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Abstract Machine learning system design frequently necessitates balancing multiple objectives, such
as prediction error and energy consumption, for deep neural networks (DNNs). Typically,
no single design performs well across all objectives; thus, finding Pareto-optimal designs
is of interest. Measuring different objectives frequently incurs different costs; for example,
measuring the prediction error of DNNs is significantly more expensive than measuring
the energy consumption of a pre-trained DNN because it requires re-training the DNN.
Current state-of-the-art methods do not account for this difference in objective evaluation
cost, potentially wasting costly evaluations of objective functions for little information gain.
To address this issue, we propose a novel cost-aware decoupled approach that weights the
improvement of the hypervolume of the Pareto region by the measurement cost of each
objective. To evaluate our approach, we perform experiments on several machine learning
systems deployed on energy constraints environments.

1 Introduction

Many engineering and scientific applications require design decisions to be made to optimize mul-
tiple objectives f;(x), ..., f,(x) over some bounded domain X  R?, where d is the dimensionality
of the design space. For example, tuning DNN training and model design hyperparameters, as well
as hardware and architectural design options to optimize objectives such as accuracy and energy
in a DNN system. Solving these optimization problems is challenging mainly due to three reasons.
(D It is difficult to conduct efficient explorations of the enormous design space X that is formed
by the combinatorial explosion of design options from different components of the DNN system.
(II) The objective functions are unknown, and we must conduct costly experiments to evaluate each
candidate design. (III) The objectives are inherently conflicting, and they cannot all be optimized at
the same time. As a result, we must find the set of designs that is Pareto optimal.

In this work, we provide a novel solution for a classical problem—finding Pareto-optimal
design (in exponentially large design space) given a fixed limited budget. The overall goal is to
minimize the number of function evaluations to approximate the optimal Pareto set. Multi-objective
Bayesian Optimization (MOBO) is an effective framework to solve black-box optimization problems
with expensive function evaluation. A common strategy is to estimate each function f using a
probabilistic model M, such as a Gaussian process (GP) [12, 17, 16]. These strategies use the
uncertainty captured by the probabilistic model to generate an acquisition function (a faster and
cheaper proxy of the unknown objective function f), the maximum of which provides an effective
heuristic for identifying a promising location on which to evaluate the objectives at each iteration
t to identify Pareto optimal designs A™.

Existing Gap. Existing MOBO approaches are classified into the following categories based on their
cost distribution assumptions (cost aware ! vs decoupled 2): (I) Coupled Unaware (e.g., PAL [23]),

Uncorporates the costs of evaluating objectives for choosing objectives for evaluating a design. Note that cost-aware
approaches exist, in that they use the cost of evaluating designs (across all objectives) as constraints to decide whether
to select a design during the iterative optimization. vs unaware) and evaluation strategy (coupled

20nly a subset of objectives is evaluated for the selected design at each iteration.

AutoML Conference 2022 Workshop Track © 2022 the authors, released under CC BY 4.0


https://creativecommons.org/licenses/by/4.0/

IS . = <

S w = . &
PR TS a M g > - * %
& . -y 5 @ . 2
P . Tk B U Z 3]
g “ \A g s . ¢ 350 2
2 . -~ ) .

2 *e + 2 ’s =
g BRI ¥ \/ - & 5 Yy 5
n o st g Y & ce e, . =

. e

12000
Energy ption (mnJ)

3000

Figure 1: (a) Coupled unaware approaches wastes resources by evaluating designs with higher evalua-
tion costs (b) Coupled aware approaches can suffer due to poor performance if the Pareto
optimal designs are from regions of high evaluation cost (c) Decoupled aware approaches
invests a lot of resources in evaluating designs with lower quality (high prediction error and
high energy consumption) and do not perform well across both objectives (d) Decoupled
aware approaches find designs with better quality for the objective evaluation cost when
compared to other approaches.

e-PAL [22], PESMO [9], MESMO [2], MESMOC [3]) () Coupled Aware (e.g., CA-MOBO [1],
CARBO [14] %), and (IlT) Decoupled Unaware (e.g., PESMO-DEC [9]). However, none of these
approaches are particularly useful for budget-constrained applications when the difference between
the objective evaluation costs is sufficiently high. For example, measuring the prediction error
of DNNs is orders of magnitude more expensive than measuring the energy consumption of a
pre-trained DNN, as it requires re-training the DNN while optimizing the prediction error and
energy consumption of a DNN system. Because the methods are unaware of the non-uniform
objective evaluation costs, they waste resources evaluating the selected designs across all objectives,
even if there is little or no gain through a specific objective.

Motivation. To address these limitations, we propose a brcticion B —
decoupled cost-aware MOBO approach that takes into ac- 9o .
count the non-uniformity of objective evaluation costs f
and evaluates expensive objectives only if the information
gained from the evaluation is worthwhile. To motivate our
work, we performed a sandbox experiment to optimize
the prediction error and energy consumption of an image "7 = o e o Mrmoor o

recognition DNN system SqueezeNet [10] with CIFAR-10 Figure 2: Contour curves for prediction er-
dataset deployed on a resource-constrained Nvipia JET- ror (left) and energy consump-
SON TX2 device for inference on 5,000 test images. Addi- tion (right) of SqueezeNet by
tionally, we use 8 Nvipia TesLa K80 GPUs deployed on Larylgg CfP IEJ'I Freq“;’flcykand
Google cloud for training using 45,000 training images. . umther Oth l tzrs Ve t.e P
We tuned the following hardware, architectural and DNN mg the other design OpHOns

. . fixed. Decoupled unaware ap-
design options: CPU Frequency, GPU Frequency, Swap- proaches perform poorly when

piness, Memory Growth, Filter Size, Number of Filters, objectives with different costs
and Number of epochs to compare our decoupled aware have the same complexity (both
approach with coupled unaware: PAL, coupled aware: CA- non-linear).

MOBO, and decoupled unaware: PESMO-DEC approaches.

Figure 1(a) indicates that the designs selected by cou-
pled unaware approaches for evaluation have higher costs given the quality (lower prediction
error and energy consumption indicate better quality) of the designs in comparison with decou-
pled aware approaches. Coupled aware approaches evaluate a high number of cheap designs

3CARBO is a single objective optimization technique



by avoiding the expensive regions in the search space. However, these methods can produce
sub-optimal results when the Pareto optimal designs are located in the expensive regions of the
search space, as shown in Figure 1(b). We also observe that the exploration-exploitation trade-off
of these approaches is not balanced considering the cost. Compared to their coupled counter-
parts, decoupled unaware approaches traverse the search space more uniformly across designs
from regions of different evaluation costs. However, they also waste resources by evaluating a
higher number of low-quality designs across the more expensive objective e.g., prediction error
as shown in Figure 1(c) when compared to decoupled aware approaches. This happens because
decoupled unaware approaches are not notably effective when the complexity of the objective
functions are the same, as shown in Figure 2 and the difference between their evaluation cost is
significantly high. On the other hand, from Figure 1(d) we discover that our decoupled aware
technique addresses each of the above limitations by a more balanced exploration across the
search space considering the evaluation cost. We also observe that our approach does not waste
resources in evaluating many designs in regions with a higher cost if the quality of the design is low.

Our approach. We extend on the concepts of the cutting-
edge MOBO techniques PAL [23] and PESMO-DEC [9]
by defining a function for objective evaluation cost using fo(x)

their computational time. Our acquisition function incor- A
porates the uncertainty of the GP prediction as well as
the objective evaluation cost to balance the exploration
and exploitation, which iteratively improves the quality of

(li Sopt

the Pareto optimal search space, also known as the Pareto of C

region. This acquisition function selects the next objective m -

along with the next design for evaluation. As a result, we F " Mo

can make a trade-off between the additional information G

obtained from an evaluation and the cost of obtaining it, Sposs— fi(x)
preventing us from performing costly evaluations for little Objective Space §

potential gain. Our intuition is that by avoiding evalua-

Figure 3: Example showing pruning of
tion of the more costly objective without the necessity of & > & P &

non-dominated points to con-

evaluating it, we can traverse the objective space and find struct Fopr, Fpess. The shaded
the Pareto optimal designs with increased efficiency. We blue region Py enclosed by Fypr,
demonstrate the promise of our approach via experimental Fpess indicates the Pareto region.

evaluations on a variety of DNNs (see Table 1).

Methodology

In this section, we explain the technical details of our approach to identify the optimal Pareto front
F* by evaluating a small subset of the design space X that uses a cost-aware acquisition function to
incorporate the evaluation costs of each objective in the standard Bayesian optimization framework.
Given the same budget, the cost-awareness of the acquisition function enables us to sample the
search space more efficiently compared to other state-of-the-art approaches. Our approach is an
active learning algorithm that not only selects a sequence of designs (x, ..., x7) in the design space
X but also objectives (fi;, ..., fr,i), where 1 < i < n for evaluation to predict a Pareto front F*
We evaluate a design x across an objective f; if the information gain is large enough compared
to the objective evaluation cost 6;;. This allows us to avoid expensive measurements for little
or no information gain, and to only evaluate across an objective when the information gain is
worthy compared to the evaluation cost. Our objective evaluation cost function is defined as
0r.i = 10g (tye,i) , where ty,c; is the wall-clock time required to evaluate an objective f; at iteration .

We initially select a set of designs X}, from the design space X’ using Monte-Carlo sampling
technique [19]. We then model each objective function f; with a separate surrogate model M;.
The objective values of a design x that has not been evaluated across any objective are estimated



DoMAIN ARCHITECTURE DATASET ComPILER NuUM. LAYERS NuUM. PARAMs TRAIN Size  TEST Si1ZE

IMAGE ResNet [8] CIFAR-10 [13] Keras 50 25M 45K 5K
SqueezeNet [10] CIFAR-10 [13] Keras 3 1.2M 45K 5K

NLP BERT [5] SQUAD 2.0 [18] PyTorch 12 110M 56K 5K

SpeecH  DeepSpeech [7] Common Voick [15] PyTorch 9 68M 300 (hrs) 2 (hrs)

Table 1: The DNN architectures and datasets used in the experimental evaluation.

by f(x) = p(x) = (u(x),...,un(x)), and the associated uncertainty is estimated by o(x) =
(01(x),...,0n(x)). At this point, we use the p;(x) and o;(x) values to determine the uncertainty
region R;(x) for each design x € X),,. We define the uncertainty region associated with a prediction
of the surrogate model as R;(x) = {y : p;(x) — \/ﬁ_tat(x) <y < p(x)+ \/,B_tat(x)}, where f; is
a scaling parameter that controls the exploration-exploitation trade-off. Similar to PAL [23], we
use f; = 2/9log(n|X,,|7%t?/668) for § € (0,1). The dimension of R;(x) depends on the number
of objectives n. Later, we exploit the information about the uncertainty regions to determine the
non-dominated designs set U [21]. We then use the optimistic (maximum of R;(x)) and pessimistic
(minimum of R;(x)) values of the non-dominated designs in ¢/ to build the optimistic Pareto front
Fopt, pessimistic Pareto front F s, and Pareto region Pg as shown in Figure 3.

We now employ our cost-aware acquisition function, which makes use of an information gain
I based on objective space entropy. Being cost-aware, our proposed acquisition function o, ;(x)
considers the evaluation cost 8, ; across each objective f;:

CI(x fa(x)), Frlag)  VPRIZTD) =V (P13, o2 o) AV,
at,i(x) = = =
gt,i Qt,,- Gt,i

(1)

Here, a;;(x) computes the amount of information that can be gained per cost for a design x to
be evaluated for an objective f;. In Equation 1, we compute the gain of information as the change of
volume of the Pareto region if the Pareto front Fr= Fopt U Fpess is updated by setting the uncer-
tainty values R; ;(x) of x to its mean y; ;(x) for the corresponding designs in X;,. Our acquisition
function computes the change of volume AV;; of the Pareto region Pg across each objective f; to
judiciously determine the gain of information that would be achieved if design x is evaluated for f;.
We select a design x; and an objective f;; using x;, f; = argmax, ¢ y: for cach ; %1,i(%) to identify
the most promising design for an objective function that gains the most information given the cost
of evaluating it. Finally, we update the surrogate model M; corresponding to the chosen objective
function f; by incorporating the newly-evaluated design and objective value. We stop when the
maximum budget 6,,,x is exhausted and return the Pareto front obtained.

Experimental Setup and Results

In this section, we evaluate the effectiveness of our approach to optimize energy consumption and
prediction error of DNNs in comparison to four state-of-the-art baselines such as PAL, PESMO, CA-
MOBO, and PESMO-DEC. We use four DNN architectures from three different problem domains;
IMAGE, NLP, and SpeecH. For each architecture, we select the most common dataset and compiler
typically used in practice, as shown in Table 1. We run each optimization pipeline 5 times using
different initial evaluations, where the initial evaluations in one run are the same for all methods.
We chose a number of architectures, hardware, and DNN design options based on similar hardware
configuration guides/tutorials and other related work [6]. To reduce the effect of noise, we repeat
energy measurements for each design 10 times and take the median; however, because prediction
error measurements are stable, we do not repeat them [11]. We employ a distributed setup where
the training of a DNN is done remotely on virtual machine instances with 8 NVIDIA Tesla K80 GPU
deployed on the Google cloud and the measurements and optimization algorithms run locally on a
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Figure 4: Comparison of hypervolume error obtained by our approach when compared to other MOBO
baselines for DNNs for image recognition, NLP, and speech recognition applications.

resource-constrained Jetson TX2 device. Our experiments took a total of 1440 hours of wall-clock
time to complete. Code and data are provided at https://github.com/softsys4ai/FlexiBO.

We evaluate the quality of the obtained Pareto fronts using the hypervolume error [4, 20] and the
cumulative log wall-clock time as the objective evaluation cost required to obtain it. As the ground
truth Pareto fronts are unknown, we approximate them by combining the Pareto fronts obtained
by the different optimization methods considered in our experiments to compute the hypervolume
error. From Figure 4, we observe that our approach consistently outperforms other methods in
finding Pareto fronts with lower hypervolume error in each of the applications. For example, our
approach achieves 4.8%, 7.6% and 8.2% lower hypervolume error in ResNet, BERT-SQuAD, and
DeepSpeech, respectively, than the next best optimization method in that particular DNN system.
These observations indicate that our approach is more effective than other baselines when the
size of DNN increases. This is expected as the size (and training time) of the DNNs increases, the
difference between objective evaluation costs also increases, and the penalty for wasting resources
becomes higher given the budget constraints.

Discussions: Limitations and Impacts

In this work, we proposed a decoupled cost-aware acquisition function for Bayesian multi-objective
optimization. Instead of evaluating all objective functions, we automatically choose the one that
provides the highest benefit, weighted by the cost to perform the evaluation. We demonstrated
the promise of our approach by conducting a comprehensive evaluation of three different DNN
applications across a large design space on resource-constrained hardware platforms. While our
evaluations are limited to optimizing DNN systems, we believe our approach can be generalized
across domains. However, our method may not work as well for objectives with uniform evaluation
costs, so we limit the scope to non-uniform objective evaluation costs.

Our method is especially useful for real-world machine learning systems, e.g., DNNs deployed
in resource-constrained environments such as edge. Furthermore, when confronted with a perfor-
mance bottleneck, this method can be useful in returning the system to a good operating region
significantly faster than other baselines. Additionally, our method enriches the existing MOBO
literature with a novel decoupled cost-aware technique. Finally, our approach can be used for better
understanding of the joint optimization space of architecture, hardware, and DNN design options,
as well as their interactions.
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