Support Recovery of Sparse Signals from a Mixture
of Linear Measurements

Venkata Gandikota Arya Mazumdar
Electrical Engineering & Computer Science Halicioglu Data Science Institute
Syracuse University University of California, San Diego
Syracuse, NY 13210 La Jolla, CA 92093
gandikota.venkata@gmail.com arya@ucsd.edu

Soumyabrata Pal
College of Information & Computer Sciences
University of Massachusetts Amherst
Ambherst, MA 01003
soumyabratapQ@umass.edu

Abstract

Recovery of support of a sparse vector from simple measurements is a widely-
studied problem, considered under the frameworks of compressed sensing, 1-bit
compressed sensing, and more general single index models. We consider gener-
alizations of this problem: mixtures of linear regressions, and mixtures of linear
classifiers, where the goal is to recover supports of multiple sparse vectors using
only a small number of possibly noisy linear, and 1-bit measurements respectively.
The key challenge is that the measurements from different vectors are randomly
mixed. Both of these problems have also received attention recently. In mixtures of
linear classifiers, an observation corresponds to the side of the queried hyperplane
a random unknown vector lies in; whereas in mixtures of linear regressions we
observe the projection of a random unknown vector on the queried hyperplane. The
primary step in recovering the unknown vectors from the mixture is to first identify
the support of all the individual component vectors. In this work we study the
number of measurements sufficient for recovering the supports of all the component
vectors in a mixture in both these models. We provide algorithms that use a number
of measurements polynomial in k, log n and quasi-polynomial in ¢, to recover the
support of all the ¢ unknown vectors in the mixture with high probability when
each individual component is a k-sparse n-dimensional vector.

1 Introduction

In the support recovery problem, widely studied in the literature of compressed sensing [6, 2, 35], the
objective is to recover the support (positions of nonzero coordinates) of a sparse vector from minimal
number of (noisy) linear measurements. The support recovery problem is also extensively studied
under the 1-bit compressed sensing model where measurements are further quantized and just the
signs of the linear measurements are provided [22, 24, 1].

In a recent line of work that started with [46], a generalization of the sparse recovery problem is
considered [29, 31, 21, 11], where instead of one sparse vector, multiple unknown sparse vectors are
to be recovered. However any attempt to obtain a measurement (linear or 1-bit) from the vectors
results in a mixture model, where a vector from the unknown set is picked uniformly to generate the

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

response. Due to the asynchronicity of the measurements, this set of problems pose fundamentally
different challenges than recovery of a single sparse vector.

This line of work also connects the mixture of simple learning models that have been studied
extensively in the past few decades, with mixtures of linear regression model being more widely
studied [13, 12, 23, 27, 39, 41, 44, 45, 48] than mixture of linear classifiers [43, 38]. Such mixture
models, that assume the training data to come from multiple models, are good approximators of a
function [4, 25] and have numerous applications in modeling heterogeneous settings such as machine
translation [30], behavioral health [15], medicine [5], object recognition [33] etc.

The mixture of sparse recovery models of [46] and followup works can be framed as a Mixture of
Linear Classifiers (MLC) or a Mixture of Linear Regressions (MLR) problems. The statistical model
in MLC is the following: there exists ¢ unknown hyperplanes with normal vectors v!,v?2, ..., v’
and for a particular feature vector, the label (response) is generated stochastically by selecting
one of the unknown hyperplanes at random and then returning the side of the chosen hyperplane
on which the feature vector lies. In MLR, the statistical model again assumes the presence of £
unknown hyperplanes with normals v, v2, ..., v’ and for a particular feature vector, the response is
stochastically generated by selecting one of the unknown hyperplanes at random and then returning
the projection of the feature vector to the chosen hyperplane. In order to make these models more
general, we can assume that the responses are corrupted by noise. The overarching goal for both the
MLR and MLC is to learn the £ unknown hyperplanes as accurately as possible, using the least number
of noisy responses. Sparsity, incorporated into the MLC and MLR problems, is also a common
assumption that represents redundant features and lower dimensionality of the models [47, 36, 10].

In this work, we tackle the problem of support recovery of sparse vectors for both MLR and MLC
model in the active query based setting of [46, 29, 31, 21]. Our goal is to recover the support of all
the unknown sparse vectors (hyperplane normals) with minimum number of measurements.

1.1 Formal Problem Statement and Relevant Works

In both the problems below, let V be a set of ¢ unknown vectors v!,vZ, ..., vf € R" such that
|[vi||, < kforallie [={1,2,...,4}.

Mixtures of Sparse Linear Classifiers (MLC). Letsign : R — {—1,+41} be the sign function
that takes a real number and returns its sign. We consider MLC label queries O : R™ — {—1,+1}
that takes as input a query vector x € R™ and returns

sign({x,v)) - (1 —22)

where v is sampled uniformly at random from V and Z ~ Ber(n), the noise, is a Bernoulli random
variable that is 1 with probability 1 and 0 with probability 1 — 7. In this problem, our objective is to
recover the support of all the unknown vectors in V using minimum number of label queries.

The only relevant work in this setting is [21] which provided results for both support recovery and
approximate recovery of the unknown vectors. However, the results of [21] are valid only under the
restrictive assumption that the support of any unknown vector is not contained within the union of the
supports of the other unknown vectors.

In this work, we generalize the techniques of [21] for support recovery of the unknown vectors and
get rid of the restrictive assumption. We further improve the generalized result in a wide regime by
demonstrating a new low-rank tensor decomposition based algorithm for support recovery.

Mixtures of Sparse Linear Regressions (MLR). In this setting, we have an MLR label map
O : R™ — R that takes as input a query x € R™ and returns as output the quantity

(x,v)+ Z

where v is sampled uniformly at random from V and Z ~ N(0,0?) is a zero-mean Gaussian
random variable with variance 0. For our MLR results to hold we further assume that the mini-
mum magnitude of any non-zero entry of any unknown vector in V' is known to be at least 4, i.e.,
Mg [Mg [).vi 20 [V5] > 6.

Note that, because of the additive noise, a result for MLC setting cannot be transformed into a result
in MLR setting (i.e., MLC response is not simple quantization of MLR).

It is possible to increase the {5 norm of the queries arbitrarily so that the noise becomes inconsequen-
tial. To avoid this we use the following definition of signal to noise ratio. Suppose the algorithm
designs the it" query vector by first choosing a distribution Q* and subsequently sampling a query
vector x* ~ Q°. The signal to noise ratio is defined as follows:

E inu () <Xi Vj>|2
SNR = max min —~~% : . 1
i jel EZ2 M
Our objective in this setting is to recover the support of all unknown vectors v', v2 ..., v/ € R?

while minimizing the number of queries for a fixed SNR.

The most relevant works in this setting would be [46], [29] and [31] all of which were concerned
with appr0x1mately recovering the k- sparse unknown vectors v, v2, ... v’ ie. computing estimates
v1,¥2, ..., ¥ such that for some precision parameter v > 0,

[vi —¥"@ |2 < O(y) foralli€ [(]

for some permutation o : [¢] — [¢]. While approximate recovery of vectors can also be translated
into support recovery, the results of [46] and [29] are valid only under the restrictive assumption that
the sparse vectors all belong to some scaled integer lattice. The results of [31] does not have any
restriction, but it holds only when ¢ = 2. However, note that in this special case i.e. when £ = 2, [31]
provides a query complexity guarantee that is linear in the sparsity k. On the other hand, our query
complexity guarantees (see Section 2.3) have a polynomial dependence on k (with a larger degree)
implying that in the regime when ¢ = 2 and k is large, the guarantees of [31] are better.

Here we provide results for support recovery of any number of unknown vectors that do not have
any of the aforementioned restrictions and also have a polynomial dependence on the noise variance,
sparsity and a near polynomial dependence on the number of unknown vectors.

1.2 Other Related Work

Learning the unknown vectors in the MLR setting is a generalization of the compressed sensing
problem [8, 16] where the objective is to learn a single unknown k-sparse vector ({ = 1) with
minimum number of noisy linear measurements. Support recovery is a well-studied area within this
literature [6, 2, 35]. Similarly, learning the unknown vectors in the MLC setting is a generalization
of the 1-bit compressed sensing problem where the objective is to learn a single unknown k-sparse
vector (/ = 1) with minimum number of linear measurements quantized to only 1-bit. Support
recovery of the sparse vector from 1-bit measurements has also been widely studied [1, 22, 19, 24].

The major building block of one of our two algorithms is low-rank tensor decomposition also known
as Canonical Polyadic (CP) decomposition. Tensor decomposition has been widely used in parameter
estimation in mixture models and latent variable models. We refer the reader to [34] and the references
therein for a detailed survey. Our other algorithm makes use of combinatorial structures such as
a general class of Union Free Families (UFF), see, [42], to recover the support. UFFs have been
previously used in [1] and [21] for support recovery in linear classifiers.

Organization. The rest of the paper is organized as follows. In Section 2, we gave the necessary
backgrounds, and described our techniques and main results, namely, Theorems 1, 3, 4, and Corollary
1. In Section 3, we provided the detailed proofs of Theorem 1 (Section 3.1), Theorem 3 (Section 3.2)
and Theorem 4 (Section 3.3) while deferring the proof of Theorem 2 to Appendix D. In Appendix A,
we provided the necessary background on families of sets and finally, in Appendix B, we gave the
details of a Lemma that is an integral component of the proofs of our main Theorems.

2 Our Techniques and Results

2.1 Preliminaries

Notations: Let round : R — Z denote a function that returns the closest integer to a given real
input. Let 1,, denote a length n vector of all 1’s. We will write [n] to denote the set {1,...,n} and let
P([n]) be the power set of [n]. For a vector v € R™, let v; denote its i-th coordinate for any i € [n].
We will use supp(v) C [n] to denote the support of the vector v, i.e, the set of indices with non-zero
entries in v. We will abuse notations a bit, and also sometimes use supp(v) to denote the binary

indicator vector of length n that takes 1 at index ¢ if and only if v; # 0. For a vector v € R™ and
subset S C [n] of indices, let v|g € RISI denote the vector v restricted to the indices in S. Finally,
let f : P([n]) x {0,1}™ — {0, 1}™ be a function that takes a binary vector v € {0, 1}"™ and a subset
S C [n] as input and returns another binary vector v’ such that the indices of v corresponding to the
the set S are flipped ie. v, =v; @ 1ifi € S and v} = v; otherwise.

Tensor Decomposition: Consider a tensor A of order w € N, w > 2 on R™ which is denoted by
AcR"QR"®--- @ R™ (w times). Let us denote by A;, ;, ..., Where i1,ia,...,1, € [n], the
element in A whose location along the j*" dimension is i; i.e. there are 4; — 1 elements along the gt
dimension before A;, ;, ;. . Notice that this indexing protocol uniquely determines the element
within the tensor. For a detailed review of tensors, we defer the reader to [28]. In this work, we are
interested in low rank decomposition of tensors. A tensor .4 can be described as a rank-1 symmetric
tensor if it can be expressed as

A=z2Q0z2® - -Qz
—_———
w times

forsomez € R™i.e. A;, 4,0, = H;“:l Zi,. A tensor A that can be expressed as a sum of R rank-1

symmetric tensors is defined as a rank R symmetric tensor. For such a rank R tensor A provided
as input, we are concerned with the problem of unique decomposition of A into a sum of R rank-1
symmetric tensors; such a decomposition is also known as a Canonical Polyadic (CP) decomposition.
Below, we show a result due to [40] describing the sufficient conditions (Kruskal’s result) for the
unique CP decomposition of a rank R tensor A:

Lemma 1 (Unique CP decomposition [40]). Suppose A is the sum of R rank-one tensors i.e.

R
A:E zZ’' Rz ® -2z .
r=1 w times

and further, the Kruskal Rank of the n x R matrix whose columns are formed by z', 2%, ... ,z" is J.
Then, if wJ > 2R + (w — 1), then the CP decomposition is unique and we can recover the vectors

z', 2%, ..., 2" up to permutations.

There exist many different techniques for CP decomposition of a tensor but the most well-studied ones
are Jennrich’s Algorithm (see Section 3.3, [32]) and the Alternating Least Squares (ALS) algorithm
[28]. Among these, Jennrich’s algorithm (see Section E for more details) is efficient and recovers
the latent rank-1 tensors uniquely but it works only for tensors of order 3 when the underlying
vectors z', z2, . ..,z are linearly independent (See Theorem 3.3.2, [32]); this is a stronger condition
than what we obtain from Lemma 1 for w = 3. On the other hand, the ALS algorithm is an
iterative algorithm which is easy to implement for tensors of any order but unfortunately, it takes
many iterations to converge and furthermore, it is not guaranteed to converge to the correct solution.
Jennrich’s algorithm also has the additional advantage that it will throw an error if its sufficient
condition for unique CP decomposition is not satisfied. This property will turn out to be useful for
the problem that we study in this work. Finally, notice that if A is the weighted sum of R rank-1
tensors i.e.,

R
A:ZATZT®ZT®~~®ZT.
r=1 w times

then we can rewrite 4 = ch:l Yy ®---®y" wherey” =)\i/wz’“. If {y"}*, satisfies the
conditions of Lemma 1 and if it is known that {z" }2_, are binary vectors, then we can still recover
z" by first computing y” and then taking its support for all € [R]. Subsequently, notice that we
can also recover {\, }21_ ;. As we discussed, for tensors of order w > 3, there is no known efficient
algorithm that can recover the correct solution even if its existence and uniqueness is known. Due
to this limitation, it was necessary in prior works using low rank decomposition of tensors that the
unknown parameter vectors are linearly independent [9, 3] since tensors of order > 3 could not be
used. However, if it is known apriori that the vectors {z" }2_, are binary and the coefficients {\, } 2 ;
are positive integers bounded from above by some C' > 0, then we can exhaustively search over all
possibilities (O(C2") of them) to find the unique decomposition even in higher order tensors. The
set of possible solutions can be reduced significantly if the unknown vectors are known to be sparse
as is true in our setting.

2.2 Our Techniques

Recall that the set of unknown vectors is denoted by V = {v!,v% ... v‘}. Let A € {0,1}"**
denote the support matrix corresponding to)V where each column vector A; € {0, 1}™ represents the
support of the i*" unknown vector v*. For any ordered tuple C' C [n] of indices, and any binary string
a € {0,1}¢l, define occ(C, a) to be the set of unknown vectors whose corresponding supports have
the substring a at positions indexed by C, i.e.,

occ(C,a) :={vie V| supp(vi)\c =a}.

In order to describe our techniques and our results, we need to introduce three different properties
of matrices and extend them to a set of vectors by using their corresponding support matrix. The
proofs of our main results follow from the guarantees of algorithms (Algorithm 1, Algorithm 2 and
Algorithm 3) each of which leverage the aforementioned key properties of the unknown support
matrix A. While explaining the intuition behind the introduced matrix properties, we will assume
that all the unknown vectors in V have distinct supports for simplicity. However, this assumption is
not necessary and the guarantees of all our algorithms hold even when the supports are not distinct
albeit with slightly more involved arguments (see Section 3).

Definition 1 (p-identifiable). The it column A; of a binary matrix A € {0,1}"*¢ with all distinct
columns is called p-identifiable if there exists a set S C [n] of at most p-indices and a binary string

a € {0,1}? such that A;|s = a, and A|s # aforall j # i.

A binary matrix A € {0,1}"*¢ with all distinct columns is called p-identifiable if there exists a
permutation o : [{] — [{] such that for all i € [{], the sub-matrix A" formed by deleting the columns
indexed by the set {c(1),0(2),...,0(i — 1)} has at least one p-identifiable column.

Let V be set of { unknown vectors in R", and A € {0,1}"*¢ be its support matrix. Let B be
the matrix obtained by deleting duplicate columns of A. The set V is called p-identifiable if B is
p-identifiable.

Support matrix A is p-identifiable: Algorithm 1 uses the property that the support matrix A is
p-identifiable for some known p < log ¢ (see Theorem 2) to recover the supports of all the unknown
vectors. First, we briefly describe the support recovery algorithm of [21] where the authors crucially
use the separability of supports of the unknown vectors to recover them. Their algorithm assumes that
the support of each unknown vector contains a unique identifying index, i.e., for each unknown vector
v € V, there exists a unique index i € [n] such that occ((¢), 1) = {v}, and hence |occ((i),1)| = 1.
Observe that if |occ((4),1)| = 1, and |occ((, 5), (1,1))| = 1 for some i # j, then it follows that
both the indices 7, j belong to the support of the same unknown vector. Therefore [21] are able to
recover the supports of all the unknown vectors by computing |occ((4), 1)| and |occ((4, 5), (1,1))]
for all ¢,j € [n]. The crux of their algorithm lies in computing all the n values of |occ((7), 1)],
and O(n?) values of |occ((4, j), (1,1))| using just poly(¢, k) queries. We can generalize the support
recovery technique of [21] by observing that if A is p-identifiable, then there exists at least one
unknown vector v € V that has a unique sub-string of length at most p. Hence, there exists a unique
set C' C [n] and string a € {0, 1}/¢! satisfying |C| < p such that occ(C U {j}, (a,1)) = {v}. By
a similar observation as before, if |occ(C U {j}, (a,1))| = 1 for some j € [n] \ C, we can certify
that j € supp(v) and if Jocc(C U {j}, (a,1))| = 0, then j ¢ supp(v). Hence we can reconstruct
the support of v and subsequently, we can update |occ(C, a)| < |occ(C,a)| — 1[supp(v),c = a]

for all sets C satisfying |C| < p and all a € {0, 1}/€I. Note that the updated occ values correspond to
the support matrix A excluding the column corresponding to the support of v. From the definition
of p—identifiable, we can recursively apply the same arguments as above and recover the support
vectors one by one. The main technical challenge then lies in computing all the O(2Pn?) values
locc(C, a)| for every p and, p + 1-sized ordered tuples of indices and all a € {0,1}? U {0, 1}PF!
(Lemma 2) using few queries.

Definition 2 (flip-independent). A binary matrix A with all distinct columns is called flip-independent
if there exists a subset of rows that if complemented (changing 0 to 1 and 1 to 0) make all columns of
A linearly independent.

Let V be a set of £ unknown vectors in R", and A € {0, 1}"** be its support matrix. Let B be the
matrix obtained by deleting duplicate columns of A. The set V has flip-independent supports if B is
flip-independent.

Support matrix is flip-independent: Algorithm 2 uses the property that the support matrix A
is flip-independent in order to recover the supports of the unknown vectors uniquely. As a pre-

processing step, we identify the set I = Uie[gsu pp(v?) that represents the union of support of the

unknown vectors. Let us define 4’ = U U {t} where ¢ is any index that does not belong to 2. This
initial pre-processing step allows us to significantly reduce the computational complexity of this
algorithm. Next, for each a € {0, 1}, Algorithm 2 recovers |occ((i1, iz, i3), a)| for every ordered
tuple (i1, i2,i3) € U>. Using these recovered quantities, it is possible to construct the tensors

AP =37 f(F,supp(v') @ f(F,supp(v')) @ f(F,supp(v'))

i€[4)

for every subset F C U’. Since the matrix A is flip-independent, we know that there exists at
least one subset F* C U’ such that the vectors {f(F*,supp(v?))}¢_, are linearly independent.
From Lemma 1, we know that by a CP decomposition of A7, we can uniquely recover the vectors
{f(F*, supp(v?))}_,; since the set F* is known, we can recover all the vectors {supp(v?))}{_, by
flipping all indices corresponding to F*. However, a remaining challenge is to correctly identify a
set F*. Interestingly, Jennrich’s algorithm (see Algorithm 8 in Appendix E) throws an error if the
tensor A7 under consideration does not satisfy the uniqueness conditions for CP decomposition
i.e. the underlying unknown vectors { f(F,supp(v*))}¢_, are not linearly independent. Therefore
Algorithm 2 is guaranteed to uniquely recover the supports of the unknown vectors.

Definition 3 (Kruskal rank). The Kruskal rank of a matrix A is defined as the maximum number r
such that any r columns of A are linearly independent.

Definition 4 (r-Kruskal rank support). Let V be a set of £ unknown vectors in R", and A € {0, 1}"**
be its support matrix. Let B be the matrix obtained by deleting duplicate columns of A. The set V
has r-Kruskal rank support if B has Kruskal rank r.

Support matrix has Kruskal rank r: Algorithm 3 partially generalizes the flip-independence
property by constructing higher order tensors. Again, as a pre-processing step, we identify the set
U= Uiegsu pp(v?) that represents the union of support of the unknown vectors. Note that /| < ¢k
since each unknown vector is k-sparse. Since Jennrich’s algorithm is not applicable for tensors of
order more than 3, we will simply search over all O((¢k)**) possibilities in order to compute the
unique CP decomposition of an input tensor. Unfortunately though, if the sufficiency conditions
(Lemma 1) for unique CP decomposition is not met, there can be multiple solutions and we will not
be able to detect the correct one. This is the reason why it is not possible to completely generalize
Algorithm 2 by constructing multiple tensors of higher order. To circumvent this issue, Algorithm 3
constructs only a single tensor A of rank ¢ and order w = [%__ﬂ by setting its (i1, ..., 1,)-th entry
to Jocc((41,. - ,4w), Ly)| for every ordered tuple (i1,...,%,) € [n]*. By using Theorem 1, the
recovery of the supports of the unknown vectors via brute force CP decomposition of the constructed
tensor is unique if the support matrix has Kruskal rank 7.

All the above described algorithms require Lemma 2 that for any s > 1 computes |occ(C, a)| for
every s-sized ordered tuple of indices C, and any a € {0, 1}* using few label queries. The key
technical ingredient in Lemma 2 is to estimate nzcount(x) - the number of unknown vectors that
have a non-zero inner product with x. Note that even this simple task is non-trivial in the mixture
model and more so with noisy label queries.

2.3 Our Results

The MLC results below explicitly show the scaling with the noise, whereas all of the MLR query
results below are valid with , 2o
SNR = O(4* max ||v* o).
(¢ |12 /)
In our first result, we recover the support of the unknown vectors with small number of label queries

provided the support matrix of V is p-identifiable.

Theorem 1. Let V be a set of { unknown vectors in R™ such that V is p-indentifiable. Then, Algo-
rithm 1 recovers the support of all the unknown vectors in V with probability at least 1 — O (1/n)

using either (1) O (Zx(ék)nggxfn) logn> MLC gqueries or (2) O(£3(¢k)P*2log(¢kn)logn)
MLR gqueries.

In fact, all binary matrices with distinct columns are p-identifiable for some sufficiently large p.

Theorem 2. Any n x {, (with n > £) binary matrix with all distinct columns is p-identifiable for
some p < log /.

Thus, we have the following corollary characterizing the unconditional worst-case guarantees for
support recovery:

Corollary 1. Let V be a set of { unknown vectors in R™. Then, Algorithm I recovers the sup-
port of all the unknown vectors in V with probability at least 1 — O (1/n) using either (1)

) (ZB(M)IOE{ iilzof)(fk”) log”) MLC queries or (2) O(£3((k)'°8 2 log(¢kn) logn) MLR queries.

Proof. The proof follows from the fact that any set)V of £ unknown vectors in R™ must have
p-identifiable supports for p < log /. O

Under some assumptions on the unknown support, e.g.flip-independence, we have better results.

Theorem 3. Let V be a set of { unknown vectors in R™ such that V is flip-independent. Then,
Algorithm 2 recovers the support of all the unknown vectors in V with probability at least 1 —

O (1/n) using either (1) O (ZB(ek)ii(:gz(fﬁg) log”) MLC queries or (2) O(£3(¢k)*log(¢kn)logn)
MLR queries.

We can also leverage the property of small Kruskal rank of the support matrix to show:
Theorem 4.ZLet V be a set of ¢ unknown vectors in R™ that has r-Kruskal rank support with r > 2.
20—1

Let w = [==1]. Then, Algorithm 3 recovers the support of all the unknown vectors in V with

probability at least 1 — O (1/n) using either (1) O (Zs(fk)“’tllioi;;)ffn) logn) MLC queries or (2)
O(£3(¢k)** 1 log(lkn) log n) MLR queries.

Discussion on Matrix Properties: Note that p-identifiability (Definition 1) is a generalization of
the separability conditions outlined by [21] for support recovery. This generalization allows us to
recover the supports of all the unknown vectors in the worst-case without any assumptions (Corollary
1). The flip-independence (Definition 2) and r-Kruskal rank support (Definition 4) properties are used
for the tensor-decomposition based support recovery algorithms and follow naturally from Lemma 1.
The flip-independence assumption is quite weak, however there do exist binary matrices that are not
flip independent. For example

0
0
1
1

is not flip independent. The r-Kruskal rank support condition generalizes linear independence
conditions considered in previous mixture model studies such as [45]. Note that this condition is
always satisfied by the support vectors for some r > 2. Essentially, we 1) provide algorithms for
support recovery without any assumptions, 2) and also provide significantly better guarantees under
extremely mild assumptions.

Although we have not optimized the run-time of our algorithms in this work, we report the relevant
computational complexities below:

Remark 5 (Computational Complexity). Note that Algorithm 1 has a computational complexity that
is polynomial in the sparsity k, dimension n and scales as O((P) where p < log £. On the other hand
Algorithms 2, 3 has a computational complexity that scales exponentially with k, { while remaining
polynomial in the dimension n. For the special case when the support matrix is known to be full
rank, Algorithm 3 with w = 3 is polynomial in all parameters (by using Algorithm 8 for the CP
decomposition.)

3 Detailed Proofs and Algorithms

Recall the definition of occ(C, a) - the number of unknown vectors whose supports have a € {0, 1}‘C|
as a substring in coordinates C' C [n]. First, we observe that for any set 7 C {0, 1}*, we can compute
locc(C, a)| for all O(n?®) subsets of s indices C' C [n] and a € T using few MLC or MLR queries.

Lemma 2. Let T C {0,1}* be any set of binary vectors of length s. There exists an algorithm
to compute |occ(C, a)| for all C C [n] of size s, and all a € T with probability at least 1 — 1/n
using either O(£3(k)** 1 log(¢kn)logn/(1 — 2n)?) MLC queries or O(£3(¢k)*T1 log(¢kn) logn)
MLR gqueries.

Lemma 2 (proved in Section B) is an integral and non-trivial component of the proofs of all our main
Theorems. In each of the sub-sections below, we go through each of them.

3.1 Recovery of p-identifiable support matrix

In this section we present an algorithm for support recovery of all the ¢ unknown vectors V =
{v!,..., v’} when V is p-identifiable. In particular, we show that if V is p-identifiable, then
computing |occ(C, a)| for every subset of p and p + 1 indices is sufficient to recover the supports.

Proof of Theorem 1. The proof follows from the observation that for any subset of p indices C' C [n],
index j € [n]\ C and a € {0,1}?, |occ(C,a)| = Jocc(C U {j}, (a,1))| + |occ(C U {5}, (a,0))].
Therefore if one of the terms in the RHS is 0 for all j € [n] \ C, then all the vectors in occ(C’ a)
share the same support.

Also, if some two vectors u, v € occ(C, a) do not have the same support, then there will exist at least
one index j € [n] \ C such that u € occ(C U {5}, (a,1))| and v € occ(C U {j}, (a,0)) or the other
way round, and therefore |occ(C' U {j}, (a,1))| & {0, |occ(C,a)|}. Algorithm 1 precisely checks
for this condition. The existence of some vector v € V (p-identifiable column), a subset of indices
C C [n] of size p, and a binary sub-string b € {0, 1}=P follows from the fact that V is p-identifiable.
Let us denote the subset of unknown vectors with distinct support in ¥ by V*.

Once we recover the p-identifiable column of V!, we mark it as u' and remove it from the set (if
there are multiple p-identifiable columns, we arbitrarily choose one of them). Subsequently, we can
modify the |occ(+)| values for all S C [n], S| € {p,p+ 1} and t € {0,1}? U{0,1}PT as follows:

locc®(S,8)| £ [occ(S, t)| — |oce(C, b)| x L[supp(u')|s = t]. (2)

Notice that, Equation 2 computes |occ?(S, t)| = [{v’ € V? | supp(v’)|s = t}| where V? is formed
by deleting all copies of u' from V. Since V! is p-identifiable, there exists a p-identifiable column
in V1 \ {u'} as well which we can recover. More generally for ¢ > 2, if u?~" is the p-identifiable

column with the unique binary sub-string b?~! corresponding to the set of indices C9~1, we will
have for all S C [n],|S| € {p,p+ 1} and t € {0,1}? U {0,1}PT!

locc?(S, t)| £ |occ™ (S, t)| — Jocc? 1 (C?™H, b7 h)| x Lfsupp(u?~!)|s = t]

implying |occ?(S,t)| = [{v’ € V¥ | supp(v’)|s = t}| where V7 is formed deleting all copies of
u',u?, ..., u?"! from V. Applying these steps recursively and repeatedly using the property that V

is p-identifiable, we can recover all the support of all the vectors present in V.

Algorithm 1 requires the values of |occ(C, a)|, and |occ(C', a)| for every p and p + 1 sized subset of

indices C, C' C [n], and every a € {0,1}?,a € {0, 1}p+1. Using Lemma 2, we can compute all these
values using O(° (¢k)P*2 log(¢kn) logn /(1 — 277)) MLC queries or O(£3(¢k)PT2 log(¢kn)logn)
MLR queries with probability at least 1 — O(n~1). O

3.2 Recovery of flip-independent support matrix

In this section, we present an algorithm that recovers the support of all the £ unknown vectors in V
provided V is flip-independent .

Proof of Theorem 3. The query complexity of the algorithm follows from Lemma 2. For
any subset C' of 3 indices, with probability 1 — O(1/n), we can compute |occ(C,-)| using
O(63(¢k)* log(¢kn) logn/(1 — 2n)?) MLC queries or O(¢3(¢k)*log(¢kn)logn) MLR queries.
For every subset F C U’, we construct the tensor A7 as follows: A{; in,is)
locc((i1, 12, 43), (ai1, @i, a;3))], for all (i1,i2,i3) € [n]® where a;; = 0if i; € F and 1 other-
wise. We then run Jenerich’s algorithm on each A7 . Observe that for any binary vector b € {0,1}",

Algorithm 1 RECOVER p-IDENTIFIABLE SUPPORTS
C|l=t, te{p,p+1},andeverya € {0,1}PU{0,1}P+!

Require: |occ(C, a)| forevery C' C [n],
1: Setcount = 1,7 = 1.
2: while count < ¢ do

3: ifjocc(C,a)| = w, and |occ(C U {j}, (a,1))| € {0,w} forall j € [n]\ C then

4: Set supp (u)|c = a

5: For every j € [n] \ C, set supp(u’)|; = b, where [occ(C' U {j}, (a,b))| = w.

6: Set Multiplicity” = w.

7: Forall t € {0,1}? U {0,1}?*1 S C [n] such that |S| € {p, p + 1}, update
loce(S, t)| + |occ(S, t)| — |occ(C, a)| x L[supp(u’)|s = t]

8: count = count + w.

9: i=1+ 1.

10: endif

11: end while _ 4
12: Return Multiplicity’ copies of supp(u’) for all j < i.

Algorithm 2 RECOVER FLIP-INDEPENDENT SUPPORTS

Require: |occ(C, a)| for every C' C [n], such that |C| = 3, and all a € {0,1}3. |occ(i, 1)| for all
i € [n].
1: SetUd = {i € [n] : Jocc(i,1)] 0} and U’ =U U {t} where t € [n] \ U.
2: for each 7 C U’ do
3: Construct tensor A% as follows:
4: for every (iy,i2,i3) € [n]° do
5 Set A'(7;7Z-27i3) = |OCC((i1, 12, ig), (ail, a2, aig))|,
where a;; = 0if 4; € F and 1 otherwise.

6: end for
7 if Jenerich(A”) (Algorithm 8 with input A7) succeeds: then
8: Let A7 = Y% \a’ ® a’ @ a be the tensor decomposition of A such that a’ € {0,1}".
9: For all i € [R], modify a’ by flipping entries in JF.
10: Return \; columns with modified a*, Vi € [R].
11: break
12 endif
13: end for

the (i1, 2, 43)-th entry of the rank-1 tensorb®@ b ® bis 1 if b;, = b;, = b;; = 1, and 0 otherwise.
Therefore, the tensor A” can be decomposed as A7 = Y% \a’ © a' ® a’, where the vectors
a’ € {0,1}", i € R are the support vectors (of the R distinct unknown vectors) that are flipped at
indices in F with multiplicity A;.

Now if the support matrix of the unknown vectors is flip-independent, then there exists a subset of

rows indexed by some F* C [n] (and furthermore, F* C U") such that flipping the entries of those
rows results in a modified support matrix with all its distinct columns being linearly independent.

Since all the zero rows of the support matrix A are linearly independent (flipped or not), we can
search for 7* as a subset of i’. Since, |U’| < £k + 1, this step improves the search space for F*

from O(2") to O(2°%).

Therefore, Jennrich’s algorithm on input A7 s guaranteed to succeed and returns the decomposition
AT = Zf:l \a' ® a’ @ a’ as the sum of R rank-one tensors, where, a’ € {0,1}", i € [R] are
modified support vectors (with multiplicity);). Subsequently, we can again flip the entries of the
recovered vectors indexed by F™* to return the original support vectors.

O

Algorithm 3 RECOVER 7-KRUSKAL RANK SUPPORTS

1: Let w be smallest integer such that w - (r — 1) > 2¢ — 1.
Require: |occ(C,1,,)| for every C' C [n] with |C| = w. |occ(i, 1)| for all i € [n].

2: SetU £ {i € [n] : |occ(i, 1)| # 0}.

3: Construct tensor A as follows:

4: for every (i1,...,4y) € [n]* do

50 Set Ay, .., = locc((i, .-y iw), 1)l

6: end for

7: for every (b',b?... b’) € {0,1}" satisfying supp(b’) C U do

8 ifA=3"_ b @b’ - @b’ (wtimes) then

9: Set (b!, b2 ..., b’) to be the CP decomposition of A and Break
10: end if

11: end for

12: Return CP decomposition of .A

3.3 Recovery of r-Kruskal rank supports

In this section, we present an algorithm that recovers the support of all the £ unknown vectors provided
they have r-Kruskal rank supports. Recall that for any set of w indices C' C [n], occ(C, 1,,) denotes
the set of unknown vectors that are supported on all indices in C.

Proof of Theorem 4. To recover the supports we first construct the following order w tensor:

Afiy,.in) = locc((i1, ...y iw), 1w)|, for (i1,...,4,) € [n]". Observe that the tensor A can be
written as the sum of ¢’ (¢’ < ¢) rank one tensors
Z/ . . .
A= Z N supp(v') ® ... ® supp(v') . 3)
i=1 .
w-times

where v, v2, ..., v" are the unknown vectors with distinct supports in V with A’ being the mul-

tiplicity of supp (vl) Since the support matrix A of V has r-Kruskal rank, for any w such that
w- (r—1) > 2¢ — 1, the decomposition of Eq. (3) is unique (Lemma 1). Notice that by a pre-
processing step, we compute I = {i € [n] : |occ(i, 1)| # 0} to be the union of the supports of the
unknown vectors. Since we know that the underlying vectors of the tensor that we construct are
binary, we can simply search exhaustively over all the possibilities (O((¢k)**) of them (Steps 7-10)
to find the unique CP decomposition of the tensor .A. For the special case when w = 3, Jennrich’s
algorithm (Algorithm 8) can be used to efficiently compute the unique CP decomposition of the
tensor A.

Algorithm 3 needs to know the values of |occ(C, 1,,)| for every C' C [n], such that |C| = w. Using
Lemma 2, these can be computed using O(¢3(¢k)*“ ! log(¢kn)logn/(1 — 2n)?) MLC queries or
O(3(Lk)“*1 log(¢kn)log n) MLR queries with probability at least 1 — O(1/n). O

10

Acknowledgements: This work is supported in part by NSF awards 2133484, 2127929, and
1934846.

References

[1] Jayadev Acharya, Arnab Bhattacharyya, and Pritish Kamath. Improved bounds for universal
one-bit compressive sensing. In 2017 IEEE International Symposium on Information Theory
(ISIT), pages 2353-2357. IEEE, 2017.

[2] Shuchin Aeron, Venkatesh Saligrama, and Manqi Zhao. Information theoretic bounds for
compressed sensing. IEEE Transactions on Information Theory, 56(10):5111-5130, 2010.

[3] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor
decompositions for learning latent variable models. The Journal of Machine Learning Research,
2014.

[4] Christopher M Bishop. Latent variable models. In Learning in graphical models, pages 371-403.
Springer, 1998.

[5] Ekin Blackwell, Carlos F Mendes De Leon, and Gregory E Miller. Applying mixed regression
models to the analysis of repeated-measures data in psychosomatic medicine. Psychosomatic
medicine, 68(6):870-878, 2006.

[6] Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed sensing.
Applied and computational harmonic analysis, 27(3):265-274, 2009.

[7] Stéphane Boucheron, Gdbor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

[8] Emmanuel J Candes, Justin Romberg, and Terence Tao. Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information. IEEE Transactions on
Information Theory, 52(2):489-509, 2006.

[9] Arun Tejasvi Chaganty and Percy Liang. Spectral experts for estimating mixtures of linear
regressions. In International Conference on Machine Learning, pages 1040-1048, 2013.

[10] Antoni B Chan, Nuno Vasconcelos, and Gert RG Lanckriet. Direct convex relaxations of sparse
svm. In Proceedings of the 24th international conference on Machine learning, pages 145-153,
2007.

[11] Yanxi Chen, Cong Ma, H Vincent Poor, and Yuxin Chen. Learning mixtures of low-rank models.
arXiv preprint arXiv:2009.11282, 2020.

[12] Yudong Chen, Xinyang Yi, and Constantine Caramanis. A convex formulation for mixed
regression with two components: Minimax optimal rates. In Conference on Learning Theory,
pages 560-604, 2014.

[13] Richard D De Veaux. Mixtures of linear regressions. Computational Statistics & Data Analysis,
8(3):227-245, 1989.

[14] Ronald De Wolf. Efficient data structures from unionfree families of sets, 2012.

[15] Partha Deb and Ann M Holmes. Estimates of use and costs of behavioural health care: a
comparison of standard and finite mixture models. Health economics, 9(6):475-489, 2000.

[16] DL Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289-1306,
2006.

[17] Arkadii G D’yachkov, IV Vorobyev, NA Polyanskii, and V Yu Shchukin. Bounds on the rate of
superimposed codes. In 2014 IEEFE International Symposium on Information Theory, pages
2341-2345. IEEE, 2014.

[18] Paul Erdos, Peter Frankl, and Zoltan Fiiredi. Families of finite sets in which no set is covered
by the union ofr others. Israel Journal of Mathematics, 51(1-2):79-89, 1985.

11

[19] Larkin Flodin, Venkata Gandikota, and Arya Mazumdar. Superset technique for approximate
recovery in one-bit compressed sensing. In Advances in Neural Information Processing Systems,
pages 10387-10396, 2019.

[20] Zoltan Fiiredi. On r-cover-free families. Journal of Combinatorial Theory, Series A, 73(1):172—
173, 1996.

[21] Venkata Gandikota, Arya Mazumdar, and Soumyabrata Pal. Recovery of sparse linear classifiers
from mixture of responses. In Advances in Neural Information Processing Systems 33: NeurIPS
2020, December 6-12, 2020, virtual, 2020.

[22] Sivakant Gopi, Praneeth Netrapalli, Prateek Jain, and Aditya Nori. One-bit compressed sensing:
Provable support and vector recovery. In International Conference on Machine Learning, pages
154-162, 2013.

[23] Mian Huang, Runze Li, and Shaoli Wang. Nonparametric mixture of regression models. Journal
of the American Statistical Association, 108(503):929-941, 2013.

[24] Laurent Jacques, Jason N Laska, Petros T Boufounos, and Richard G Baraniuk. Robust 1-bit
compressive sensing via binary stable embeddings of sparse vectors. IEEE Transactions on
Information Theory, 59(4):2082-2102, 2013.

[25] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181-214, 1994.

[26] William Kautz and Roy Singleton. Nonrandom binary superimposed codes. IEEE Transactions
on Information Theory, 10(4):363-377, 1964.

[27] Abbas Khalili and Jiahua Chen. Variable selection in finite mixture of regression models.
Journal of the american Statistical association, 102(479):1025-1038, 2007.

[28] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455-500, 2009.

[29] Akshay Krishnamurthy, Arya Mazumdar, Andrew McGregor, and Soumyabrata Pal. Sample
complexity of learning mixture of sparse linear regressions. In Advances in Neural Information
Processing Systems (NeurlPS), 2019.

[30] Percy Liang, Alexandre Bouchard-Cété, Dan Klein, and Ben Taskar. An end-to-end discrimina-
tive approach to machine translation. In Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual meeting of the Association for Computational
Linguistics, pages 761-768. Association for Computational Linguistics, 2006.

[31] Arya Mazumdar and Soumyabrata Pal. Recovery of sparse signals from a mixture of linear
samples. In International Conference on Machine Learning (ICML), 2020.

[32] Ankur Moitra. Algorithmic aspects of machine learning. Lecture notes, 2014.

[33] Ariadna Quattoni, Michael Collins, and Trevor Darrell. Conditional random fields for object
recognition. In Advances in neural information processing systems, pages 1097-1104, 2005.

[34] Stephan Rabanser, Oleksandr Shchur, and Stephan Giinnemann. Introduction to tensor de-
compositions and their applications in machine learning. arXiv preprint arXiv:1711.10781,
2017.

[35] Galen Reeves and Michael Gastpar. A note on optimal support recovery in compressed sensing.
In 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and
Computers, pages 1576—1580. IEEE, 2009.

[36] Galen Reeves, Jiaming Xu, and Ilias Zadik. The all-or-nothing phenomenon in sparse linear
regression. In Conference on Learning Theory, pages 2652-2663. PMLR, 2019.

[37] Miklds Ruszinké. On the upper bound of the size of the r-cover-free families. Journal of
Combinatorial Theory, Series A, 66(2):302-310, 1994.

12

[38] Hanie Sedghi, Majid Janzamin, and Anima Anandkumar. Provable tensor methods for learning
mixtures of generalized linear models. In Artificial Intelligence and Statistics, pages 1223-1231.
PMLR, 2016.

[39] Yanyao Shen and Sujay Sanghavi. Iterative least trimmed squares for mixed linear regression.
arXiv preprint arXiv:1902.03653, 2019.

[40] Nicholas D Sidiropoulos and Rasmus Bro. On the uniqueness of multilinear decomposition of
n-way arrays. Journal of Chemometrics: A Journal of the Chemometrics Society, 14(3):229-239,
2000.

[41] Weixing Song, Weixin Yao, and Yanru Xing. Robust mixture regression model fitting by laplace
distribution. Computational Statistics & Data Analysis, 71:128-137, 2014.

[42] Douglas R Stinson and Ruizhong Wei. Generalized cover-free families. Discrete Mathematics,
279(1-3):463-477, 2004.

[43] Yuekai Sun, Stratis Ioannidis, and Andrea Montanari. Learning mixtures of linear classifiers. In
ICML, pages 721-729, 2014.

[44] Taiyao Wang and Ioannis Ch Paschalidis. Convergence of parameter estimates for regularized
mixed linear regression models. arXiv preprint arXiv:1903.09235, 2019.

[45] Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Solving a mixture of many ran-
dom linear equations by tensor decomposition and alternating minimization. arXiv preprint
arXiv:1608.05749, 2016.

[46] Dong Yin, Ramtin Pedarsani, Yudong Chen, and Kannan Ramchandran. Learning mixtures of
sparse linear regressions using sparse graph codes. IEEE Transactions on Information Theory,
65(3):1430-1451, 2019.

[47] Yuchen Zhang, Martin J Wainwright, and Michael I Jordan. Lower bounds on the performance
of polynomial-time algorithms for sparse linear regression. In Conference on Learning Theory,
pages 921-948. PMLR, 2014.

[48] Hong-Tu Zhu and Heping Zhang. Hypothesis testing in mixture regression models. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 66(1):3—16, 2004.

13

