tag id, and randomness r.

Theorem 1. The protocol hP, V iNMZK (shown in Prot. 2) is a non-malleable zero-knowledge argu-
ment of knowledge for NP.

Thm. 1 can be established by combining Lem. 1 and Lem. 2, which we prove in the following.

Lemma 1. hP, V iNMZK is a zero-knowledge argument of knowledge.

Proof. The completeness of our protocols follows from the completeness of the sWIAoK in Step 4.
The description of the ZK simulator and the knowledge extractor (for AoK property) will be implicit
in our proof of non-malleability that follows. Therefore, here we only provide a sketch of them. Also,
note that soundness follows from the AoK property.

Zero-Knowledge Property. The simulator Sim for the ZK property is constructed as follows:
Sim first extracts the value � from ExtCom(�), in expected polynomial time, by rewinding the
(cheating) verifier V ⇤. It then sets �0 = � in the Step 2 ENMC commitment, and uses this condition
as a trapdoor witness to succeed in Step 4 sWIAoK. The indistinguishability of the simulated and
real views relies on the hiding property of ENMC and the witness indistinguishability (WI) of
sWIAoK. The proof of non-malleability given later contains this argument implicitly in full detail.

Argument-of-Knowledge Property. Let us first prove that no PPT machine P ⇤ can succeed in
setting �0 = �, except with negligible probability. If not, we can build an adversary Ah to break
the hiding property of ExtCom as follows. Ah incorporates P ⇤ internally; it gets com1 = ExtCom(�)
from an external committer and forwards it to P ⇤(x) as the Step 1 message of hP ⇤, V iNMZK. Let
S⇤ denote the machine P ⇤(x) at the end of Step 1; S⇤ proceeds exactly as P ⇤ but halts at the
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end of ENMC in Step 2. Using the standard averaging argument, if ⌘ is the success probability
of P ⇤ then with probability at least ⌘/2, machine S⇤ can successfully complete the remaining
execution with probability at least ⌘/2. We call such machines S⇤ to be good. Now, we apply the
extractor guaranteed by the extractability property of ENMC, to produce a tuple (⌧,�⇤) in expected
polynomial time so that ⌧ is distributed identically to a real execution with honest receiver. It
follows that ⌧ is convincing with probability at least ⌘/2, and whenever that happens, we have that
�0 = � (due to identical distributions) and �⇤ = �0 (due to correctness of extraction). Note that
over-extraction is not an issue here since the condition � = �0 is well defined only when �0

6= ?. It
follows that Ah contradicts the hiding property of ExtCom with probability at least ⌘2/4� negl(�).
We now observe that the AoK property follows from the AoK property of the Step 4 sWIAoK.

Lemma 2. hP, V iNMZK is non-malleable.

We prove Lem. 2 in subsequent subsections. We first present in Sec. 4.1 the proof regarding
synchronous adversaries (who send their right messages as soon as they receive the corresponding
left message). Then, we deal with the general case of non-synchronous adversaries in Sec. 4.2.

When reading the proofs in the synchronous setting, it would be helpful to keep in mind also
the non-synchronous case. We add remarks at the end of each hybrid to address this. We hope it
can improve the readability when we talk about the non-synchronous setting later.

4.1 Non-Malleability against Synchronous Adversaries

To prove non-malleability, we need to build a simulator which can convince V with roughly the
same probability as a man-in-the-middle adversary Amim (up to some negligible di↵erence), but
without the help of the left interaction. We first define the following invariant condition.

Definition 5 (Invariant Condition). The probability that the value e�0 committed in com2 by
Amim is equal to e� committed in com1 by the honest verifier is negligible.

Note that if the invariant condition holds and Amim gives a convincing proof, we can extract
the witness ew for ex by running the sWIAoK extractor.

At a high level, our proof goes in the following way. We start with the man-in-the-middle setting,
where an honest prover P (x,w) interacts with Amim in the left interaction, and Amim proves to an
honest verifier V for a statement ex 6= x in the right. We will build a sequence of hybrids, where we
gradually substitute P (x,w) and V (ex) with our simulator. Between each pair of adjacent hybrids,
we show that the view of Amim does not change and that the invariant condition holds. In the last
hybrid, we do not need the real witness w in the left interaction, and we can extract Amim’s witness
ew via the sWIAoK extractor (we are guaranteed to extract ew because of the invariant condition).
With the extracted ew, our simulator can give a “straight-line” proof for the statement ex to V ,
which completes the proof of non-malleability. Next, we describe the hybrids.

Hybrid H0. This is the real execution of the MIM game. Specifically, H0 sets up the left and right
executions for Amim with P (x,w) and V , respectively. H0 outputs the joint view of Amim containing
both left and right executions.

Invariant condition. If the invariant condition does not hold, then consider the prover machine P ⇤

which behaves identically to H0 except that it forwards the right ExtCom to an external committer.
Using this P ⇤ we can violate the hiding of ExtCom by extracting the value committed in the right
ENMC.
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Hybrid H1. This hybrid is identical to H0, except that whenever the left ExtCom is accepting, H1

extracts the committed value � in the left ExtCom. If the extractor fails (� = ?), H1 outputs ?
and halts; otherwise it continues as H0.

H0
s
⇡ H1. The outputs of H0 and H1 di↵er only when � = ?; and due to the extractability of

ExtCom (Def. 7), that happens with only negligible probability.

Invariant condition. The invariant condition holds in H1 since it holds in H0 and the two hybrids
are statistically close.

Remark 1. Note that the above proofs for both indistinguishability and invariant condition are
independent of Amim’s scheduling of the messages. Thus, they also hold in the non-synchronous
scenario.

Hybrid H2. This hybrid is identical to H1, except that H2 sets �0 = � in Stage-2 ENMC on left.

H1
c
⇡ H2 follows immediately from the computational-hiding property of ENMC.

Invariant condition. The fact that the invariant condition holds can be reduced to the non-malleability
of ENMC. Specifically, we consider a man-in-the-middle adversary AENMC for ENMC that acts as
follows: AENMC internally runs H2 except that it obtains the left ENMC execution from an outsider
committer on the left and forwards the right ENMC interaction to an external receiver. Further-
more, the external committer commits as follows: recall that H2 already has the extracted value �
before the left ENMC begins; AENMC forwards �0

0 = 0� and �0
1 = � to the external committer who

then commits to one of them at random. AENMC halts when H2 halts. Now consider a distinguisher
D (that incorporates the above adversary AENMC), and by definition of non-malleability, receives
the value AENMC commits to in the right interaction, say e�. Clearly, if the invariant condition does
not hold in H2 then the distribution of e� is di↵erent depending on whether AENMC receives com-
mitment to �0

0 or �
0
1. This condition can be tested by D (which incorporates AENMC), thus violating

the non-malleability of ENMC.

Remark 2. Observe that in the non-synchronous case, the proof of indistinguishability will go
through, but the proof of invariant condition will not. This is because the extraction of ↵ on
left from ExtCom may rewind some parts of ENMC on right, and this is not allowed by the non-
malleability definition. We will deal with this issue in Sec. 4.2.2.

Hybrid H3. Identical to H2 except that it switches from real witness w to the trapdoor witness
(i.e., values and randomness corresponding to �0 = �) in the Stage-4 sWIAoK on left.

H3
s
⇡ H2 follows directly from the statistical WI property of sWIAoK.

Invariant condition. Since we are in the synchronous setting, the invariant condition holds since the
executions in the two hybrids are identical up to the end of Stage-2, at which point the invari-
ant condition is already determined; any changes after that stage have no e↵ect on the invariant
condition.

Remark 3. As in Rmk. 2, in the non-synchronous case, the argument for indistinguishability still
holds, but the argument for the invariant condition will require extra caution. This is because the
left sWIAoK may get aligned with the right ENMC so that the switch of witness may a↵ect the
invariant condition. We will deal with this issue in Sec. 4.2.1.
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Simulator for Non-Malleability. The indistinguishability among the above hybrids implies that:
if Amim gives a convincing proof in the right interaction of H0, it should also give a convincing proof
in the right interaction of H3. We construct a simulator Sim in the following way. Given a man-
in-the-middle adversary Amim, Sim first invokes H3 with Amim. If Amim indeed gives a convincing
proof in the right interaction, Sim extracts Amim’s witness ew from sWIAoK on the right execution;
otherwise, Sim aborts. The invariant condition inH3 guarantees that Sim can extract such a ew. With
ew, Sim then executes protocol hP, V iNMZK (in “straight-line”) with an honest verifier. It convinces
the honest verifier with roughly the same probability as Amim (except for negligible di↵erence due
to Sim’s failure in extracting ew). This finishes the proof of non-malleability against synchronous
adversaries.

4.2 Non-Malleability against Non-Synchronous Adversaries

As mentioned in Rmk. 1 to 3, the proofs for indistinguishability among all hybrids, as well as the
invariant condition for H0 and H1, remain unchanged in the non-synchronous setting. Therefore,
we only need to prove the invariant conditions for H2 and H3, which will be done in Sec. 4.2.1
and 4.2.2. (We first show the proof for H3 since it is simpler.)

4.2.1 The Invariant Condition for H3

Recall that the witness indistinguishability of the sWIAoK is statistical. It follows that the invariant
condition must hold in H3 for non-synchronous adversaries as well. If not, an exponential time
distinguisher can recover the value committed by Amim, thus breaks the statistical WI by testing
whether the invariant condition.

4.2.2 The Invariant Condition for H2

Before giving the formal lemma and proof, we provide the high-level idea. As mentioned in Rmk. 2,
the problem happens if the Amim interleaves the left ExtCom messages with the right ENMC mes-
sages. In such a schedule, we cannot reduce the invariant condition to the non-malleability of ENMC
without rewinding the outside challenger in ENMC’s man-in-the-middle game. Recall that both H1

and H2 rewind the left ExtCom to extract the committed value �.
We first note that if the reduction can simulate the receiver-to-committer messages in ENMC,

then there is no issue during rewinding since in the right interaction, the reduction can forward
messages between Amim and the outside challenger to the “main thread” and simply simulate them
in “rewinding” threads. This (informally-explained) property is indeed satisfied by our ⇧Mini

bgrrv

commitment (Prot. 1).
In the following, we show the formal claim and its proof.

Claim 1. The invariant condition holds in Hybrid H2 described in Sec. 4.1 for non-synchronous
adversaries.

Proof. This proof relies on the special structure of ENMC (when instantiated as the ⇧Mini
bgrrv pro-

tocol shown in Prot. 1). We will refer to di↵erent rounds of ⇧Mini
bgrrv, which are recalled below for

convenience (see and compare with Prot. 1):

– (1): R sends the first message for Naor’s commitment, which consists of public coins only.

– (2): C sends the second message of Naor’s commitment.
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– (3): R sends some (public) random vectors as his challenge.

– (4): C responds to R’s challenges. C also sends the first message (which consists of some public
coins that specifies a CRHF) of a Ligero0 instance (depicted in Prot. 9), which is used for
consistency proof.

– (5)-(10): These are Rounds 2 to 7 of Ligero0 between C and R. Note that (5) is the (statistically-
hiding) commitments to verifier’s random challenge �1 and �2; (7) is R’s decommitment to �1

and (9) is R’s decommitment to �2.

With the structure of ENMC in mind, we now start to prove Claim 1. First, observe that ExtCom
has only one “slot” that needs to be rewound to extract �. Therefore, we only need to worry about
the schedule where some messages of the right ENMC are “nested” in this slot. In the following, we
show that the invariant condition hold for all schedules.

In the following, we use (i) (i 2 [10]) to denote the i-th step of the right ENMC (as recalled
above). We denote the first message of the rewindable slot in the left ExtCom as top, and the last
message as bottom. See Fig. 1 for an illustration of these notations. Note that in Fig. 1, no messages
can appear between “adjacent messages” of the right ENMC, for example, message (2)-(3), (6)-(7)
etc. This is because honest parties send their next message as soon as they receive the previous
message.

Easy Cases. First, note that if bottom happens before (1), we can rewind the slot without rewind-
ing the right ENMC. Therefore, the same proof for the invariant condition in H2 in the synchronous
setting also applies here. Also, it is an easy case when (10) happens before bottom. In this case,
Amim cannot generate the right ENMC messages based on the left ENMC interactions, since the
left ENMC has not started yet. Therefore, the invariant condition holds automatically. Another
easy case is when (1) gets nested in the slot. In such a case, rewinding the slot will cause a fresh
execution of the right ENMC, so it will not cause any problem when we try to reduce the invariant
condition to the non-malleability of ENMC. At a high level, this is because we can always forward
the messages when we do the last rewinding to the outside non-malleability challenger in the reduc-
tion. But we suppress the details here since we will provide a formal argument of such type when
we handle the hard cases next.

Hard Cases. We now focus on the remaining schedules (beyond those discussed in Easy cases).
These schedules consist of the situations where

– (1) happens before top, and

– (10) happens after bottom.

There are 10 such cases in total: one of them is shown in Fig. 1; the other 9 are shown in Fig. 2.
Since these 10 schedules can be handled via similar arguments, in the following, we will first use
the one in Fig. 1 as a representative to present a full proof, and then discuss how to extend the
same proof to the remaining 9 cases.

The Hard Case in Fig. 1. For the schedule shown in Fig. 1, we build a man-in-the-middle adversary
AENMC attacking the non-malleability of ENMC. Recall that in the non-malleability game, the man-
in-the-middle adversary AENMC talks to an honest committer in the left, and to an honest receiver
in the right. We will refer to them as the left challenger and right challenger respectively. Our
AENMC acts in the following way:

15



Fig. 1: Special Schedules in the Non-Synchronous Scenario

1. AENMC starts by running the hybrid experiment H2 internally with Amim up to the step right
before (1). It then invokes the right challenger for the non-malleability game of ENMC, and
forwards the messages between the challenger and Amim as the right interaction. It plays the
left interaction in the same way as the simulator in H2, until the execution reaches top for the
first time.

2. AENMC now needs to execute the slot (top, bottom) in the “main-thread”, and then rewind this
slot for (w.l.o.g.) k = poly(�) times to extract the � value in the left interaction. To do that,
AENMC proceeds as follows:

(a) For the main-thread execution, AENMC plays the right interaction by forwarding messages
between Amim and the outside right challenger.

(b) From the 1st to the k-th rewinding, AENMC will prepare the right ENMC incoming messages
(i.e. (5), (7), and (9)) by himself, instead of forwarding them between Amim and the outside
right challenger. To do that, AENMC samples fresh �1 and �2, and commits to them as
message (5); it sends the honest decommitments to (the fresh) �1 as message (7); similarly,
it sends the honest decommitments to (the fresh) �2 as message (9). We emphasize that
AENMC can indeed decommit to them because the commitments in (5) (in these rewinding
threads) are generated by himself.

Note that the simulated messages during rewinding have identical distribution as the main-
thread (5), (7), and (9), which guarantees that Amim’s view does not change. Thus, after the
above rewindings, � can be extracted except for negligible probability, for which AENMC just
halts outputting ?.

3. AENMC continues the internal (main-thread) interaction until the left ENMC starts. He then
invokes the outside left challenger by sending the values �0

0 = 0� and �0
1 = �. Then, ENMC

forwards the messages between Amim and the outside left challenger and Amim as the left ENMC
interaction. In the right interaction, ENMC acts as the simulator in H2 except that when Amim

sends the message (10), it forwards the message to the outside right challenger.

4. AENMC continues to finish the internal interaction with Amim as in H2 for the remaining parts
of the protocol.

Now consider a distinguisher D (that incorporates the above adversary AENMC), and by definition
of non-malleability, receives the value AENMC commits to in the right interaction, say e�. Clearly,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2: The Other 9 Schedules in the Non-Synchronizing Scenario

if the invariant condition does not hold in H2 then the distribution of e� is di↵erent depending on
whether AENMC receives commitment to �0

0 or �0
1. This condition can be easily tested by D (since

it incorporates AENMC), thus violating the non-malleability of ENMC.

Other Hard Cases (Fig. 2). The above argument proves Claim 1 for the special scheduling shown
in Fig. 1. We now discuss the other 9 non-synchronous schedules for the Hard cases when proving
the invariant condition in Hybrid 2. These schedules are shown in Fig. 2.

The analysis for Fig. 1 extends to all the schedules depicted in Fig. 2. To do that, we only need
to modify Step 2b in the description of AENMC, according to the target schedule. Namely, AENMC

in Step 2b needs to prepare (or “simulate”) the incoming messages nested in slot (top, bottom), for
the k rewinding executions, without the help of the outside right challenger. In the following, we
list the simulation strategies for all the cases shown in Fig. 2.
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– Fig. 2a: (3) are some random vectors. In each rewinding, AENMC can sample these values by
himself, and send them to Amim as the simulated (3).

– Fig. 2b: The simulation for (3) can be done in the same way as for Fig. 2a. The simulation
for (5) can be done in the same way as for Fig. 1 discussed in Sec. 4.2.2. I.e., AENMC “fakes”
message (5) by sampling fresh �1 and �2, and committing to them by himself.

– Fig. 2c: The simulation for (3) can be done in the same way as for Fig. 2a. The simulation
for (5) and (7) can be done in the same way as for Fig. 1 discussed in Sec. 4.2.2. I.e., AENMC

“fakes” message (5) by sampling fresh �1 and �2, and committing to them by himself; it “fakes”
message (7) by decommitting to (the fresh) �1 honestly.

– Fig. 2d: The simulation for (3) can be done in the same way as for Fig. 2a. The simulation
for (5), (7), and (9) can be done in the same way as for Fig. 1 discussed in Sec. 4.2.2. I.e.,
AENMC “fakes” message (5) by sampling fresh �1 and �2, and committing to them by himself;
it “fakes” message (7) by decommitting to (the fresh) �1 honestly; it “fakes” message (9) by
decommitting to (the fresh) �2 honestly.

– Fig. 2e: AENMC “fakes” message (5) by sampling fresh �1 and �2, and committing to them by
himself.

– Fig. 2f: AENMC “fakes” message (5) by sampling fresh �1 and �2, and committing to them by
himself; it “fakes” message (7) by decommitting to (the fresh) �1 honestly.

– Fig. 2g: Note that message (7) is the decommitments to the �1 committed in message (5),
which happens (and is fixed) before top. Thus, AENMC can simply reuse the decommitments
messages obtained from the main-thread execution in all the k rewindings.

– Fig. 2h: Note that message (7) (resp. (9)) is the decommitments to the �1 (resp. �2) committed
in message (5), which happens (and is fixed) before top. Thus, AENMC can simply reuse the
decommitments messages obtained from the main-thread execution in all the k rewindings.

– Fig. 2i: Note that message (9) is the decommitments to the �2 committed in message (5), which
happens (and is fixed) before top. Thus, AENMC can simply reuse the decommitments messages
obtained from the main-thread execution in all the k rewindings.

Observe that, in all of the above cases, the simulated messages are always identical distributed
as in the corresponding main-thread execution. Thus, we are guaranteed that the correct � value
can be extracted from the left ExtCom. Therefore, the same argument for for Fig. 1 (shown in
Sec. 4.2.2) can be applied to reduce the invariant condition to the non-malleability of ENMC. This
eventually finishes our proof for Claim 1.

4.2.3 Generalization to “Almost Public-Coin” Statistically ZK

In this part, we take another look at the proof in Sec. 4.2.2 with the following purpose: in Sec. 4.2.2,
we proved the invariant condition in H2, relying on the special structure of ⇧Mini

bgrrv. In particular,
we assumed that the Consistency Proof stage of ⇧Mini

bgrrv is conducted by Ligero0. However, we
argue that Ligero0 can be replaced by any “almost public-coin” (explained below) statistically zero-
knowledge argument.

Motivation. Before delving into the details, let us first explain why we want to generalize the
proof to almost public-coin ZK protocols: While Ligero0 is e�cient, using it directly in the Consis-
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tency Proof stage of ⇧Mini
bgrrv results in unacceptable running time. This is because the language

L⇢
consis (defined toward the end of Prot. 1) has a huge circuit size. As mentioned in Sec. 1.2, we

will (in Sec. 5.3) introduce the new idea of converting ⇧Mini
bgrrv to an instance-based non-malleable

commitment to achieve better e�ciency. Looking ahead, the instance-based ⇧Mini
bgrrv shares the same

structure of the original ⇧Mini
bgrrv, with the only di↵erence being that the Consistency Proof stage

is not conducted by Ligero0 anymore. Instead, it will be done using a customized statistical ZK
protocol called ⇧0

or, which we construct by applying (a modified version of) the OR-composition
technique [CDS94] on Ligero (i.e., the honest-verifier version of Ligero0). We need to show that
the same proof in Sec. 4.2.2 will still go through7 when we replace (the original) ⇧Mini

bgrrv with this
instance-based ⇧Mini

bgrrv (i.e., when we replace Ligero0 in the Consistency Proof stage with ⇧0
or).

Fortunately, this is possible because ⇧0
or shares the same structure as Ligero0, in terms of the ap-

plication in Sec. 4.2.2. In particular, ⇧0
or also enjoys the same “almost public-coin” property of

Ligero0, and this is exactly why the same proof in Sec. 4.2.2 can be applied when we replace Ligero0

with ⇧0
or. The purpose of this subsection is to distill this “almost public-coin” property and explain

how it helps in the proof in Sec. 4.2.2.

Almost Public-Coin Protocols. Let us summarize how the proof in Sec. 4.2.2 makes use of the
structure of ⇧Mini

bgrrv. As we mentioned in the beginning of Sec. 4.2, ⇧Mini
bgrrv has 10 rounds that can

be understood as two stages:

1. Commit Stage: This includes rounds (1) to (4); and

2. Consistency Proof: This includes rounds (4) to (10), which are exactly the statistically ZK
protocol Ligero0.

We emphasize that all the receiver’s messages are public random coins except for rounds (5) and
(7), which constitute the commitment and corresponding decommitment to some random coins.
This public-coin property is the main reason that AENMC works properly: in Step 2, AENMC needs
to simulate the receiver’s message in rewinding threads; because all the receiver’s messages (except
for rounds (5) and (7)) are public-coin, AENMC can simply sample them freshly for each rewinding;
moreover, round (5) (resp. (7)) is a commitment (resp. the corresponding decommitment) to
random coins, so AENMC can also sample and commit to (resp. decommit honestly to) random
coins itself. Therefore, the rewinding threads can be shown to be identically distributed as the
main thread.

In light of the above, it is clear that the ⇧Mini
bgrrv can be replaced with any ENMC that enjoys the

above public-coin property. In particular, the Commit Stage of ⇧Mini
bgrrv is public-coin by design;

the Consistency Proof stage, when implemented with Ligero0, is public-coin (again, except for (5)
and (7) as discussed above) because Ligero0 is obtained in a special way: it is obtained by applying
the Goldreich-Kahan transform on the honest-verifier version Ligero, which is a public-coin protocol.

Looking ahead, our ⇧0
or enjoys the above public-coin property. As we will show in Sec. 5.3,

⇧0
or is obtained by applying Goldreich-Kahan transform on a protocol ⇧or (which will appear in

Sec. 5.2), which is also a public-coin honest-verifier ZK argument. Therefore, the above argument
applies.

In summary, when we replace ⇧Mini
bgrrv with its instance-based version, the same proof in Sec. 4.2.2

will still go through.

7 We do not need to revisit the proof in Sec. 4.2.1, as it is independent of the structure of ⇧Mini
bgrrv.
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5 Improving E�ciency through Fake Executions

5.1 Road Map

In this section, we describe how to instantiate our NMZK protocol hP, V iNMZK (shown in Prot. 2)
to achieve concrete e�ciency. The major bottlenecks are:

1. Step 4 of hP, V iNMZK is a statistical WIAoK on the OR-composition of the statement x and a
trapdoor statement (let us denote it as (x _ xtr)). This proof is non-black-box on the Step 2
commitments and involves expensive NP reduction.

2. Step 2 of hP, V iNMZK is instantiated with ⇧Mini
bgrrv (Prot. 1), whose Consistency Proof step

involves an expensive ZK proof.

To address Item 1, we want to employ the OR-composition technique in [CDS94] to construct
the desired sWIAoK from Ligero. This will allow the prover to finish the proof for (x _ xtr) by
conducting a (light) proof for x, and running the fast Ligero simulator HVSim for the xtr part.
This will be much more e�cient than running Ligero on (x _ xtr) directly. However, this approach
encounters obstacles: Ligero does not have the properties required by [CDS94]. We show how to
solve related problems in Sec. 5.2.

To address Item 2, we wish to reuse the OR-composition technique described above. But it does
not immediately apply because the target statement of the Consistency Proof does not have the
(x _ xtr) structure; instead, it is a single statement xcom 2 L⇢

consis, which is related to some vector
of commitments8. Running Ligero for xcom is prohibitively expensive. To handle this issue, observe
that this ⇧Mini

bgrrv protocol is executed as a part of our hP, V iNMZK protocol on some statement
xzk. Therefore, we change the statement of Consistency Proof to (xzk _ xcom), and then use the
above OR-composition technique to boost the e�ciency. We denote this extended non-malleable
commitments as instance-based non-malleable commitments (IB-NMC). We elaborate on the above
idea in Sec. 5.3.

Non-Malleability from Simulation-Soundness. Unfortunately, the above strategy induces an
extra problem—replacing the Step 2 ENMC by the above instance-based version (i.e. the IB-NMC)
jeopardizes the security of hP, V iNMZK (Prot. 2). Specifically, it is not clear whether the resulting
protocol is still non-malleable. However, we will be able to prove that it is a simulation-sound ZK
protocol (which is already su�cient for many applications). Finally, we show in Sec. 5.4 (resp.
Sec. 5.5) how to use this simulation-sound ZK protocol to obtain non-malleable ZK protocols (resp.
non-malleable commitments), with (almost) no e�ciency overhead.

5.2 OR-Composition of Ligero

The OR-composition [CDS94] was originally designed for ⌃ protocols, i.e., 3-round public-coin
HVZK protocols with special soundness, which requires that a witness can be extracted from
two convincing transcripts with distinct challenges. To prove an OR statement x _ x0, the OR-
composition invokes a parallel execution of two ⌃-protocol instances: (a1, b1, c1) for proving x and
(a2, b2, c2) for proving x0, which are called the left and right execution respectively. But the verifier
sends only a single round-2 challenge b; the prover has the freedom to “decompose” it as b = b1�b2
to finish the two parallel executions. The prover may only have a witness for, say, the x part; since it

8 Recall that the language L⇢
consis is defined toward the end of ⇧Mini

bgrrv (Prot. 1).
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can always “equivocate” one share of b, it will first “finish” (in other words, fake) the left execution
by running the HVZK simulator for the ⌃-protocol by setting b2 in advance; it can answer any
b1 = b� b2 as it has the witness for x.

The First Attempt. We want to apply the above OR-composition to Ligero. However, Ligero
is not a ⌃-protocol—it has six rounds (i.e., two challenge-response slots). Indeed, it is known
that straightforward generalization of OR-composition to multi-slots protocols (i.e., the original
OR-composition is applied on each slot separately) will yield an unsound protocol.

In more detail, recall that Ligero’s messages are denoted as (h, a, b, c,eb,ec), where (h, b,eb) are
nothing but public-coins (see Prot. 8). If we do the straightforward generalization of the above
OR-composition (to prove an OR statement x _ x0), it will work as follows: assuming P knows
witness w for x, P uses HVSim(x0) to simulate a proof (h2, a2, b2, c2,eb2,ec2) for the x0 part (because
P does not have witness for it). Meanwhile, P generates the proof for x honestly, in the following
manner: V sends h and P derives h1 as h1 = h � h2; P runs the honest Ligero prover’s algorithm
on input (x,w) to generate a1, assuming the first Ligero verifier’s message is h1. Similarly, when V
sends b (resp. eb), P will set b1 = b� b2 (resp. eb1 = eb�eb2), and compute the response c1 (resp. ec1)
using the honest Ligero prover’s algorithm (as it has witness w for x).

However, the above approach su↵ers from the following “cross attack”: Since P ⇤ has the op-
portunity to decide how to decompose h, b, and eb, it can pick a bad b1 and a bad eb2. That is, a
cheating prover can choose malicious challenges in the first slot of the left execution and the second
slot of the right execution, and there is no soundness guarantee for Ligero when a malicious prover
can control (even) one challenge out of the two slots.

Solution. To resolve this problem, we ask P to commit to its decomposition in advance. More
accurately, we ask P to generate com = SHCom(h2kb2keb2; r) at the very beginning of the protocol,
where SHCom is a statistically-hiding commitment. Then, we continue as the above. At the end of
the execution, we ask P to give a statistical WI argument of knowledge sWIAoK for the following
statement:

– com is committing to either (h1, b1,eb1) or (h2, b2,eb2).9

Intuitively, due to the (knowledge) soundness of sWIAoK, P ⇤ cannot conduct the above “cross
attack” anymore.

We denote this protocol as ⇧or. Due to space constraints, we put the formal description of
⇧or in Prot. 10 in Appx. C, where we also provide the complete security proof. Here, we want
to emphasize that this approach invokes very small e�ciency overhead compared with the plain
OR-composition described in The First Attempt: what we add is simply a statistically-hiding
commitment and a sWIAoK for its consistency. Using a modified version of Ligero as the underlying
sWIAoK (see Appx. C.3), this only adds an extra computation cost of 32 milliseconds and an extra
communication cost of 6.4MB. See Appx. C.2 for more details.

Regarding Malicious-Verifiers ZK. It is not hard to see that the above ⇧or is also an honest-
verifier ZK argument (of knowledge). Using the Goldreich-Kahan technique [GK96] (as done in
[IMS12, AHIV17]), we can convert it to a fully-secure ZK argument, i.e., against malicious verifiers.
We denote the resulting protocol as ⇧0

or, and present the full description of it in Prot. 11 of

9 Note that (h1, b1,eb1) and (h2, b2,eb2) will be known to V when the protocol reaches the final sWIAoK stage.
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Appx. C.1.3. Looking ahead, ⇧0
or will be used in the instance-based non-malleable commitment in

the next subsection (in Prot. 3).

5.3 Instance-Based Non-Malleability

Recall that we use ⇧Mini
bgrrv (Prot. 1) as our ENMC. The primary e�ciency bottleneck in ⇧Mini

bgrrv is
the consistency proof, which is done using Ligero0. Since an honest committer is never cheating,
our goal is to provide the prover an easier way to get through this proof. Toward this goal, we first
show an instance-based version of ⇧Mini

bgrrv, denoted as hCL, RLi. The instance-based version simply
gives the option of using a witness for a true statement in the consistency proof phase of ⇧Mini

bgrrv.
At a high level, the parties get a statement x as input which may or may not be true. If x is true,
the committer can additionally take as input a witness w 2 RL(x) and succeed in the proof phase
by using w instead of completing the consistency proof for any message m. This allows the honest
prover to fake the ENMC execution using a faster simulator thanks to the OR-composition. If x
is false, the committer commits to a valid value m. It is also possible to do both: commit to m
properly and execute consistency proof as well as proof for x. We present the full construction in
Prot. 3,10 and establish its security in Lem. 3 and 4.

Protocol 3: hCL, RLi(x): Instance-Based Non-Malleable Commitment

Instance-based ⇧Mini
bgrrv is the following commitment scheme, denoted as hCL, RLi, defined for an

arbitrary NP language L: the common input to both algorithms is a statement x; in addition, CL

takes a (private) auxiliary input that is either of the form (m,?) or (?, w) where w is a witness
for x 2 L. Recall that ⇧Mini

bgrrv is denoted by hC,Ri and depicted in Prot. 1. The protocol proceeds
in two phases:

– Commit Stage: In this stage RL proceeds identically to algorithm R of ⇧Mini
bgrrv and let ⇢ be

its first message. For input (m,?), CL proceeds exactly as C proceeds in the commit stage on
input m. For input (?, w), CL simply sends random values of appropriate size as the second
and fourth messages of the commit stage (when interacting with RL). Recall that the execution
of the Commit Stage of ⇧Mini

bgrrv will yield messages bm, br, and {wi}i2[n]) (see Prot. 1). We
denote st := ( bm,br, {wi}i2[n]).

– Proof Stage: In this stage, CL proves that (x, st) 2 L _ L⇢
consis using ⇧0

or, i.e., the fully ZK
version of ⇧or (see Prot. 11). For input (m,?), CL uses the simulator HVSim for the left part
(i.e., for x), and completes right part (i.e., for st) honestly by using the witness for st (from the
first phase). For input (?, w) it uses w to succeed in the left part of the proof and simulator
HVSim to succeed in the right part.

If the common statement is fixed to x, we denote the instance-based ⇧Mini
bgrrv by hCL, RLi(x). The

executions corresponding to inputs (m,?) will be called real or honest executions, and those
corresponding to (?, w), fake or simulated executions of ⇧Mini

bgrrv (or ENMC).

Lemma 3. Let L be an NP language. For every x /2 L protocol hCL, RLi(x) (Prot. 3) is an
extractable non-malleable commitment scheme.

10 We warn that this version cannot be used in our NMZK protocol yet. See Sec. 5.4.

22



Proof. We observe that for every x /2 L, the Proof Stage of the protocol is a ZK argument for
st 2 L⇢

consis (i.e., consistent execution of the commit stage). In this case, hCL, RLi(x) is simply an
instantiation of the original ⇧Mini

bgrrv protocol. The claim then follows from the security of ⇧Mini
bgrrv.

Lemma 4. Let L be an NP language with witness relation RL. For every message m and every
(x,w) 2 RL, the following holds:

{view0  hCL((m,?)), RLi(x) : view0}
c
⇡ {view1  hCL((?, w)), RLi(x) : view1} .

Proof. This lemma follows from the following two observations: (i) committer’s messages in the
commit stage are pseudorandom (since second message of Naor’s commitment is pseudorandom),
and (ii) the proof stage is WI (it is indeed ZK). Since the proof follows from a standard hybrid
argument, we omit the details.

Remark 4 (On E�ciency). It is worth noting that if x admits a fast Ligero proof, then fake execu-
tions are faster than the real executions since the simulator for Ligero for the right part (i.e., the
real consistency proof for st) is much faster than the prover. As mentioned in Sec. 1.2, this is how
we manage to obtain significant improvement on the e�ciency.

5.4 E�cient Simulation-Sound Zero-Knowledge

The main benefit of the instance-based ⇧Mini
bgrrv in Prot. 3 is that if x 2 L admits fast proofs, it can

be used in place of standard ⇧Mini
bgrrv in our NMZK protocol. Unfortunately, the resulting protocol

is not a NMZK for true x! Nevertheless, the resulting protocol is simulation-sound (as per Def. 3),
and equally importantly, e�cient. We refer to this protocol by ⇧ss and specify it in Prot. 4.

Protocol 4: ⇧ss: Simulation-Sound ZKAoK

The common input is x and prover’s input is a witness w for x 2 L, where L is the desired NP

language. This protocol is identical to protocol hP, V iNMZK (Prot. 2) except that the Step 2 ENMC
is replaced with the instance-based non-malleable commitment (Prot. 3) with the following inputs:
the common input is x and committer’s auxiliary input in the Proof Stage of the commitment is
(?, w). Observe that the honest prover only performs a simulated execution of the non-malleable
commitment.

Theorem 2. Protocol ⇧ss (Prot. 4) is a simulation-sound zero-knowledge argument of knowledge.

Proof. Completeness is straightforward. We now show a single simulator S for the protocol that
satisfies the two requirements in Def. 3. The proof follows closely from that of Thm. 1. We provide
more details in the following.

Indistinguishable Simulation. Simulator S (for proving Def. 3) is identical to the hybrid machine
H3 constructed in Sec. 4.1 (where the “trapdoor” statement is set successfully), except that it
performs a real execution of the instance-based ⇧Mini

bgrrv protocol in Step 2 (i.e., it uses (�,?)
as the private input of the committer). It is straightforward to verify that S does not use the
witness. Then, from the proof of Lem. 2 and the additional observation that the real and simulated
executions of instance-based ⇧Mini

bgrrv are indistinguishable (Lem. 4), it follows that the output of S
is indistinguishable from that of a real MIM experiment.
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Simulation Soundness. To prove this property, we use the same simulator S as in last paragraph.
As mentioned earlier, in the left execution, S uses (�,?) as the private input of the committer in
the Step 2 instance-based ENMC (regardless of whether x is true or false). Assume for contradiction
that ex is false. Then the man-in-the-middle adversary A is forced to perform a real execution of
the instance-based ⇧Mini

bgrrv protocol in Step 2 (because there is no witness ew to ex that can be used
by A to run a fake execution of ⇧Mini

bgrrv). Therefore, the ⇧Mini
bgrrv instances in both the left and

right executions are (real) ENMC. Then, following the same argument as in the proof of Lem. 2
(from hybrid 3 to the end), we can extract a valid witness ew for ex (if V accepts in the right),
contradicting the assumption that ex is false. Therefore, whenever the honest verifier accepts (in the
right execution), ex must be a true statement, except for negligible probability. This establishes the
simulation soundness.

Remark 5 (On the Non-Malleability of ⇧ss). Due to the high similarity of the above proof to that
of Lem. 2, one may wonder why we did not claim that ⇧ss is non-malleable (instead of “simulation-
sound”). The reason is that the above proof relies crucially on the condition that ex is false. If ex is
true, the man-in-the-middle A may (use ( ew,?) to) perform a fake execution of ⇧Mini

bgrrv in the right
interaction. Then, the Step 2 execution in the right may not be a proper ENMC. In this case, the
proof of Lem. 2 does not go through any more. More specifically, it is unclear how to argue that
the invariant condition holds when we switch from H1 to H2 (as we did in the proof of Lem. 2).

Argument of Knowledge. To prove the AoK property, we only need to consider the stand-alone
execution (in contrast to the above man-in-the-middle setting). Consider a malicious prover P ⇤

that convinces the honest verifier on a statement x. First, note that P ⇤ cannot make the Commit
Stage (see Prot. 3) of the Step 2 ⇧Mini

bgrrv to be a valid commitment to �; otherwise, one can
extract � from the Commit Stage of ⇧Mini

bgrrv (regardless of whether it is a real execution or a fake
execution of ⇧Mini

bgrrv)
11, which breaks the computationally-hiding property of the Stage-1 ExtCom.

Given that, we now observe that the AoK property of ⇧ss follows from the AoK property of the
Stage-4 sWIAoK.

5.5 Putting It All Together: Fast NMZK and NMCom

Now we show how to get e�cient and full-fledged non-malleable zero-knowledge and commitment
protocols with the help of our e�cient simulation-sound ZKAoK protocol ⇧ss and the statistically
WIAoK protocol ⇧or.

Fast NMZK Protocol. We present our final NMZK protocol in Prot. 5. At a high level, the prover
in Prot. 5 sets up a “trapdoor statement” in the form of a commitment cm, and proves using ⇧ss

that cm is a commitment to 0. Later, the prover proves using protocol ⇧or that either the statement
is true or that cm is a commitment to 1. The honest prover always commits to 0 and thus remains
fast. The simulator commits to 1 instead. We establish the security of Prot. 5 by Thm. 3.

Protocol 5: hP , V ifinal: Non-Malleable ZKAoK

The common inputs are statement x, tag id, and security parameter �. Prover’s private input is
a witness w 2 RL(x), where L is the desired NP language. The protocol proceeds as follows:

11 Recall that if the Committing Stage of ⇧Mini
bgrrv is a valid commitment, the committed value can be extracted by

rewinding this stage only. This property has nothing to do with the Consistency Proof stage.
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1. P commits to 0� using 2-round Naor commitment; let ⇢ be the first message of this commitment
and cm = Com⇢(0�) the second message.

2. P and V execute ⇧ss with tag id, where P proves that cm is a valid commitment to 0�.

3. P and V execute ⇧or, where P proves that:

– x 2 L, or

– cm is a valid commitment to 1�, i.e., (cm, 1�) 2 LCom⇢ .

Theorem 3. Protocol hP, V ifinal (Prot. 5) is a non-malleable zero-knowledge argument of knowledge
for L.

Proof. Completeness is straightforward. The argument of knowledge property (and hence sound-
ness) follows from the soundness of ⇧ss and the argument of knowledge property of Step 3 WIAoK.
In the following we prove the zero-knowledge property and non-malleability.

Zero-Knowledge. The simulator Sim for the ZK property proceeds as follows: it sets cm to be a
commitment to 1� with randomness r and succeeds in Step 2 using the simulator S guaranteed for
⇧ss; It uses the fake witness (1�, r) to succeed in WIAoK in Step 3. Indistinguishability properties
and running time of Sim follow the standard arguments and omitted. The hybrids given below can
also be used to prove these properties.

Non-Malleability. The proof of non-malleability is almost identical to the non-malleability proof
for hP, V iNMZK (Lem. 2). We only provide a sketch. Given any man-in-the-middle adversary Amim

that can convince an honest verifier with probability p, we consider the following sequence of
hybrids:

– Hybrid H0: the hybrid H0 sets up the left and right executions for Amim with P (x,w) and V
respectively. It outputs the joint view of Amim containing both left and right executions.

– Hybrid H1: this hybrid is identical to H0, except that H1 uses the simulator Simss of ⇧ss to
simulate Amim’s view in the right and left Step 2 execution.

– Hybrid H2: this hybrid is identical to H1, except that H2 sets cm (the Step 1 commitment on
the right) to a commitment to 1�.

– Hybrid H3: this hybrid is identical to H2, except that H3 uses the witness for “cm is a valid
commitment to 1�” in the Step 3 sWIAoK on the left.

The key point of the argument is to show that when H2 starts to set cm to a commitment to
1� and invokes Simss to go through Step 2, Amim cannot set fcm (the right Step 1 commitment) to
a commitment to 1�, and give a convincing proof in the right sWIAoK with probability more than
negligible. This is guaranteed by the simulation soundness of ⇧ss (Def. 3). Thus, for the standalone
execution (to show non-malleability property), we can build a simulator Sim that internally runsH3.
Sim will extract a witness ew from the right sWIAoK with probability negligibly close to p, and use it
to honestly convince an external verifier of hP, V ifinal. This finishes the proof of non-malleability.

Fast NMCom Protocol. Our non-malleable commitment protocol is presented in Prot. 6. At a
high level, Prot. 6 works in the same way as the non-malleable zero-knowledge protocol above,
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except that x is replaced with a commitment to the desired value. Its security proof follows closely
from the proofs of Thm. 3 and Lem. 2. Thus, we omit the details.

Protocol 6: hC, Rifinal: Non-Malleable Commitment

The common input is a tag id and the security parameter �. Private input of the committer is a
value v 2 {0, 1}�. The protocol proceeds as follows:

1. C commits to v using two-round Naor commitment; let R’s first message be ⇢, and c = Com⇢(v)
denote the second message.

2. C further commits to 0� using ⇢ as first message. Let cm = Com⇢(0�).

3. C proves that cm is valid commitment to 0� using ⇧ss with tag id.

4. C proves using ⇧or that:

– there exists v such that c is a valid commitment to v, i.e., (c, v) 2 LCom⇢ , or

– cm is a valid commitment to 1�, i.e., (cm, 1�) 2 LCom⇢ .

6 Summary of Performance

We analyze both the communication and computational complexity of SSZK, NMZK, and NMCom
protocols as well as a concrete evaluation of their cost. We provide a summary of the asymptotic
performance in Table 2. The concrete performance was already provided toward the end of the
introduction (Table 1).

We measure the complexity for given circuit size s in terms of number of AES� and SHA256�
evaluations. We denote by AES� an evaluation of the AES block cipher on a �-bit string and
SHA256� in the same manner for SHA256. We denote the size of the consistency-checking circuit
by Ccons and the “equality testing” circuit by Ceq—this circuit on input (c, v, r) tests whether c is
a commitment to v with randomness r.

A more detailed analysis can be found in Appx. D.

Table 2: Asymptotic complexity of NMZK, Ligero, and NMCom. Only dominating terms are shown
in each cell. Plain Ligero is shown for comparison purposes.

Protocol #AES�#AES�#AES� #SHA256�#SHA256�#SHA256� Communication

NMZK �
2s+

p
Ccons logCcons +p

Ceq logCeq + 2Ceq

�(�+ k2 + 2
p
s+

p
Ccons +

3
p

Ceq + 2
p
Csha)

NMCom 1
2s+

p
Ccons logCcons +p

Ceq logCeq + 3Ceq

�(�+ k2 + 2
p
s+

p
Ccons +

4
p

Ceq + 2
p
Csha)

Ligero 0 s �
p
s
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A Additional Preliminaries

A.1 Collision-Resistant Hash Families

We use the definition from [HR04].

Definition 6 (Collision-Resistant Hash Families). A collision-resistant hash family (CRHF)
is a collection of functions H = {hi}i2I for some index set I, where hi : {0, 1}`(|i|) ! {0, 1}`

0(|i|)

and `(|i|) > `0(|i|). It satisfies the following requirements:

– Key Generation. There exists a PPT key generating algorithm KGen, so that KGen(1�) 2
{0, 1}m(�)

\ I, where m(�) is a polynomial on � representing the length of the key.

– E�cient Evaluation. There exists a (deterministic) polynomial time algorithm Eval such that
8i 2 I and 8x 2 {0, 1}`(|i|), Eval(i, x) = hi(x).

– Non-Uniform Collision Resistance. For any non-uniform PPT machine A, the following
holds:

Pr[i
$
 � KGen(1�), (x, x0) A(i) : x 6= x0 ^ hi(x) = hi(x

0)]  negl(�).

– Public-Coin: if the index set I is {0, 1}⇤ and KGen(1�) outputs a uniformly distributed string
from {0, 1}m(�), then we say that it is a public-coin CRHF, i.e., the family remains collision-
resistant even if the randomness used to generate the key is known to the adversary. Also, we
emphasize that the collision-resistance property holds against non-uniform PPT adversaries.

A.2 Extractable Commitment

We present here the definition of extractable commitments. A commitment scheme is extractable
if there exist an e�cient extractor such that, as long as the committer behaves honestly, the
committed value can be extracted. Constructions for such commitment already existed implicitly
in the implementation of concurrent zero-knowledge protocols in [PRS02, Ros04]. This concept
and constructions were later made explicit in [MOSV06], which also inherited the concurrent ex-
tractability from [PRS02]. The standalone version was later formalized and used in other works
[PW09, GGJS12, GKP17]. Extractability in the standalone setting su�ces our purpose. We now
present the definition (in Def. 7) and construction (in Prot. 7) from [PW09].

Definition 7 (Extractable Commitment). A commitment scheme ExtCom = (S,R) is ex-
tractable if there exists an expected polynomial-time probabilistic oracle machine (the extractor) Ext
that given oracle access to any PPT cheating sender S⇤ outputs a pair (⌧,�⇤) such that:

– Simulation: ⌧ is identically distributed to the view of S⇤ at the end of interacting with an
honest receiver R in commitment phase.

– Extraction: the probability that ⌧ is accepting and �⇤ = ? is negligible.

– Binding: if �⇤
6= ?, then it is statistically impossible to open ⌧ to any value other than �⇤.

Protocol 7: ExtCom: Extractable Commitment Scheme
The extractable commitment scheme, based on any commitment scheme Com, works in the fol-
lowing way.

Input:
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– both S and R get security parameter 1� as the common input.

– S gets a string � as his private input.

Commitmment Phase:

– The sender (committer) S commits using Com to � pairsa of strings {(v0i , v
1
i )}

�
i=1 where

(v0i , v
1
i ) = (⌘i,� � ⌘i) and ⌘i are random strings in {0, 1}`(�) for 1  i  �.

– Upon receiving a challenge c = (c1, . . . , c�) from the receiver R, S opens the commitments to
(vc11 , . . . , vc�� ).

– R checks that the openings are valid.

Decommitment Phase:

– S sends � and opens the commitments to all � pairs of strings.

– R checks that all the openings are valid, and also that � = v01 � v11 = · · · = v0� � v1�.

a Actually, the scheme will be secure as long as we use Com to commit !(log �) such pairs.

A.3 The Halevi-Micali Commitment Scheme

We use the standard definition for statistically-hiding commitments [Gol01]. In particular, we will
use the statistically-hiding commitment proposed by Halevi and Micali [HM96]. We refer the reader
to [HM96] for details. In the following, we briefly recall the construction and its e�ciency when
committing to a message m 2 {0, 1}n(�), where n(�) is some fixed polynomial on the security
parameter �.

Construction. Let L := 4� + 2n + 4. Let h : {0, 1}L ! {0, 1}� be a collision resistant hash
function; let H be a pair-wise independent hash family from {0, 1}L to {0, 1}n. Using the standard
construction, each element in H can be described using (L+ 2�) bits.

To commit to m, the sender picks a random r 2 {0, 1}L and computes y = h(r). Then, it picks
a random function H 2 H for which H(r) = m. The commit-string is SBCom = (H, y) and the
decommitment information is just r.

E�ciency. The communication complexity of this construction is summarized below

(
Commit Stage: |SBCom| = |H|+ |y| = (L+ 2�) + � = 7�+ 2n+ 4

Decommit Stage: |SBCom| = |r| = L = 4�+ 2n+ 4
.

The computational complexity is the same for the sender and the receiver. It only consists of
evaluating the following functions

– the collision-resistant hash h : {0, 1}4�+2n+4
! {0, 1}�, and

– the pair-wise independent hash H : {0, 1}4�+2n+4
! {0, 1}n.
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B An Overview of the Zero-Knowledge Protocol Ligero

In the following, we recall the structure of the zero-knowledge protocol Ligero from [AHIV17]. We
will recall related notation and techniques only to the extent that is adequate to understanding our
construction. More details (e.g., ZKIPCP, parameter settings, etc.) can be found in [AHIV17].

The Honest-Verifier Version. In [AHIV17], the authors first built an e�cient zero-knowledge
interactive PCP (ZKIPCP) protocol for the satisfiability of arithmetic circuits12. Then, they applied
the [Kil92, IMS12] technique to convert the ZKIPCP to a sub-linear honest-verifier ZKAoK in 6
rounds. We present this protocol in Prot. 8. We suppress technical details that are less relevant to
our work. Interested readers can refer to [AHIV17] for related information.

Protocol 8: Ligero: Honest-Verifier ZKAoK [AHIV17]

This construction uses a two-round statistical-hiding commitment SHCom, and a collision-resistant
hashing family {H�}�. Note that SHCom can be constructed from any collision-resistant hashing
family. This protocol is for the satisfiability of arithmetic circuits Cir over a finite field F.
Besides the security parameter �, this protocol is parameterized by several extra parameters n,
t, m and `. To achieve 2� soundness, one can set |F| > O(2�), n = O(�), t = �n for some small
constant � 2 (0, 1), m = O(

p
s/�) and ` = O(

p
s · �), where s is the number of gates in the circuit

Cir. Since they are not crucial to understand our protocol, we refer the reader to [AHIV17] for
more details.

Public Input: Security parameter �, an arithmetic circuit Cir over a field F.

Private Input: Prover P takes the witness x s.t. Cir(x) = 1.

1. V samples a CRHF h↵
$
 � H� and sends it to P . Looking ahead, h↵ will be used both as the

first-round message of SHCom and as the hash function to build a Merkle tree.

2. P computes the ZKIPCP oracle ⇡ for the proof of Cir(x) = 1, where the aforementioned
parameter n denotes the length of ⇡. P commits to ⇡ using the second-round message of
SHCom. P uses h↵ to build a Merkle hashing tree on the committed ⇡. P sends the root of
Merkle tree root to V .

3. V sends to P a random vector �1
$
 � F5m+4m`. We remark that �1 is the challenges corre-

sponding to the “interactive” part of the ZKIPCP.

4. P answers V ’s challenge �1.

5. V sends to P a size-t random subset �2 ✓ [n]. We remark that �2 contains the positions of
Merkle tree leaves where V wants to challenge P , i.e. the queries to the “oracle” part of the
ZKIPCP.

6. P answers V ’s challenge �2 (i.e., decommitting to the leaves specified by �2 and sending the
related Merkle paths).

Verifier’s decision: V accepts i↵ P ’s answers to both �1 and �2 are convincing.

12 They also talked about how to optimize their construction when working with Boolean circuits.
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Notation: Throughout this paper, we will denote these six rounds as (h, a, b, c,eb,ec). We also
remark that if the CRHF is picked from a public-coin CRHF family (as defined in Def. 6), then V
can simply send (in Round 1) the randomness that specifies the specific hash function. Therefore,
we view h as the randomness that specifies the underlying function. In this way, it is clear that
this protocol is public-coin.

HVZK Simulator. The protocol shown in Prot. 8 is a honest-verifier statistical zero-knowledge
argument of knowledge. In this paper, we will need to use the honest-verifier ZK simulator for
this protocol. We denote this simulator as HVSim. Parametrically, HVSim takes the statement Cir
and randomly sampled (h, b,eb) as input, and output HVSim(Cir, h, b,eb) = (h, a, b, c,eb,ec), which are
negligibly close to the distribution of the view of an honest verifier.

In this work, we relies heavily on the fact that this HVSim can be implemented very e�ciently.
We provide more details on how it works in Algo. 1 of Sec. 3.

Against Malicious Verifiers. [AHIV17] also showed how to make the protocol secure against
malicious verifiers, using the technique developed in [IMS12, MX13]. Roughly speaking, it works in
the same way as the Goldreich-Kahan transformation to make an honest-verifier ZK secure against
malicious verifiers. Concretely, we ask the verifier to commit to �1 and �2 with a statistically-hiding
commitment scheme at the beginning, and decommit to them later to let P responds accordingly.
We denote this fully-secure zero-knowledge protocol as Ligero0 and present it formally in Prot. 9.

Protocol 9: Ligero0: The Malicious-Verifier Version of Ligero [AHIV17]

This protocol is for the satisfiability of arithmetic circuits Cir over a large field F. It assumes the
existence of two-round statistically-hiding commitment SHCom, a non-interactive statistically-
binding commitment Com, a collision resistant hash family {H�}� and the ZKIPCP protocol from
[AHIV17]. (The parameters below share the same meaning as in Prot. 8.)

Public Input: Security parameter �, an arithmetic circuit Cir over a field F.

Private Input: Prover P takes the witness x s.t. Cir(x) = 1.

1. P samples a CRHF h�
$
 � H� and sends it to V . Looking ahead, this h� will be used both as

the first-round message of a SHComh� scheme by which the verifier commits to its challenge
string.

2. V performs the following two sub-steps:

(a) V samples a random vector �1
$
 � F5m+4m` and a size-t random subset �2 ⇢ [n] of size t. V

commits to P the values �1 and �2 separately in parallel, using the second-round message
of SHComh� .

(b) V also samples a CRHF h↵
$
 � H� and sends it to P . Looking ahead, this h↵ will be used

both as the first-round message of a SHComh↵ scheme, and as the hash function to build
the Merkle tree.

3. P computes the ZKIPCP oracle ⇡ for the proof of Cir(x) = 1. P commits to ⇡ using the
second-round message of SHCom. P uses h↵ to build a Merkle hashing tree on the committed
⇡. P sends the root of Merkle tree root to V .
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4. V decommits to �1 (w.r.t. its Round 2 commitment SHComh� ).

5. P checks if the decommitment to �1 is valid. If not, P aborts; otherwise, P responds according
to �1 as in the honest-verifier version Ligero (Prot. 8).

6. V decommits to �2 (w.r.t. its Round 2 commitment SHComh� ).

7. P checks if the decommitment to �2 is valid. If not, P aborts; otherwise, P responds according
to �2 as in the honest-verifier version Ligero (Prot. 8).

Verifier’s decision: V accepts i↵ P ’s answers to both �1 and �2 are convincing.

C OR-Composition of the Honest-Verifier Ligero (Full Version)

We now describe how to obtain e�cient sWIAoK protocols that can be used in Step 4 in our
NMZK protocols (Prot. 2). As noted earlier, the key point is that the simulators of sub-linear ZK
protocols—particularly those based on PCPs [Kil92, IMS12, AHI+17], including Ligero—can be
much faster than the honest prover algorithm. We show how to combine this observation with the
OR-composition technique [CDS94, Dam02] to greatly improve the e�ciency of our protocols.

Road Map. We present the construction and its security proof in Appx. C.1. Then, in Appx. C.2,
we show how to instantiate di↵erent components of our construction such that the resulting protocol
is practically fast. In particular, our construction will make use of a statistically WIAoK protocol;
we will give an e�cient construction based on Ligero; this construction is shown in Appx. C.3.

C.1 Construction

As we have already discussed in Sec. 5.2, the plain generalization of the OR-composition technique
from [CDS94] is unlikely to work for Ligero as it is not a sigma protocol. In particular, Ligero has
two challenge-response slots; a malicious prover may maul di↵erent parts of these two slots to break
soundness.

Also, we already presented in Sec. 5.2 the high-level idea about how our construction addresses
this problem: we ask P to commit in advance the shares for the session that it will run HVSim
for; at the end, P will give a statistically WIAoK proving that it really behaves as required. We
now present the formal description of our construction in Prot. 10. It makes use of the following
building blocks:

– A statistically-hiding commitment scheme SHCom. In particular, we use the 2-round Halevi-
Micali scheme shown in Appx. A.3.

– The Ligero protocol shown in Prot. 8.

– A statistically WIAoK protocol sWIAoK. We remark that any statistically WIAoK will work.
But to achieve better e�ciency, we will design a specific sWIAoK again based on Ligero. We will
show how to do it in Appx. C.3.

Protocol 10: ⇧or: OR-Composition of Ligero

This protocol, which we denote as ⇧or, runs in parallel two instances of the (honest-verifier)
Ligero (Prot. 8), whose 6 messages are denoted as (h, a, b, c,eb,ec). It proves some instance of an
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OR-composed language (x, x0) 2 L _ L0. W.l.o.g., we assume that P is given a witness w for x
(i.e., P knows the left witness).

1. V sends the first message for SHCom.

2. P computes the following messages:

(a) P runs the statistical HVZK simulator for Ligero to compute (h2, a2, b2, c2,eb2,ec2)  
HVSim(x0).

(b) P samples a random tape r and generates com = SHCom(h2kb2keb2; r).

P sends com to V .

3. V samples uniformly at random a string h, which has the same length as the 1st message of
Ligero. It sends h.

4. P computes h1 = h�h2. It then runs the prover’s algorithm of Ligero on statement x, using w
as the witness and h as the 1st message, to obtain the 2nd message a1. P sends (h1, a1, h2, a2).
(Recall that (h1, a2) were defined in Step 2b.)

5. V samples uniformly at random a string b, which has the same length as the 3rd message of
Ligero. It sends b.

6. P defines b1 := b� b2 and continues to run the prover of Ligero using b1 as the 3rd message to
obtain next message c1. It sends (b1, c1, b2, c2).a

7. V samples uniformly at random a string eb, which has the same length as the 5th message of
Ligero. It sends eb.

8. P defines eb1 := eb�eb2 and continues to run the prover of Ligero using eb1 as the 5th message to
obtain the final message ec1. It sends (eb1,ec1,eb2,ec2).

9. P and V execute sWIAoK where P proves that

9r s.t. com = SHCom(h1kb1keb1; r) _ com = SHCom(h2kb2keb2; r), (1)

where com is defined in Step 2b, (b1,eb1) are defined in Step 6, and (b2,eb2) are defined in Step 8.
Note that the honest P uses the (h2, b2,eb2, r) as the witness to finish this sWIAoK, because
this is exactly how it generated com in Step 2b.

Verifier’s Decision: V accepts i↵ the following conditions hold:

1. h1 � h2 = h, b1 � b2 = b and eb1 �eb2 = eb,

2. both (h1, a1, b1, c1,eb1,ec1) and (h2, a2, b2, c2,eb2,ec2) are convincing w.r.t. the Ligero protocol,
and

3. V accepts as the verifier of the Step 9 sWIAoK.

a Note that P does not really need to send b2 because B can derive it from b1 and b. We asks P to send it only for
conceptual clearness.

We prove the following Lem. 5, which establishes the security of Prot. 10.
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Lemma 5. Let L and L0 be NP languages. Protocol ⇧or (Prot. 10) is an interactive argument of
knowledge for L _ L0; furthermore, for any statement (x, x0) 2 L _ L0 such that x 2 L and x0 2 L0,
⇧or is statistically witness-indistinguishable.

The completeness of Prot. 10 is straightforward. In the following, we first show the argument
of knowledge property in Sec. C.1.1, and then establish the statistical WI property (when both x
and x0 are true) in Sec. C.1.2.

C.1.1 Proving Argument of Knowledge

We reduce the AoK property of Prot. 10 to that of Ligero. Specifically, fix any (deterministic13)
cheating prover P ⇤ which is able to convince the (honest) verifier of Prot. 10 with probability at
least "(�). We show how to e�ciently construct a new PPT adversarial prover P 0 that convinces
the Ligero verifier with some probability that is polynomially related to "(�). This implies the AoK
property of Prot. 10, because we can invoke the knowledge extractor of Ligero on P 0 to extract a
valid witness.

The description of P 0 is given in Algo. 2.

Algorithm 2: Malicious Prover P 0 Attacking Ligero

The P 0 runs P ⇤ internally, while externally interacting with the Ligero verifier VLigero. It proceeds
as follows:

1. (Obtaining the Prefix.) P 0 executes Prot. 10 internally with P ⇤ until the end of Step 2,
where P 0 plays the role of the honest verifier. We denote the snapshot of P ⇤ at this moment
as ⌧ , and use P ⇤

⌧ to denote the remaining strategy of P ⇤ with the prefix ⌧ .

2. (Extracting Committed Value.) Starting from this prefix ⌧ , P 0 continues to run the in-
ternal P ⇤, playing the role of the Prot. 10 verifier honestly. At the end of this execution, if
P ⇤’s proof is not accepted, P 0 aborts and outputs a special symbol Fail; otherwise, it runs
the knowledge extractor of the final sWIAoK (i.e., Step 9) to extract a valid witness of the
language defined in Eq. (1). We denote this (extracted) witness as (h,b, eb, r). Note that we
should have com⇤ = SBCom(hkbkeb; r), where com⇤ is the Step 2 message contained in ⌧ .

3. (Interacting with VLigero.) P 0 now starts interacting with VLigero.

(a) First, P 0 picks a random bit i
$
 � {0, 1}. Looking ahead, P 0 will forward a session to the

external VLigero according to this bit—if i = 0 (resp. i = 1), the left (resp. right) session
will be forwarded out.

(b) P 0 receives the 1st Ligero message h from VLigero. It then sets h⇤ = h� h, and feeds h⇤ to
P ⇤
⌧ as the Step 3 message of the internal execution of Prot. 10.

(c) P ⇤
⌧ responds with (h⇤1, a

⇤
1, h

⇤
2, a

⇤
2) as the Step 4 message of Prot. 10. If h⇤ 6= h⇤1 � h⇤2 or

h⇤i�1 6= h, P 0 aborts and outputs a special symbol Fail. Otherwise, we must have h⇤i = h.
In the latter case, P 0 forwards a⇤i to VLigero as the 2nd message of Ligero.

(d) P 0 receives the 3rd Ligero message b from VLigero. It then sets b⇤ = b � b, and feeds b⇤ to
P ⇤
⌧ as the Step 5 message of the internal execution of Prot. 10.

13 This is w.l.o.g. since P ⇤ is non-uniform.
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(e) P ⇤
⌧ responds with (b⇤1, c

⇤
1, b

⇤
2, c

⇤
2) as the Step 6 message of Prot. 10. If b⇤ 6= b⇤1�b

⇤
2 or b

⇤
i�1 6= b,

P 0 aborts and outputs a special symbol Fail. Otherwise, we must have b⇤i = b. In the latter
case, P 0 forwards c⇤i to VLigero as the 4th message of Ligero.

(f) P 0 receives the 5th Ligero message eb from VLigero. It then sets eb⇤ = eb � eb, and feeds eb⇤ to
P ⇤
⌧ as the Step 7 message of the internal execution of Prot. 10.

(g) P ⇤
⌧ responds with (eb⇤1,ec⇤1,eb⇤2,ec⇤2) as the Step 8 message of Prot. 10. If eb⇤ 6= eb⇤1�eb⇤2 or eb⇤i�1 6=

eb,
P 0 aborts and outputs a special symbol Fail. Otherwise, we must have eb⇤i = eb. In the latter
case, P 0 forwards ec⇤i to VLigero as the 6th message of Ligero.

It follows immediately from the description that P 0 is an expected (also see Rmk. 6) PPT
machine. We only need to show that P 0 convinces VLigero with some probability polynomially related
to "(�). To do that, observe the following facts:

1. By a standard averaging argument, it follows that for "/2 fractions of all possible ⌧ , P ⇤
⌧ (defined

in Step 1) gives a convincing proof with probability at least "/2.

2. It is easy to see that the view of the internal P ⇤ is identically distributed as its view in a real
execution of Prot. 10, regardless of the bit i picked by P 0. Consider the following Good event:

– Good: for the (h⇤1, h
⇤
2, b

⇤
1, b

⇤
2,
eb⇤1,eb⇤2) defined in Steps 3c, 3e and 3g, there exists a bit j 2 {0, 1}

s.t. (h⇤j�1, b
⇤
j�1,

eb⇤j�1) = (h,b, eb). (Note that this implies (h⇤j , b
⇤
j ,
eb⇤j ) = (h, b,eb), where (h, b,eb)

come from the external VLigero.)

We know that ¬Good can only happen with probability negl(�)—Otherwise, P ⇤ breaks the the
computational binding property of SHCom.

3. As explained earlier, all P ⇤ does is simply pick one of the two sessions (i.e., the session specified
by i) to relay its messages to the external VLigero. Since i is picked uniformly at random from
{0, 1}, it holds that i = j (recall that j is in {0, 1} also) with probability exactly 1/2.

Therefore, the outside VLigero will be convinced with probability at least

"/2 · "/2 · (1� negl(�)) · 1/2 = "2/8� negl(�),

which is polynomially related to ". We can therefore invoke the knowledge extractor of Ligero on P 0

to extract the witness. This finishes the proof of the argument of knowledge property of Prot. 10.

Remark 6 (On the Expected Running Time of P 0). One subtlety of the above argument is that in
the standard definition of AoK, the knowledge extractor needs access to a strictly polynomial time
P 0. However, the P 0 we constructed runs in expected polynomial time. This can be addressed by
a standard technique—simply pick a large enough polynomial as an upper-bound for the running
time of P 0, and truncate the machine P 0 if it runs beyond this upper-bound. Then, by Markov
inequality, P 0 still convinces VLigero with polynomial-inverse probability (i.e., it is good enough for
Ligero’s knowledge extractor to succeed).

C.1.2 Proving Statistical WI

At a high-level, we will define 9 hybrids {H0, . . . , H8}, where H0 is identical to the real execution
of Prot. 10 with P using the witness w for x, and H8 is identical to the real execution of Prot. 10
with P using the witness w0 for x0. For any i 2 {0, . . . , 8}, the output of Hi, dubbed OUT(Hi), is
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defined to be the output of the malicious V ⇤ in Hi. Then, the proof will be done once we show that
the outputs of all adjacent hybrids are statistically close.

Hybrid H0: This is the real execution of Prot. 10 with P using the witness w for x.

Hybrid H1: This hybrid is identical to the previous one, except for the following changes: At the
beginning of Step 9, this hybrid checks if there exists r0 such that com = SHCom(h1kb1keb1; r0). If
not, it aborts and output Fail; otherwise, it finishes the execution identically to H0. Some remarks
about this hybrid follow:

1. This hybrid is not e�cient;

2. There could exist more than one r0 satisfying the above requirement. In that case, any r0 will
work.

3. Starting from this hybrid, the final sWIAoK (i.e. Step 9) will be executed only if there exists
such an r0 that can “explain” com to the commitment of h1kb1keb1.

OUT(H0)
s
⇡ OUT(H1): First, observe that these two hybrids are identical conditioned on that there

exists an r0 as required above. Also, it follows from the statistical hiding property of SHCom that

there must exist such an r0 except for with negligible probability. Therefore, we have OUT(H1)
s
⇡

OUT(H2).

Hybrid H2: This hybrid is identical to the previous one except that in the Step 9 sWIAoK, the P
uses (h1, b1,eb1, r0) as the witness (see Item 3).

OUT(H1)
s
⇡ OUT(H2): This follows immediately from the statistical WI property of sWIAoK.

Hybrid H3: This hybrid is identical to the previous one except that in Step 2b, the P generates

com as com = SHCom(0|h2|k0|b2|k0|
eb2|; r). Note that in this hybrid, P only needs to know the length

of (h2, b2,eb2), which is public information depends only on �. Also note that |h2| = |h1| = |h|,
|b2| = |b1| = |b|, and |eb2| = |eb1| = |eb|.

OUT(H2)
s
⇡ OUT(H3): This follows immediately from the statistical hiding property of SHCom.

Hybrid H4: This hybrid is identical to the previous one except for the way the messages (h2, a2, b2, c2,eb2,ec2)
are generated in Step 2a. Recall that in H3 (and also H0 to H2), these messages are generated by
HVSim(x0). In the current hybrid, we give the witness w0 to H4. It internally emulates a real execu-
tion of Ligero where the prover uses witness w0 to give a proof for x0. We use the (h2, a2, b2, c2,eb2,ec2)
from the transcript of this emulated execution in place of those generated by HVSim in the previous
hybrid.

OUT(H3)
s
⇡ OUT(H4): This follows immediately from the statistical HVZK property of Ligero.

Hybrid H5: This hybrid is exactly the same as H4, but we interpret it in a di↵erent way: Note
that in H5, both the left and right session consists of real Ligero executions—the left session is given
by the (honest) Ligero prover PLigero(x,w), resulting in a transcript (h1, a1, b1, c1,eb1,ec1); the right

session is given by the Ligero prover PLigero(x0, w0), resulting in a transcript (h2, a2, b2, c2,eb2,ec2).
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In H4, we “view” it as the following game: the hybrid internally emulates the right session
by picking random (h2, b2,eb2), and the (h1, b1,eb1) are generated by an XOR operation such that
h1 � h2 = h, b1 � b2 = b, and eb1 � eb2 = eb, where (h, b,eb) are picked by V ⇤. In this hybrid, we
view it in the following manner: the hybrid internally emulates the left session by picking random
(h1, b1,eb1), and then generates (h2, b2,eb2) by an XOR operation such that h1� h2 = h, b1� b2 = b,
and eb1 �eb2 = eb. Obviously, these two interpretations are equivalent.

OUT(H4)
id
= OUT(H5): As mentioned above, H5 is just a di↵erent interpretation of H4, without

any real changes.

Hybrid H6: This hybrid is identical to the previous one, except that in Step 2a, P computes
(h1, a1, b1, c1,eb1,ec1) HVSim(x).

OUT(H5)
s
⇡ OUT(H6): H6 simply replaces the messages yielded by a real left session by the output

of HVSim. Thus, the indistinguishability follows by the statistical HVZK property of Ligero. This
is analogous to the (reverse) hop from H3 to H4.

Hybrid H7: This hybrid is identical to the previous one except that in Step 2b, P generates com
as com = SHCom(h1kb1keb1; r).

OUT(H6)
s
⇡ OUT(H7): This follows immediately from the statistical-hiding property of SHCom.

This is analogous to the (reverse) hop from H2 to H3.

Hybrid H8: Recall that starting from H1, the hybrid checks if there is an r0 satisfying com =
SHCom(h1kb1keb1; r0), right before the Step 9 sWIAoK starts. In H8, the hybrid does not check the
existence of r0 anymore. It simply use the (h1, b1,eb1, r) as the witness to finish the sWIAoK. This can
be done because in H7, the com in Step 2b is generated as SHCom(h1kb1keb1; r); thus, (h1, b1,eb1, r)
constitute a valid witness for the language specified in Eq. (1).

Observe that H8 is exactly the real execution of Prot. 10 with the honest prover using the right
witness w0 (and thus the left session is simulated by HVSim).

OUT(H7)
s
⇡ OUT(H8): The only di↵erence is the witness used in the final sWIAoK. Thus, the

indistinguishability follows form the statistical WI property of sWIAoK. Note that we do not claim
that these two hybrids are identical, as the r0 used in H7 may not be the same as the r used in H8;
but both of them serve as valid random tape that explains com as a SHCom to h1kb1keb1.

The above argument implies OUT(H1)
s
⇡ OUT(H8), which finishes the proof for the statistical

WI property of Prot. 10.

C.1.3 Regarding Malicious-Verifier Zero Knowledge

It is easy to see that ⇧or (Prot. 10) is also an honest-verifier ZK argument (of knowledge). Using
the Goldreich-Kahan style argument [GK96] (as done in [IMS12, AHIV17]), we can convert it to
a fully-secure ZK argument, i.e., against malicious verifiers. We denote the resulting protocol as
⇧0

or, and present it formally in Prot. 11. Note that ⇧0
or will not be an argument of knowledge any

more. But it is good enough to be used in the consistency proof of the ⇧Mini
bgrrv commitment (as this

application does not require AoK property).
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Protocol 11: ⇧0
or: Maliciously-Secure ZK from OR-Composition

Let L, L0, (x, x0) and ⇧ be the same as in Prot. 10. Our ⇧0
or for proving (x, x0) 2 L_L0 proceeds

as follows:

1. P and V execute a two-round statistically-hiding commitment scheme SHCom, where V com-
mits to the messages h, b, and eb separately in parallel (in form of the verifier’s challenge in
⇧or).

2. P and V then engage in executing ⇧or (Prot. 10) with the following modifications:

– In Step 3 of ⇧or, instead of sending h, V decommits to h; P continues only if this decom-
mitment is valid.

– In Step 5 of ⇧or, instead of sending b, V decommits to b; P continues only if this decom-
mitment is valid.

– In Step 7 of ⇧or, instead of sending eb, V decommits to eb; P continues only if this decom-
mitment is valid.

Everything else remains the same as in ⇧or.

Lemma 6. Let L,L0
2 NP. Protocol ⇧0

or is zero-knowledge argument for L _ L0.

Proof. The proof follows from Goldreich-Kahan technique [GK96], as done in [IMS12, AHIV17]).

C.2 E�cient Instantiation

We now discuss how to implement ⇧or (Prot. 10) e�ciently. As shown in Appx. C.1, ⇧or is simply
the plain OR-composition of Ligero plus the following two extra gadgets:

– A SHCom at the beginning;

– A sWIAoK at the end.

To measure its e�ciency, we mainly focus on the cost of these two gadgets. This is because the cost
due to the plain OR-composition cannot be avoid; thus, we want to minimize the additional cost.
We will call the additional cost due to the above two gadgets the overhead compared with the plain
OR-Composition.

Committing to Hash Tags. First, we note that the message committed by the SHCom in Step 2b
is h2kb2keb2, which is of the same length as the corresponding Ligero messages (i.e. |h| + |b| + |eb|).
Since we need to execute a statistical WIAoK on this commitment in Step 9, we want to avoid
committing long strings. We use a simple trick to shorten the committed message to be of length
3�. To do that, we ask the prover to use a CRHF H : {0, 1}⇤ ! {0, 1}�:

– In Step 2b, we ask the prover to compute the hash tags: tagh2
= H(h2), tagb2 = H(b2) and

tageb2 = H(eb2); and instead of committing to h2kb2keb2, the prover commits to tagh2
ktagb2ktageb2 .

– In Step 4, the prover additionally computes tagh1
= H(h1), and additionally sends (tagh1

, tagh2
);

The verifier additionally checks if tagh1
= H(h1) and tagh2

= H(h2).
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– In Step 6, the prover additionally computes tagb1 = H(b1), and additionally sends (tagb1 , tagb2);
The verifier additionally checks if tagb1 = H(b1) and tagb2 = H(b2).

– In Step 8, the prover additionally computes tageb1 = H(eb1), and additionally sends (tageb1 , tageb2);

The verifier additionally checks if tageb1 = H(eb1) and tageb2 = H(eb2).

In this way, the sWIAoK in in Step 9 will be done for the following short statement:

9r s.t. com = SHCom(tagh1
ktagb1ktageb1 ; r) _ com = SHCom(tagh2

ktagb2ktageb2 ; r).

Note that |tagh2
|+ |tagb2 |+ |tageb2 | = 3�. Thus, the honest prover only needs to commits to a string

of length 3�.

In summary, the e�ciency comes from the fact that the task of verifying the hash tags are done
outside of the circuit to be proven by ZKAoK.

Overhead of Prot. 10. To analyze the e�ciency of Prot. 10, we can view it as the following 3
stages:

1. Committing to P ’s Share. In Steps 1 and 2, P commits to a string of length 3� (i.e. using
the above trick of committing to hash tags) using SHCom.

2. Plain OR Composition of Ligero. Step 1 to Step 8 is actually a standard OR-composition
of the Ligero protocol.

3. Statistical WIAoK: This is Step 9, where P conducts a sWIAoK on the commitment generated
in Stage 1.

In terms of e�ciency, the cost of Stage 1 is negligible compared with that of the last two stages.
As mentioned earlier, the cost of Stage 2 is something we have to pay. In the following, we discuss
the cost of Stage 3.

As mentioned earlier, we will show how to construct the sWIAoK used in Stage 3 from the
Ligero protocol later in Appx. C.3. But looking ahead, our sWIAoK construction will enjoy the
same e�ciency of the plain Ligero. Thus, the cost of Stage 3 is the same as running Ligero to prove
the consistency of a statistically-binding commitment (to a length-3� message). We use the Halevi-
Micali scheme to implement SHCom, where we use SHA256 as the underlying CRHF. As discussed
in Appx. A.3, to commit to a length-3� message, the cost consists of

– Using SHA256 to hash a length (13�+ 4)-bit string, and

– Evaluating a pair-wise independent hash with domain {0, 1}10�+4 and range {0, 1}3�.

The size of these computation is upper-bounded by the size of sixteen SHA256 circuits. According
to [AHIV17, Figures 3 and 4], running a Ligero protocol on the above computation has the following
cost:

– P ’s Running Time: 32 milliseconds

– V ’s Running Time: 3.2 milliseconds

– Communication Cost: 6400KB
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C.3 Constructing the Statistically WIAoK

C.3.1 Construction

We now construct the sWIAoK that can be used in Step 9 of Prot. 10. Recall that this sWIAoK is
only used to prove the consistency of Halevi-Micali’s SHCom, which is nothing but several calls to a
CRHF (which will be implemented using SHA256). Thus, we do not need to do the OR-composition
(as we did for Prot. 10) anymore—Ligero is already very fast for this task. But note that Ligero
is only a honest-verifier statistical AKZoK, not a statistical WIAoK yet. Therefore, our goal is to
make minimal modifications to Ligero to convert it to a statistical WIAoK.

To do that, first observe that Ligero is already an honest-verifier statistical WIAoK. This means
that if we can somehow enforce the honest behavior of the verifier, we will obtain the desired
statistical WIAoK. This turns out easy because Ligero is a public-coin protocol: instead of asking V
to send its challenge coins, we simply use a coin-tossing to determine these coins. Moreover, since
we are going for WI (in contrast to ZK), we only need a IND-secure coin-tossing (in contrast to a
simulatable coin-tossing). This can be done very e�ciently.

In more detail14, we ask P to commit to its shares h1, b1, and eb1 before Ligero starts, using a
statistically-hiding commitment SHCom. Then, P and V execute Ligero with the following modifi-
cations: when Ligero asks V to send h, V sends a h2 instead; P then decommits to h1; both parties
will set h = h1 � h2 and use this h to execute Ligero. The other two challenges b and eb will be
determined similarly. We present the formal description in Prot. 12.

Protocol 12: Statistically WIAoK from Ligero

Let (h, a, b, c,eb,ec) denote the 6 messages of the Ligero protocol (Prot. 8). Fix an instance x 2 L

and a witness w 2 RL(x). The prover P has (x,w) as input, and the verifier V has x as its input.
The protocol proceeds as follows:

1. V sends the first message for SHCom.

2. P computes the following messages:

(a) P samples h1
$
 � {0, 1}|h|, b1

$
 � {0, 1}|b|, and eb1

$
 � {0, 1}|

eb|.

(b) P samples random tapes (r1, r2, r3) and generates:

com1 = SHCom(h1; r1), com2 = SHCom(b1; r2), com3 = SHCom(eb1; r3).

P sends (com1, com2, com3) to V .

3. V samples h2
$
 � {0, 1}|h| and sends h2 to P .

4. P proceeds as follows:

(a) P computes h = h1 � h2.

(b) P computes the 2nd Ligero message a, assuming the 1st Ligero message is h.

P sends (h1, r1, a) to V .

5. V computes h = h1 � h2. It then checks if (1) r1 validly decommits com1 to h1, and (2) a is a
valid 2nd Ligero message consistent with h, using the honest Ligero verifier’s algorithm. If not,

V rejects; otherwise, V samples b2
$
 � {0, 1}|b| and sends b2 to P .

14 Recall that the 6 messages of Ligero are denoted as (h, a, b, c,eb,ec).
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6. P proceeds as follows:

(a) P computes b = b1 � b2.

(b) P computes the 4th Ligero message c, assuming the previous Ligero messages are (h, a, b).

P sends (b1, r2, c) to V .

7. V computes b = b1 � b2. It then checks if (1) r2 validly decommits com2 to b1, and (2) c is a
valid 4th Ligero message consistent with (h, a, b), using the honest Ligero verifier’s algorithm.

If not, V rejects; otherwise, V samples eb2
$
 � {0, 1}|

eb| and sends eb2 to P .

8. P proceeds as follows:

(a) P computes eb = eb1 �eb2.

(b) P computes the 6th Ligero message ec, assuming the previous Ligero messages are
(h, a, b, c,eb).

P sends (eb1, r3,ec) to V .

Verifier’s Decision: V computes eb = eb1 � eb2. It then checks if (1) r3 validly decommits com3

to eb1, and (2) ec is a valid 6th Ligero message consistent with (h, a, b, c,eb), using the honest Ligero
verifier’s algorithm. If not, V rejects; otherwise, V accepts.

The security of this protocol is established by Lem. 7.

Lemma 7. Prot. 12 is a statistical witness-indistinguishable argument of knowledge.

Proof. Completeness follows straightforwardly. It turns that the both the AoK property and sta-
tistically WI property of Prot. 12 can be proven in almost the same way as those of Prot. 10.
Therefore, we only provide a sketch.

AoK Property. Similar as in Sec. C.1.1, we reduce the AoK property to that of Ligero: given a P ⇤

that attacks Prot. 12, we construct a P 0 attacking Ligero; and the advantage of P 0 is polynomially
related to that of P ⇤. P 0 runs P ⇤ internally once, to learn the h1, b1, and eb1 committed by P ⇤ at
the beginning. With this information, P 0 will rewind P ⇤ and enforce the coin-tossing by setting
h2 = h1 � h (similarly for b2 and eb2), where h is the external VLigero’s challenge. In this way, P ⇤’s
answer can be used to reply the external VLigero. Following the same argument as in Sec. C.1.1, one
can show that P 0 wins with probability polynomially related to that of P ⇤.

Statistical WI Property. To prove statistical WI, we consider the following ine�cient hybrid:
at the beginning, ask P to commit to arbitrary values, say all-0 strings, instead of committing
to h1, b1, and eb1. Then, P runs the HVZK simulator for Ligero to get the simulated transcript
(h, a, b, c,eb,ec). Next, P will enforce the coin-tossing such that it can use the simulated transcript
to answer V ⇤’s challenge. To do that, once P receives h2 from V ⇤, it will “decommit” SHCom to
h1 = h2 � h. This can be done because SHCom is statistically-hiding, so it can be “explained” to
any other messages15. Then, P can simply use the simulated a as the response to h. P will handle
the (b, c) and (eb,ec) slots in a similar way.

15 We note that this step is not e�cient. But this is fine as we are proving statistical WI. The hybrids can run in
exponential time, as long as they are statistically close.
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The above procedure yields a view of V ⇤ that is statistically close to that of the real execution,
while P does not need to know the witness (though it needs exponential time to equivocate the
SHCom to enforce the desired coin-tossing result). Thus, V ⇤’s view should be statistically close
when P switches from one witness to another. This argument can be formalized in exactly the
same way as we did in Sec. C.1.2.

C.3.2 E�ciency Analysis

Compared with the plain Ligero protocol, the only overheads of Prot. 12 are

– three calls of SHCom in Round 2.

– The decommitment of the above three calls of SHCom (that will be checked by V ) in Rounds 5
and 7 and the final verifier’s decision stage.

Using Halevi-Micali SHCom, these are simply some SHA256 evaluations. Note that a normal desktop
can hash 200MB data per second using SHA256. Thus, the cost of Prot. 12 can be thought as being
identical to that of Ligero.

D Performance Analysis

In this section, we discuss the asymptotic and concrete performance of our protocols. We do not
focus on full optimization of the concrete numbers as we do not intend to provide an out-of-shelf
implementation. Rather, our primary goal is to show that our technique brings non-malleable
commitments and ZK protocols (in the plain model) within reach of practical computing.

We implement the following building blocks using AES and SHA256:

– Statistically-Binding Commitment (SBCom). We use the construction suggested from
[Nao91] for messages longer than a bit. Instead of running the statistically-binding bit com-
mitment scheme in parallel over the message, we run it in parallel over a seed for a PRG that
is then used as a one-time pad for the message. The PRG is implemented using AES in CTR
mode.

– Statistically-Hiding Commitment (SHCom). We use the construction from [HM96] with
SHA256 as the underlying CRHF (see Appx. A.3).

– Collision-Resistant Hash Functions. Some of our protocols (e.g. Prot. 10) require collision-
resistance hash families. But standard hash functions (in Minicrypt) are usually un-keyed. One
way in practice is to sample a random string r as the key, and hash it together with the message
using SHA256, i.e. h(m) = SHA256(rkm). Another way is to restate our claims regarding the
security of related protocols following the suggestions from [Rog06]. We take the first approach.

For clarity of presentation, we will measure the asymptotics in terms of number of AES� and
SHA256� evaluations.16 We will denote by AES� an evaluation of the AES block cipher on a �-bit
string (padded appropriately). We define SHA256� in the same manner for SHA256.

Recall that our IB-NMC (Prot. 3) is based on ⇧Mini
bgrrv. It runs a proof in the second stage to

check consistency of the preamble stage. The size of the circuit for checking consistency depends
on k and �, where k is the bit length of the identities. We denote the size of the consistency circuit

16 We remark that we are counting operations in terms of �-sized inputs. To count operations on fixed block sizes,
we simply multiply the values by B/� for block length B.
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by Ccons(k,�). When clear from the context, we will drop k and � to avoid cluttering the notation.
We also let CAES(·) be the AES circuit size, Cadd(·) be the adder size, Cmul(·) be the multiplier size,
where all of these circuit sizes are dependent on the value of the input length which in turn only
depend on �. Finally, let Ceq be the “equality testing” circuit; this circuit on input (c, v, r) tests
whether c is a commitment to v with randomness r.

D.1 Asymptotic Complexity

We first compute the complexities of our main component: the simulation-sound zero-knowledge
argument of knowledge. The costs for final non-malleable protocols will be pretty close and derived
later.

D.1.1 Complexity of Our Simulation-Sound ZK

Computational complexity of SSZK. We analyze the computational complexity of the prover
and verifier for each stage of this protocol. We assume randomness is for free.17. Note that protocol
⇧ss (Prot. 4) is obtained by instantiating Prot. 2 with proper building blocks.

Step 1 is the ExtCom. The verifier computes 2� SBCom, one for each share. Each commitment is
to a value with a length of �. Using the our implementation of the SBCom, this requires 3� runs of
AES� in total.

Step 2 is the IB-NMC shown in Prot. 3, which is obtained by modifying Prot. 1. Recall that in this
case, the prover uses the witness for a statement y to run the IB-NMC and simulates the consistency
proof for Ligero0 (which in turn involves running HVSim of Ligero). The two main parameters to
IB-NMC are k, the length of the identities, and q, the length of the prime in bits. We can set
q = 2�, which follows the original paper [BGR+15]. To compute the size of the circuit for the
consistency proof, we see that we have to run the AES circuit as well as run circuits to compute dot
products as per the protocol description. We parameterize the consistency circuit size in terms of
CAES(q), Cadd(q), and Cmul(q). We construct the dot product circuit from the adders and multipliers,
all corresponding to our prime size 2�. If we compose in the standard way, we end up needing
about k2 adders and multipliers, as well as k AESq circuits. Additionally, we need on the order of
k additional equality checking circuits, which are of size on the order of �.

However, we can shrink the size of this circuit by taking advantage of the fact that we are
only committing to a message of length 2� (or of the form (m, 0, . . . , 0)) using ⇧Mini

bgrrv, which
commits vectors from Z`

q (see Prot. 1). Due to this special message structure, the consistency
circuit will only require on the order of k adders and multipliers, instead of k2. Consequently,
Ccons(k,�) = O

�
k(Cadd(2�) + 2Cmul(2�) + 3CAES(2�))

�
. The O notation here is merely to take into

account trivial computations such as copying wire values to feed into multiple gates, and so on. We
will ignore these trivial computations and drop the O notation.

Given Ccons, we get that the number of SHA256 operations we will need is on the order of
�
p
Ccons logCcons. For the honest proof for statement y, the prover must compute the full Merkle

tree; thus, for a circuit with s gates, the prover runs s� executions of SHA256. We recall that for

17 It could be generated o✏ine or through a run of AES. A modern laptop can generate a cryptographically-secure
random string of length 600MB in one second. These costs do not significantly change the analysis but are cum-
bersome to incorporate
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the IB-NMC, we have to add malicious security and thus, we incur the cost of an extra SHCom
for the challenge bits. However, the length of the challenge is on the order of � logCcons, which is
asymptotically small compared to our previous cost.

Step 3 is the decommitment of ExtCom from Stage-1. There is no new verifier computation. The
prover verifies the remaining decommitments and that they combine to �. With our instantiation
of SBCom, this requires running 2� runs of AES�.

Step 4 is the sWIAoK instantiated by ⇧or (Prot. 10). Recall that in this case, the prover uses the
witness for the given statement x and runs the HVZK simulator HVSim (of Ligero) for Ceq. To
construct Ceq, we need the circuit for AES� as well as an equality checking circuit, which is on the
order of �. We will use Ceq = CAES� + � as our estimate for the size of this circuit. Since only the
HVSim is required, the main computation is in computing the hashes for the queried nodes, but
this is only on the order of �

p
Ceq logCeq. The prover for the statement x would still have to run

hashes for the whole tree, which is on the order of s�. In Prot. 10, we also ask the prover to commit
to hkb2keb2 using SHCom and run Prot. 12 for its consistency. This add at most 16 SHA256 calls,
which can be ignored asymptotically.

We summarize the complexity of each stage as well as the overall complexity of SSZK in Table 3.

Communication complexity of SSZK. We now analyze the communication complexity of the
prover and verifier for each stage of this protocol. We remark that the field size used in this protocol
is on the order of 2�; thus, the number of bits required to send one field element is on the order of
�.

Step 1 is the ExtCom. The verifier sends 3� commitments, where each commitment is to a value
with a length of �. Then, the prover sends � challenge bits, upon which the verifier opens the
corresponding � commitments. In total, the communication complexity of this stage is on the order
of �2 bits.

Step 2 is the IB-NMC. The parameters are the same as described in the computational complexity. In
the preamble, k2� bits are exchanged between both the verifier and the prover. For the consistency
proof, the communication complexity corresponding to the consistency proof part is the same as
that of an honest Ligero execution for the consistency circuit, i.e., on the order of square root of the
circuit size. Thus, the total communication complexity of IB-NMC is the sum of the communication
for the preamble and the communication for the proof stage; the latter is one honest Ligero proof
plus one simulated consistency proof. Moreover, we also ask the prover to commit to hkb2keb2 using
SHCom and run Prot. 12 for its consistency. This add � + �

p
Csha communication cost due to

Ligero.

Step 3 is the decommitment of ExtCom from Step 1. The verifier sends the decommitment infor-
mation, which is on the order of �2 bits.

Step 4 is the sWIAoK. The communication complexity analysis is the same as that for the final phase
of Step 2 except that, instead of the consistency circuit, we have the equality checking circuit. Thus,
the communication complexity of this stage is �(1 +

p
s+

p
Ceq +

p
Csha).

A summary of communication complexity appears in Table 3.
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Table 3: Asymptotic complexity of SSZK. Only dominating terms are shown in each cell.

Stage Description #AES�#AES�#AES� #SHA256�#SHA256�#SHA256� Communication

ExtCom
(Step 1 & 3)

Total � 0 �2

IB-NMC Preamble 0 0 k2�

(Step 2) “x 2 L” 0 s �
p
s

Fake Ligero0

(Consistency)
0

p
Ccons logCcons �(

p
Ccons +

p
Csha)

sWIAoK
(Step 4)

Preamble 0 16 �

“x 2 L” 0 s �
p
s

Fake Ligero
(Equality)

0
p

Ceq logCeq �
p

Ceq

sWIAoK from
Ligero

0 16 �
p
Csha

Full SSZK Total �
2s+

p
Ccons logCcons+p
Ceq logCeq

�(�+ k2 + 2
p
s+p

Ccons+
p

Ceq+2
p
Csha)

D.1.2 Complexity of Our NMZK and NMCom

We can calculate the computational and communication complexity of these protocols in the same
manner as done for SSZK. We do not show the calculations for each stage anymore for these
protocols, because we already did it for their major component—SSZK dominates. We directly
present a summary of dominating terms for both of these protocols in Table 4.

Table 4: Asymptotic complexity of NMZK, Ligero, and NMCom. Only dominating terms are shown
in each cell. Plain Ligero is shown for comparison purposes.

Protocol #AES�#AES�#AES� #SHA256�#SHA256�#SHA256� Communication

NMZK �
2s+

p
Ccons logCcons +p

Ceq logCeq + 2Ceq

�(�+ k2 + 2
p
s+

p
Ccons +

3
p

Ceq + 2
p
Csha)

NMCom 1
2s+

p
Ccons logCcons +p

Ceq logCeq + 3Ceq

�(�+ k2 + 2
p
s+

p
Ccons +

4
p

Ceq + 2
p
Csha)

Ligero 0 s �
p
s

Note that the cost of field operations in our case corresponds to the simulated ZKIPCP transcript,
which is the square root of the circuits involved. This cost is insignificant in our case compared to
the hash function evaluations corresponding to the simulated Merkle tree paths. We remark that
the honest Ligero execution requires field operations on the order of the size of the circuit, which is
not shown as part of the stand-alone Ligero computational costs.
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Table 5: Sample times and communication for di↵erent parameter choices.

Param. NMZK NMCom

(k,�) P time (s) V time (s) Comm. (MB) P time (s) V time (s) Comm. (MB)

(32, 40) 1.68 0.74 19.68 2.52 1.12 19.74

(32, 80) 3.56 1.49 24.88 4.68 2.06 24.97

(64, 80) 5.04 2.23 28.84 6.72 3.09 28.93

D.2 Practical Performance

We now discuss the numbers we use for our concrete evaluation. Our results for NMZK are based
on proving a witness for SHA256.

From [AHIV17], we are given that SHA256 has around 33,000 gates and takes approximately
0.14 seconds for the prover and 0.06 seconds for the verifier for soundness error of 2�40 [AHIV17]. If
we consider a soundness error of 2�80, then the costs double and the time would take approximately
0.28 and 0.12 seconds respectively instead.18

To work with concrete times, we measure the throughput of each on an Intel Core i7 9th Gen
9700K (3.60 GHz) processor. From this, we approximate the processing speed of AES to be 1 billion
bytes per second (assuming use of AES-NI assembly instructions), and the speed of SHA256 to be
200 million bytes per second.19

Regarding the actual size of the circuits we are working with, we use the standard Bristol
circuits20 to obtain rough estimates for the number of gates in the AES, adder, and multiplier
circuits. Given that we are using AES-256, we estimate a size of 50,666. We scale the numbers for
the adder and multiplier to match our estimated input size—2�. We estimate the size of the adder
to be 1,500 and the size of the multiplier to be 100,000.

18 We remark that [AHIV17] only provides concrete times for these two soundness parameters and that these times
are for their non-interactive protocol.

19 These are rough approximations for our setting. The actual times may di↵er depending on the length of the input,
but we chose conservative estimates.

20 https://homes.esat.kuleuven.be/~nsmart/MPC/
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