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Abstract

We study the problem of reconstructing a causal graphical model from data in the
presence of latent variables. The main problem of interest is recovering the causal structure
over the latent variables while allowing for general, potentially nonlinear dependencies.
In many practical problems, the dependence between raw observations (e.g. pixels in
an image) is much less relevant than the dependence between certain high-level, latent
features (e.g. concepts or objects), and this is the setting of interest. We provide conditions
under which both the latent representations and the underlying latent causal model are
identifiable by a reduction to a mixture oracle. These results highlight an intriguing
connection between the well-studied problem of learning the order of a mixture model and
the problem of learning the bipartite structure between observables and unobservables.
The proof is constructive, and leads to several algorithms for explicitly reconstructing the
full graphical model. We discuss efficient algorithms and provide experiments illustrating
the algorithms in practice.

1 Introduction

Understanding causal relationships between objects and/or concepts is a core component of
human reasoning, and by extension, a core component of artificial intelligence [Pea88, [LM11].
Causal relationships are robust to perturbations, encode invariances in a system, and enable
agents to reason effectively about the effects of their actions in an environment. Broadly
speaking, the problem of inferring causal relationships can be broken down into two main
steps: 1) The extraction of high-level causal features from raw data, and 2) The inference of
causal relationships between these high-level features. From here, one may consider estimating
the magnitude of causal effects, the effect of interventions, reasoning about counterfactuals,
etc. Our focus in this paper will be the problem of learning causal relationships between latent
variables, which is closely related to the problem of learning causal representations [SLB'21].
This problem should be contrasted with the equally important problem of causal inference



in the presence of latent confounders [e.g. (CMKRI12, [SMR13, [AHJK13, [HSKO06, [SSGS06]; see
also Remark 2.1]

Causal graphical models [Pea09, [Pea88| provide a natural framework for this problem, and have
long been used to model causal systems with hidden variables [RST02, [Eval6l [ER14, [E*18,
ER'19, RERS17|. It is well-known that in general, without additional assumptions, a causal
graphical model given by a directed acyclic graph (DAG) is not identifiable in the presence
of latent variables [e.g., [Pea88, [SGS00]. In fact, this is a generic property of nonparametric
structural models: Without assumptions, identifiability is impossible, however, given enough
structure, identifiability can be rescued. Examples of this phenomenon include linearity
[ENM17, CPW™12, [AHJK13, XCH™20, [And84], independence [AMR09, BJR16, XCH™20],
rank [ENM17,|(CPW 12|, sparsity [And84], and graphical constraints [AHJK13, AV"13|.

In this paper, we consider a general setting for this problem with discrete latent variables,
while allowing otherwise arbitrary (possibly nonlinear) dependencies. The latent causal graph
between the latent variables is also allowed to be arbitrary: No assumptions are placed on the
structure of this DAG. We do not assume that the number of hidden variables, their state
spaces, or their relationships are known; in fact, we provide explicit conditions under which all
of this can be recovered uniquely. To accomplish this, we highlight a crucial reduction between
the problem of learning a DAG model over these variables—given access only to the observed
data—and learning the parameters of a finite mixture model. This observation leads to new
identifiability conditions and algorithms for learning causal models with latent structure.

Overview Our starting point is a simple reduction of the graphical model recovery problem
to three modular subproblems:

1. The bipartite graph I'" between hidden and observed nodes,
2. The latent distribution P(H) over the hidden variables H, and
3. A directed acyclic graph (DAG) A over the latent distribution.

From here, the crucial observation is to reduce the recovery problems for I" and P(H) to the
problem of learning a finite mixture over the observed data. The latter is a well-studied problem
with many practical algorithms and theoretical guarantees. We do not require parametric
assumptions on this mixture, which allows for very general dependencies between the observed
and hidden variables. From this mixture model, we extract what is needed to learn the full
graph structure.

This perspective leads to a systematic, modular approach for learning the latent causal graph
via mixture oracles (see Section [2|for definitions). Ultimately, the application of these ideas
requires a practical implementation of this mixture oracle, which is discussed in Section [6]

Contributions More precisely, we make the following contributions:

1. (Section [3) We provide general conditions under which the latent causal model G is
identifiable (Theorem . Surprisingly, these conditions mostly amount to nondegen-



eracy conditions on the joint distribution. As we show, without these assumptions
identifiability breaks down and reconstruction becomes impossible.

2. (Section 4) We carefully analyze the problem of reconstructing I' under progressively
weaker assumptions: First, we derive a brute-force algorithm that identifies I' in a
general setting (Theorem , and then under a linear independence condition we derive
a polynomial-time algorithm based on tensor decomposition and Jennrich’s algorithm
(Theorem [4.8)).

3. (Section [5) Building on top of the previous step, where we learn the bipartite graph and
sizes of the domains of latent variables, we develop an efficient algorithm for learning
the latent distribution P(H) from observed data (Theorem [5.4)).

4. (Section [617) We implement these algorithms as part of an end-to-end pipeline for
learning the full causal graph and illustrate its performance on simulated data.

A prevailing theme throughout is the fact that the hidden variables leave a recognizable
“signature” in the observed data through the marginal mixture models induced over subsets of
observed variables. By cleverly exploiting these signatures, the number of hidden variables,
their states, and their relationships can be recovered exactly.

Previous work Latent variable graphical models have been extensively studied in the
literature; as such we focus only on the most closely related work on causal graphical models
here. Early work on this problem includes seminal work by Martin and VanLehn [MV95],
Friedman et al. [FT97| Elidan et al. [ELFK00]. More recent work has focused on linear models
[AHJK13, FNM17,[SSGS06, XCH™' 20| or known structure [KSDV17,[DDF21} ISLD*20]. When
the structure is not known a priori, we find ourselves in the realm of structure learning, which
is our focus. Less is known regarding structure learning between latent variables for nonlinear
models, although there has been recent progress based on nonlinear ICA [MZH20, KKMH20].
For example, [YLCT20| proposed CausalVAE, which assumes a linear structural equation
model and knowledge of the concept labels for the latent variables, in order to leverage the
iVAE model from [KKMH20]. By contrast, our results make no linearity assumptions and do
not require these additional labels. While this paper was under review, we were made aware of
the recent work [MGW20] that studies a similar problem to ours in a general, nonlinear setting
under faithfulness assumptions. It is also worth noting recent progress on learning discrete
Boltzmann machines [BKM19, [BB20|, which can be interpreted as an Ising model with a
bipartite structure and a single hidden layer—in particular, there is no hidden causal structure.
Nevertheless, this line of work shows that learning Boltzmann machines is computationally
hard in a precise sense. More broadly, the problem of learning latent structure has been studied
in a variety of other applications including latent Dirichlet allocation [AGMI12, AGHT13|,
phylogenetics [MRO5, [SS03], and hidden Markov models [AHK12, (GCR13)|.

A prevailing theme in the causal inference literature has been negative results asserting that in
the presence of latent variables, causal inference is impossible [GKS20, [RSSW03, RW99,[D’A19].
Our results do not contradict this important line of work, and instead adopts a more optimistic
tone: We show that under reasonable assumptions—essentially that the latent variables are



discrete and well-separated—identifiability and exact recovery of latent causal relationships is
indeed possible. This optimistic approach is implicit in recent progress on visual relationship
detection [ND17|, causal feature learning [CEP17, [LPNC*17|, and interaction modeling
[ILTA™20, IKEW™18|. In this spirit, our work provides theoretical grounding for some of these
ideas.

Mixture models and clustering While our theoretical results in Sections assume
access to a mixture oracle (see Definition , in Section @ we discuss how this oracle can
be implemented in practice. To provide context for these results, we briefly mention related
work on learning mixture models from data. Mixture models can be learned under a variety of
parametric and nonparametric assumptions. Although much is known about parametric models
le.g. ILin95|, of more interest to us are nonparametric models in which the mixture components
are allowed to be flexible, such as mixtures of product distributions [HZ03| |GS21], grouped
observations [RVS20), [VS16| and general nonparametric mixtures [ADXR20, [SBY09]. In each
of these cases, a mixture oracle can be implemented without parametric assumptions. In
practice, we use clustering algorithms such as K-means or hierarchical clustering to implement
this oracle. We note also that the specific problem of consistently estimating the order of a
mixture model, which will be of particular importance in the sequel, has been the subject of
intense scrutiny in the statistics literature [e.g. IMK20, [Kol00, DCG™97, [CK09].

Broader impacts and societal impact Latent variable models have numerous practical
applications. Many of these applications positively address important social problems, however,
these models can certainly be applied nefariously. For example, if the latent variables represent
private, protected information, our results imply that this hidden private data can be leaked
into publicly released data, which is obviously undesirable. Understanding how to infer
unprotected data while safeguarding protected data is an important problem, and our results
shed light on when this is and isn’t possible.

Notation We say that a distribution P(V') satisfies the Markov property with respect to a
DAG G = (V,E) if
P(V) = [] P(v | pag(v)). (1)
veV

An important consequence of the Markov property is that it allows one to read off conditional
independence relations from the graph G. More specifically, we have the following [see
Pea88, ISGS00, for details:

e For each v € V| v is independent of its non-descendants, given its parents.
e For disjoint subsets Vq, V5, V3 C V, if V] and V5 are d-separated given V3 in G, then
Vil Vo |Vsin P(V).

The concept of d-separation (see §3.3.1 in [Pea88| or §2.3.4 in [SGS00]) gives rise to a set
of independence relations, often denoted by Z(G). The Markov property thus implies that
Z(G) C Z(V), where Z(V) is the collection of all valid conditional independence relations
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Figure 1: Illustration of the basic model. Note that there are no edges between observed
variables or edges oriented from observed to hidden. (a) A latent variable model with a single
hidden state; i.e. a mixture model. (b)-(c) Two examples of latent variable models with more
complicated hidden structure.

over V. When the reverse inclusion holds, we say that P(V) is faithful to G (also that G
is a perfect map of V). Although the concepts of faithfulness and d-separation will not be
needed in the sequel, we have included this short discussion for completeness and context (cf.

Section .

Throughout this paper, we use standard notation such as pa(j) for parents, ch(j) for children,
and ne(7) for neighbors. Specifically, we define

e The parents of a node v € V' are denoted by pa(v) = {u € V : (u,v) € E};
e The children of a node v € V are denoted by ch(v) = {u € V : (v,u) € E};
e The neighborhood of a node v € V' is denoted by ne(v) = pa(v) U ch(v).

Given a subset V! C V, pa(V’) := Ujcy pa(j) and given a subgraph G’ C G, pag/(V') :=
pa(V’') N G’', with similar notation for children and neighbors. We let A € {0, 1}‘X|X|H‘ denote
the adjacency matrix of I' and denote its columns by a; € {0, 1}|X | Finally, we adopt the

convention that H is identified with the indices [m] = {1,...,m}, and similar X is identified
with [n] = {1,...,n}. In particular, we use pa(i) and pa(H ) 1nterchangeably when the context
is clear.

2 Background

Let G = (V, E) be a DAG with V = (X, H), where X € R" denotes the observed part and
HeQ:=0Q; x--- x§,, denotes the hidden, or latent, part. Throughout this paper, we
assume that each ; is a discrete space with |2;| > 2. We assume further that there are no
edges between observed variables and no edges from observed to hidden variables, and that
the distribution of V' satisfies the Markov property with respect to G (see the supplement
for definitions). Under these assumptions, G decomposes as the union of two subgraphs
G =T UA, where T is a directed, bipartite graph of edges pointing from H to X, and A is
a DAG over the latent variables H. Similar assumptions have appeared in previous work



[AHJK13, XCH™20, MGW?20], and although nontrivial, they encapsulate our keen interest in
reconstructing the structure A amongst the latent variables, and captures relevant applications

where the relationships between raw observations is less relevant than so-called “causal features’
[CPE14, [CEP17]. See Figure |l for examples.

)

Throughout this paper, we use standard notation such as pa(j) for parents, ch(j) for children,
and ne(j) for neighbors. Given a subset V' C V, pa(V') := Ujcy pa(j) and given a subgraph
G' C G, pag/(V') := pa(V')NG’', with similar notation for children and neighbors. We let A €
{0, 1}XIXIH1 denote the adjacency matrix of I' and denote its columns by a; € {0, 1T

Remark 2.1. Our goal is to learn the hidden variables H and the causal graph between them,
defined above by A. To accomplish this, our main result (Theorem shows how to identify
(T,P(H)), from which A can be recovered (see Section |3 for details). It is important to contrast
this problem with problems involving latent confounders [e.g. (CMKR12, |SMR13, [AHJK13,
HSKO06, [SSGS06/, where the goal is to learn the causal graph between the observed variables X .
In our setting, there are no edges between the observed variables.

2.1 Assumptions

It is well-known that without additional assumptions, the latent variables H cannot be
identified from X, let alone the DAG A. For example, we can always replace a pair of distinct
hidden variables H; and H; with a single hidden variable Hj that takes values in €; x ;.
Similarly, a single latent variable can be split into two or more latent variables. In order to
avoid this type of degeneracy, we make the following assumptions:

Assumption 2.2 (No twins). For any hidden variables H; # H; we have ner(H;) # ner(H;).
Assumption 2.3 (Maximality). There is no DAG G' = ((X, H'), E') such that:
1. P(X, H') is Markov with respect to G';

2. G’ is obtained from G by splitting a hidden variable (equivalently, G is obtained from G’
by merging a pair of vertices);

3. G’ satisfies Assumption [2.2.

These assumptions are necessary for the recovery of A in the sense that, without these
assumptions, latent variables can be created or destroyed without changing the observed
distribution P(X). Informally, the maximality assumption says that if there are several DAGs
that are Markov with respect to the given distribution, we are interested in recovering the
most informative among them. Finally, we make a mild assumption on the probabilities, in
order to avoid degenerate cases where certain configurations of the latent variables have zero
probability:

Assumption 2.4 (Nondegeneracy). The distribution over V.= (X, H) satisfies:
(a) P(H="h)>0 forallh € Q1 x ... %X Q.



(b) Forall S C X and a # b, P(S|pa(S) = a) # P(S|pa(S) = b), where a and b are distinct
configurations of pa(S).

Without this nondegeneracy condition, H cannot be identified; see Appendix [A] for de-
tails.

2.2 Mixture oracles

Let S C X be a subset of the observed variables. We can always write the marginal distribution
P(S) as

P(S) =Y P(H =h)P(S|H = h). (2)
heQ)

When S = X, this can be interpreted as a mixture model with K := || components. When
S € X, however, multiple components can “collapse” onto the same component, resulting in a
mixture with fewer than K components. Let k(S) denote this number, so that we may define
a discrete random variable Z with k(S) states such that for all j € [k(S)], we have

k(S) k(S)
P(S)=> P(Z=§P(S|Z=3) =Y =(S§)C(S,j). (3)
= A/—’%/—’ =
:=7(S.,5) :=C(S,5)

Then 7(S5,7) is the weight of the jth mixture component over S, and C(S,7) is the corre-
sponding jth component. It turns out that these probabilities precisely encode the conditional
independence structure of H. To make this formal, we define the following oracle:

Definition 2.5. A mixture oracle is an oracle that takes S C X as input and returns the
number of components k(S) as well as the weights w(S,j) and components C(S, j) for each
j € [k(S)]. This oracle will be denoted by MixOracle(S).

Although our theoretical results are couched in the language of this oracle, we provide
practical implementation details in Section [6] and experiments to validate our approach in
Section [7l

A sufficient condition for the existence of a mixture oracle is that the mixture model over X
is identifiable. This is because identifiability implies that the number of components K, the
weights P(Z = j), and the mixture components P(X | Z = j) are determined by P(X). The
marginal weights 7 (S, j) and components C(.S, j) can then be recovered by simply projecting
the full mixture over X onto S.

Remark 2.6. In fact, we do not need the full power of MixOracle. For our algorithms it is
sufficient to have access to k(S) for a sufficiently large family of S C X, the list of weights
m(X,7), and a map that relates components in the full mizture over X to the components in
the marginal miztures over each variable X; (see Section @for details).

Before concluding this section, we note an important consequence of Assumption that will
be used in the sequel:



Observation 2.7. Under Assumption for any S C X

kS)= ][] dim(H) =:dim(pa(S)).
H;epa(S)

Proof. By the Markov property, S is independent of H \ pa(S). There are dim(pa(.S)) possible
assignments to the hidden variables in pa(S) and by Assumption distinct assignments to
the hidden variables induce distinct components in the marginal distribution P(.S). Hence, by
definition, k(.S) = dim(pa(S)). O

3 Recovery of the latent causal graph

We first consider the oracle setting in which we have access to MixOracle(.5).

Observe that the problem of learning G can be reduced to learning (I', P(H)): Since we can
decompose G into a bipartite subgraph I'" and a latent subgraph A, it suffices to learn these
two components separately. We then further reduce the problem of learning A to learning the
latent distribution P(H). First, we will show how to reconstruct I" from MixOracle(.S). Then,
we will show how to learn the latent distribution P(H) from MixOracle(S).

Thus, the problem of learning G is reduced to the mixture oracle:

G — (I',IP(H)) — MixOracle(S).

In the sequel, we focus our attention on recovering (I',P(H)). In order to recover P(H), we
will require the following assumption:

Assumption 3.1 (Subset condition). We say that the bipartite graph I satisfies the subset
condition (SSC) if for any pair of distinct hidden variables H;, H; the set ner(H;) is not a
subset of ner(Hj).

This assumption is weaker than the common “anchor words" assumption from the topic modeling
literature. The latter assumption says that every topic has a word that is unique to this topic,
and it is commonly assumed for efficient recovery of latent structure [AGM12, AGH™13].

Under Assumption we have the following key result:

Theorem 3.2. Under Assumptions @, @, @, and E, (I',P(H)) can be reconstructed from
P(X) and MixOracle(S). Furthermore, if additionally the columns of the bipartite adjacency
matriz A are linearly independent, there is an efficient algorithm for this reconstruction.

The proof is constructive and leads to an efficient algorithm as alluded to in the previous
theorem. An overview of the main ideas behind the proof of this result are presented in
Sections (4] and [5} the complete proof of this theorem can be found in Appendices

As presented, Theorem @ leaves two aspects of the problem unresolved: 1) Under what
conditions does MixOracle(S) exist, and 2) How can we identify A from P(H)? As it turns



out, each of these problems is well-studied in previous work, which explains our presentation
of Theorem For completeness, we address these problems briefly below.

Existence of MixOracle(S) A mixture oracle exists if the mixture model over X is identifiable.
As discussed in Section [1] such identifiability results are readily available in the literature. For
example, assume that for every S C X, the mixture model comes from any of the following
families:

1. a mixture of gaussian distributions [Tei63| [YS68§], or

2. a mixture of Gamma distributions |Tei63], or

3. an exponential family mixture [YS6§|, or

4. a mixture of product distributions [Tei67], or

5. a well-separated (i.e. in TV distance) nonparametric mixture [ADXR20].

Then (I',P(H)) is identifiable. The list above is by no means exhaustive, and many other
results on identifiability of mixture models are known (e.g., see the survey [MLR19]).

Identifiability of A Once we know P(H) (e.g. via Theorem [3.2), identifying A from P(H)
is a well-studied problem with many solutions [SGS00, [Pea88|. For simplicity, it suffices
to assume that P(H) is faithful to A, which implies that A can be learned up to Markov
equivalence. This assumption is not necessary, and any number of alternative identifiability
assumptions on P(H) can be plugged in place of faithfulness, for example triangle faithfulness
[SZ14], independent noise [SHHKO06, [PMJS14|, post-nonlinearity [ZH09], equality of variances
[PB13l IGDA20], etc.

4 Learning the bipartite graph

In this section we outline the main ideas behind the recovery of I' in Theorem We begin
by establishing conditions that ensure I' is identifiable, and then proceed to consider efficient
algorithms for its recovery.

4.1 Identifiability result

We study a slightly more general setup in which the identifiability of I' depends on how much
information we request from the MixOracle. Clearly, we want to rely on MixOracle as little as
possible. As the proofs in the supplement indicate, the only information required for this step
are the number of components. Neither the weights nor the components are needed.

Definition 4.1. We say that T is t-recoverable if I' can be uniquely recovered from X and the
sequence (MixOracle(S) | [S] < t).

Theorem 4.2. Let I' be the bipartite graph between X and H.
(a) Assume that ner(H;) # ner(H;) for any i # j. ThenI' and dim(H;) are n-recoverable.



(b) Lett > 3. Assume that for every S C H with |S| > 2 we have
. . 2
dimspan{a; | j € S} > E|S| +1,

then T' and dim(H;) are t-recoverable.

Note that Assumption [3.1]implies the assumption in Theorem[1.9(a)] Finally, as in Section 2| we
argue that in the absence of additional assumptions, this assumption is in fact necessary:

Observation 4.3. If there is a pair of distinct variables H;, H; € H such that ner(H;) =
ner(Hs), then T' is not n-recoverable.

4.2 Ideas behind the recovery

In Corollary 4.4 below, we recast Observation [2.7 as an additive identity. This transforms
the problem of learning I' into an instance of more general problem that is discussed in the
appendix. The results of this section apply to this more general version.

Corollary 4.4. Assume that Assumptions[2.4 hold. For H; € H define w(H;) = log(dim(H;)).
Then for every set S C X
log(k(5) = > w(Hy). (4)

H;epa(S)

In order to argue about the causal structure of the hidden variables we first need to identify
the variables themselves. By Assumption every hidden variable leaves a “signature” among
the observed variables, which is the set ner(H;) of observed variables it affects. In particular,
note that H; € Ny, epep () P2(Xs), and if there is no Hj with nep(H;) C nep(Hj), then H; is
the unique element of the intersection. The lemma above allows us to extract information
about the union of parent sets, and we wish to turn it into the information about intersections.
This motivates the following definitions.

Definition 4.5. Let I" and w be as above. Define

snep(S):ﬂnep(x) and Wsner(S) = Z w(v) (5)

x€S vEsner(S)

Lemma 4.6. For a set S C X we have

Wsnep(S) = Y (-D)PHWp(U), where Wr(S)= > w(v). (6)
UCS,U#D vEner(S)

The proof of this lemma is a simple application of the Inclusion-Exclusion principle.

Remark 4.7. The RHS of Eq. @ only depends on W evaluated on subsets of S. Thus, in
particular, if |S| <t to compute Wsne(S) it is enough to know MixOracle on all sets of size
<t
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Finally, the values of the function Wsner can be organized into a tensor, and from here the
problem of learning I' can be cast as decomposition problem for this tensor. These proof
details are spelled out in Appendix [B} in the next section we illustrate this procedure for the
special case of 3-recovery.

4.3 Efficient 3-recovery

Under a simple additional assumption I' can be recovered efficiently. We are primarily
interested in the case t = 3. The main idea is to note that a rank-three tensor involving the
columns of A can be written in terms of Wsner. We can then apply Jennrich’s algorithm
[Har70] to decompose the tensor and recover these columns, which yield I'. To see this, let
I = (i1,i2,173) C X be a triple of indices, and note that

S w(iag)i @) (@) = (S wia @ @a;) = Wsner(l). (1)

P icH (41,i2,i3)

Theorem 4.8. Assume that the columns of A are linearly independent. Then T' and dim(H,),
for all i, are 3-recoverable in O(n?) space and O(n*) time.

Proof. Tt takes O(n?) space and O(n?) time to compute M3 and then Jennrich’s algorithm
can decompose the tensor in O(n?) space and O(n?) time. O

5 Learning the latent distribution

In this section we outline the main ideas behind the recovery of P(H) in Theorem

Remark 5.1. Since the variables H are not observed, MixOracle(S) only tells us the set
{(i,m(5,2),C(S,9)) | i € [k(5)]}-

But the correspondence Q2 5 h < j € [K] between a possible tuple h of values of hidden variables
and the corresponding mizture component is unknown.

Since the values of H are not observed, we may learn this correspondence only up to a
relabeling of ;. By definition, the input distribution has K = || mixture components over
X and k; = k(X;) mixture components over X;. Fix any enumeration of these components
by [K] and [k;], respectively. To recover the correspondence 2 5 h «+» j € [K], we will need
access to the map

L: K] — [ki] x -+ % [kn], (8)

defined so that [L(j)]; equals to the index of the mixture component C'(X, j) (marginalized
over X;) in the marginal distribution over X;. Crucially, this discussion establishes that L can
be computed from a combination of MixOracle(X) and MixOracle(X;) for each i.

The map L encodes partial information about the causal structure in GG. Indeed, if hy, ho € Q
are a pair of states of hidden variables H that coincide on pa(X;) for some X; € X, then by

11
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Figure 2: Example of a latent DAG and corresponding mixture distribution

the Markov property the components that correspond to h; and ho should have the same
marginal distribution over X;.

Example 5.2. Consider the DAG on Figure|[d We do not make any assumptions about the
causal structure between hidden variables. This DAG has 3 hidden variables, and we assume
that each of them takes values in the set {0,1}. Then by Assumption every observed
variable is a mixzture of 4 components, while the distribution on X is a mizture of 8 components.
Note that the anchor word assumption is violated here, while (SSC) assumption is satisfied.
The map L : [8] — [4] x [4] x [4] for an ezample as in Fig. [2 has form

T 1 2 3 4 ) 6 7 8
L(i): (2,4,3), (4,3,4), (4,4,2), (3,2,4), (2,3,1), (1,1,3), (3,1,2), (1,2,1)

Our goal is to find the correspondence between h € Q = {0,1}3 and i € [8]. (The projection
on the third variable is not shown on Figure|2, so the third coordinate of L cannot be deduced
from the plot.)

We now show that there is an algorithm that exactly recovers P(H) from the bipartite
graph T', the map L : [K] — [k1] X -+ X [ky], and the mixture weights (probabilities)
{n(X,i) | i € [K]} ={P(Z =1i) | i € [K]}. Each of these inputs can be computed from
MixOracle.

Definition 5.3. Let J be an order-m tensor whose i-th mode is indexed by values of H;, such
that J(hi,ha, ..., hy) =P(H = h). That is, J is the joint probability table of H.

Theorem 5.4. Suppose Assumptions and [3.1] hold. Then the correspondence 0 > h +»
C(X,i) and the tensor J(hi,ha, ..., hy) =P(H = (hi,h2, ..., hyp)) can be efficiently recon-
structed from L, T' and {m(X,4)}ic[x]-

Remark 5.5. If Assumption[3.1 is violated, then in general J cannot be reconstructed uniquely
and moreover, G cannot be uniquely identified. See Appendiz[C] for details.
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5.1 Examples of Algorithm

To illustrate this algorithm, in this section we illustrate how it works on Example [5.2 The
basic idea is the following: We start by arbitrarily assigning a component C(X,i)—and hence
its corresponding probability 7(X, ) to some hidden state h* = (hq, ..., h,,). This assignment
amounts to declaring P(Hy = hy,...,Hy = hy) = 7(X,i) and P(X |H; = hy,...,Hy =
hm) = C(X,i). The choice of initial state h* here is immaterial; this can be done without
loss of generality since the values of the hidden variables can be relabeled without changing
anything. From here we proceed inductively by considering hidden states that differ from
the previously identified states by in exactly one coordinate. In the example below, we start
with h* = (0,...,0) and then use this as a base case to identify h* 4 ¢; for each i = 1,...,m,

where
1 i=j
€;)i —
(cils {o i j.

Note that h* and e; differ in exactly one coordinate. We then repeat this process until all
states have been exhausted. The following example illustrates the procedure and explains how
Lemma [C.1 helps to resolve the ambiguity regarding the assignment of components to hidden
states in each step.

Example 5.6. Consider the DAG G in Fig.[2 It has 3 hidden variables, each of which takes
values in {0,1}. By Assumption@ every observed variable is a mizture of 4 components, while
the distribution on X is a mixture of 8 components. Note that the anchor word assumption is
violated here, while SSC (Assumption [3.1) is satisfied. The map L : [8] — [4] x [4] x [4] can be
written as:

1 1 2 3 4 5) 6 7 8
L(i): (2,4,3), (4,3,4), (44,2), (3,2,4), (2,3,1), (1,1,3), (3,1,2), (1,2,1)

We want to find the correspondence between h € Q = {0,1}3 and i € [8].

We start by picking an arbitrary component, say 1, and assign it to (Hy, Ho, H3) = (0,0,0).
Next, we make use of Lemma . Since we know T', we know ch(H;) for each i. In particular,
for the hidden variable Hy, we know ch(Hy) = {X1, Xo}. This implies that if Ho, Hs are
fized while Hy changes its value, then the component of X3 is unchanged. It follows that
the third coordinate of L is also unchanged. This gives us a way to pair up the components
that have the same third coordinate L(i)s; the pairs are (1,6), (2,4), (3,7) and (5,8). By
our previous observation, these pairs are in one-to-one correspondence with unique states of
(Hy,Hg) = (hi,h2), and each pair identifies the pair of components (P(X |Hy = 0,Hy =
ho,Hs = h3), P(X | Hy = 1, Hy = ho, H3 = h3)). Note that at this stage, there is still ambiguity
as to which coordinate of each pair corresponds to which component.

Similarly, we can pair up the components that correspond to assignments of hidden variables
that differ only in the value of Hy. The pairs are (1,3), (2,5), (4,8) and (6,7). Finally, for
Hjs the pairs are (1,5), (2,3), (4,7) and (6,8).
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Figure 3: A bipartite graph I' in Example

Since component 1 is assigned to (Hy, Ha, H3) = (0,0,0) we can deduce that

(Hy,Hs,Hs3): (0,0,0), (1,0,0), (0,1,0), (1,1,0), (0,0,1), (1,0,1), (0,1,1), (1,1,1)
comp.# : 1 6 3 ? 5 ? ? ?

Assume that we know which components correspond to the hidden variable state (Hy, Ha, Hg) =
(h1,hh, hs) and (Hy, Ha, H3) = (R, ha, h3), with hy # by and hy # hl. Then we can use the
information above to deduce which components correspond to the hidden state (b, hy, hs) since
it differs from them in just 1 position. Hence, we can deduce

(Hi, Ha, H3) : (0,0,0), (1,0,0), (0,1,0), (1,1,0), (0,0,1), (1,0,1), (0,1,1), (1,1,1)
comp.# : 1 6 3 7 ) 8 2 ?

Note that since (1,1,1) differs from the four states identified in the first step in two entries,
this has not been determined yet. However, repeating this argument a third time we can deduce
that component 4 corresponds to (Hy, Hy, Hg) = (1,1,1).

To illustrate how this algorithm works in the case of non-binary latent variables we provide
one more example.

Example 5.7. Assume that P(V') is Markov with respect to the DAG G in Figure @ where
we make no assumption about causal relation between Hy and Hy. Assume that dim(H;) =

Suppose that the map L : [9] — [9] x [3] x [3] x [3] is given by:

7 1 2 3 4 5
LG): (1,2,1,3), (3,3,3,1), (4,1,2,2), (2,2,1,1), (7,2,1,2),
1 6 7 8 9
L) : (5,1,2,1), (9,1,2,3), (8,3,3,3) (6,3,3,2)

We want to find the correspondence between h € Q = {0,1,2}? and i € [9].

As in the previous example, in order to see which components correspond to the states of
latent variables where Hy is fived and Hy takes all values in {0,1,2} we group together the
components that have the same value of L on X \ ch(H;) = {X4}. We get the following groups
(1,7,8), (2,4,6) and (3,5,9).
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Similarly, by comparing the values of L on X \ ch(Hjy) = { X2, X3} we get that the following
groups correspond to a fized value of Hy, while Hy vary: (1,4,5), (2,8,9) and (3,6,7).

Since values of H; are determined up to relabeling we can arbitrarily assign a component, say
1, to (H1 = 0,Hs = 0). Now, using Lemma we know that components that correspond
to (Hy =1,Hy =0) and (Hy = 2,Hy = 0) are 7 and 8, and again because values of H; can
be relabeled, at this point the choice is arbitrary. Using the similar argument for Ho, we can
deduce the following correspondence:

(HlaHQ): (O7O)v (1’O)a (270) (0’1)7 (171)7 (2’1)7 (072)’ (172)7 (272)
comp.# : 1 7 8 4 ? ? 5 ? ?

At this point the labeling of the values of hidden variables is fized. Now let us consider an
index of hamming weight 2, say (1,1). We know that the component, that corresponds to this
state of latent variables, differs from the component 4, that corresponds to (0,1), only due to
the change of Hy. Hence, the component that corresponds to (1,1) is in the set {2,4,6}. At
the same time, we know that it differs from the component 7 that corresponds to (1,0) only
due to the change of Hy. Hence, the desired component is in the set {3,6,7}. By taking the
intersection of sets {2,4,6} and {3,6,7} we deduce that the value that corresponds to (1,1) is
6. Similarly we can determine the rest of the values.

(HLHQ): (070)7 (170)7 (2>O) (Oal)a (Ll)v (271)7 (0>2)a (172)7 (2?2)
comp.# : 1 7 8 4 6 2 ) 3 9

6 Implementation details

The results in Section [3| assume access to the mixture oracle MixOracle(S). Of course, in
practice, learning mixture models is a nontrivial problem. Fortunately, many algorithms exist
for approximating this oracle: In our implementation, we used K-means. A nalve application
of clustering algorithms, however, ignores the significant structure between different subsets of
observed variables. Thus, we also enforce internal consistency amongst these computations,
which makes estimation much more robust in practice. In the remainder of this section, we
describe the details of these computations; a complete outline of the entire pipeline can be
found in Appendix [E.

Estimating the number of marginal components In order to estimate the number of
components in a marginal distribution for a subset S of observed variables with |S| < 3, we use
K-means combined with agglomerative clustering to merge nearby cluster centers, and then
select the number of components that has the highest silhouette score. Done independently,
this step ignores the structure of the global mixture, and is not robust. In order to make
learning more robust we observe that the assumptions on the distribution imply the following
properties:
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o Divisibility condition: The number of components we expect to observe over a set S
of observed variables is divisible by a number of components we observe on the subset
S’ C S of observed variables (see Obs. [2.7)).

o Structure of means: Observe that the projections of the means of mixture clusters in
the marginal distribution over S are the same as the means of mixture components over
variables S’ for every S’ C S. Hence, if we learn the mixture models over S and S’ with
the correct numbers of components k(S) and k(S”), we expect the projections to be
close.

Example 6.1. Suppose we are confident that the number of components in the mizture over
X1 is in the set {6,7,8}, over Xo is in {4,5,6} and the number of components in the mizture
over { X1, Xo} is in the set {20,21,22,23,24,25,26}. Using divisibility condition between X
and {X1, X2} we may shrink the set of candidates to {21,24}. Next using the divisibility
condition for X9 and {X1, X2} we may determine that the number of components should be 24.

With these observations in mind, we use a weighted voting procedure, where every set S votes
for the number of components in every superset and every subset based on divisibility or
means alignment. We then predict the true number of components by picking the candidate
with the most votes.

Constructing L In order to estimate L from samples we learn the mixture over the entire
set of variables (using K-means and the number of components predicted on the previous
step) and over each variable separately (again, using previous step). After this we project the
mean of each component to a space over which X; is defined and pick the closest mean in Lo
distance (see Figure [2).

Reconstructing the latent graphical model Once we obtain the joint probability table
of H, the final piece is to learn the latent DAG A on H. This is a standard problem of learning
the causal structure among m discrete variables given samples from their joint distribution.
For this a multitude of approaches have been proposed in the literature, for instance the PC
algorithm [SG91| or the GES algorithm [Chi02]. In our experiments, we use the Fast Greedy
Equivalence Search [RGSRG17| with the discrete BIC score, without assuming faithfulness.
The final graph G is therefore obtained from I' and A.

7 Experiments

We implemented these algorithms in an end-to-end pipeline that inputs observed data and
outputs an estimate of the causal graph G and an estimate for the joint probability table P(H).
To test this pipeline, we ran experiments on synthetic data. Full details about these experiments,
including a detailed description of the entire pipeline, can be found in Appendix [F.

Data generation We start with a causal DAG G generated from the Erdés-Rényi model, for
different settings of m,n and [Q2;|. We then generate samples from the probability distribution
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Box plots of Structural Hamming Distance (SHD) and Unoriented Correct Edges (UCE)
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Figure 4: Average Structural Hamming distance for recovery of G, where m = |H| and n = | X|.

that corresponds to G. We take each mixture component to be a Gaussian distribution with
random mean and covariance (we do not force mixture components to be well-separated, aside
from constraining the covariances to be small). Additionally, we do not impose restrictions on
the weights of the components, which may be very small. As a result, it is common to have
highly unbalanced clusters (e.g. we may have less than 30 points in one component and over
1000 in another). Figure [4| reports the results of 600 simulations; 300 each for N = 10000
samples and N = 15000 samples.

Results To compare how well our model recovers the underlying DAG, we compute the
Structural Hamming Distance (SHD) between our estimated DAG and the true DAG. Since
GES returns a CPDAG instead of a DAG, we also report the number of correct but unoriented
edges in the estimated DAG. The average SHD across different problems sizes ranged from
zero to 1.33. The highest SHD for any single run was 6. For context, the simulated DAGs
had between 3 and 25 edges. Note that any errors are entirely due to estimation error in the
K-means implementation of MixOracle, which we expect can be improved significantly. In the
supplement we also report on experiments with much smaller sample size N = 1000 (Fig. @
These results indicate that the proposed pipeline is surprisingly effective at recovering the
causal graph.

8 Discussion

In this paper, we established general conditions under which the latent causal model G is
identifiable (Theorem . We show that these conditions are essentially necessary, and mostly
amount to non-degeneracy conditions on the joint distribution. Under a linear independence
condition on columns of the bipartite adjacency matrix of I'; we propose a polynomial time
algorithm for recovering I' and P(H). Our algorithms work by reduction to the mixture
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oracle, which exists whenever the mixture model over X, naturally induced by discrete latent
variables, is identifiable. Experimental results show effectiveness of our approach. Even
though identifiability of mixture models is a long-studied problem, a good mixture oracle
implementation is a bottleneck for scalability of our approach. We believe that it may be
improved significantly, and consider this as a promising future direction. In this paper, we
work under the measurement model that does not allow direct causal relationships between
observed variables. We believe that this condition may be relaxed and are eager to explore
this direction in future work.
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A Non-identifiability if Assumption [2.4 is violated

In this appendix we are going to show that Assumptions [2.2] and 2.3 on the graph G are not
sufficient for identifiability, and therefore additional assumptions on the distribution of H over
Q are required as well.

Definition A.1. For distributions D1, Do, let D1 ® Do denote the product of the distributions
Dy and Ds.

That is, if X ~ Dj and Y ~ Dy are independent, then their joint distribution is Dy ® D».

The following example illustrates an important case of non-identifiability and motivates the
need for Assumption [2.4

Example A.2. Let Ny, N1, N{), Ni be independent Gaussian distributions with distinct param-
eters (means and variances). Consider

1 1 1
(X1,X2)N§N0®N6+1 1®N6+ZN1®N{ 9)

We claim that (X1, Xs) is consistent with (i.e., satisfies Markov property with respect to) each
of the following three models below. Here, in the model S3 the hidden variable Hy can take
three values {0,1,2}, and in models A and B, hidden variables take values in {0,1}.

b O3 b4

Model Ss Model A Model B

Note that all these models satisfy “no-twins” Assumption and minimality Assumption [2.5,
while Assumptions 2.4 are violated by models A and B.

1. Consistency with Ss. Let Hy be a random variable that takes values 0,1, 2 with probabili-
ties (1/2,1/4,1/4). Then

(X1, X2) ~ > P(X|Hy =j)P(Hy = j), where
j€{0,1,2}

P(X|Hi =0)=No@ N}, P(X|Hi=1)=N®N},, P(X|H =2)=N, ®N]|

2. Consistency with A. Let Hy and Hs be i.i.d random variables that take values 0,1 with
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probabilities (1/2,1/2). Then
(X1, Xo)~ > Y P(X|Hy =i, Hy = j)P(Hy = i)P(Hy = j), where
1€{0,1} je{0,1}
P(X|H1 =0)=No® Ny, P(X|H1=1H>=0)=N ®N,
P(X|H1 =1,H, = 1) =N ®N{
3. Consistency with B. Let Hy be a random variable that takes values 0,1 with probabilities

(1/2,1/2). Let Ha be a dependent random variable that takes values 0,1 with probabilities
(1,0), if Hy =0, and with probabilities (1/2,1/2), if Hy = 1.

(X1, Xo) ~ > Y P(X|Hy = i) P(Xo|Hy = ) P(Hy = i) P(Hy = j|Hy = i),
1€{0,1} je{0,1}

where
P(X1|Hy =0) = Ny, P(Xi|H, =1) =Ny,

P(X3|Hy =0) = Nj, P(Xs|Hy=1)=N;
Remark A.3. Observe that among the models A, B and Ss, only S satisfies Assumption [2.4.
Observe that the model A satisfies part but not @, and the model B satisfies part ,

but not of Assumption (2.4 This shows that only one of these assumptions is still not
sufficient for identifiability of a latent causal model.

B Reconstructing bipartite part I'. Proofs for Sections

Recall that (cf. Section [4.2), that for w(H;) = log(dim(H;)) and every subset S C X the
parameters of the latent DAG satisfy

log((S)) = S w(H). (10

H;epa(S)

Recall also the definitions of sne and Wsne in , reproduced here for ease of reference:

sner(S) = ﬂ ner(z) and Wsnerp(S) = Z w(v).
z€S vEsner(S)
B.1 Learning a bipartite graph with a hidden part from an additive score

We start our discussion of the proof of results in Section 4| by reducing learning of the causal
graph I'" to a more general learning problem.

Let I' = (X U H, E) be a (not necessarily directed) bipartite graph on parts X and H, and let
w: H — (0,00) be an arbitrary function that defines weights of variables in H.

Recall that for a weight function w and subset S C X we define

U CII SR (1)

vEner(S)
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Problem B.1. Assume that the vertices in H and the weight function w are unknown.
Input: Values (Wr(S) | S € F) indexed by a family of known subsets F C 2%

Goal: Reconstruct the number of unknown vertices H, the graph T' between H and X (up
to an isomorphism), and the weight function w from the input.

Whether it is possible to reconstruct I' and w from the input may depend on the family F or
some additional assumptions about the structure of the graph I'. To account for weights w,
we slightly modify Definition [£.1] as follows:

Definition B.2. We say that (I',w) is F-recoverable if (I';w) can be uniquely recovered from
X and the sequence (Wr(S) | S € F).

In the sequel, we use this modified definition.
The most natural regime is when F contains the sets whose size is bounded:

Definition B.3. We say that (I',w) is t-recoverable if (I',w) is (ft) -recoverable, where (ft)
denotes the collection of subsets of X of size at most t. B -

B.2 Reconstructing I' with full information about W

In this section we study Problem when full information about Wp(-) is provided, i.e.
F=2X

Although the algorithm considered here will have exponential in | X | runtime, it sheds light on
the minimal theoretical assumptions we need for proving identifiability of I'. We will consider
more efficient algorithms in later sections.

We start by proving Observation @, which notes that if ner(H;) = ner(H;) for H; # Hj,
then (T, w) is not 2%-recoverable.

Proof of Observation[4.3. Consider the graph I" obtained from I' by replacing Hy and Ho
with a single variable H* and by connecting H* by an edge to all vertices in X that are
adjacent with H; or Hs in I'. Define w(H*) = w(H;) + w(Hz). Then Wr(S) = Wr/(S) for
any S C X. O

Corollary B.4. Let F C 2X. If there is a pair of distinct variables H;,H; € H such that
ner(Hp) = ner(Hz), then (I',w) is not F-recoverable.

We now prove that in the case F = 2%, this is the only obstacle. We start by showing that
certain neighborhoods of hidden variables can be identified using Wsne(+).

As explained in Section in the case when ne(H;) ¢ ne(H;) for all H;, we expect Wsne(-)
to have a clear “signature” of H;. We make this intuition precise in the definition and lemma
that follows.

Definition B.5. We say that a set S of observed variables X is a maximal neighborhood
block if Wsne(S) # 0, but for any superset S’ of S we have Wsne(S") = 0.
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Lemma B.6. A set S C X is a mazimal neighborhood block if and only if there exists a hidden
vertex H; € H such that ner(H;) = S and for any other H; € H we have S € ner(Hj).

Proof. Assume that S C X is a maximal neighborhood block. Since Wsne(S) > 0 the set of
common neighbours sner(.S) is non-empty. If sner(S) contains a hidden vertex H; that is
connected to a vertex x ¢ S then, H; € snep(S U {z}), and Wsner(S U {z}) > w(H;) > 0
which contradicts the assumption that S is a maximal neighborhood block. Therefore, for
every H; in sner(S), we have ner(H;) C S. Therefore, there exists a variable H; such that
ner(H;) = S and for any other H; € H we have S ¢ ner(Hj).

The opposite implication can be verified in a similar way. O

Theorem B.7 (Theorem @, part @ Let T' be a bipartite graph with parts X and H.
Assume that no pair of vertices in H has the same set of neighbours (in X ). Then I is
2X _recoverable.

Proof. We prove the claim of the theorem by induction on |H|. The statement for the base
case |H| = 0 immediately follows from the fact that W (S) = 0 for all v € X if and only if
|H| = 0 since w(-) > 0. Assume that we proved the claim for all I' with |H| = ¢ that satisfy the
assumptions of the theorem. Let I' be a graph with |H| =t 4+ 1 that satisfies the assumptions
of the theorem.

Using Lemma [4.6, compute values Wsner(S) for every S C X. Using values of Wsne(-) we
can find a maximal neighborhood block Y C X. By Lemma there exists a hidden vertex
H; such that {H;} = sner(Y'). Note that w(H;) = Wsne(Y').

Denote by I the graph obtained from I' by deleting H;.

Now we verify that I satisfies the assumptions of the theorem. There is nothing to check
if the set of hidden vertices of I is empty. Assume that I has a non-empty set of hidden
vertices. First, note that all hidden vertices in I" still have distinct sets of neighbors. Second,
note that (cf. (1)) W (S) = Wr(S) if SNY =0 (ie. H; ¢ ner(S)), and

Wi (S) = Wr(S) — w(H;) = Wp(S) — Wsnerp(Y)

if SNY is not empty. Thus, we can compute W from the values of Wr.

By the induction hypothesis (I, w|r/) is uniquely recoverable from Wr(S). Let I'* be the
graph obtained from I” by adding a new variable Hy of weight Wsnep(Y) and edges between
Hy and Y. Then I'* is isomorphic to I, and so I' is 2% -recoverable. O

B.3 Efficient t-recovery of I' for t > 3

The approach proposed in Appendix is exponential in the number of observed variables
in the worst case, since we need to compute the scores of all subsets of X. In this section,
we show that with a mild additional assumption, there is an efficient algorithm to learn the
bipartite graph between hidden and observed variables.
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As before, let I' = (X U H, E) be the bipartite graph between hidden and observed vari-
ables.

Recall, that we defined A to be the | X| x |H| adjacency matrix of I' (with 0,1 entries) and a;
to denote the i-th column of A.

For a sequence of indices I = (i1,12,...,7;) C [n] define

WSHQF(I) = Z w<j> (aj)il (aj)iQ . (aj)it = <Z UJ(j) a; ®a; Q... aj)([). (12)

jeH Y jeH "

Recall, that as pointed out in Remark [4.7, for any S C X with |S| < ¢ the value Wsnep(9)
can be computed from the {Wp(S) | S C X, |S| <t} using Lemma [4.6. Therefore, we can
make the following observation.

Observation B.8. All entries of the the tensor My = > w(j)(a; ®a; ® ... ® aj) can be
jeH

t
computed as My(I) = Wsner(I) in O(2!n!) time and space assuming access to {Wr(S) | S C
X, |S| <t}.

For fixed t this is a poly-time computation. Furthermore, in the settings we consider in
Secrion 4| the values of W can be computed from MixOracle using Observation

Now we want to recover the vectors a; from M;. Since a; are the columns of the adjacency
matrix of I' this is equivalent to recovering the adjacency matrix of I" or I' itself up to an
isomorphism.

Definition B.9. For an order-t tensor My its rank is defined as the smallest r such that M;

can be written as .
-
M; = ch ®x§l). (13)
j=1 i=1

Such decomposition of M with precisely r components is called a minimum rank decomposition
or a CP-decomposition.

Lemma B.10. If the decomposition

Mt:Zw(j)aj®aj®...®aj
jeH v

is the unique minimum rank decomposition, then (T',w) is t-recoverable.
Proof. In order to recover I' and w we compute M; using {Wr(S) | S C X, |S| <t}. Then q;
and w(j) can be uniquely (up to permutation) identified from minimum rank decomposition

of M. O

The following simplified version of Kruskal’s condition was proposed by Lovitz and Petrov.
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Theorem B.11 (|[LP21, Theorem 2|). Let m > 2 and t > 3 be integers. Let V=V, @ Vo ®
... ® Vi be a multipartite vector space over a field F and let

eV eePe. . 0! |jem)}cv)
be a set of m rank-1 (product) tensors. For a subset S C [m] with |S| > 2 and j € [t] define

d;(S) = dim span{azy) | je St
¢
If 21S| < >7(di(S) — 1) + 1 for every such S, then
i=1
Z mgl) ® x§-2) ®...0 mgt)
Jj€m]

constitutes a unique minimal rank decomposition.

In our settings the sufficient condition for having the unique minimal rank decomposition
takes the following form.

Corollary B.12. Assume that for every S C H with |S| > 2 we have
. . 2
dimspan{a; | j € S} > Z‘S‘ +1,

then the decomposition My = Y w(j)a; ® a; ® ... ® a; is the unique minimum rank decom-
jeH ~
t

position and so (I',w) is t-recoverable.

Proof. Take F =R, then the result follows from [B.11| for zgl) = w(j)a; and x§-i) = aj. O

Proof of Theorem part [(b)} Follows by combining Corollary and Lemma O

Learning the components of the minimum rank decomposition is a very well-studied problem
for which a variety of algorithms have been proposed in the literature (see the survey [Vij20]
or the book [Moil4]|). We can use Jennrich’s algorithm [Har70] (see also [Vij20, Moil4| and
the references therein) as an efficient algorithm with guarantees:

Theorem B.13 (Jennrich’s algorithm [Har70]). Assume that the components of the tensor
T

T = > a; ®b; @ ¢; satisfy the following conditions. The vectors {a; | i € [r]} are linearly
i=1

independent, the vectors {b; | i € [r]} are linearly independent, and no pair of vectors ¢;, c; is

linearly dependent for i # j. Then the components of the tensor can be uniquely recovered in

O(n?) space and O(n*) time.

Remark B.14. Note that if all vectors a; are linearly independent, then the assumptions of

Corollary are satisfied.
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Remark B.15. A similar problem for t-recovery (for weighted hypergraphs) arose in a com-
pletely different context [ADMT 18]. While in both papers the problem is reduced to recovering
the minimum rank decomposition of a carefully constructed tensor, we give better recovery
guarantees for this problem by using more recent uniqueness guarantees [LP21].

C Reconstruction of the probability distribution on H. Proofs
for Section [5]

In this section we discuss how one may reconstruct the hidden probability distribution on
P(H) from

e the bipartite graph I', and
e the function L : [K] — [k1] X -+ X [ky], and
e the mixture weights (probabilities) {7 (X,i) | i € [k(X)]} ={P(Z =1) | i € [k(X)]}

C.1 A key lemma

Below we formulate the key lemma that allows us to relate the structure present in the map L
with the causal structure in G.

Given a state H = (hy, ..., hy) and its corresponding component P(X | Hy = hy,...,Hpy =
hm), we want to identify the components P(X | Hy = h, Hy = ha, ..., Hy,, = hy,) that result
from changing just the first hidden variable while keeping every other hidden variable fixed.
The next lemma says that we can identify such components by looking into the distribution of
the observed variables that are not children of H;.

Lemma C.1. Let H; be a hidden variable and let C(X \ ner(H;),j) be an arbitrary mizture
component observed in a marginal mizture distribution over the variables in X \ ner(H;). Let
C(71),C(j2),...C(ji) be all the mizture components in the distribution of X whose marginal
distribution over X \ ner(H;) is equal to C(X \ ner(H;),j). In other words, L(js); = j for all
s € [t]. Then t = dim(H;) and every C(js) for s € [t] corresponds to a distinct value of H;.

Proof. Observe that Assumption [3.1 implies that ner(X \ ner(H;)) = H \ {H,}. Therefore,
by Assumption [2.4(b)l p(X \ nep(H;) | H = h1) ~ p(X \ ner(H;) | H = hg), if and only if hy
and ho differ only in the value of H;. O

C.2 Proof of Theorem [5.4

The algorithm described in the previous examples can be used to prove Theorem [5.4. For
this, we present a general algorithm to recover the correspondence 2 3 h <> i € [K] using

Lemma [C. T

Proof of Theorem 5.4, Without loss of generality, we may assume that H; takes values from
2, ={0,1,...,dim(H;) — 1} for every i.
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Recall that the Hamming weight of a vector is the number of non-zero coordinates of this
vector. Denote by Q) the set of elements of @ = O x Qg X ... x Q, of the Hamming weight
at most t.

We start by recovering the entries of the tensor that correspond to the indicies in Q).

Let us pick an arbitrary mixture component C' that participates in the observed mixture model
and let us put it in correspondence to h = (0,0,...0). We assign the probability of observing
C' to the cell J(0,0,...,0).

Take any i € [m]. Consider the set of d(H;) mixture components {C;, | a € £;}, guaranteed
by Lemma that have the same distribution as C' in coordinates X \ ch(H;) (here we take
arbitrary indexing by a). Assign C;, to the vector h;, € QW of Hamming weight 1, that has
unique non-zero value a in coordinate i. And let J(h;q) be the probability of observing C; 4.

Next, we claim that the (valid) correspondence Q 3 h <+ i € [K] for h € Q®) can be uniquely
extended to the (valid) correspondence Q > h ¢+ i € [K] for h € QU+ forany t = 1,...,m—1.

Indeed, let h € Q¢+ and let ¢ and j be a pair of distinct non-zero coordinates of h. Let h;
and h; be the vectors obtained by changing the i-th and j-th coordinates of h to 0. Let C;
and C; be the mixture components that correspond to h; and h;.

Using Lemma for s € {i,j} we can find a set M, of dim(H,) mixture components that
are equally distributed with Cs over X \ ner(H,). We put into correspondence with h the
unique component in the intersection of M; and M;. We define J(h) to be the probability of
observing this component. O

Next we show that our algorithm works in time that is almost linear in the output size (recall
that K > 2™ and K is the size of the output).

Observation C.2. The algorithm described in Theorem works in O((nm + max; k;) K)
time.

Proof. First, the algorithm in Theorem [5.4 computes the equivalence classes of components
that correspond to states of latent variables that differ just in the value of H;. Having access
to I' and L, computing these equivalence classes takes at most O(nmK) time (for each of the
m hidden variables we need to compare vectors of values of L of length n for K components).

Once these equivalence classes are computed, the algorithm in Theorem sequentially fills
in the joint probability table. If the entries with indices of Hamming weight ¢ are filled in,
in order to determine the value of a cell with an index of hamming weight ¢t + 1, we explore
at most 2 max;c(,) ki elements of the corresponding equivalence classes. Since eventually we
explore all K cells of the joint probability table, the total runtime of this phase is bounded by
O(maxie[m} k‘Z)K O

C.3 Non-identifiability if Assumption [3.1 is violated
Finally, we prove the impossibility claim in Remark
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OO0

Model A Model B

Figure 5: An example of the causal latent models that cannot be distinguished from observed
data since Assumption is violated

Proof of Remark[5.5. We claim that if Assumption @ is violated, then P(H) cannot be
recovered and moreover G is not identifiable. Consider a pair of models on Figure [5], where
variables H; and Hp are binary, i.e., they take values {0,1}. Let Ny, N1, N2, N3 and N{, N
be independent Gaussian distributions with distinct means and variances.

Suppose that the observed distribution is equal to

2 4
§N2 ® N§ + §N3 ® N (14)

Now we show that this distribution can be realized by both models A and B.

2
N1 ® Ny +

1
*N0®N6—|—9

(XlaXQ) ~ 9

1. Consistency with A. Let Hy, Hy be independent random variables that take values {0, 1}
with probabilities (1/3,2/3).

(X1, X2) ~ > Y P(Xy|Hy =i, Hy = j)P(Hy = i) P(Hy = j), where
1€{0,1} je{0,1}

P(X,|H, =0, H;, = 0) = No, P(X;|H; =0,Hy=1)= Ny,
P(Xy|Hy = 1,H, =0) = Ny, P(Xi|H; =1,Hy=1)=Ns,
P(Xy|Hy = 0) = N}, P(Xo|Hy =1) = N}

2. Consistency with B. Let Hy, Hy be binary random variables with the following distribution

P(Hy =0)=1/3 ,P(H; =0|Hy=0)=1/3, P(H, =1|Hy; =0)=2/3,
P(Hy =0)=2/3, P(H,=0|Hy=1)=2/3, P(H =1/Hy=1)=1/3

Define components of the mixture distribution to be

(15)

(X1, X2) ~ > > P(Xp|Hy =i, Hy = j)P(Hy =i, Hy = j), where
1€{0,1} je{0,1}

P(X,|H; =0,Hy =0) =Ny, P(X;|H =0,Hy=1)= Ns,
P(X,|H; =1,Hy,=0)= N, P(X;|H=1,Hy=1)= Ny,
P(X3|Hy =0) = Nj, P(X3|Hy=1)= Ny
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Since both models A and B realize distribution P(X), we get that G and P(H) are not identifi-
able. Observe that Assumption [3.1]is not satisfied for both A and B, while Assumptions[2.2]
and [2.4] are satisfied for each of A and B. O

D Proof of Theorem [3.2

Finally, we collect our results into a proof of the main theorem.

Proof of Theorem[3.2. Suppose that Assumptions[2.2} 2.3and [2.4]hold, then by Theorem [£.9a)|
I’ and dim(H;), for all i, can be recovered from P(X). If additionally, the columns of the

|X| x |H| adjacency matrix A are linearly independent, then by Theorem [£.8] (see Corol-
lary [B.12, Theorem [B.13 and Observation [B.8)), I" and dim(H;), for all 4, can be reconstructed
efficiently in O(n?) time.

Now, suppose that Assumption [3.1 holds. We can extract the map L from the MixOracle
(by taking appropriate projections of component distributions). Therefore, since we have T,

dim(H;), {7(X,)}ie[x) and L, by Theorem [5.4/and Observation we can reconstruct P(H)
efficiently. O

E Algorithms

In this section we describe the full pipelin for learning G from samples of the observed data
X. As input we receive a set of samples and as output we return an estimated causal graph G
and a joint probability distribution over H. The pipeline consists of the following blocks:

(Step a) Learning number of components. Estimates the number of components for all
subsets of observed variables of size at most 3.

e Input: Samples from the distribution P(X)

e Output: Estimated number of mixture components k(.S) in P(S) for all S C X,
|S] < 3.

(Step b) Reconstruction of the bipartite graph. Implements the algorithm of Theorem
for learning the bipartite causal graph I'.

e Input: The number of mixture components k(S) in P(S) for all S C X, |S] < 3.

e Output: Estimated bipartite graph I' and sizes of the domains of hidden variables

(Step ¢) Learning the projection map L.

e Input: Samples from the distribution P(X) and the numbers of components k(X)
and k(X;) for every i € [n].

'The code used to run the experiments can be found at https://github.com/30bohdan/latent-dag
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e Output: Estimated projection map L.

(Step d) Learning the distribution P(H). In this step we implement the algorithm described
in Theorem see also Algorithm

e Input: L, I and dim(H;) for all i € [m] and weights 7(X,j) of k(X) mixture
components.

e Output: Estimated joint probability table of P(H).

We take L, I" and dim(H;) for all i as an input and return the joint probability table for
P(H) as an output.

(Step e) Learning latent DAG A. In this step we estimate the causal graph over latent
variables.

e Input: The joint probability table of P(H).
e Output: Estimated causal graph A over H.

In this paper, we prove theoretical guarantees for Steps (b) and (d), which invoke the mixture
oracle MixOracle. Step (a) implements MixOracle, and Steps (c) and (e) are intermediate steps
of the pipeline. As long as the oracle is correct, Step (c) is guaranteed to output the correct
graph. The correctness of Step (e) depends on the structure learning algorithm used. A nice
feature of our algorithm is its modularity, if a better algorithm is developed for one of the
steps, it can be incorporated without influencing other parts.

Below we discuss various implementation details for these steps.

Details of Step (a): Our implementation of Step (a) uses the following strategy.

1. We estimate the upper bound k,,,,; on the number of components involved in the
mixtures of single variables (this can be done using the silhouette score).

2. For every observed variable X; we train K-means clustering with k = k.. After this,
we perform agglomerative clustering for every t € [2, kiqz], and record the silhouette
score for every t. We pick 5 values of ¢t with the best silhouette score.

3. We use the divisibility condition to compute the sets Sx; x; of possible numbers of
components we expect to see over the pairs of variables X;, X;. We use the best 5
predictions from the previous step for every variable X; and include the candidate for
the number of components into Sx, x; if it is divisible by one of the top-5 candidates
for X; and for X;. This step is mainly needed for computational purposes in order to
restrict the number of candidates for the number of components observed over the pairs
of variables.

4. Next we learn the mixture of k components for every k € Sx, x, over the pairs (X;, X;)
of observed variables. Similarly as in 2., we train K-means for the largest candidate and
perform agglomerative clustering after that.
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5. We use divisibility and means voting (discussed in Sec. @ to decide the best number of
components for the single variables and the pairs of variables. In order to do this we
make the predicted numbers of components for a pair X, (X;, X;) to vote for each other
if they satisfy the divisibility or means projection condition. We count the vote with the
weight proportional to the silhouette score of the predicted number of components. For
every X;, and every pair (X;, X;), we take the component with the largest amount of
votes as our best prediction.

6. We use means of the components predicted for pairs of variables (X;, X;) to estimate the
locations of the means for the triples of observed variables. Instead of using K-means
with the fresh start we initialize it with predicted locations. This improves the running
time. We use K-means and silhouette score to predict the number of components for
the triples of observed variables.

Details of Step (b): In this step we use Corollary Eq. and Lemma to compute
entries of the tensor M3 using the output of Step (a). After this we apply Jennrich’s algorithm
to learn the components of the tensor. As discussed in Appendix this is sufficient to
reconstruct I' and dim(H;). In case Jennrich’s algorithm did not successfully execute due
to numerical issues, alternating least squares (ALS) was used as a failsafe. In this case, the
number of hidden variables m was used as input/}?|

Details of Step (c): We use I' and dim(H;) to compute the number of components we
expect to observe in P(X;) for every observed variable X; and the number of components in
the distribution P(X') over the entire set of observed variables. After this we use K-means to
learn the components in the mixture distribution over every variable X; and over the entire
set of observed variables. For every i, and for every mixture component of P(X), we project
its mean into the subspace over which Xj; is defined. We use the closest in Lo distance mean
of the components in P(X;) as a prediction for the projected component.

Details of Step (d): We implement the algorithm described in Theorem See Algorithmli
for details.

Details of Step (e): Once we obtain the estimated joint probability table, we run the Fast
Greedy Equivalence Search [RGSRG17| to learn the edges of the Latent graph H, where we
used the Discrete BIC score. FGES returns a CPDAG by default, so some edges may be
undirected. We accordingly report both the Structural Hamming Distance (SHD) and the
Unoriented Correct Edges (UCE) as metrics for our experiments. We remark that this step
may be improved by using other algorithms such as PC [SG91] or other scores, which is an
interesting direction for future work.

2This can easily be avoided by running ALS for multiple values of m and choosing the best fit. Since this
issue arose in only a minority of cases, we did not implement this feature.
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Algorithm 1: Learning P(H)

Input:
e A bijective map L : [k(X)] — [k(X1)] x [k(X2)] x ... x [k(Xy)];
e A bipartite graph I between X and H
e Values dim(H;) fori € H.

e Values P(Z = i) for i € [k(X)] (the probabilities of observing the mixture components)

Output: An dim(H;) X ... x dim(H,,) tensor such that J = P(H)
// Phase 1: use Lemma to compute the sets of components that
correspond to a change in a single hidden variable
arrows = {}
for H; € H do
S=X \ nep(Hi)
for c¢i,c € [k(X)] do
if (L(c2)s == L(c1)s) and ¢1 # c2 then
L arrows|H;||c1|.append(c2)

. I I

// Phase 2: initialize 7 "along the edges"

7 A(0,...0)=0, T(0,...0)=P(Z=0)

8 for H; € H and t € dim(H;) do

9 | A(0,...,t,...0) = arrows[H;][0][t] // Note that an order does not matter
10 L J(0,...,t,...0) = P(Z = arrows[H,][0][t])

// Phase 3: reconstruct all other entries of the tensor
11 r=1
12 while r <m do

13 for ind € dim(H;) x ...dim(H,) do

14 for j=r+1,...,m and t € dim(H;) do

15 Let ¢ be the smallest index at which ind is non-zero.

16 Let ind’ be an index obtained from ind by changing j-th entry from 0 to ¢

17 Let ind” be obtained from ind’ by changing i-th entry to 0.

18 Let 2 be the unique entry in the intersection of arrows|H;|[A(ind")] and
arrows|H|[A(ind)].

19 A(ind) =z

20 J(ind') =P(Z = z)

21 return T

F Experiment details

Data generation For each experiment, the data generation process was as follows:

e (m,n): Chosen from among (1,3),(2,5),(3,7),(3,8),(4,7),(4,8) in the ratio 1 : 2: 2 :

3:1:1
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e Domain sizes |€;|: Sampled from {2,3,4,5,6}. If |Q] = |Q4]...|Qy| > 50, we skip the

experiment.

e P(H): Generated via the Markov property. For each variable H;, conditioned on its
parents Hp,;), a discrete distribution supported on €2; is chosen as follows: For each
element 7 in €;, a random integer ¢; is picked from [1,4] and distribution picks ¢ with
probability proportional to c;.

e A: Choose an arbitrary topological order uniformly at random and sample each directed
edge independently with probability 0.6.

e [: Sample each directed edge from H to X with probability 0.5. Enforce assumption 3.1
and linear independence of the columns a; of the adjacency matrix A.

e Components: We generate Gaussian components for every X; in R® with random means
and covariances. We take the means of the components to be sampled uniformly at
random from the unit sphere. We take random symmetric diagonally dominant covariance
matrices with the largest eigenvalue being 0.01. (Note that for 50 points on a unit
5-dimensional sphere, we expect to observe a pair of points at distance of the same order
of magnitude).

e Samples: We generate samples from the mixture components generated on the previous
step with probabilities defined by P(H).

We do not enforce minimum probability sizes or cluster sizes. As a result, the data generating
process is likely to generate models which are extremely difficult to learn (e.g. if a randomly
generated probability is very small, a mixture component will have few samples, which makes
learning difficult). As a result, some random configurations may fail. We ran a total of 724
experiments; out of these, 8.3% failed in the oracle learning phase and another 8.8% failed to
produce a graph because of very high domain sizes or unfeasible L. In the cases when the
Jennrich algorithm failed due to numerical issues, this was caught and replaced with ALS
for practical purposes as described in Step (b) above. These errors are conveniently caught
during runtime and can be attributed to either the data generation process or the finite sample
size as described above. Fig. 4] reports the metrics for the remaining 600 experiments: 300
experiments each for N = 10000 samples and N = 15000 samples. The experiments were run
on a single node of an internal cluster.

Experiments with smaller sample size. The number of samples in the experiments
discussed above is chosen so that every cluster component has approximately 20 samples.
We also explored the behaviour of our algorithms when the number of samples is much
smaller. We ran a total of 136 experiments for N = 1000 samples, with (m,n) chosen from
(1,3),(2,5),(3,7),(4,7),(3,8) in proportion 1 : 2: 1: 1: 1. Out of these, 4.4% failed in the
oracle learning phase and another 8.8% failed to produce a graph because of very high domain
sizes or unfeasible L. Furthermore, out of all failures, 25% happen for (m,n) = (4,7) and
other 37.5% happen for (m,n) = (3,8). We report the metrics on Fig. [6]

We mention, that with N = 1000 samples, we were able to recover H and ) even in the cases
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Box plots of Structural Hamming Distance (SHD) and Unoriented Correct Edges (UCE)

10000 samples 15000 samples 1000 samples
6 Metric 6 Metric ¢ 6 Metric
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Figure 6: Average Structural Hamming distance for recovery of G, where m = |H| and n = | X|.

when several latent states had fewer than five observations. Also, for comparison, to give
an example where we were not able to recover H and () exactly: the mixture model had 48
components with 1, 2, 2, 3, 3, 5, 5, 5, 6 ..., 53, b5 samples per component. This is clearly an
extremely challenging setup: Some states had only a few observations and the true number of
components is unknown to the procedure.

Choice of parameters for learning A. Once we have recovered the estimated joint
probability table of H, to learn A, we use the Fast Greedy Equivalence Search algorithm
[RGSRG17] with the Discrete BIC score. We use the PyCausal library [WHEF19]. We used
the default parameters (no hyperparameter tuning) and in particular, we did not assume
faithfulness.
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Approximate Runtime The average runtimes for each experiment are in the following

table.

Table 1: Average runtime in seconds

(m, n) | 10000 samples 15000 samples
(1, 3) 30.64 s 53.06 s
(2, 5) 89.03 s 148.81 s
(3,7) 288.25 s 385.27 s
(3,8) 320.25 s 616.86 s
4,7) 297.32 s 400.04 s
(4, 8) 361.28 s 604.14 s

Average number of edges For our experiments, the average total number of edges in A, I’
(also known as NNZ of G) are in the following table.

Table 2: Average number of edges for different settings

(m, n) | Number of Samples Average number of edges in G = (A, T)
(1, 3) 10000 3.0
(1, 3) 15000 3.0
(1, 3) 1000 3.0
(2, 5) 10000 7.15
(2, 5) 15000 6.95
(2, 5) 1000 6.98
(3,7) 10000 13.52
(3,7) 15000 13.2
(3, 7) 1000 13.7
(3,8) 10000 15.27
(3, 8) 15000 15.16
(3, 8) 1000 15.3
(4, 7) 10000 17.43
4, 7) 15000 18.17
4, 7) 1000 18.35
(4, 8) 10000 19.87
(4, 8) 15000 20.13

Scatter plots

The scatter plots for the Structural Hamming distance (SHD) versus the

total number of edges |E(G)| in G and that of the unoriented correct edges (UCE) vs |E(G)]
is given in Fig.
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Scatter plots for SHD vs |E(G)| and UCE vs |E(G)|
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Figure 7: Scatterplots where m = |H| and n = | X|.
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