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Abstract

Mixtures of high dimensional Gaussian distributions have been studied extensively in statistics and
learning theory. While the total variation distance appears naturally in the sample complexity of
distribution learning, it is analytically difficult to obtain tight lower bounds for mixtures. Exploiting
a connection between total variation distance and the characteristic function of the mixture, we
provide fairly tight functional approximations. This enables us to derive new lower bounds on the
total variation distance between two-component Gaussian mixtures with a shared covariance matrix.
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1. Introduction

Let \V'(u, ) denote the d-dimensional Gaussian distribution with mean p € R? and positive definite
covariance matrix 3 € R%*?. A k-component mixture of d-dimensional Gaussian distributions
is a distribution of the form f = Zle w; - N'(p;, X;). Such a mixture is defined by k triples
{(wi, py, i) }E_ |, where w; € R with Zle w; = 1 are the mixing weights, u; € R? are the
means, and ¥; € R4¥4 are the covariance matrices. Mixtures of Gaussian distributions have been
studied intensively due to their broad applicability to statistical problems Arora and Kannan (2001);
Dasgupta (1999); Dasgupta and Schulman (2000); Huber (2004); Kane (2020); Moitra (2018); Moitra
and Valiant (2010); Pearson (1894); Titterington et al. (1985).

The variational distance (a.k.a., the total variation (TV) distance) between two distributions f, f’
with same sample space {2 and sigma algebra S is defined as follows:

17 = Fllvy 2 sup (704 = 7/(4).

The minimum pairwise TV distance of a class of distributions appears naturally in the expressions
of statistical error rates related to the class, most notably in the Neyman-Pearson approach to
hypothesis testing Lehmann and Romano (2006); Neyman and Pearson (2020), as well as in the
sample complexity results in density estimation Devroye and Lugosi (2012). In particular, in these
applications, a lower bound on the total variation distance between two candidate distributions is an
essential part of the algorithm design and analysis.
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Tight bounds are known for the total variation distance between single Gaussians; however, they
have only recently been derived as closed form functions of the distribution parameters Barsov and
Ul’yanov (1987); Devroye et al. (2018). The functional form of the TV distance bound is often much
more useful in practice because it can be directly evaluated based on only the means and covariances
of the distribution. This has opened up the door for new applications to a variety of areas, such
as analyzing ReLU networks Wu et al. (2019), distribution learning Ashtiani et al. (2020); Bakshi
et al. (2020), private distribution testing Bun et al. (2019); Canonne et al. (2019), and average-case
reductions Brennan and Bresler (2019).

Inspired by the wealth of applications for single Gaussian total variation bounds, we inves-
tigate deriving analogous results for mixtures with two components. As our main contribution,
we complement the single Gaussian results and derive tight lower bounds for pairs of mixtures
containing two equally weighted Gaussians with shared variance. We also present our results in
a closed form in terms of the gap between the component means and certain statistics of the co-
variance matrix. The total variation distance between two distributions can be upper bounded by
other distances/divergences (e.g., KL divergence, Hellinger distance) that are easier to analyze. In
contrast, it is a key challenge to develop ways to lower bound the total variation distance. The shared
variance case is important because it presents some of the key difficulties in parameter estimation and
is widely studied Daskalakis et al. (2017); Wu and Yang (2020). For example, mean estimation with
shared variance serves as a model for the sensor location estimation problem in wireless or physical
networks Kontkanen et al. (2004); Liu et al. (2007); Van der Vaart (2000).

The lower bound on total variation distance can be applicable in several contexts. In binary
hypothesis testing, it gives a sufficient condition to bound from above the total probability of error
of the best test Moitra (2018). Hypothesis testing in Gaussian mixture models has been of interest,
cf. Aitkin and Rubin (1985); Chen et al. (2009). Furthermore, parameter learning in Gaussian
mixture models is a core topic in density estimation Devroye and Lugosi (2012). Our bound can
provide a sufficient condition on the learnability of the class of two component Gaussian mixtures in
terms of the precision of parameter recovery and gap between the component of mixtures. Indeed,
performance of various density estimation techniques, such as the Scheffé estimator or the minimum
distance estimator, depends crucially on a computable lower bound in total variation distance between
candidate distributions Devroye and Lugosi (2012). Furthermore, our lower bound implies that, for
the class of distributions we consider, if a pair of distributions is close in variational distance, then the
distributions have close parameters. This type of implication is integral to arguments in outlier-robust
moment estimation algorithms and clustering Bakshi et al. (2020); Hopkins and Li (2018).

We obtain lower bounds on the total variation distance by examining the characteristic function of
the mixture. This connection has been previously used in Krishnamurthy et al. (2020) in the context
of mixture learning, but it required strict assumptions on the mixtures having discrete parameter
values, i.e., Gaussians with means that belong to a scaled integer lattice. It is not clear how to
generalize their techniques to non-integer means. As a first step towards that generalization, we
analyze unrestricted two-component one-dimensional mixtures by applying a novel and more direct
analysis of the characteristic function. Then, in the high-dimensional setting, we obtain a new
TV distance lower bound by projecting and then using our one-dimensional result. By carefully
choosing and analyzing the one-dimensional projection (which depends on the mixtures), we exhibit
nearly-tight bounds on the TV distance of d-dimensional mixtures for any d > 1.
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1.1. Results

Let F be the set of all d-dimensional, two-component, equally weighted mixtures

1 1
F= {fl"'()vl"'l = 5/\/‘(“07 2) + iN(lJ’la Z) ’ Mo, K1 € Rda DINS RdXd} ’
where 3 € R4 is a positive definite matrix. When d = 1, we use the notation f,, ,, € F and
simply denote the variance as o> € R. Our main result is the following nearly-tight lower bound on
the TV distance between pairs of d-dimensional two-component mixtures with shared covariance.

Theorem 1 For fyu, . fur u € F, define sets St = {py — po, py — o}, S2 = {po — pos 1y —
pi}, Sz = {ph — py, py — o} and vectors vy = argmaxycg ||s||2, v2 = argmax,cg,||s||2,
v3 = argmax,cg,||s||2. Let A\sy = MAXqy: | |u||,=1,uell u” Xu with U being the span of the vectors

v1,v2,v3. If 012 = min(([vs]l2, [|vsll2)/2 and \/Asu = Q[[villy), then

— Q(min (1’ lv1]|2 min(||ve||2, ||v3||2)>>7
TV s

HfIJ'O:Nl - fu{)m

- f%,u’l

and otherwise, we have that ‘ ) fuo, ul

v Q(min (1’min(||"72||27 ”7’3H2)/m)>'

Notice from the definitions of v1, v2, v3 that I is contained within the subspace spanned by the
unknown mean vectors fu, 4, i, (). Furthermore, As; ;4 as defined in Theorem 1 can always be
bounded from above by the largest eigenvalue of the matrix X, and as we will show in Section 1.3,
this upper bound characterizes the TV distance between mixtures in several instances.

In some cases, it is simpler to work with z = >~1/2% instead of the original samples = € R,
Note that if & ~ LN (g, B) + AN (g, B), then z ~ IN(ZY 200, I) + IN (=72, T), for
I the d-dimensional identity matrix. Overall, if we scale the distribution by »~1/2 then by the
invariance property of TV distance (see, for instance, Section 5.3 in Devroye and Lugosi (2012)),
Theorem 1 implies the following. For fy, 4, f“67 w, € F and S1, 52,53 as above, the scaled vectors

o, fori € [3]. If | 27120 ||o > min(||Z Y 2vs]j2, |2 ?vs]|2) /2

are v; = argmaxseSiHE_l/Qsl
and || 72v1||» = O(1), then

[ fuois = Ty, = 2 ((min (L 1Z7 /201 o min |2 20 o, [ £ 20]2)) ).

and otherwise,

Fuoiis = Fupa ||, = @ (min (1, min(| 57205 o, | 57 20s]2) ) )

In the special case of one component Gaussians, i.e., g = pq and pg = pj, we recover a result
by Devroye et al. (see the lower bound in (Devroye et al., 2018, Theorem 1.2), setting 3; = 3Is).
In the one-dimensional setting, our next theorem shows a novel lower bound on the total variation
distance between any two distinct two-component one-dimensional Gaussian mixtures from F.

Theorem 2 Without loss of generality, for fuy u,, fr W, € F, suppose o < min(pu1, ), it)) and

po < phy. Further, let 61 = max{|po — pal, |ug — py} and 62 = max{|ug — pol, |p1 — iy} If
(10, 4] € [po, 1] and o = Q(01), then we have that

| fuos = Fg g llTv > Q(min(1, 6165 /07)),

fHOWI - f%»#ﬁHTV = Q(min(1>52/‘7)>‘

and otherwise,
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1.2. Related Work

Let I denote the d-dimensional identity matrix. Statistical distances between a pair of k-component d-
dimensional Gaussian mixtures f = S k=N (u;, I) and f' = S°F_ | k= 1N (), I) with shared,
known component covariance I have been studied in Doss et al. (2020); Wu and Yang (2020). For
a k-component Gaussian mixture f = Y% k=N (u;, T), let My(f) = S25_, k=" u® where 2
is the /-wise tensor product of . We denote the Kullback-Leibler divergence, Squared Hellinger
divergence, and x2-divergence of f, f' by ||f — f'llxL; [|f — f||pz> and || f — f'll2 respectively.
We write || M || to denote the Frobenius norm of the matrix M. Prior work shows the following.

Theorem 3 (Theorem 4.2 in Doss et al. (2020)) Consider mixtures [ = Zle k=N (u;, I) and
=S8 kI (wh, I) where |||, < R, l|utlly < R, for all i € [k] and constant R > 0. For

any distance D € {H? KL, x?}, we have ||f — f'l|p = @(maX[SQk_l | Mo(f) — Mg(f’)”%)
This bound alone does not give a guarantee for the TV distance. However it is well-known that,

)]

HfHO:Hl - f“67“’1 v > ny'OvI"l - fﬂf)#ﬁ

T H2

We can use this in conjunction with Theorem 3 to get a lower bound on TV distance, but it is
suboptimal for many canonical instances. For example, consider one-dimensional Gaussian mixtures

f= %N(u, 1)+ %N(—u, 1) and f'= %J\/(Qu, 1)+ %N(—Qu, 1). )
Using Eq. (1) and Theorem 3, we have that ||f — /||y, = Q(u?). On the other hand, by using
our result (Theorem 2), we obtain the improved bound || f — f'||1y = Q(u?). The improvement
becomes more significant as v becomes smaller. Also, the prior result in Theorem 3 assumes that the
means of the two mixtures f, f are contained in a ball of constant radius, limiting its applicability.

The TV distance between Gaussian mixtures with two components when d = 1 has been recently
studied in the context of parameter estimation Feller et al. (2016); Ho and Nguyen (2016); Manole
and Ho (2020); Heinrich and Kahn (2018). The TV distance guarantees in these papers are more
general, as they do not need the component covariances to be same. However, the results and their
proofs are tailored towards the case when both the mixtures have zero mean. They do not apply when
considering the TV distance between two mixtures with distinct means. Theorems 1 and 2 hold for
all mixtures with shared component variances, without assumptions on the means.

Further, our bound can be tighter than these prior results, even in the case when the mixtures
have zero mean. Consider again the pair of mixtures f, f’ defined in Eq. (2) above. In Manole and
Ho (2020); Ho and Nguyen (2016), the authors show that || f — ||y = Q(u?); see, e.g., Eq. (2.7)
in Manole and Ho (2020). Notice that this is the same bound that can be recovered from Theorem 3,
and as we mentioned before, this bound is loose. By using Theorem 2, we obtain the improved bound
IIf = f'lltv = Q(u?). Now consider a more general pair of mixtures, where for u, v > 0, we define

f= %j\/’(u, 1)+ %N(—u, 1) and f = %/\/’(v, 1) + %N’(—v, 1). 3)

In Feller et al. (2016) (see the proof of Lemma G.1 part (b)), the authors show that || f — /||y =
Q((u — v)?). Notice that for the previous example in Eq. (2) with v = 2u, the result in Feller et al.
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(2016) leads to the bound || f — f’||1y, = Q(u?), which is the same bound that can be obtained from
Theorem 2. However, for any small e > 0, by setting v = u + €, we see that the bound in Feller
et al. (2016) reduces to || f — f'||ty = ©(e?). On the other hand, by using Theorem 2, we obtain
I1f = f'lltv = Q(u - € + €2). Whenever u >> ¢, our result provides a much larger and tighter lower
bound. On the other hand, whenever u < ¢, our bound coincides with that of Feller et al. (2016).

1.3. Tightness of the TV distance bound

Our bounds on the TV distance are tight up to constant factors. For example, let u € R be a
d-dimensional vector satisfying ||u||, < 1. Consider the mixtures f = 0.5\ (u,I) 4+ 0.5N (—u, I)
and ' = 0.5N (2u, I) + 0.5 (—2u, I). Considering the notation of Theorem 1, we have v1 = 2u
and vy = w, and the first bound in the theorem implies that || f — f/||1, > Q(||u] |2) On the other
hand, we use the inequality || f — f'||+v < +/2]|f — f'||y2 in conjunction with Theorem 3. In the
notation of Theorem 3, note that M;(f) — Mi(f’) = 0, and we can upper bound the max over
¢ € {2, 3} by the sum of the two terms to say that

17 = Flley < O( ma. 1M = M)

< O(lu@ullp + |lu®u @ ullp) = O(|ully + [|ull3).

Since ||u||, < 1, we see that ||u||3 is the dominating term on the RHS, and || f — f'||+v = O(||u|3).
As aresult, our TV distance bound in Theorem 1 is tight as a function of the means for this example.

Our bounds are tight in other instances too. Consider the second parts of Theorems 1 and 2. Here,
we can use the triangle inequality to derive a simple upper bound on the TV distance,

S <HN Mo, ) NMOa HTVJFHN K1, ) N(HQ,E)HTV,
HN /'l/17 NM’O; HTV—i_HN Ko ) N(l'l’llvz)HTV>

HfIJ'O:P'l - fué#i

Then, we can use tight bounds on the TV distance between single Gaussians. In the one-dimensional
setting, Theorem 1.3 in Devroye et al. (2018) shows that || fug u, — fuy w0 [lTv = O(max(1,62/0)),
recalling that do = max{|u( — pol, |1 — p}]}. In the high dimensional setting, Theorem 1.2 in
Devroye et al. (2018) shows that

1 .
. 0] (max (1, m -min (||lvz|2, "‘13‘2)>> ’

recalling v and v3 from the definitions in Theorem | and letting i (32) be the minimum eigenvalue
of 3. Again by the invariance property, TV distance remains the same if the samples are pre-
multiplied by > ~1/2_ With this transformation, the component co-variance matrix is I and

. 0 (max (1,min (H271/2U2H2, ”271/2”3”2))) _

It follows that the second parts of Theorems 1 and 2 are tight up to constants.

On the other hand, when comparing with the Hellinger distance upper bound of Doss et al. (2020),
our lower bound on the TV distance is not tight in the following case. Define two d-dimensional
mixtures f = 0.5N (u, I) + 0.5N (—w, I) and f' = 0.5N (4u, I') + 0.5N (—2u, I). The mean of

Hfuovm - fug,u’l

‘ )f’JOJJ’l B fllf)#i/l
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f"is w. Applying Theorem 3, we get an upper bound of || f — f/[|q2 = O(||lull2 + ||u|]3 + ||u|3) =
O(||ul2), when ||u||2 < 1. In contrast, Theorem 1 only gives a lower bound of Q(||u|3), which
can be much smaller than ||u/|2. It would be an interesting open direction to derive tight bounds on
this instance. We do not know if this is an inherent limitation of either of the bounds, and it may be
possible to extend our results to capture the ||ul||2 term, or tighten the upper bound.

1.4. Preliminaries

We use Q(+), O(+), and O(-) to hide absolute constants. For vectors u, v € R, we let (u, v) denote
the Euclidean inner product. We use the characteristic function of a distribution, defined below.

Definition 1 The characteristic function Cy : R — C of a distribution f is Cy(t) = [ €' f(z)dx.

If X is a random variable with distribution f, then C¢(t) = Ex.¢[e?*X]. The characteristic function
of a two-component, one-dimensional mixture f,, ., € Fis Cy, . (t) = %e‘”th/ 2(eitho 4 eitmr),
The characteristic function can be used to bound the TV distance with the following lemma.

Lemma 1 (Krishnamurthy et al. (2020)) For distributions f, f’ on a shared sample space ) C R,
1
1f =4y = 5 8up [Cs(t) = Cp (D).
teR

Organization. The rest of the paper is organized as follows. In Section 2, we give a brief high
level overview of our results. In Section 3, we provide the main parts of the proof of our TV distance
result for one dimensional mixtures, which is based on elementary complex analysis. Subsequently,
in Section 4, we provide the proof of the TV distance lower bound in the high dimensional case.

2. Technical Overview

In one dimension, we lower bound the TV distance as follows. For f,,, .., f, oty € F, suppose i is
the smallest mean. Recall that 6; = max{|uo — 1|, |y — 1) |} and 92 = max{|pf — pol, |1 — 141}
If [ME)? N’ll] - [N’O> ,ul]’ then ||f/1«07#1 - fué,,u'l”TV > Q(mln(17 5162/02)) and otherwise, ||fﬂ0,/11 -
fup e llrv = Q(min(1, 02/0)). The latter case corresponds to when either both means from one
mixture are smaller than another, i.e., po < p1 < py, (14, or the mixtures’ means are interlaced, i.e.,
po < piy < py < ph.

We use Lemma 1 to lower bound the TV distance between mixtures f ., , f, oy € F by the
modulus of a complex analytic function:

o'2t2 . . sy .
—t | it t t t
4Hfuo,#1_fu67uﬁ TVZSupe 3 |eftHo  pltur _ ity _ pitph | @)
t

Let h(t) = e'tho 4 eiti — itny — ¢itii - A Jower bound on || Suowr = fu ||Tv can be obtained by
taking ¢ = 1/(co) for ¢ constant, so that e=7"*/2 is not too small. Then, it remains to bound |h(t)]
at the chosen value of £. In some cases, we will have to choose the constant ¢ very carefully, as terms
in h(t) can cancel out due to the periodicity of the complex exponential function. For instance, if
po =0, g1 = 2000, puf, = o, and py = 2010 with 0 = 2, then |h(1)| = 0.

It is reasonable to wonder whether there is a simple, global way to lower bound Eq. (4). We could
reparameterize the function h(t) as the complex function g(z) = 20 + zH1 — 20 — 2", where
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z = €', then study |g(2)], for z in the disc with center 0 and radius 1 in the complex plane. However,
we are unaware of a global way to bound |g(z)| here due to the fact that (i) g(z) is not analytic at O
when the means are non-integral and (ii) there is not a clear, large lower bound for g(z) anywhere
inside the unit disc. These two facts obstruct the use of either the Maximum Modulus Principle or
tools from harmonic measure to obtain lower bounds. Instead, we use a series of lemmas to handle
the different ways that |h(t)| can behave. The techniques include basic complex analysis and Taylor
series approximations of order at most three.

Let fﬁo, pu, be the distribution of the samples obtained according to fy, ., and projected onto the

direction t € R?. We have (see Lemma 5 for a proof)

_ Nt t"38)  N(pitt'=t) o, N(ugt.8788)  N(pi't ¢/ 50)

ft
Hos1 — 2 2 ’ ”‘6’”/1 - 2 2

By the data processing inequality for f-divergences (see Theorem 5.2 in Devroye and Lugosi
(2012)), we have || fu, 0, — f%#/l v > supcpa Hf;im“1 - fﬁg,u;HTV' Using our lower bound
on the TV distance between one-dimensional mixtures (Theorem 2), we obtain a lower bound on
[ fugumy =, T |l Tv by choosing t € R? carefully. This leads to Theorem 1.

3. Lower Bound on TV Distance of 1-Dimensional Mixtures

Consider distinct Gaussian mixtures f;, ., , f%M € F. Without loss of generality we will also
let o < min(p, pg, 144 ) be the smallest unknown parameter, and let 1f > uf,. We maintain these
assumptions throughout this section, and we will prove Theorem 2.

Eg. (4) implies that we can lower bound || fyg,, — fuy 1 |[Tv by the modulus of a complex
analytic function with parameter ¢. Then, we can optimize the bound by choosing ¢t = ©(1/0) and
lower bounding the term in the absolute value signs.

We define the following parameters relative to the means to simplify some bounds:

61 = max(|puo — pual, |y — pal) 62 = max(|ug — pol, [ — p)
83 = |po + 1 — o — 14| 84 = min(|ug — po , |1y — p ).

We first consider ¢ such that ¢(ju1 — o), t(p] — o), t(py — po) < 7, which is covered in Lemma 2.
Lemma 2 Fort > 0with t(pu1 — pio), t(1y — po), t(py — po) € [0, 1, if 1o, 1y € 10, pa, then

t2(01 — 64)64 o3 >
2 " 4/2

> t62/(2V/2).

. . - o
elt/,LQ 4 e'Lt,ul o ezt,uo o elt,ul

Zmax(

eltro + et _ eitu6 _ e'itp/l

and otherwise, when 11y > p,

See Figure 1 for an illustration of the different ways that the means can be ordered. The lemma
follows from straightforward calculations that only use Taylor series approximations, trigonometric
identities, and basic facts about complex numbers. We include the proof in Appendix A.

Recall that we will choose t = O(1/0) to cancel the exponential term in Eq. (4). Therefore,
Lemma 2 handles the case when all the means are within some interval of size ©(o).

Next, we prove that when the separation between the mixtures is substantially fair apart—when
either |po — pp] or |pn — pf| is at least 20—we have a constant lower bound on the TV distance.
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/7 ! ’ ! ’ ’
o Ha o M1 Ho Hi

Ho H Ho H Ho 23

Figure 1: Layout of the means for Theorem 2. The means can be ordered in different ways, which
affects the analysis of lower bounding |e/0 4 eitH1 — ettho — eit“'1| in Lemma 2. For a
fixed t, the order affects (i) whether the real or imaginary part of e*#0 4 ¢ith1 — gitiy — ittty
has large modulus and (ii) whether the terms from 49 and p; or y, and ) dominate.

Recall that it is without loss of generality to assume that 1 is the smallest parameter and 1) > ).
A similar result as the following two lemmas has been observed previously (e.g., Hardt and Price
(2015)) but we provide a simple and self-contained proof.

Lemma 3 [fmax(|uo — pgl, |11 — p11]) = 20, then it follows that || fug,uy — fup w|lTv = Q1)

Proof Assume that |pg — 4| > 20, where the case |y — p}| > 20 is analogous. Recall from the
definition of TV distance that

s = Bl 2 S0 (S () = 514 ()

> Pr [X<pu+o— Pr [Y<po+o
X fug.m YNfu{J,u’l
For a random variable X ~ f,, ., let £ denote the event that we choose the component with
mean fi, i.e., if X denotes X conditioned on &, then we have X ~ N (ug, o?). Since the mixing

weights are equal, we have Pr(€) = Pr(£¢) = 1/2, where £¢ is the complement of £. Therefore,

2

1o ot 1
Pr(X >pp+0) <Pr(&)Pr(X >po+o|E)+Pr(€ = —dt+ =
2 Juoto 2w 2

1 [ gt B SR R

— 20 2
g/ (Ltoye aricl ezl 5)
2 Jioto o 2mo 272 Vo 2

Recall that 19 < 1, p1g < p and |po — po| > 20 Again, for a random variable Y ~ f,r v, let &'
denote the event that the component with mean 4, is chosen (and £ denotes 4/ is chosen). Then,

Pr(Y < pg+0o)=Pr(E)Pr(Y < pg+o | E)+Pr(E)Pr(Y < pp+o| &)
PH(E) Pr(Y < iy — o | &) + Pr(ES)PL(Y < iy — o | €°)
Pr(E) (Y 2 i +71 €) + PHEOPHY 2 i+ £
1
2

1
e 2 e 2
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where in step (a), we used the fact that p, — o > po + o and pf — o > o + o in step (b), we used
the symmetry of Gaussian distributions; in step (c), we used the same analysis as in (5). By plugging
this in the definition of TV distance, we have

1 9
—f > P X < - P Y < > — 4/ —>0.137.
[ frouun = Lty llTv = XNfﬂl:)M[ < o + 0] wauz’ull[ <o +o]> 5\ 8re =

If Lemma 3 does not apply, then we case on whether max(|uo — p1l, |ug — 1) is large or not.
If max(|po — !, |y — p4|) < 1000, we use Lemma 2—exactly how will be explained later—and
otherwise we use the following lemma. Recall that 6o = max(|u(, — pol, |1 — wf])-

Lemma 4 [fmax(|uo — . i — 14]) > 1000 and max(|puo — | |11 — i) < 20, then

2
=0
> 2

. . oy oy
eztuo 4 ezt,ul _ ezt,uo _ ezt,ul > )
240e0

0'2t2
supe 2
t
We defer the proof of Lemma 4 to Appendix A. Using Lemmas 2, 3, and 4, we prove Theorem 2.
Proof [Proof of Theorem 2] Using Lemma 1, we see that

2

2¢2

. . o oy
eztuo 4 eztul _ eztuo _ eztul )

.
2 Hfuom = Futyary Z SUb T

TV

Case 1: Consider the case when p, 11, £, (¢} are in an interval of size at most 1000, i.e.,

maX<\M’1 — pol s [ — pol 5 |t —uo|) < 1000 (6)

Recall 61 = max{|po—pul, [ —p1 |}, 62 = max(|ug—pol, [m1—p1 ), 03 = [po + w1 — pg — pi
64 = min(|pg — pol, |y — pul). Fort = m/4000,0 < t max ( 14— kol s 1 — pol s [ — uo\) <
7. We have assumed that z19 < min (g1, g, p;) and g < gi. This implies that po < pg < pf < i1
in the subcase when p), 1) € [0, pu1]. This also implies that §; = |p; — po| > 204, a fact we will
use later. The inequality in Eq. (6) implies that the above value of ¢ = /4000 satisfies the conditions
of Lemma 2. Then, when (), 1t} € [10, pt1], the first part of the lemma implies that

’

7['2(51 — 54)54 7T53 )
640000ec? ' 32001/2¢e0/

2 Hf,uo,m - f#{;:#'l TV 2 max (
Now we observe that d5 > d5 — d4. To see this, assume without loss of generality that d3 = |u(, — pol
and 04 = |p) — p1]. By the triangle inequality, we have that 93 = |0 + 1 — g — iy > |uf —
pol — |1y — pa| = 62 — d4. We split up the calculations based on the value of d5. If §3 > %2, then
[ osr = Fuy gy v = 762/(128004/2¢0). On the other hand, if d3 < %2, then since 03 > do— 04, We
have that 4 > %2. Coupled with the fact that 6; > 2d4 (hence 04 < d1/2 implying §; — d4 > 61/2),
we have that || fu,u — fur v = 726162/ (5120000e0?). Putting these together, we have

> min ( F25152 7['(52 ) N 7T25152
vV = 5120000e02’ 12800v/2ec/  5120000e02

Hfﬂonul - fu{),u’l
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For the case when both of yf), 4} are not in [ug, p1], we have pf > p; (recall that pg is the
smallest mean and y(, < 1), and we can use the second part of Lemma 2 to conclude that

0'2t2

itho | githn _ oituy _ pituy | > LS?
~ 16001/ 2e0

—
2 HfMO,M - f,u(’),,u’l > Slzp Y

TV

Case 2: Next, consider when d2 = max(|uy — pol, |1 — py|) > 20. Lemma 3 implies that

TV

Hf#o#tl - f,u{),p’l > Q(l)

Case 3: Now, we consider the only remaining case, when 6; = max(|puo — 1], [ — py|) >
1000 and dy < max(|po — po, |1 — p)]) < 20. This case satisfies the conditions of Lemma 4,
and therefore, we have that

2,2

— 2
e 2 . . oy oy e 52
> sup eztuo 4 eztyl _ ezt,uo o ezt,ul > ,
t 2 240eo0

2 HfMO#Al - fu&,,u’l TV

thus proving the theorem. |

4. Lower Bound on TV Distance of d-Dimensional Mixtures

We lower bound the TV distance of high-dimensional mixtures in F and prove Theorem 1. For any
direction t € RY, we denote the projection of the distributions Jug,p, and f% ., ontby fltto: p, and
f fL/ E respectively. The next lemma allows us to precisely define the projected mixtures.

01

Lemma 5 For a random variable x ~ SN (py, ) + sN (py, X), for any t € RY,

tTCC ~ N(<p’07t>7tTEt) + N(<“17t>7tTEt)

2 2

Proof A linear transformation of a multivariate Gaussian is also a Gaussian. For © ~ N (pg, X),
we see that (¢, ) ~ N ({pg,t),tT Xt) by a computation of the mean and variance. Similarly, for
x ~ N(uy, %), we have (t, ) ~ N'({uy,t),t7 St). Putting these together, the claim follows. M

From Lemma 5, we can exactly define the one-dimensional mixtures

— N(<u0,t>,tT2t) + N(</'L17t>7tT2t) N(<M67t>7tht) N((Mllﬂt>vtT2t).

t t _
fﬂmﬂq - 2 2 ’ fl‘fwl‘/l - 2 + 2

By using the data processing inequality, or the fact that variational distance is non-increasing under
all mappings (see, for instance, Theorem 5.2 in Devroye and Lugosi (2012)), it follows that

> sup

t t
- / / - U ’ .
‘ ’fILO:Nl fl“ov”‘l tERd fp’OalJ’l fﬂ'ov“’l TV
Let # be the set of permutations on {0, 1}. The following lemma has two cases based on whether
the interval defined by one pair of mean’s projections is contained in the interval defined by the other

pair’s projections.

10
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Lemma 6
Let t € R be any vector. If V'St = Q(max (¢t o — 1)), |8, gy — ,LL/1>|)>, and either
!/
1

<“’6)t>7 <H/1’ t> € [<p’07t>, <”1a t>] or <H0a t>a <[1,1,t> € [<H6a t>a <“’ 7t>]’ then ||fﬁ,0,p,1 _fltté’uleTV

is at least

. 1 .
Q(min (1, ey~ max(|{t. o — pua)l, [ (8 sy — a4 ) min (18, o — o) o | (8 by = )] ))-

oEH

Otherwise, we have that || fﬁo o fﬁ, ||V is at least
’ 0°F1

. 1 . / /
(i (1, — 7 mimmax(((6, o — o) 8 11— o)) )

Proof The proof follows directly from Theorem 2. Note that in Theorem 2, we assumed the ordering
of the means without loss of generality, i.e., o < min(gu1, f1(, 1)) and gy < . However, taking a
minimum over the set of permutations in H allows us to restate the theorem in its full generality. l

Now we are ready to provide the proof of Theorem 1.

4.1. Proof of Theorem 1
Let

St ={py — po, ] — o}, S2={po — mo, L — 1}, Sz ={mo — py, 1y — mo},
and
v1 = argmax,cg, ||sll2, w2 = argmax,eg,l|s|l2, w3 = argmax,g.||s]|o.

We consider two cases below. Depending on the norm of v, we modify our choice of projection
direction. In the first case, we do not have a guarantee on the ordering of the means, so we use the
first part of Lemma 6. In the second case, we can use the better bound in the second part of the
lemma after arguing about the arrangement of the means.

Case 1 (2||v1||y > min(||va||,, ||v3]|y) and /Asy = Q(||v1]]5)):  We start with a lemma that
shows the existence of a vector z that is correlated with {v1, v2, v3}. We use z to define the direction
t to project the means on, while roughly preserving their pairwise distances.

Lemma7 For vy, vs,v3 defined above, there exists a vector z € R? such that ||z||, < 10, z
belongs to the subspace spanned by v, v2,vs, and |(z,v)| > %for all v € {vy,v9,v3}.

Proof We use the probabilistic method. Let w;, us, u3 be orthonormal vectors forming a basis of
the subspace spanned by v, v2 and v3; hence, we can write the vectors vy, v and v3 as a linear
combination of w1, w2, us. Let us define a vector z randomly generated from the subspace spanned
by v1, v9, v3 as follows. Let p, ¢, be independently sampled according to A'(0, 1). Then, define
z = puy + qug + rus. By this construction, we have that (z,v) ~ N(0,||v]|3) for all vectors
v € {v1,va,v3}, and further, ||z||3 = p® + ¢* + . Hence, for any v € {v1,v9, v3}, we have

[l
bl a2 /20|13

Pr (|(z,0)| < |[v]|2/6) g/

—F——ax
stz /2ol

</6 1 de < [[vll2 <1
= o Al 32l 3Ver

11
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Also, we can bound the norm of z by bounding p, ¢, r. We see that

00 o—z?/2 1 [ pet/2 e—12.5
Pr(p >5) < / dr < — dr < .
(v ) 5 V2T 5 Js Vo )

Similarly, Pr(p < —5) < e~'2/5. Applying the same calculations to ¢ and r and taking a union

bound, we must have that with positive probability ||z||, < /p?+ ¢%>+ 12 < V75 < 10 and
|(z,v)| > ||v]||2/6 for all v € {v1, V2, v3}, implying there exists a vector z that satisfies the claim.
|

For this case, we will use the first part of Lemma 6. Let z be the vector guaranteed by Lemma 7.
. o, L
Setting t = NS 5Pt then Lemma 7 implies that

(o) = L0l el

NP NP for all v € {v;,v9,v3}.

Recall that we defined Ay 1 2 max llull,=1 uTSu to be the maximum amount a unit

u€span(v1,v2,v3)
norm vector u belonging to the span of the vectors vy, vo, v3 is stretched by the matrix 3. Note that

As 4 is also upper bounded by the maximum eigenvalue of 3. Now, using the fact that ||z||, < 10

and VzT3z < \/Asnulz|ly < 104/As ., we obtain

vl
= 601/ Asu

The part of Lemma 6 that we use depends on whether Vt! 3t = Q(max (I(¢, vl)|)) or not.

However, the second part of the lemma is stronger and implies the first part. Therefore, we simply
use the lower bound in the first part of the lemma, and we see that

[t v)

forall v € {v1,v2,v3}. @)

t
‘ ‘f/»l'[))/-l'l o f“‘()vll‘ll TV

= ((min (1, max (|(t. jg = poo)l: {8 — pai)) minmae (12, (ko — b)) 18 (1 = o)1) ) )
@ 0 min (1, (¢, v1)] min(| (£, 02)] |, 03)))) ) £ 0 (min (1, [v1]lz min(ffvzl ”"’3”2))),

Az u
wherein step (a), we used the following facts (from definitions):
max (|<t7/~‘l’ _“1>‘7|<t7“,0_u’/1>’) 2 ’<t,’01>| (8)
max (|(t, (o — po))|; [(t, (1 — 111))]) > [(2, v2)] ©)
max (|(t, (o — )|, (8, (11 — p0))]) > [{t, 3)| (10)

and in step (b), we used Eq. (7) for each v € {vy, vo, v3}.

Case 2 (2||v1]], < min(||va||y,||v3]|5) or \/Asu = O(||v1]]5)): For this case, we will use the
second part of Lemma 6. The random choice of ¢ in Case 1 would have been sufficient for using the
second part of Lemma 6 when c||v1||, < min(||va],||v3]|y) or \/Axy = O(||v1]],) for some

12
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large constant ¢ but with a deterministic choice of ¢ that is described below, we can show that ¢ = 2
. . o
is sufficient. Let t = NS where

(o) SU3 .
" fleally gl M T 2t (o sl

Notice that we must have s(v2, v3) > 0 from the definition of s. Then we see that

v

<’l72 ’01> s(vg,v1> .
[(v,v1)| = : < 2||v1]ly < min(|[vall,, |[vs]]3)
[[va]l, l[vs]],
S(V2, VU3
o, 02)] = [lloally + 222230 > oy, an
vz,
(v2,v3) s(va, v3)
|(v,v3)] = +sllvslly| = | + lvslly| > [|vs]l,- (12)
l[va]], [[vall,

The first inequality follows the norm bound on wv; for this case, the second inequality uses that the
definition of v and s imply that the second term in the sum is non-negative, and the third inequality
uses the same logic and the fact that s € {—1,1}.

We just showed that | (v, v1)| < min(|(v, v2)|, |(v,v3)]|), and hence (¢, v1) < min((¢,v2), (t, v3)).
This implies that the interval defined by one pair of projected means is not contained within the inter-
val defined by the other pair of projected means. This means we can use the second part of Lemma 6.
Furthermore, we also have t/' ¥t = 1. Finally, since ||v||, < 2, note that VvTSv < 2,/Asy.
Using Lemma 6 with our choice of ¢, we see that

t t
‘ ‘fIJ'OvlJfl o fli()»lﬂl TV

= ((min (1, minmax(| ¢, (o — )] (& (1 = o)D) )

< 0 (min (1 min (16221 (0091 ))) & 0min (1, =2 2S00 ).

In step (a), we used Eq. (9) and (10), while in step (b), we used Eq. (11) and (12). The remaining
case is when /Ay iy = O(||v1]|5). The second part of Lemma 6 applies because we observe that

VTSt = O(max (1<t o — )]s 18, o — 7)) ) To see this, recall that t' Xt = 1, and hence,

max (’<t7 Mo — l"’1>‘7 ‘(tv IJ’E) - IJ’/1>‘)
T

z v l[v1]l, l[v1]l,
> |(t,v)| = > > =Q1) =0 (Vtlst).
(& v1)l VzTYz 6vVzT¥z — 6/ Asy ) < )

Next, recall that Lemma 7 implies that | (¢, v2)| > ||v2||/6 and |(t,v3)| > ||vs||/6. Then, using
the second part of Lemma 6, we have that

[ = T
Hosky BosHy | v

= min (1, minmax(|{t, (o — o)) [£ (111 = 1)) )

@ Q(mm (1,min ( I8, va)], |(E, v3)] ))) @ Q(min (1, min(”’?%"’?’b))).

Again in step (a), we used Eq. (9) and (10) while in step (b), we used Eq. (11) and (12). This
completes the proof of Theorem 1.

13
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5. Conclusion and Open Questions

We demonstrated the use of complex analytic tools to prove new lower bounds on the total variation
distance between any two Gaussian mixtures with two equally weighted components and shared
component variance. For a pair of mixtures with shared component variance, we provide guarantees
on the total variation distance as a function of the largest gap (among the two mixtures) between the
component means. Although intuitive, such a characterization was missing despite a vast literature on
the total variation distance between mixtures of Gaussians with two components. We also extended
our results to high dimensions and showed an elegant way via characteristic functions to reduce the
problem to the one-dimensional setting. Finally, we should also point out that our lower bounds hold
for all pairs of Gaussian mixtures with shared component covariance matrix without any assumptions
on the component means; this was not the case in the prior results, which either needed the means to
be bounded or the means of both mixtures to be zero.

The complex analytic tools in this work are elementary, and there is room for development. These
tools may be helpful in proving bounds on statistical distance between more diverse distributions.
For example, our analytic techniques do extend to mixtures of two Gaussians with shared covariance
and certain non-equal mixing weights. To give a specific instance, for a mixture with weights cg
and c;, we could replace Lemma 2 so the lower bound only gains an additional multiplicative factor
of min{cy, c1} when pj > p;. We avoided stating our results in full generality of the mixing
weights to not complicate our techniques and results. It would be useful and interesting to provide
matching upper bounds on the total variation distance of two-component mixtures for all instances
as a function of the means and covariance (generalizing the results for single Gaussians Devroye
et al. (2018)). Extending our results to more general mixtures with £ components and unknown
component variances/weights (e.g., for Gaussian or even other families of distributions, such as
those studied in Krishnamurthy et al. (2020)) will be of significant interest to both the statistics and
machine learning communities.
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Appendix A. Missing Proofs from Section 3

Here, we provide the proofs for Lemmas 2 and 4. Recall that we have indexed the means such that
po < min(ge, pg, ) and iy < .

Proof [Proof of Lemma 2] We use case analysis on different orderings of the means and their
separations.

Claim 1 For anyt > 0 such that t(p1 — pio), t(py — po), t(py — po) € [0, ], when py > pa,

. . g . t(52
eztuo 4 eztul _ eztuo _ eztul >

2V2’

Proof Assume that pf — 1 > pfy — po, and recall that 62 = max(|p( — fol, |1 — pf ). First, we
factor out the lowest common exponent to see that

. . - -
e’Lt,LL() 4 eltul o eztuo . eztul

= ‘1 4 eit(m—po) _ git(ug—ho) _ git(ui—po)|

Let us denote ¢; = p1 — po, ¢y = po — po and ¢} = pf — po. The following inequalities hold:

‘1 +elt9r — % — 9| > Isin(te1) — sin(te)) — sin(te))] [l2| > [Im(2)|]
> —sin(tg) + sin(t¢y) + sin(td)) [Remove | - |]
> —sin(tgr) + sin(t(¢1 + (4] — ¢1))) [sin(t¢p) > 0]
o (=P P — 1
—2sm( 5 >cos< (qb + 5 >>

1
> ﬁtdz
In the last line, we use that cos (t (¢1 + it ¢1)> > 1/\@ and sin (t@) > %, where the

former follows from the fact that

0<t<¢1+ ¢1g¢1> = t(¢1;¢1) = %(t(/ﬁl — po) + t(11) Mo)) <

AN

and the latter follows from sin(z) > z/2 for z € R.
If pu — po > pf — 1, then we can use a similar string of inequalities by using the fact that

. . Ly Ly
ezt,uo + eztul _ eztuo _ eztul

_ ‘1 + eto—m) _ gitluy—m) _ it —m)|

We denote ¢ = o — p11, ¢y = py — w1 and @) = pf — p1. Note that all the ¢ are negative and
¢o > ¢ > ¢}. The following holds:
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eitbo | | _ gitdh _ it

> [sin(tgo) — sin(teh) — sin(te))|

2] > [Re(2)]
|~ sin(t]dol) + sin(t]gh]) + sin(t]¢ )| sin(-) odd]
[
si

—sin(t|po|) + sin(t|gp|) + sin(t|d]]) Remove | - |]
— sin(t[¢o|) + sin(t(|¢o| + (|| — o)) sin(t[¢p|) > 0]

_ 94in (t(|¢6\2— ’¢0|)> cos <t <|¢0| N |0l — - Wo\))

1
> ——tdo.

22

In the last line, we use that sin (M) > % and cos (t <|¢0\ + M)) > ‘[ [ |

Y

Claim 2 Fort > 0 such that t(puiy — po), t(py — pio), t(ph — po) € [0, 51, if both gy, 1y € [0, pal,

then
2 _
> max <t (61 54)54, to3 ) '
2 42

. . - o
ezt,uo 4 ezt/“ _ e'Lt,uO _ ezt,u1

Proof
First, we show the left hand side of the inequality in the claim statement is at least 53/ (4v/2).
Assume that yif; — po = d2, recalling that d2 = max(|p — pol, |1 — i) |). We factor out the
lowest common exponent to see that

. . Ly .y
eztp,o + eztul _ eztuo _ eztul

= ‘1 + eitlmi—ho) _ git(ug—po) _ pit(p)—po)|

Let us denote ¢ = p1 — po, ¢ = p1o — po and ¢} = pf — po. To prove following inequalities,
we need two facts. We use Fact I that %(sin(m —y) —sin(z)) = cos(z — y) — cos(x) > 0 for
T > x>y > 0. In particular, taking = ¢; and y = p1 — 1}, the inequality is increasing with
respect to ¢, so so we can lower bound the function at ¢1 = 1 — pf + ¢. Additionally, we use
Fact II that —sin(z + y) + 2sin(x) > sin((z — y)/2) cos(y/2) for 0 < y < z < 7/4, for the
choice of © = ¢f, and y = p1 — . Then, we have that

14 e gitdh _ ] > [sin(tgy) — sin(td}) — sin(td})| 121 > [1m(2)]
> —sin(tg1) + sin(td) + sin(té)) [Remove | - ]
> —sin(te1) + sin(tdp) + sin(t(ér — (1 — p)))
> —sin(t(u1 — p) + @) + 2sin(tey) [Fact I above]
> sin (t(_m + //12—1— Ho = MO)) cos (t(ul 2_ ’ull)) [Fact IT above]
tds

Vo [sin(x) > x/2;
cos(-) > Vv2/2
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Now, we assume that p1fy — pig < p11 — 1) and factor out e®#1:

) , L L o o .
eitho | it _ pitig _ ity eitlro—m1) 41 _ pit(ug—p1) _ oit(pi—p)|

As in the proofs of other claims, we let ¢o = po — p1, ¢ = py — w1 and @) =

have

— 1. Then, we

90 11 — e — 1| > Isin(tgg) — sin(tgp) — sin(tg))] (2] > [Im(2)]]
> | = sin(t|¢o|) + sin(t|¢g|) + sin(t|¢} ])] [sin(-) odd]
> —sin(t|¢o) + sin(t|dy|) + sin(t|¢1]) [Remove | - |]
> —sin(t|¢ol) +sin(t|do| — |po — pol) +sin(t[41])
> —sin(t(|¢7| + o — pol)) + 2sin(t]éy]) [Fact I above]
> sin (t(Wll — ’;0 — ’%D) cos (W’) [Fact II above]
> ]~ o — i) = 5 sin(a) > /2

cos(-) > v2/2]

In the application of Fact I, we let |¢o| be as small as possible, choosing |¢o| = |¢]| + |po — (-
Next, we show the left hand side of the inequality in the claim statement is at least t2(61 —04)d4 /2.
Assume that pf, — po < p1 — . First, we factor out the lowest common exponent to see

. . . .
eztuo + eztul _ eztuo _ eztul

— ‘1 + ettmi—po) _ git(pg—po) _ it(py—po) |
Again, we denote ¢1 = 1 — po, ¢y = po — po and ¢} = p) — po. The following holds:

‘1 F et _oitdh _ oitdh| > |Re(1 4 eitdr — ¢ith _ eitdh)]

— |1+ cos(t61) — cosl(tdh) — cos(teh) 1] > [Re(2)]
> —1 —cos(tpy) + Cos(tqﬁo)
+ cos(t(dr — (1 — 1)) [Remove | - |[]

> 21— con(tn) -+ con(tdh) + cos(t(dn — dh)) i — 1, > o

t2(d1 — )% S t2(81 — 04)d4
2 - 2 ’

v

[Fact III below]

Recall that 6; = max(|po — p1], |pf — p4]),and 64 = min(|py — pol , |14 — p1]), so in the above,
84 = pf— po = ¢p. The last line uses Fact III that —1 — cos(z) + cos(y) +cos(x y) > (x—y)y/2
for0 <y <z <m/4

When pfy — po > p1 — iy we use the same trick as in the previous claims and factor out ‘1
instead of e’*#0_ In particular the following holds:

eitho | gty _ pitig _ pitph | — |gitpo—p1 4 _ eit(ng—n1) _ git(py—pa)|
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Again, we denote ¢y = o — 1, ¢ = pp — w1 and ¢4 = pf — py. Note that all the ¢ are negative
and ¢ > ¢, > ¢). The following holds:

eitP0 1 eitdh _ citdl| > |Re(eld0 41 — itdh _ itdn))
— [cos(tdo) + 1 — cos(teh) — cos(te))| 2] > |Re(2)]]
— [cos(tlgl) + 1 — cos(t|hl) — cos(tldh)|  [cos() even]
> — cos(t|o]) — 1 + cos(t(|o| — ity — o)) [Remove |- ]
+ cos(t(|64]))
> — cos(t|o]) — 1 + cos(t(|o| - 64]))
+ cos(t]6}) o — 1o > |64

A / 2 —
(|¢ol 2|¢1|)’¢1| > (0 5 54)54_ [Fact III above]

2
>

PROOF OF LEMMA 4

Proof [Proof of Lemma 4] Define o and (3 such that p, — 10 = «o and |p1 — py| = Bo; note that
by assumption o, 3 < 2. For z € R, we use the notation z to denote the unique value such that
x = 2wkco + To, where k € Z is a integer and 0 < T < 2mwe. We prove this lemma with two cases,
when p) > p1 and when ) < p1. Without loss of generality, we assume that |pg — p1]| > 1000.
Also, recall our assumption on the ordering of the unknown parameters that £ < min(p1, g, ] )
and g, < pif.

Case 1 (1) > p1): Here, we will choose t = co, where
Ky =

c—= H1 — Mo
- B1—Ho | °
2ro |~ 800 /7 J
Then substituting in ¢ = 1/co, we see that
eitx _ €it27rk:caeitaw _ ei27rkeiar/c _ eiz/c'

From the choice of ¢ and the fact that || < x and /2 < |z] forz > 1, we see 40/7% < ¢ < 80/72.
As before, let g1 = pg — po, ¢ = p1( — to and ¢ = pj — po. We prove that the following hold:

¢1=0
2 o, 2 2
Ta _ ¢ _o_ma 7
80 — ¢ c— 40 T 20
2 Y 2 2
B o _B_ T8 1
80 — ¢ ¢~ 40 T 20
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We prove these statements in order. To see that ggl = 0, the definitions of ¢ and qzl imply that
1 = 210k gty + 1o, for k = g1/ (800) | and ¢1 = 0.,

Next, since ao = ¢/, we can write o/c = 27k + ¢/, /c, and it would follow that o/c = ¢/, /c if
0 0 0
¢y < 2moc = ¢1/|¢p17/(800) . Indeed this is the case, since

1/ 17/ (800)] > 800 /7 > 20 > ¢y).
Using the fact that ¢; = 0, we will show gz~5’1 /¢ = B/c. We break up ¢} into ¢1 + py — 11, writing

o1 ®1
|¢17/(800) | [¢17/(800) ]

for k = |¢1m/(800)]. If B < 2me, then this choice of k is correct for the definition of ¢/, and it
follows that ¢j = f3. This is indeed the case as 2mc = W >80/7 > .

¢\ = Bo+¢1=PBo+k +d1o=Bo+k

We use our lower bounds on g% /c and gz~$’1 /c and the fact that ¢1 = 0 in the following:

o242 3 v v
—e 2 ‘1 + ethf)l _ eztcbo _ ezt¢1

2,2
_ ot . : . .
e 5 ezt,uo eztpq eztuo eztul

> ¢ 3 Im(1+ eitr/e _ gido/e _ eig’l/c)

1
] 2c2

sin(@1/c) — sin(Jf/c) — sin(dh/c)|

™3 (sin(dy ) +sin(3} /¢))

e~ max(sin(¢p/c), sin(¢, /c))

e~ max(sin(7?a/80), sin(7%3/80))
7T252

~ 160e’

AVARIY]

Case 2 (1) < p1):  First we consider the case when 3 < a. Since p1 — 10 > 1000, we must have
w1 — po > p1 — po — (p1 — i) > 1000 — 20 = 980. We choose t = co for

c— 11— Ko
3ro/2 + 27ravg(1);7ﬁj

As before, for any z € R we write © = 2wkco + o where k € Z is a positive integer and
0 < 7 < 2me. From the choice of ¢ and the fact that u’l — o > 980, % <c< %. Here we denote
b1 = p1 — Py, dh = pp — po and ¢f = pf — po; note this is different than our previous ¢ definitions.
We will show the following set of inequalities and equalities:

9, _ 3

c 2
P R
80 — ¢ c— 25 T 12
5 _b_p w8 _n
80 T ¢ c~ 25 T 12
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To see that ¢} = 3 /2, observe first that ¢/, /(co') = 27k + ¢ /c; then we can simplify ¢, /(co) and
write ¢} /(co) = 3w/2 + 27 | ¢} 7/(800) ] . Together these imply that 37/2 + 27 | ¢\ 7/(800)| =
27k + ¢y /c. Taking k = qullﬂ'/(SOO')J it follows that ¢ = 3m/2.
Additionally, since ao = ¢}, we can write a/c = 2k + ¢} /c. It follows that o/c = @) /c if
¢, _ 4,
3rc/2 + 2no| ¢\ /(800)|  3/4+ |i7/(800)]
Indeed this is the case, since if |¢)7/(800)] < 1/4,
&l
3/4 + |¢)7/(800)]

b < 2moc = 2mo

> ¢h > ¢
and if |¢)7/(800)] > 1/4,
W4
3/4+ |¢\7/(800)] ~ 4[¢i7/(800)]
A similar line of reasoning shows that ¢y /c = 3/c. Here 8/c = 2k + ¢1 /¢, so it remains to show
¢
3/4+ [417/(800)]
Indeed this is the case, since if |¢)7/(800)] < 1/4,
¢
3/4+ |¢\m/(800)|
and if |¢)7/(800)| > 1/4, then
W4
3/4+ |¢\7/(800)] = 4[¢i7/(800)]
Setting t = 1/co, the following calculation holds if § < «:

> 800 /(41) > 60 > ¢f.

¢1 < 2moc =

>¢/1>980>2U>M1—,U/1:¢1,

> 800 /(4m) > 60 > ¢1.

02t

2
-~ . . o o
e 3 ezt,uo + eltﬂl . ezt,uo . ezt,ul

02t2 ; / ; / . /
= G_T )1 + 67‘t(¢1+¢1) — €Zt¢0 - elt(z)l

R ;%0 ;9
:6 2c 1+ecec—ec—ec
A A
>e 22 Im(l—i—ecec—ezT—eZT)
1 b1 B
>e 2 (— 1+cos——|—sm 20
c

22 (— 1+cosé+sma)
C C

> " 52 (a/c — (afc)? /6 — (B/c)*/2)
> 52 (afc — (a/c)3/6 — (a/c)?/2)
_1 « 252
Z [ 2¢2 — >
3c 240¢"
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The fourth to last inequality follows because sinxz > = — %3 and cosx > 1 — %2 The third to
last inequality follows because 5 < « and a/c < 1. In the final step, we re-used the fact that

25 30
T2 §C§W2~

If o < B, then we can do a very similar proof by choosing ¢ = co for

c =

H1 = 1o

From the choice of ¢ and the fact that 1 — ,u6 > 980, % <ec< %. Here we denote ¢’1

3ro/2 + 2%0{“1_“6 .

800 /7

Wy — w1, ¢ = py — 1 and ¢ = 1o — (1. From the same explanations as in the case when 3 < a,

we see that
85| _ 3r
c 2
2 gy, 2 2
T T T
5_1al _8 %8 _
80 c c 25 12
2 Y 2 2
e’ a _T7a T
< M =—-< < <.
80 c c 25 12
We obtain the same bound as in the case of 5 < « by factoring out e’**! and using a similar
calculation:
22 it it ity _o2 it(po—pu1) it(uh—p1) it(u—pu1)
e 5 eNO+€M1_eM0_eM1 —e 5 e,UO M1 +1_€ Mo —H1 —e H1—H1
2,2
— e_OQt eit(¢0+¢(,)) + 1— eit¢6 — eit(bll
_1 0 ;%0 %0 91
=e 22 |14+e'ce'e —ete —ete
. —lgol . —190l —|p] —1]
26 2¢2 IIII(].%’GZ c 6Z c —ez c —67‘ c >'
_1 5 o
> e 2 (—1 - cosM + sin ](151\)
c c
1
= 6_67

and the rest of the proof follows as before, just swapping « and S3.

o .
(—1 + cos — + sin
C

p
c )
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