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ABSTRACT

Regular expressions are pervasive in modern systems. Many real-

world regular expressions are inefficient, sometimes to the extent

that they are vulnerable to complexity-based attacks, and while

much research has focused on detecting inefficient regular expres-

sions or accelerating regular expression matching at the hardware

level, we investigate automatically transforming regular expres-

sions to remove inefficiencies. We reduce this problem to general

expression optimization, an important task necessary in a variety

of domains even beyond compilers, e.g., digital logic design, etc.

Syntax-guided synthesis (SyGuS) with a cost function can be used

for this purpose, but ordered enumeration through a large space of

candidate expressions can be prohibitively expensive. Equality satu-

ration is an alternative approach which allows efficient construction

and maintenance of expression equivalence classes generated by

rewrite rules, but the procedure may not reach saturation, meaning

global minimality cannot be confirmed. We present a new approach

called rewrite-guided synthesis (ReGiS), in which a unique interplay

between SyGuS and equality saturation-based rewriting helps to

overcome these problems, resulting in an efficient, scalable frame-

work for expression optimization.

1 INTRODUCTION

Because regular expressions and their associated operations (match-

ing, etc.) play such a pivotal role in modern systems, there has

been much interest in developing hardware acceleration for reg-

ular expressions [61, 32, 9, 21, 43, 33]. Our work investigates a

complementary approach, namely optimizing regular expressions

at the software level. Because there are other popular formalisms

that share similar properties to regular expressions (e.g., Boolean

algebra), we frame the problem in terms of general expression opti-

mization, enabling straightforward extensions in other domains.

Expression optimization is a type of program synthesis problemÐ

we must automatically construct a program (expression) that satis-

fies some specification (e.g., minimal cost, and equality to the input

expression). In the mid-Eighties, Brooks [8] famously identified

several technological areas unlikely to result in a łsilver bulletž in
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terms of increased programmer productivity and software quality,

and program synthesis appeared in the list. Since then, signifi-

cant strides have been made in some of these areas, perhaps most

notably, data-centric advances in machine learning which have

enabled software to perform a variety of complex tasks, including

winning chess matches against professionals, driving cars, and land-

ing rockets. Overall, progress in the area of program synthesis has

seen more moderate gains. One notable approach is syntax-guided

synthesis (SyGuS) [2], which has leveraged domain-specific lan-

guages (DSLs) and exploited fast solvers (e.g., SAT and SMT [39])

to produce synthesizers usable in areas such as distributed systems

[57], robotics [13], biochemical modeling [11], networking [35], and

many more. Conceptually, SyGuS performs a search over the space

of all program expressions, checking at each step if the expression

satisfies the specification. Although various techniques have been

devised to make this search more efficient, many of the łbig ideasž

that have allowed advancement elsewhere (big data, novel hard-

ware processing units, massive parallelization) have proven more

difficult to utilize in this type of syntax-guided search.

1.1 Problem Description: Expression
Optimization

In this paper, we develop a new optimal synthesis framework called

Rewrite-Guided Synthesis (ReGiS) which extends SyGuS, making

it more flexible and amenable to parallelization. Our goal is to

take an initially-correct source expression, and transform it into a

better equivalent expression. The user can provide the expression

language, an optional set of semantics-preserving rewrite rules,

a cost metric for expressions, and a source expression, and the

synthesizer outputs an equivalent expression that is minimal with

respect to the cost metric.

1.2 Existing Approaches

Several existing approaches can be used for expression optimization.

Optimal Synthesis [7, 11] uses a cost metric and techniques such

as counterexample-guided enumeration to search for an optimal

program satisfying a specification. Rewriting [55, 59] uses syntactic

transformations and efficient data structures to produce equiva-

lent expressions with differing structure. Superoptimization [47,

44] transforms small snippets of code into equivalent and higher-

performing snippets, using enumerative or rewriting-based meth-

ods. Section 7 gives more detail about these approaches. In contrast

to these, ReGiS uses a unique combination of enumeration and

rewriting, resulting in a more flexible and efficient technique.
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1.3 ReGiS Novelties

ReGiS targets three core improvements over previous approaches.

(1) Combining enumeration (using semantic correctness/equality)

and syntactic rewriting. Enumerative searchÐsymbolically or explic-

itly iterating through program expressions in increasing order with

respect to cost while checking semantic correctness/equalityÐis

often not efficient when the goal is to optimize a given input expres-

sion in some way, i.e., transform it into an equivalent expression

with lower cost. Specifically, since the input expression is already

correct, it may be counterproductive to łstart from scratchž when

building an equivalent expression. In many domains, it is possible to

find semantics-preserving transformations [12] which allow rewrit-

ing an expression to obtain lower cost, with respect to a metric like

expression size or time complexity. In some cases, these transforma-

tion rules have useful properties, e.g., soundness and completeness

in the case of Kleene algebra for regular expressions [28], but other

times, this is not the case. Thus, just as purely enumerative syn-

thesis has drawbacks, so too does a purely rewrite-based approach,

since it requires careful design of the rewrite rules. Additionally,

the optimal target expression may have a large distance from the

source expression with respect to the rules, and rewriting-based

approaches can become rapidly overwhelmed as the search depth

increases. For these reasons, we show how to combine enumera-

tion with rewriting, allowing exploration of expressions which are

locally close (syntactically related) to seen expressions, as well as

expressions which are globally small (having overall lowest cost).

(2) Using parallelizable bi-directional search. Rather than simply

starting from the source expression, and trying to discover a chain

of equivalences to a specific target expression, we additionally try

to construct these chains backward toward the source from several

candidate targets simultaneously.

(3) Enabling customizable expression languages and semantics.

Our approach is cleanly parameterized over a user-specifiable ex-

pression language. While we focus on the domain of regular expres-

sions, the approach would be equally applicable in other domains

such as Boolean logic, process algebras, etc.

1.4 ReGiS Approach Overview

ReGiS consists of three components: Enumerator, Updater, and Uni-

fier. The Enumerator iterates through candidate target expressions
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Figure 1: Overlay graph: edge labels encode expense esti-

mates; dashed/red edge shows an inequality discovered by

a Unifier, which causes edge deletion; and thick/blue edge

shows a Unifier timeout, which increases estimate.

in increasing order of cost, adding each new candidate to the Up-

dater. When the Updater receives a new target expression, it is

added to an efficient E-graph data structure [55, 59], allowing all

known rewrite rules to be applied to the expression, which enables

compact maintenance of the equivalence classes (E-classes) for the

source and candidate target expressions, modulo the known syn-

tactic rewrite rules. The Updater also maintains an overlay graph

(Figure 1), with E-classes as nodes, and edge labels representing

the (initially unit) estimated expense of semantic equality checks

between classes. In parallel with these processes, Unifiers system-

atically attempt to merge E-classes: each Unifier selects a low-cost

overlay graph edge, chooses expressions from the two correspond-

ing E-classes, and performs a semantic equality check. If its equality

check succeeds, it tells the Updater to union the two E-classes, and

can potentially provide the Updater with a new rewrite rule(s). If its

equality check fails, it removes the associated edge. If its equality

check times out, it increases its edge’s expense estimate. Eventually,

a target E-class that is minimal with respect to cost will be unioned

with the source E-class, allowing ReGiS to terminate and report the

global minimum. The current lowest-cost result is available as the

minimum-cost expression in the source E-class. In contrast to ap-

proaches that extend SyGuS by parallelizing enumeration steps [25],

our approach does the syntactic (rewriting-based) and semantic

(equality-based) parts of the search in parallel.

1.5 Paper Organization

This paper is organized as follows: §2 demonstrates why superlin-

ear regular expressions are problematic, and shows how ReGiS can

be used to address this; §3 formalizes our approach, and presents

correctness results; §4 shows the details of using ReGiS for regular

expression optimization; §5 describes our prototype implementa-

tion, and provides experimental results; §6 and §7 describe future

work and related work; and §8 concludes.

2 MOTIVATING EXAMPLE: OPTIMIZING
SUPERLINEAR REGULAR EXPRESSIONS

We demonstrate the utility of our framework by examining prob-

lematic behavior of superlinear regular expressions. Catastrophic

backtracking behavior can be triggered by crafting input strings

to target inefficiencies in the regular expression. As an example,

consider the regular expression R1R2 = a∗a∗. If we try to match the

entire input string c1c2c3 . . . cncn+1 = aaa . . . ab using this regular

expression, we might first greedily capture c1 . . . cn using R1, only

to realize that there is no way to match the trailing b. We would

then need to backtrack and accept n − 1 leading a characters with

R1, and let R2 match the final a, which would similarly fail due to

the trailing b in the input. This would continue, with R1 accepting

c1 . . . ck , and R2 accepting ck+1 . . . cn , until all k have been tried,

resulting in quadratic runtime.

One way to avoid this issue is to use non-backtracking algo-

rithms. For example, we could convert the regular expression to

a nondeterministic finite automaton (NFA) using Thompson’s con-

struction [56], and then determinize the NFA, but this can result

in exponential explosion of the automaton size, so this approach

is not typically used in practice. Thompson [56] also presented an

automaton simulation algorithm which can match a string against
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Figure 2: Matching w/ semantically-equivalent expressions

(input aa . . . ab).

an NFA in polynomial time. Unfortunately, many real-world regular

expression engines have chosen to instead rely on backtracking

algorithms, due to complex extensions to the regular expression

language (backreferences, etc.). Perl-Compatible Regular Expressions

(PCRE) is one such implementation [4].

These superlinear regular expressions appear with concerning

frequency in real-world systems [53, 19], and real attacks have

been observed. As an orthogonal approach to ours, static analysis

has been used to detect exponential regular expressions [45]. Note

that focusing on exponential regular expressions is insufficientÐ

although the maximum number of operations for backtracking

regular expression algorithms is bounded by 2
Θ(n) [23, 41], polyno-

mial complexity can also be problematic [58].

Several approaches have been identified for dealing with super-

linear regular expressions [19], the most promising of which seems

to be transforming the expression into an equivalent but less com-

plex one. To our knowledge, however, this has not been solved in a

comprehensive way. In this section, we will examine the problem

of optimizing superlinear regular expressions in greater detail, and

show how the various components of our approach work together

to tackle this problem. Consider Figure 2, which shows the perfor-

mance of the standard PCRE matching algorithm for the regular

expressions a∗ and a∗∗. These regular expressions are semantically

equivalent, i.e., they recognize the same language, but their differing

syntactic structures cause drastically different performance when

matching the previously-described input string aa . . . ab. Regular

expression a∗ has linear performance Θ(n), while a∗∗ has exponen-

tial performance Θ(2n ), and each additional added star increases

the base of the exponent. Intuitively, at each step, a∗ has only two

options: accept a single a character or fail on the trailing b character,

but a∗∗ can accept an arbitrarily-long sequence of a characters at

each step, forcing the algorithm to try all possible combinations of

sequence lengths before failing. In Sec. 4, we cover this example

in more detail, and introduce a cost metric that characterizes such

backtracking behavior.

2.1 Limitations of Basic Rewriting

One basic optimization approach is to perform rewriting using

the well-known Kleene algebra axioms [28], at each step checking

whether we have found an expression that has lower cost accord-

ing to our metric. For example, given a + a + a (where + denotes

alternation), we can use the idempotence rule x+x ←→ x to perform

the rewrites a+a+a −→ a+a −→ a, and we will have reached an

equivalent regular expression with lower cost.

+ +

a b

+ +

a b

+

Figure 3: (a) E-graph initially built from a + b and b + b, and

(b) after equality saturation using rewrite rule x +y ←→ y+x .

This basic approach scales poorlyÐin general, we would need

to perform a rewrite-based search, iterating through the various

rewrite rules. The search can łloopž, e.g., rewriting an expression

into progressively larger expressions. Note that we cannot restrict

rewrites to only shrink expression cost, because in some cases,

global minimization necessitates local monotonic (or even increas-

ing) rewrites during the search. As an example, optimizing 1 + a∗

(where 1 denotes the empty string) requires a rewrite which initially

increases cost. Specifically, using arrow angle to indicate change in

cost due to a rewrite, we have 1+a∗↗ 1 + 1 + aa∗ ↘ 1+aa∗ ↘ a∗.

Regular expression optimizers based on this type of rewrite-based

search often timeout before making any progress. For regular ex-

pressions such as a + b + c + d + e + d + c + b + a (which is clearly

reducible to a+b+c+d+e), the search would need to conceptually

łsortž the characters using commutativity of alternation, and then

use idempotence, requiring a huge amount of search.

2.2 Limitations of E-Graph-based Rewriting

Equality saturation is a technique for efficiently implementing a

rewriting-based task such as the one previously described. This

approach uses a data structure called an E-graph to compactly store

one or more initial expressions, along with expressions derivable

from these via a set of rewrite rules. Figure 3(a) shows an example,

namely the E-graph containing regular expressions a + b and b +

b. Equality saturation can apply the commutativity rewrite rule,

which adds the expression b + a to the E-graph, resulting in Figure

3(b). Note that each subexpression a and b is stored only onceÐ

the E-graph maintains this type of expression sharing to keep the

size compact. The dotted boxes in the figure represent E-classesÐ

equivalence classes with respect to the rewrite rules. Expressions

a + b and b + a are in the same E-class, since they are equivalent

with respect to the rewrite rule, but b + b is in a separate E-class.

With an E-graph-based rewriting approach, the straightforward

way to implement regular expression optimization is to first add

the source expression to the E-graph, run equality saturation us-

ing all of the Kleene algebra axioms as rewrite rules, and iterate

over the source regular expression’s E-class to find the minimal

equivalent expression with respect to the cost metric. There are

two key problems with this. (1) Although cyclic edges in the E-

graph can sometimes be used to encode infinite sets, in general,

equality saturation may not have enough time or resources to fully

saturate the E-graph in cases where there are infinitely many equiv-

alent expressions with respect to the Kleene algebra axioms (e.g.,

a = a + a = a + a + a = · · · ), meaning the procedure may need

to time out. (2) ReGiS is designed to be general, and in some cases,

we may have a more limited set of rewrite rulesÐin particular, we
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may not have a completeness result, meaning that for some seman-

tically equivalent expressions, it may not be possible to show their

equivalence using the syntactic rewrite rules alone.

As an example, consider optimizing (1 + a∗a)∗∗, using only two

rewrite rules: 1 + xx∗
1
←→ x∗, x∗∗

2
←→ x∗. What we would need is a

chain of rewrites:

(1 + a∗a)∗∗
2
−→ (1 + a∗a)∗

?
−→(1 + aa∗)∗

1
−→ a∗∗

2
−→ a∗

Here, it is not possible to build this chain of equalities using the

available syntactic rewrite rules, so we would need a semantic

equality check to łbridge the gapž between (1+a∗a)∗ and (1+aa∗)∗.

2.3 Enumerative Bidirectional Rewriting

This is the basic idea of our enumerative bidirectional rewriting

approach. We use a SyGuS-based strategy to enumerate candidate

target regexes by increasing cost, and adding them to the E-graph.

Equality saturation applies rewrites to the source and all targets

simultaneously. For any target whose E-class intersects the source’s

E-class, the E-graph will union these E-classes. We iterate through

E-classes which are currently disjoint but potentially equal, and try

to equate these using a semantic equality check (NFA bisimilarity).

In this example, a successful equality check a∗a = aa∗ could result

in a new rewrite rule a∗a ↔ aa∗, allowing equality saturation to

łbridge the gapž indicated by ł
?
−→ž.

3 REGIS: REWRITE-GUIDED SYNTHESIS

In this section, we formalize our rewrite-guided synthesis approach,

and describe key properties of the algorithm. In Section 4, we show

in detail how our approach can be used to tackle the real-world

problem of optimizing superlinear regular expressions.

3.1 Expression Optimization

We first specify the problem statement. Let G be a grammar, and

let E = L(G) beG’s language, i.e., the set of expressions that can be

built fromG. Let height : E → N denote height of an expression’s

tree. Let subexprs : E → P(E) denote subexpressions.

Let cost : E → R be a cost function that assigns a numeric

cost to each expression. Let J·K : E → D denote the semantics of

the expression language, i.e., a function that maps expressions to

objects of some domain D, and let ≈ : (D × D) → B be a semantic

equality function for comparing objects in that domain. Let hl :

E → P(E) denote equivalent expressions of equal or lesser height,

i.e., hl(e) = {e ′ ∈ E | height(e ′) ≤ height(e) and Je ′K ≈ JeK}. Given
a grammarG , we define a pattern to be an expression initially built

fromG , where zero or more subexpressions have been replaced with

variables from a set V . Intuitively, variables serve as placeholders

for arbitrary subexpressions built from G. If p is a pattern, and

m : V → E is a mapping, we use p[m] to denote the expression

formed by applyingm to each variable in p. Note that if p contains

no variables, p[m] = p for allm, and if ∅ denotes the empty map,

p[∅] = p for all p. We define a rewrite rule to be an object of the form

p1 → p2, where p1,p2 are patterns, and a bidirectional rewrite rule

to be of the form p1 ↔ p2. We say rewrite rule p1 → p2 matches e

if and only if there is a mappingm : V → E such that p1[m] = e ,

and in this case, we say that rewrite(e,p1 → p2) = {p2[m]}. If e

does not match p1, then rewrite(e,p1 → p2) = ∅. If E is a set of

expressions andW is a set of rewrite rules, rewrite(E,W ) signifies
⋃

e ∈E,w ∈W rewrite(e,w).

LetW be a sound set of rewrite rules, i.e., for any w ∈ W , if

e ′ ∈ rewrite(e,w), then Je ′K ≈ JeK. An optimization instance is a

tuple (e, cost,W , J·K,≈) where e ∈ E, and the optimization problem

consists of finding a minimal equivalent expression, i.e., an e ′ ∈ E

such that Je ′K ≈ JeK and for any e ′′ where Je ′′K ≈ JeK, we must

have cost(e ′) ≤ cost(e ′′).

3.2 E-Graphs

Given an optimization instance, we encode the expression language

E using the equality saturation framework Egg [59], which accepts

a straightforward s-expression-based formulation of the grammar.

Although Egg contains significant machinery to ensure that E-

graphs are maintained compactly, for our formalization purposes,

we consider an E-graph to be amapping of the form E : E → (N×E),

i.e., each contained expression e within E-graph E is associated

with a numeric E-class identifier Eid (e) and the minimum-cost

expression Emin (e) within that E-class. We use class(E, e) to denote

the set of all expressions contained in the same E-class as e .

3.3 ReGiS Algorithm

Figure 4 formalizes ReGiS as an abstract machine [5]. A rule of

the form C
S−→S ′ can be applied to step the machine state from

S to S ′ if the condition C is satisfied. The algorithm terminates

when no further steps can be taken. A machine state is of the

form ⟨X ,E,O,W ,U ,k⟩, where X is a set used for storing the global

minimum (return value); E is the E-graph; O is a tuple (D, S,T )

representing the overlay graph, where S and T are the lists of

source/target expressions respectively (overlay graph nodes), and

D is a set of weighted overlay graph edges;W is the set of rewrite

rules;U is a set of expression (in)equalities to be incorporated into

the E-graph; and k is the index of the minimal unprocessed target in

T , i.e., lowest-cost target that has not yet been (in)equality-checked

against the source (in the Figure 1 example, this would be the target

at index 1). Given optimization instance (e, cost,W , J·K,≈), we use
initial machine state ⟨∅,E, (∅, [e], ∅),W , ∅, 0⟩, and run the machine

until X becomes non-empty, which causes the machine to halt (the

expression contained in X is the global minimum returned by the

algorithm). If the user prematurely terminates the machine, we

can output the current minimum Emin (S0), which may have lower

cost than the source expression S0, but may not yet be the global

minimum.

3.4 Updater

The Updater’s functionality is described in Figure 4 by the Rewrite,

Saturate, and UnionX rules. Conceptually, the Updater functions

as a wrapper for a persistent instance of Egg’s E-graph data struc-

ture, which is denoted E. Rewrite allows a single rewrite rulew

that matches an expression e to be applied, and adds the resulting

equality e=e ′ to the setU to be incorporated into the E-graph via

the UnionX rules. Saturate is for cases where the rewrite rules

have a completeness result. This rule tests for a saturated E-graph,

i.e., in which none of the rewrite rules change EÐin this case, the

algorithm can terminate (returning the global minimum Emin (S0)),
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Updater w ∈W e ∈ E e′ ∈ rewrite(e, w ) e′ < E

⟨∅, E, O,W , U , k ⟩ −→ ⟨∅, E, O,W , U∪{e=e′ }, k ⟩
Rewrite

rewrite(E,W ) ⊆ E

⟨∅, E, O,W , U , k ⟩ −→ ⟨{Emin (S0)}, E, O,W , U , k ⟩
Saturate†

U = U ′ ∪ {e=e′ } E = E′ ∪ {e 7→ (i,m), e′ 7→ (i′,m′)} Ein = {es | (es → e′) ∈ D } Eout = {et | (e
′ → et ) ∈ D } Din = {(es→e′) | es ∈Ein }

Dout = {(e
′→et ) | et ∈Eout } D = D′∪Din∪Dout Is = {k | Eid (Sk ) ∈ {Eid (e), Eid (e

′)}} It = {k | Eid (Tk ) ∈ {Eid (e), Eid (e
′)}}

⟨∅, E, (D, S, T ),W , U , k ⟩ −→ ⟨∅, E′∪{e 7→(i, min(m,m′)), e′ 7→(i, min(m,m′))}, (D′∪{es→e | es ∈Ein }∪{e→et | et ∈Eout },

S−(Is−min(Is )), T−(It−min(It ))),W , U ′, k ⟩

Un.1

Eid (S0) = Eid (Tk )

⟨∅, E, O,W , U , k ⟩ −→ ⟨Emin (S0), E, O,W , U ′, k ⟩
Union2

U=U ′∪{e,e′ }

D=D′ ∪ {es → et | {Eid (e), Eid (e
′)} = {Eid (es ), Eid (et )}} 1 ≥ n ≥ 0 {Eid (e), Eid (e

′)}={Eid (S0), Eid (Tk )} ⇐⇒ n=1

⟨∅, E, (D, S, T ),W , U , k ⟩ −→ ⟨∅, E, (D′, S, T ),W , U ′, k + n ⟩
Un.3

Unifier
T = [. . . , et , . . .] D = D′ ∪ {es

c
−→ et } c ≤ min({j | (x

j
−→ y) ∈ D′ }) e ∈ class(E, es ) e′ ∈ class(E, et ) JeK ≈ Je′K

⟨∅, E, (D, S, T ),W , U , k ⟩ −→ ⟨∅, E, (D′, S, T ),W ∪ {e ↔ e′ }, U ∪ {e=e′ }, k ⟩
Eq.

T = [. . . , et , . . .] D = D′ ∪ {es
c
−→ et } c ≤ min({j | (x

j
−→ y) ∈ D′ }) e ∈ class(E, es ) e′ ∈ class(E, et ) JeK ̸≈ Je′K

⟨∅, E, (D, S, T ),W , U , k ⟩ −→ ⟨∅, E, (D′, S, T ),W , U ∪ {e,e′ }, k ⟩
Ineq.

T = [. . . , et , . . .] D = D′ ∪ {es
c
−→ et } c ≤ min({j | (x

j
−→ y) ∈ D′ }) e ∈ class(E, es ) e′ ∈ class(E, et ) JeK ?≈ Je′K

⟨∅, E, (D, S, T ),W , U , k ⟩ −→ ⟨∅, E, (D′ ∪ {es
2·c
−−→ et }, S, T ),W , U , k ⟩

Timeout

Enumerator
T = [. . . , en ] e ∈ min({e′ | cost(Emin (S0)) ≥ cost(e′) ≥ cost(en )})

⟨∅, E, (D, S, T ),W , U , k ⟩ −→ ⟨∅, E, (D ∪ {es
1
−→ e′ | es ∈ S }, S, T+[e]),W , U , k ⟩

Enum.

S = [. . . , e′, . . .] e ∈ subexprs(e′)

⟨∅, E, (D, S, T ),W , U , k ⟩ −→ ⟨∅, E, (D ∪ {e
1
−→ et | et ∈ T }, S+[e], T ),W , U , k ⟩

Source

Figure 4: ReGiS as an abstract machine with −→ denoting transitions. Machine state is ⟨X ,E,O,W ,U ,k⟩: X is a set containing

a minimal regular expression upon termination; E is the E-graph; O = (D, S,T ) is the overlay graph with set of edges D, list of

sources S , and list of targetsT ;W is the set of rewrite rules;U is a set of (in)equalities to be processed; and k is the index of the

minimal unprocessed target in T . †

Saturate is used only in contexts where the rewrite rules have a completeness result.

since all possible rewrites have been explored. The Union2 rule

allows the algorithm to terminate when the minimal unprocessed

targetTk has been added to the source expression’s E-class, since the

enumeration order ensures that Tk will contain a globally-minimal

expression. Union1 incorporates an equality e=e ′ into the E-graph

E, by (1) placing e ′ into e’s E-class within E, (2) updating the overlay

graph edges D by moving incoming/outgoing edges from e ′ to e ,

and (3) updating the overlay graph source/target lists by keeping

only the lowest index belonging to the same E-class as e or e ′, en-

suring that the source (S0) and minimal unprocessed target (Tk )

expressions are not absorbed into other sources/targets. Union3

incorporates an inequality e,e ′ obtained from the Unifier, by delet-

ing any corresponding edges from the overlay graph. If e and e ′ are

contained in the source (S0) and minimal unprocessed target (Tk ) E-

classes respectively (or vice versa), Union3 additionally increments

the index of the minimal unprocessed target Tk .

3.5 Unifier

Each spawned Unifier selects a minimal-weight source/target edge

es
c
−→ et from the overlay graph, and performs a semantic equality

check, as shown in Eqality, Ineqality, and Timeout in Figure 4.

A single member from each class is selected (e and e ′), and the equal-

ity check JeK ≈ Je ′K is performed. If the check succeeds (Eqality),

the Unifier records e and e ′ as needing to be unioned, and a new

rewrite rule e ↔ e ′ is generated. If the check fails (Ineqality),

the Unifier records inequality e,e ′, which the Updater will use to

delete the overlay graph edge, ensuring that this particular equality

check is not attempted again. If the equality-checking procedure

times out (Timeout), the Unifier increases the expense estimate of

the edge joining es and et , ensuring that other potentially-easier

equality checks are tried before returning to this pair. Intuitively,

timeout of the equality check means that we do not (yet) know

whether the two expressions are semantically equivalent.
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3.6 Enumerator

The Enumerator’s goal is to iterate through expressions in order of

increasing cost, and add them as targets (along with new overlay

graph edges), as shown in the Enumerate rule. One key issue with

in-order enumeration is the sheer number of expressions involved,

which can be in the millions for even depth-4 binary trees. This

causes slowdown of the Enumerator itself, and makes it unlikely

that higher-cost expressions will be reached in a reasonable amount

of time. Rewriting helps address this problem, by maintaining the

minimum expression Emin (S0) in the source expression’s E-class.

As this expression’s cost gets reduced by rewriting, cost(Emin (S0))

becomes the new upper bound for cost within the Enumerator,

reducing the search space, and speeding up enumeration.

Our Enumerator is powered by the Z3 SMT solver [36]. We re-

quire the cost function to be representable in SMT using a decidable

theory such as QF_UFLIA (quantifier-free uninterpreted function

symbols and linear integer arithmetic), and we use uninterpreted

function symbols to encode expressions as trees up to a specified

maximum height, representing the cost metric via assertions that

maintain the cost of each tree node. Section 4.6 contains encoding

details for regular expressions.

In addition to adding targets, the Enumerator can also add ad-

ditional source expressions (Source rule), to facilitate equality

checking against subexpressions of the source.

3.7 Properties of ReGiS

Theorem 3.1 (Soundness). If ReGiS returns an expression e ′ for

an optimization instance (e, cost,W , J·K,≈), then e ′ is no larger than
the minimal expression in hl(e), i.e., cost(e ′) ≤ cost(e ′′) for any

e ′′ ∈ hl(e).

Theorem 3.2 (Completeness). If em is a minimal expression in

hl(e), i.e., em ∈ hl(e) and cost(em ) ≤ cost(e ′′) for any e ′′ ∈ hl(e),

then ReGiS’s result e ′ will have cost(e ′) = cost(em ).

The proofs of these theorems appear in Appendix A.

4 REGULAR EXPRESSION OPTIMIZATION

In Section 3, we formalized the ReGiS framework, and in this section,

we highlight the flexibility and practicality of our approach by using

it to solve the important and insufficiently-addressed problem of

optimizing superlinear regular expressions.

4.1 Regular Expression Preliminaries

While §3.1 discussed expressions generally, we will now focus

specifically on regular expressions. Regular expressions are a classic

formalism providing a compositional syntactic approach for describ-

ing regular languages, and are useful for tokenizing input streams

(e.g., in a lexer), pattern matching within text, etc. In software devel-

opment practice, the term łregular expressionž is often overloaded

to refer to a variety of pattern-matching capabilities and syntaxes,

so it is important to fix this definition for our work. We say that

an expression R is a regular expression if and only if it matches the

following grammar (we will use the term regex when referring to

pattern-matching expressions beyond this core language).

R ::= 0
�
� 1

�
� c

�
� R + R

�
� R · R

�
� R∗ (regular expression)

c ∈ A (character from alphabet)

An expression R1·R2 is often written as R1R2. Semantics can be

defined in terms of the language each regular expression recognizes.

L(0) = ∅

L(1) = {ϵ}

L(c) = {c}

L(R1 + R2) = L(R1) ∪ L(R2)

L(R1 · R2) = {s1s2 | s1 ∈ L(R1) and s2 ∈ L(R2)}

L(R∗) =

⋃∞
k=0

L(Rk )

We use Rk to mean

k
︷    ︸︸    ︷

R·R·R· · · for k > 0, and R0 = 1. The above se-

mantics tells us that 0 recognizes no strings, 1 recognizes the empty

string ϵ , character c recognizes the corresponding single-character

string, alternation + recognizes the union of two languages, con-

catenation · recognizes string concatenation, and iteration (Kleene

star) ∗ recognizes repeated concatenation.

4.2 Regular Expression Semantic Equality

To perform the Section 3.5 (Unifier) semantic equality check ≈ for

regular expressions R1 and R2, we must decide whether L(R1) =

L(R2), i.e., whether they describe the same language. Using Thomp-

son’s construction, we can efficiently convert R to an NFA N (R)

which recognizes the language L(R), and this result allows us to

instead focus on the equality check L(N (R1)) = L(N (R2)). NFA

equality is PSPACE-complete [34], but we utilize a bisimulation-

based algorithm which has been shown to be effective in many

cases [1, 20].

4.3 Regular Expression Syntactic Rewriting

Regular expressions have a mathematical formalization known as

Kleene algebra. Due to soundness and completeness properties,

equality of regular expressions can be fully characterized by a set

of Kleene algebra axioms. These axioms leave us with two equally

powerful ways checking equality of regular expressions R1,R2: we

can either check whether they describe the same language, i.e.,

L(R1) = L(R2) (semantic equality) as discussed in Section 4.2, or we

can check whether there is a proof using the Kleene algebra axioms

showing that R1 = R2 (syntactic equality).

Following Kozen [28], we list the Kleene algebra axioms as fol-

lows, where R1 ≤ R2 is shorthand for R1 + R2 = R2.

A + (B +C) = (A + B) +C associativity of + (1)

A + B = B +A commutativity of + (2)

A + 0 = A identity for + (3)

A +A = A idempotence of + (4)

A · (B ·C) = (A · B) ·C associativity of · (5)

1 · A = A left identity for · (6)

A · 1 = A right identity for · (7)

A · (B +C) = A·B +A·C left distributivity of · (8)

(A + B) ·C = A·C + B·C right distributivity of · (9)

0 · A = 0 left annihilator for · (10)

A · 0 = 0 right annihilator for · (11)

1 +A·A∗ ≤ A∗ left unrolling of ∗ (12)

1 +A∗·A ≤ A∗ right unrolling of ∗ (13)

B +A·X ≤ X ⇒ A∗·B ≤ X left unrolling ineq. (14)

B + X ·A ≤ X ⇒ B·A∗ ≤ X right unrolling ineq. (15)
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Figure 5: (a) NFA for regular expression a∗∗, and (b) its (par-

tial) computation tree.

We can derive the following useful rules from the above axioms.

These rules are extraneous due to the soundness and completeness

of 1-15, but they offer several ways of quickly eliminating Kleene

stars, which as seen in Section 4.5, are a primary contributor toward

superlinear behavior.

1 +A·A∗ = A∗ strong left unrolling of ∗ (16)

1 +A∗·A = A∗ strong right unrolling of ∗ (17)

A∗ · A∗ = A∗ idempotence of ∗ (18)

A∗∗ = A∗ saturation of ∗ (19)

1
∗
= 1 iterated identity (20)

0
∗
= 1 iterated annihilator (21)

We encode equations 1-11, 16-17 (the stronger forms of 12-13), and

18-21 as rewrite rulesÐfor each equation X = Y , we produce the

bidirectional rewrite rule X ↔ Y , and instantiate our Updater (3.4)

with these rules. Note that equations 14-15 are not equalities like

the others, meaning they are not readily usable as rewrite rules. We

omit these equations, noting that the ReGiS approach fully supports

incomplete sets of rewrite rules.

4.4 Backtracking Regular Expression Matching
Algorithms

Catastrophic backtracking behavior arises due to the nondetermin-

ism in the NFAs corresponding to regular expressions. Figure 2

showed a quantitative example of the PCRE engine’s exponential

behavior on the regular expression a∗∗ and input strings aa . . . ab.

In Figure 5, we visualize how this occurs, by examining the paths

taken through NFA N (a∗∗) as the PCRE matching algorithm at-

tempts to match, and observing how the number of iterations in-

creases exponentially. To match against the string b, all transitions

to the left of computation tree node t1 in Figure 5(b) must be ex-

plored, before concluding that b is not accepted (7 transitions). Note

that backtracking algorithms use lightweight memoization to han-

dle cycles in the NFA (skipped transitions due to this behavior are

indicated with dashed lines) [16]. To match against the string ab, all

transitions to the left of node t2 must be explored (15 transitions),

and to match against aab, all transitions in Figure 5(b) must be ex-

plored (23 transitions). Here, superlinear behavior can be triggered

by a large sequence of repeated a characters followed by a non-a

character. In practice, one can automatically derive such an attack

string to exploit a given superlinear regular expression [48].

4.5 Cost Metric for Superlinear Regular
Expressions

An upper bound on the maximum backtracking for a given regular

expression can be characterized by tree width (leaf size) [41, 10],

which describes the number of leaves in the tree consisting of all pos-

sible paths through the regular expression’s NFA, but this is hard to

compute (PSPACE-complete) [10]. In Figure 5, tree width would be

10 with respect to the input string aab, since this (depth-3) compu-

tation tree has 10 leaves. Alternative metrics such as maximal back-

tracking run [58] quantify potential backtracking in different ways,

but are also computationally expensive. We introduce a useful cost

metric which we call backtracking factor that is quick to compute

directly on a regular expression, yet still captures the key syntactic

features causing superlinearity in backtracking search. This back-

tracking factor allows ordering of regular expressions according to

łdegree of superlinearityž, e.g., cost(a) < cost(a∗) < cost(a∗∗).

The following shows our cost metric, where K1 = |A| × (2
h − 1)

and K2 = K1
h × (K1 + 2) are integer scaling factors for · and ∗

respectively, h is the maximum expression height being used in the

Enumerator, and |A| is the size of the regular expression’s alphabet.

cost(0) = 1

cost(1) = 1

cost(c) = 1

cost(R1 + R2) = cost(R1) + cost(R2)

cost(R1 · R2) = K1 × (cost(R1) + cost(R2))

cost(R∗) = K2 × cost(R)

Thismetric has the effect of ensuring that, for regular expressions

up to a maximum height h, the + operator increases cost additively,

the · operator increases cost multiplicatively, and ∗ increases cost

exponentially. We instantiate our Enumerator (Section 3.6) with this

specific cost metric, and in Section 5, we experimentally validate

the quality of this metric for characterizing superlinear behavior.

The following property of cost says that for the lowest-cost

expression R2 seen so far, the regular expression with globally min-

imal cost will have height no greater than height(R2). This ensures

that we can soundly reduce the Enumerator’s height bound based

on the height of the current lowest-cost expression in the source

expression’s E-class, which improves enumeration performance.

Theorem 4.1 (Height vs. Cost). Consider regular expressions

R1,R2. If L(R1) = L(R2), height(R1) > height(R2), and cost(R1) ≤

cost(R2), then ∃R
′ such that L(R′) = L(R2), height(R

′) ≤ height(R2),

and cost(R′) ≤ cost(R1).

4.6 SMT Implementation of Cost Metric

We allow the cost metric cost to be specified as a recursive integer-

valued function using addition as well as multiplication by integer

constants (the Section 4.5 cost metric is of this form). This allows

us to implement cost in Egg as a recursive Rust function, used for
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.

.

.

cost(c) = 1

cost(R1 + R2) = cost(R1) + cost(R2)
.
.
.

Figure 6: Example cost function.

(assert (= (ncost N )

(ite (= (ntype N ) CHAR) 1

(ite (= (ntype N ) PLUS) (+ (ncost (left N )) (ncost (right N )))

...))))

Figure 7: SMT encoding.

extracting the minimal expression from an E-class. Additionally,

this allows us to implement cost in SMT using the QF_UFLIA theory,

to enable enumerating regular expressions by increasing cost, as

needed by the Enumerator (Section 3.6).

Our SMT encoding uses uninterpreted function symbols ntype :

N→ N and ncost : N→ N, representing the type and cost of each

node in the expression’s tree. Figures 6-7 demonstrate how our

regular expression cost function is encoded using these function

symbols. The uppercase symbols in the SMT encoding signify inte-

ger constantsÐe.g., CHAR identifies a character expression node

type, and PLUS identifies an alternation expression node type. We

generate one such assertion for each node indexN , up to the bounds

given by the source expression’s height. Integer constants (left N )

and (right N ) are the indices of the nodes corresponding to node

N ’s left and right subexpressions respectively.

In the model obtained from the solver, the ntype function symbol

encodes the expression itself, and (ncost 0) contains the expression’s

cost (index 0 corresponds to the expression’s root node).

5 PROTOTYPE AND EVALUATION

We built a prototype of ReGiS (§3), and leveraged it to build a regular

expression optimization system (§4) using ∼7500 lines of Rust code

and several hundred lines of Python/shell script.

The platform used for all experiments was a Dell OptiPlex 7080

workstation running Ubuntu 18.04.2, with a 10-core (20-thread) Intel

i9-10900K CPU (3.70GHz), 128 GB DDR4 RAM, and a 2TB PCIe

NVME Class 40 SSD. We examine three key research questions

Q1-3, to understand the performance and usability of our approach.

Note that we have proven the correctness of our algorithm (Section

3.7), but to confirm that the implementation is bug-free, we used the

equality checking procedure (Section 4.2) to successfully check the

correctness of each result produced by our tool in the experiments.

Q1: How does ReGiS compare against SyGuS and
rewriting?

We demonstrate the benefits of combining enumerative synthesis

and rewriting, by comparing ReGiS performance against each of

these approaches operating on their own. We used the Enumerator

to simply iterate through candidate expressions in increasing or-

der of cost, performing an NFA equality check against the source

expression for each candidate. The input source expressions con-

sisted of all possible regular expressions with a single-character

alphabet, up to height 3, for a total of 2777 inputs. Figure 8 shows

these performances results.
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Figure 8: Performance ofReGiS against basic bottom-up enu-

meration.

Figure 8(a) contains many overlapping points, so we binned

the data (bin size 0.1) and used size/color of the points to indicate

relative numbers of tests appearing at those locations. The diagonal

indicates 1x speedup, so points appearing above this line indicate

better performance for ReGiS versus basic enumeration. Figure 8(b)

visualizes the data differently, showing the spectrum of speedups

offered by ReGiS. Each bar represents the number of tests in which

ReGiS had the speedup shown on the x axis, e.g., 222 tests had a

speedup of 30x.

The bar(s) to the left of x = 0 contain 821 examples. Of these,

644 are due to timeout of both both ReGiS and basic enumeration

(time limit 3s), and the remaining 177 were instances where ReGiS

was slower. Of these, the average slowdown was 1.06x, and the

maximum slowdown was 2x. Only 10 cases were worse than 1.15x

slowdown, and in each of these cases, the total runtime of ReGiS

was less than 110ms. We are confident that if the timeout were

increased slightly, many of the 644 examples would show speedup

for ReGiS.

We also added an Egg-only mode to enable rewriting without

enumeration. Here, we simply added the input source expression

to the E-graph, and applied rewrites until Egg indicated saturation

had been reached. All of the input regular expressions timed out at

3s using this rewriting-only mode.

Q2: How much does the interplay between
enumeration and rewriting help?

One key question is whether enumeration and rewriting could be

decoupled while still obtaining the same results. For example, we

could first let Egg perform some rewriting, and after we notice

that no further reduction in cost seems to be occurring, terminate

Egg, and begin enumerating based on the best-cost expression so

far. If the performance of this approach were comparable to ReGiS,

that would mean our work’s unique interaction between rewriting

and synthesis may be less important than expected. We set up a

simple experiment similar to the alternation example described in

Section 2.1, consisting of depth-4 regular expressions each having
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Table 1: Reduction in needed semantic equality checks.

ReGiS Enumeration

Checks Runtime (s) Checks Runtime (s)

Min. 3067 11.80 3416 11.09

Mean 3134.44 12.11 3416 11.40

Max. 3235 12.33 3416 11.86

5 distinct characters, and using only alternation. In this case, (1)

the expressions were not reducible, i.e., we must always enumerate

up to the maximum depth to confirm the global minimum has been

found, and (2) there were many equivalent expressions involved in

enumeration, due to commutativity of alternation.

Table 1 shows the results on a benchmark set of 100 depth-4

regular expressions. There was reduction in the number of equality

checks needed by ReGiSÐthis is because the E-graph is continuously

unioning candidate expressions added from the Enumerator, mean-

ing that by the time a Unifier would be spawned for a given pair of

E-classes, they may have already been handled by rewriting. Total

ReGiS runtime was slightly worse on these particular examples, due

to overhead involved in maintaining the various data structures in

our prototype implementation. The fact that our approach allows

equality checks to be skipped is vital in other domains where the

checker/verifier may be much slower than NFA bisimulation.

Q3: How does ReGiS compare with existing
regex optimizers?

Although existing regex optimizers may terminate quickly, they do

not guaranteeminimality of the result regular expressions.We show

that our regular expression optimization tool produces high-quality

results compared to existing tools, thereby validating design choices

such as our regular expression cost metric. We identified several

existing open-source regex optimization tools, Regexp-Optimizer

[62] (we will refer to this as Opt03), RegexOpt, [27] (we will refer to

this as RegOpt), and Regular Expression Gym, a part of the Noam

project [63], and installed them locally on our workstation. We

needed a set of łground truthž regular expressions for which we

know the minimum-cost equivalent expressions. Thus, we selected

the regular expressions from Q1 for which our tool reported a

minimum, giving us 2176 inputs, and from these we selected only

those containing at least one Kleene star, giving us 1574. We then

transformed each of these into an equivalent expression known to

be superlinearÐwe used the RXXR regular expression static analysis

tool [26, 45] to check whether an expression was vulnerable, and if

not, we randomly applied semantics-preserving transformations

known to increase complexity, e.g., a∗ → a∗a∗. This was repeated

until RXXR confirmed vulnerability. Finally, RXXR provided us

with an attack string, allowing us to target the vulnerability.

Using these superlinear expressions, we ran ReGiS and the other

optimizers. The output expression from each was given to the PCRE

regex engine, and matched against the respective attack string. We

found that the number of PCRE steps is generally proportional to

PCRE runtime. Ultimately, the number of steps provides a more

łimplementation-independentž measure of regular expression com-

plexity than runtime, since it roughly corresponds to number of

steps in the NFA traversal (Section 4.4). Figure 9 shows the number

of PCRE steps on the respective regular expressions. Most points
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Figure 9: Quality of ReGiS results versus open-source regex

optimizers: (a) Number of PCRE steps to match against at-

tack string; (b) Detail near diagonal.

appear above the diagonal, meaning ReGiS produced lower-cost

regular expressions in terms of PCRE matching complexity.

6 DISCUSSION AND FUTUREWORK

While our benchmarks are small, they are exhaustive in the sense

that all expressions having the given structure/bounds are included.

Tools like RXXR [26, 45] accept an input regex and identify a vulner-

able subexpression leading to superlinear behavior, and this subex-

pression is often smaller than the input, meaning that handling

small expressions has real-world value. For example, in a 2793-regex

dataset that the RXXR authors mined from the internet, RXXR

identifies 122 regexes as vulnerableÐin 99 of these, the vulnerable

subexpression has length 50 or less, even though the vulnerable

input regexes have lengths up to 1067 (vulnerable subexpressions

were up to 53x smaller than the inputs, averaging 3.9x smaller).

Even focusing on small exhaustive regular expression bench-

marks, serious problems can arise (Figure 2 shows superlinear be-

havior of a single-character regular expression), and we have shown

that existing optimizers fail to offer workable solutions.

While we believe ReGiS to be an important step toward the

high-level goal of scaling up synthesis, especially in regards to

regular expression optimization, there are engineering and research

challenges we plan to address in future work.

• Our regular expression optimization technique handles łpurež

regular expressions, while many real-world regexes go be-

yond this core language. It is not fundamentally difficult to

extend support, but this will require giving Egg more flexible

rewrite-rule functionality, such as operations on character

classes. Note that the primary ingredient of superlinear be-

havior is alternation under Kleene star, leading to exponen-

tial backtracking (Section 4.4)Ðno functionality outside pure

regular expressions is needed to trigger this.

• Solver frameworks powered by DPLL rely on heuristics to

improve search performance. There are similar opportuni-

ties for carefully-designed heuristics here. For example, we
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assign Unifiers based on lowest overlay edge cost, but these

could also be chosen based on łsimilarityž of contained ex-

pressions, increasing likelihood of fast equality checks.

• Additional optimizations are possible. Verification is often a

bottleneck in synthesisÐfor us, this is an NFA equality check,

which is usually fast, but we could, e.g., parallelize several

equality checks within each pair of E-classes, utilizing the

fastest result. Incremental node/expression cost maintenance

in the E-graph would also improve performance. We found

that the Hopcroft-Karp (HK) NFA bisimulation algorithm

which exploits equivalence classes does not seem to offer

improvement over a naïve on-the-fly NFA-to-DFA bisimu-

lation check on the DAG-like Thompson NFAs. We plan to

investigate other equality-checking techniques [6].

7 RELATED WORK

Program Synthesis and Superoptimization

Jeon et al. [25] tackle the synthesis scalability problem by han-

dling multiple enumeration steps in parallel. Alur et al. [3] use a

divide-and-conquer approach, partitioning the set of inputs, solv-

ing a smaller synthesis problem within each partition, and then

combining the results together. Superoptimization [47, 44] is an

approach for optimizing sequences of instructions. In contrast, we

perform rewriting (syntactic) and enumeration (semantic) steps in

parallelÐthe interplay between these is key to our approach.

Combining Rewriting with Synthesis

Huang et al. [24] describe an approach which combines parallelism

with a divide-and conquer methodology to perform synthesis with

enumeration and deduction (conceptually similar to rewriting).

ReGiS offers additional parallelization opportunities, by allowing

the enumeration and rewriting to happen in parallel.

Using a rewriting-based approach for expression optimization

requires a technique for overcoming local minima in the rewriting.

We achieve this by combining equality saturation-based rewriting

with syntax-guided synthesis. Nandi et al. [38] leverage equality

saturation [55, 59] while performing search for CAD model decom-

pilation, but they do not offer global minimality guarantees, or cost

functions beyond expression size. They overcome local minima

by speculatively adding non-semantics-preserving rewrites, and

łundož these later, after the final expression has been extracted.

Cosy [30, 31] enumeratively synthesizes data structures, using a

lossy łdeduplicationž mechanism to maintain equivalence classes.

Our approach compactly maintains all equivalence class members,

not just representatives. Smith et al. [51] combine synthesis with

rewriting, but require a term-rewriting system (TRS). Constructing

a TRS is undecidable, so human input (using a proof assistant) is

typically needed, while our approach is fully-automated.

There are machine learning-based approaches that combine

synthesis-like search with rewriting [49, 15]. The key distinction

between these approaches and ours is the need for training data,

whereas our approach is designed to operate without this. These

data-driven approaches typically cannot guarantee global optimal-

ity, and also cannot propose new rulesÐsaid another way, they offer

a purely syntactic approach to optimization.

A related topic is synthesizing rewrite rules, which has been

investigated in the context of security hardware/software [29] and

SMT [40]. Another related direction is theory exploration, which

uses E-graphs to enumerate lemmas for theorem proving [50].

Regular Expression Denial of Service (ReDoS)
Attacks

Algorithmic complexity attacks are well-known, with early research

in this area focusing on network intrusion detection and other

systems-related functions [17, 52]. Catastrophic backtracking and

attacks against the complexity of regular expressions have also

begun to appear in the literature [19], but while some useful rule-

of-thumb guides have been available for some time [22, 54, 46],

general awareness of these vulnerabilities may not be widespread.

Vulnerable Regular Expression Detection

Existing work detects regular expressions vulnerable to ReDoS.

Static analysis can find the complexity of a regular expression, e.g.,

Berglund et al. [4] formalize regular expression matching in Java,

and statically determine whether a given Java regular expression

has exponential runtime. Weideman et al. [58] build on that work,

providing more precise characterization of worst-case runtime.

A related problem is finding an attack string that causes poor

performance on a given regular expression. ReScue [48] does this

via genetic search and properties of the pumping lemma. RXXR [26,

45] finds an attack string, and a vulnerable subexpression causing

superlinear behavior on that string. Rexploiter [60] constructs an at-

tack automaton, characterizing the entire language of attack strings.

These approaches are complimentary to ours, which seeks to remove

vulnerabilities from known-vulnerable regular expressions.

ReDoS Attack Prevention

Some authors have suggested updating existing backtracking algo-

rithms with a state cache [18], which fully memoizes traversal of

the NFA, achieving polynomial runtime at the expense of signifi-

cant memory usage. Since developers may seek more power than

core regular expressions provide, other work seeks to extend the

expressibility of Thompson-like approaches to support additional

features like backreferences [37].

Synthesis from examples [14, 42] is related to our work. This

requires input-output examples, and an expression is automati-

cally constructed to fit these examples. The work does not directly

address ReDoS, but could potentially be leveraged for that purpose.

8 CONCLUSION

We present rewrite-guided synthesis (ReGiS), a new approach for

expression optimization that interfaces syntax-guided synthesis (Sy-

GuS) with equality saturation-based rewriting. We leverage ReGiS

to address the problem of optimizing superlinear regular expres-

sions, demonstrating the power and flexibility of our framework.
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Figure 10: Lemma A.1 base case.

A PROOFS OF THEOREMS

Theorem 3.1 (Soundness). If ReGiS returns an expression e ′ for

an optimization instance (e, cost,W , J·K,≈), then e ′ is no larger than
the minimal expression in hl(e), i.e., cost(e ′) ≤ cost(e ′′) for any

e ′′ ∈ hl(e).

Proof. If the algorithm returns an expression e ′, then the Figure

4 machine’s final step must have been either Saturate or Union2

(these are the only rules that allow termination).

In the case of Saturate (with a complete rewrite rule setW ),

by definition of E-graph saturation, all possible equalities (modulo

the rewrite rulesW ) have been incorporated into the E-graph E,

meaning the source E-class class(E, e) contains all grammatically

valid expressions that are syntactically equivalent to e . Let em
be a minimal expression in hl(e). By completeness of W , since

JemK ≈ JeK, we know that em ∈ class(E, e). Thus, since the return

value is Emin (S0) = Emin (e) = min(class(E, e)), we know that

cost(Emin (S0)) ≤ cost(em ).

In the case of Union2, we know that S0 and the minimal unpro-

cessed target Tk are equivalent, since they are in the same E-class.

No target Tj (where j < k) is equal to the source, since the index k

can only be incremented by Union3 when processing an inequality.

Because Enumerate adds all elements of hl(e) to T in increasing

order of cost, we have that Tk is the lowest-cost element of hl(e)

that is equivalent to the source. Thus, Emin (S0) is no greater than

the cost of the minimal element of hl(e). □

Theorem 3.2 (Completeness). If em is a minimal expression in

hl(e), i.e., em ∈ hl(e) and cost(em ) ≤ cost(e ′′) for any e ′′ ∈ hl(e),

then ReGiS’s result e ′ will have cost(e ′) = cost(em ).

Proof. Enumerate adds every expressionwith height no greater

than height(e) to T in increasing order of cost. Thus, the minimal

element em ∈ hl(e) will be added to T at some index j, and Ti ̸≈ e

for all i < j. Because new overlay graph edges initially have unit

weight, once em appears as Tj , Eqality is able to register the

equality em = e , and Union1 will be able to place em and e into

the same E-class. For each target Ti where i < j, Ineqality and

Union3will ensure that the index k of the minimal unprocessed tar-

get Tk is incremented, resulting in k = j . At this point, the Union2

rule will allow the algorithm to terminate with Emin (S0), which

has cost no greater than em . □

LemmaA.1. Consider regular expressionsR1,R2. If L(R1) = L(R2),

height(R1) > height(R2), |{R | L(R1) = L(R) = L(R2) and height(R1) >

height(R) > height(R2)}| = 0, and cost(R1) ≤ cost(R2), then ∃R′

such that L(R′) = L(R2), height(R
′) ≤ height(R2), and cost(R′) ≤

cost(R1).

Proof. Figure 10 shows this graphically. There are no regular

expressions in the vertical space between R1 and R2. The path

connecting R1,R2 is formed by a sequence of rewrite rules. No

segment (application of a single rewrite rule) can angle down and

to the right or up and to the left, since no individual rewrite rule

increases cost while reducing height (or vice versa).

We proceed by induction over length n of the path from R1 to

R2. Based on the previously-mentioned segment angle constraint,

the smallest possible n is 2.

Base case n = 2. This case is visualized by the path R1 → R3 →

R′
2
in Figure 10. If R3 is below the shaded area, it cannot be to the

right of R1 due to the angle constraint, meaning cost(R3) ≤ cost(R1),

and we are finished with the proof, since we have found an R′ = R3
such that cost(R′) ≤ cost(R1) and height(R′) ≤ height(R′

2
).

Consider the case where R3 is above the shaded area. In this case,

the edge from R3 to R
′
2
represents a decrease in height. Examining

only height-reducing rewrite rules used in our algorithm (Section

4.3), we are limited to the following possibilities for R′
2
,R3 (where

A is any regular expression).

rule R′
2

R3 R1

3 A A + 0 A + 0, A + 0, 0 +A, A

4 A A +A A +A, A +A, A + A , A

6 A 1 · A 1 · A, 1 · A , A

7 A A · 1 A · 1, A · 1, A

10 0 0 · A 0 · A, 0 · A , 0

11 0 A · 0 A · 0, A · 0, 0

16 A∗ 1 +A·A∗ 1 + A·A∗, 1 + A ·A∗, 1 + A· A∗ ,

1 +A· A ∗, A·A∗ + 1, A∗

17 A∗ 1 +A∗·A 1 + A∗·A, 1 + A∗· A , 1 + A∗ ·A,

1 + A ∗·A, A∗·A + 1, A∗

18 A∗ A∗·A∗ A∗·A∗, A∗ ·A∗, A∗· A∗ , A ∗·A∗,

A∗· A ∗, A∗

19 A∗ A∗∗ A∗∗, A∗ ∗, A ∗∗, A∗

20 1 1
∗

1
∗, 1

21 1 0
∗

0
∗, 1

Based on these options for R3, the corresponding options for

R1 are listed, using R to denote a single rewrite rule applied to

some subexpression of R, such that height( R ) ≤ height(R). In all

of these cases for R1, we can find an R
′ such that cost(R′) ≤ cost(R1)

and height(R′) ≤ height(R′
2
). In any case that does not contain A∗ ,

we can simply let R′ = R′
2
. For cases that contain A∗ , if A is of the

form R∗ for some R, then we can let R′ = A. Otherwise, the A∗

can instead be written as A ∗, meaning we can again let R′ = R′
2
.

Inductive step n > 2. Assume the property holds for all k <

n. Given the path of length n between R1 and R2, consider the

first segment R1 → R3 (shown as the red/dashed arrow in Figure

10). If R3 is below the shaded area, it cannot be to the right of

R1 due to the angle constraint, meaning cost(R3) ≤ cost(R1) and

height(R3) ≤ height(R2), so we are finished with the proof (we have

found R′ = R3).
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Otherwise, if R3 is above the shaded area, we apply the induction

hypothesis to R3,R2, giving us R4 such that cost(R4) ≤ cost(R3) and

height(R4) ≤ height(R2). If R4 is to the left of R1, we are finished

(R′ = R4). Otherwise, we can apply the induction hypothesis to

R1,R4, giving us R5 such that cost(R5) ≤ cost(R1) and height(R5) ≤

height(R4). Since height(R4) ≤ height(R2), we have height(R5) ≤

height(R2), and we are finished (we found R′ = R5). □

Theorem 4.1 (Height vs. Cost). Consider regular expressions

R1,R2. If L(R1) = L(R2), height(R1) > height(R2), and cost(R1) ≤

cost(R2), then ∃R
′ such that L(R′) = L(R2), height(R

′) ≤ height(R2),

and cost(R′) ≤ cost(R1).

Proof. We proceed by induction over the number of regular ex-

pressionswith height between that ofR1 andR2, i.e.,n = |{R | height(R1) >

height(R) > height(R2)}|.

Base case n = 0. This follows from Lemma A.1.

Inductive step n > 0. Assume the Theorem holds for all k <

n. Assume height(R1) > height(R2) and cost(R1) ≤ cost(R2). Let

R3 be a regular expression such that height(R1) > height(R3) >

height(R2).

Case I: cost(R3) > cost(R1). Applying the induction hypothesis

to R1,R3, we can obtain an R4 such that height(R4) ≤ height(R3)

and cost(R4) ≤ cost(R1). If height(R4) ≤ height(R2), we are finished

with the proof (we found R′ = R4). Otherwise if height(R4) >

height(R2), since we have cost(R4) ≤ cost(R2) from the induction

hypothesis, we can apply the induction hypothesis to R4,R2 to

obtain an R5 such that height(R5) ≤ height(R2) and cost(R5) ≤

cost(R4). Since cost(R4) ≤ cost(R1), we are finished with the proof

(R′ = R5).

Case II: cost(R3) ≤ cost(R1). Using the induction hypothesis, we

have cost(R3) ≤ cost(R2). Applying the induction hypothesis to

R3,R2, we can obtain an R5 such that height(R5) ≤ height(R2) and

cost(R5) ≤ cost(R3). By Case II assumption, we have cost(R5) ≤

cost(R1), so we are finished with the proof (R′ = R5). □
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