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We present the results of a classroom teaching experiment for a recently designed unit for the
Inquiry-Oriented Linear Algebra (IOLA) curriculum. The new unit addresses orthogonality and
least squares using Realistic Mathematics Education design principles with the intent to
implement the new unit in an 1Ol (Inquiry-Oriented Instruction)-style classroom. We present an
analysis of students’ written responses to characterize how they thought about the notion of
shortest distance, travel vectors, orthogonality, and dot product in the “Meeting Gauss” context.
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Least squares in linear algebra is often introduced as a method for finding the “best possible
solution” when solving a system of linear equations, a vector equation, or a matrix equation that
has no exact solution. As part of a larger research project involving designing new linear algebra
task sequences for classrooms implementing inquiry-oriented instruction (IOI), we designed a
task sequence, the “Meeting Gauss” unit, that would facilitate student exploration in R3 of the
notion of “best possible solution” and lead to the reinvention of the approximation equation
AT Ax = ATb, least squares solution X, projection, and least squares error. In the Meeting Gauss
task, students were asked if they could reach Gauss’ location using three transportation vectors.
Students determined they could not reach Gauss and were tasked with finding a location that is
closest to Gauss’ initial location. Gauss’ location is represented by a vector, g, in R3 located off
the plane that is the span of the transportation vectors. The shortest distance Gauss could travel
corresponds to the magnitude of the orthogonal vector pointing from Gauss’ location to the
plane. We notate the shortest distance between Gauss and the meeting location as the length of e
(error) to be minimized and the vector from the origin as p (Figure 1).

In this paper, we analyze two “snapshots” of student reasoning from the first and second day
of a classroom teaching experiment (CTE) (Cobb, 2000) using students’ reflection writings as
data. Our research question is: How do students interpret and use notions of shortest distance
and travel vectors when learning least squares through an inquiry-oriented task in a linear
algebra class? We investigate various ways students interpreted finding the “shortest distance”
(i.e., how students determined which direction Gauss should travel so that his trip is the shortest
possible distance). Further, we characterize students’ interpretations of the relationships (e.g.,
orthogonality, projection) that we perceive as important aspects for learning least squares.
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Figure 1. Meeting Gauss task setting in GeoGebra (Left) and Class instruction (Right)
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Background Literature and Theoretical Framing

There is little literature on the teaching or learning of least squares or closely related topics
within the context of linear algebra. Turgut (2013) created a lesson in which students used
Mathematica to solve least squares problems involving finding lines or curves of best fit. He
reflected on how students’ use of these tasks incorporates Harel’s (2000) concreteness, necessity,
and generalizability principles. Donevska-Todorova (2015) used Hillel’s (2000) three modes of
description (arithmetic, geometric, and axiomatic) to explicate three definitions of dot product.
Arithmetic referred to multiplying vector components and adding. Geometric referred to the
cosine definition and the axiomatic definition was in terms of general properties. She also
designed an applet to support students’ understanding of dot product of vectors in a dynamic
geometry environment (DGE). Cooley et al. (2014) created a module for teaching dot product
using the cosine of the angle between two vectors. Their task sequence focused on comparing
frequency vectors to determine whether or not the same author wrote two different texts.

Our instructional materials were designed to support students’ ideas and support instructors
in facilitating conversations around students’ ideas. Students make mathematical progress as they
participate in class and group discussion, ask questions, and explain their ideas. Instructors guide
classroom activity by encouraging students to share their thoughts, asking their thinking about
how and why they make decisions, and leveraging their ideas to move forward. Specifically, for
developing our instructional sequence, we adopted the instructional design heuristics of Realistic
Mathematics Education (RME) informed by Freudenthal (1991). When designing instructional
task sequences, we leveraged the notion of guided reinvention to support students' transition
towards more formal mathematics (Gravemeijer, 1999). From the students’ perspective they are
not re-inventing anything, our intent with the least squares task sequence is to support students in
advancing their mathematical activity through symbolizing, algorithmatizing, and defining
(Rasmussen et al, 2005). We designed the “Meeting Gauss" task in the least squares instructional
sequence to be an experientially real starting point. This is similar to the Magic Carpet task in the
first unit of the IOLA curriculum (Wawro et al., 2012; Wawro, Zandieh, et al., 2013). Students
could engage in mathematical activity immediately, and their initial activity should constitute a
basis for more formal mathematization.

Rasmussen and Keene (2019) used a river journey metaphor to capture what many in the
mathematics education research field know as hypothetical learning trajectories (Simon, 1995).
We use the river journey metaphor intentionally to move away from the image of a learning
trajectory as a singular path that a researcher hypothesizes as the only way to learn a particular
idea. We agree with Rasmussen and Keene that the image of a learning trajectory as the only
path to learn a mathematical idea is not representative of the learning process. Further,
Rasmussen and Keene utilized the notion of waypoints (Corcoran, Mosher, & Rogat, 2009) from
the learning progression literature as “islets” within their river journey metaphor, acknowledging
that students may, or may not, visit each of the islets (waypoints) outlined in the river journey
(learning progression). To be clear, Rasmussen and Keene’s waypoint journey for student
reasoning about ODEs is a hypothetical research tool stemming from seven semester-long
classroom teaching experiments and years of design-based research. The waypoint journey
presented here is more of a “first journey down the river” in the context of a new task being used
in an Inquiry-Oriented Linear Algebra (IOLA) classroom for the first time.

Methodology and Research Setting
This study is a part of a larger linear algebra curricular development project funded by the
NSF. We conducted a classroom teaching experiment (CTE) to study the first implementation of

24th Annual Conference on Research in Undergraduate Mathematics Education 350



our instructional sequence and to study how students’ reasoning evolves throughout the task
sequence (Cobb, 2000). The tasks implemented in the CTE used an experientially real situation
designed to help students reinvent the least squares method. The CTE was conducted with STEM
students in two Linear Algebra classes at a large public university of the Southeastern United
States. Due to COVID-19, the course was taught synchronously online via Zoom. The course
prerequisite a B or better in Calculus I or passing Calculus II. There were 33 students enrolled in
one class and 38 students in the other. The CTE lasted four consecutive class days over the
course of two weeks towards the end of semester. The fourth author was the course instructor
and last author acted as a TA throughout the semester. The breakout group composition was kept
as consistent as possible unless student absences necessitated the rearrangement of groups. In
total, 22 students consented for their work to be used in research.

Description of the Task

The Meeting Gauss task begins with a callback to a previous IOLA task from earlier in the
semester!. The vectors v4, v, and v3 are presented as three modes of transportation, Gauss lives
at a location g in 3D, and students are trying to determine where they can meet Gauss. The
Meeting Gauss task is comprised of two parts (Figure 2): (1) investigate if it is possible to reach
Gauss at his specific location using the three modes of transportation, (2) explore the trips that
you and Gauss should make given the fact that Gauss needs to meet you somewhere you can
reach because his house (g) is not reachable using the given modes of transportation (i.e., the
travel vectors).

Part 1. Remember those modes of transportation you used for 3D travel?

1 6 4
They were vy = 1|, v, = [3|,v3 = |1
1 8 6

Let’s say they are a hoverboard, magic carpet, and jetpack, respectively.

Using those modes of transportation, can you get to Gauss if he lives at g =

-1
)
4

Part 2. Gauss agrees to meet you somewhere you can actually reach. He wants his trip to be

the shortest distance possible. So, our big guiding questions are:

a) Where should Gauss meet you?

b) Along what vector would Gauss travel to get to your meeting point?

c) What distance would Gauss’s trip be?
d) How would you get to your meeting point using your modes of transportation?

Figure 2. Statement of the Meeting Gauss task

On Day 1 of the CTE, students discussed their ideas related to Part 1 in breakout rooms. At
the end of class, students were asked to write a reflection giving their initial thoughts, intuitions,
or ideas for questions a)-d) of Part 2. On Day 2, the instructor began class by incorporating many
of the students’ reflection writings into her mini-lecture. The instructor highlighted students’
reflections that incorporated Gauss’ shortest trip distance and the span of the travel vectors. In
the first breakout session of Day 2, students used two previously created GeoGebra applets to
further explore the second part of the Meeting Gauss task. Many of the breakout groups used the
applets to obtain estimates for Part 2, questions a)-d). Afterwards, students were called back to
the whole class session to share their ideas with other groups and to listen to a set of mini-
lectures about lengths of vectors and dot products. In addition to the given transportation vectors
V4, V5, V3, and the Gauss vector g from Part 1, the instructor defined the vector Gauss travels

! In particular, Task 3 from the “Magic Carpet Ride” unit, which introduced linear independence (Wawro et al.,
2012).
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along as e and the vector from the origin to the meeting point as p (as pictured in Figure 1). In
the second breakout session, students were tasked with using the given information and
mathematical relationships developed during class (see Figure 3) to provide exact solutions to a)-
d). After Day 2, students wrote a reflection summarizing the progress either they or their group
made in finding the exact answers for questions a)-d) along with something that was clear and
something that they wondered about.

Figure 3. The known information and mathematical relationships developed during class.

Data Sources and Analytic Method

Our data sources include classroom videos, breakout group videos, Jamboard pages, and
students’ reflections. The whole class discussions and the breakout sessions were recorded via
Zoom by the last two authors. The students used Jamboard to communicate and record their
work in breakout rooms. Students’ reflection writings submitted after Day 1 and Day 2 of the
CTE were our main data source. The first two authors watched the whole class discussions and
breakout group videos to gain a sense of how class was organized. The first two authors
reviewed the Jamboard pages to see how students expressed their mathematical ideas during the
breakout discussion. Consenting students were given pseudonyms, and their reflection writings
were deidentified and transcribed by the last author. The first two authors engaged in open
coding (Strauss & Corbin, 1990) of all four days of student reflections. A code book was created
from attending to both (1) student thinking and (2) their descriptions of their
methods/symbolization. We used our set of 26 initial codes to analyze students’ Day 1 and Day 2
reflections line by line in a spreadsheet. After our initial pass at coding students’ Day 1 and Day
2 reflections we identified several categories that emerged within and across our codes. Figure 4
displays our final categories and codes, which were agreed upon by the first three authors. Our
process of creating an initial set of codes that identify trends within and across our data is
consistent with an emergent coding method (Glaser & Strauss, 2017).

Results

Our findings can be thought of as two snapshots on the river journey. The first snapshot
captured students’ reflections at the end of Day 1. From their reflections, students were
beginning to recognize a number of features of the Meeting Gauss scenario and how those are
related. Day 1 reflections are grouped into two themes: (1) shortest distance and (2) the location
of the transportation vectors. Students wrote about shortest distance as (1) a point-to-point trip,
(2) an orthogonal/perpendicular direction, and as (3) ways to find the distance including the
distance formula, the Pythagorean theorem, and trial and error. The second snapshot captures
students’ reflections at the end of Day 2. From their second reflection, students had moved down
the river in various ways. We grouped their writing into (1) a more developed notion of the error
vector, e, as perpendicular to the plane and transportation vectors, (2) the dot product as
providing information about orthogonality and ways to calculate relationships between vectors,
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and (3) the use of matrix multiplication and systems of linear equations (SLEs) to symbolize the
relationships between the perpendicular vectors in ways that allow for finding the error vector.

<Day 1 reflection: The First Snapshot> <Day 2 reflection: The Second Snapshot>
Shortest Distance (SD) Use of SD and in Mathematizing
[ | I

SD orthogonal to Span.
« SD orthogonal to Plane
« SD orthogonal to Vectors in Plane

Learning
to Pt Dist Formula Support

GeoGebra (
Applets,

Orthogonality with Dot product
cu-v = |u||v|cosd
CUV = UV + UaVna + -+

Teacher
Orthogonal Instruction,

with other « Express in SE or Matrix equation
Students and « Solve for unknowns (RREF, technology)
Teacher * Get a unique / infinite solutions

Trial and Err - Discussion L System of Equations (SE) and Matrix Equation

J

Figure 4. Overview of codes from students’ Day 1 and Day 2 of the CTE reflection writing.

First Day of the CTE Snapshot Analysis

On Day 1, most students used row reduction to conclude that Gauss is not reachable using
the transportation vectors (see Figure 5). Some students included geometric explanations in their
reflections including descriptions of how the span of the transportation vectors was a plane.

Mﬁxluzﬁz\g—v}} ‘l (% 4 “\\ no| | O‘{l % O)&-I—O\i*()%'-?l
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Figure 5. A snippet of a group’s Jamboard from working on Part 1 of the Meeting Gauss task.

Most students recognized that Gauss can travel around freely to meet the traveler, but the
traveler’s movement is restricted to use of the given transportation vectors. We will now present
examples from students’ reflections demonstrating our codes pictured in Figure 4.

Interpretation of shortest distance. Our analysis revealed that students’ intuitive notions of
Gauss’ shortest travel distance included ideas such as point-to-point distance and orthogonality.
Ten students answered that they needed to determine the shortest distance between two points:
Gauss’ location and the point on the plane closest to Gauss. For example, “We can minimize the
distance from the point to a point,” (Cecil), and “Gauss should take the shortest distance from
his point (-1, 1, 4) to the closest point on the plane our transportation modes cover,” (Iliana).
Some of the students’ thinking of the point-to-point distance indicated that they would apply the
distance formula or a calculus-based methods to minimize the distance. Five students noted that
Gauss’s path is perpendicular to the plane. Some of those students also noted that the span of the
travel vectors is the plane. For example, “If I had to imagine, Gauss would travel in a straight
line orthogonal to the plane formed by the three vectors,” (Liam) and “...the vector he travels
along should be perpendicular to the final mode of transportation’s vector” (Luka).

Some students mentioned how they would calculate the shortest distance. We view each of
the following methods used for measuring the shortest distance as related to point-to-point
distance thinking: distance formula, Pythagorean theorem, and trial and error. Three students
explicitly mentioned that they would apply or did apply the distance formula. For example, “Not
sure how to calculate distance, maybe plot the vectors and then use distance formula,”(Damien).
Tuan did apply the distance formula “Distance: sqrt((-1-(-1))"2+(-1-(-2))"2+(-1-(-5))"2) =
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sqrt(0+1+16) = sqrt(17),” There were two students who mentioned they would use the
Pythagorean theorem to find the shortest distance. For instance, “We could use pythagroas
theorem to find the distance of the projection,” (Anton).

Interpretation of transportation vectors. Our analysis further revealed that students
thought about the transportation vectors in various ways. Some students tended explicitly to the
notion of span such as vectors generate the plane or vectors generate a line. While 13 students
mentioned the transportation vectors generate the plane, not every student explicitly mentioned
where the plane came from. Other students explicitly used the terms span or linear combination
in their descriptions. For example, “The way I am thinking about this is to locate a spot that is
within the area that the 3 vectors span,” (Ani), “Since Gauss is getting to the plane that is the
span of the three modes of transportation, a linear combination of the three vectors will get us
there as well,” (Lureyna). Lureyna’s response tends specifically to both the idea that the span of
the transportation vectors creates the plane, and the traveler must use those modes of
transportation to reach the meeting point with Gauss.

Second Day of the CTE Snapshot Analysis

In the following three subsections, we briefly outline the various sections of the river that
students went down in the second snapshot from Day 2 of the CTE. Each subsection corresponds
to one of three groupings of students’ responses outlined in Figure 4.

The ‘e’ (error) vector is orthogonal to the plane. Our analysis revealed that students’
description of orthogonality between the vector e and the plane is multifaceted. We categorized
their descriptions into two ways: (1) The e vector is orthogonal to the plane, (2) The e vector is
orthogonal to the vectors that constitute the plane. For example, “...We knew that the line of
travel from Gauss to the plane must be orthogonal to the plane...” (Bianca). From Bianca’s
response, we see that she made a connection between the plane and the orthogonal path to said
plane. On the other hand, some students stated the e vector is orthogonal all vectors parallel to
the plane. For instance, “I know that e has to be orthogonal to p and vi, v2,” (Annalisa).

D

F i;g;ure 6. Lucia’s piclurés froﬁz her CTE Day 2 reflection

Dot product and orthogonality. After students returned from the first breakout group
session, the instructor gave a set of mini-lectures deriving the lengths of vectors and defining dot
product. Students’ written descriptions about how they thought about dot product was subtle and
sometimes difficult to characterize. For example, Lucia stated (Figure 6, right), “The vectors p
and e create vector g, from origin to Gauss, and the dot product of p and e is zero because they
are perpendicular,”. Lucia seemed aware that orthogonality is related to dot product. She also
mentioned “ We had tried to combine the statements p-e=0, e-vI=0, and e-v2=0 into one big
equation, and [ think you can eliminate the ||e|| from all sides, but the issue is that I do not know
how to get the angles between the different vectors and such,” (Lucia). From Lucia’s complete
response, it was possible to determine she was leveraging the cosine definition of the dot product
in her thinking. Further, some students expressed the orthogonal relationship between the error
vector (e) into a system of dot product equations (Figure 7, left). Other students mentioned that
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they knew they could use the dot product equations in some manner, but it was unclear if they
were thinking about orthogonality. There were some students who seemed to try connecting dot
product with the transportation vectors and the e vector but were not comfortable with the
transition towards a more formal mathematical expression. For example, “...1ooked at plugging
in the vl and v2 vectors into their dot product equations with e ...using the coefficients we found
as a matrix, whose dot product with e was (. This didn't make much sense to me...” (Iliana).

Systems of equations and the matrix equation. Some students appeared to be moving
towards formalizing the notion that the e (error) vector was orthogonal to each travel vector to
create a matrix equation ATe = 0 using their system of dot product equations. For example,
“From the dot product of e and v1 and the dot product of e and v2, we were able to create a
matrix, [[111],[638]], which when multiplied by e would equal 0... if two vectors are
orthogonal, their dot product must be zero, which is very helpful...” (Lureyna) and “...we had the
matrix A that was v1, v2 times e (x y z) = 0...but didn’t know where to go from there...I know
that e has to be orthogonal to p and v1, v2,” (Annalisa). Other students, like Cecil (Figure 7,
middle), expanded his dot product equations into a system of linear equations (SLE). Cecil used
a SLE to write a matrix equation that we recognize as ATe = 0. We are unsure how Cecil
thought about the result of his row reduction since he stopped after row reducing.

' E GanssS Should meet us o1 (¥ .
L E4 A j 7’T‘ ] =20 e[ +E+€3 =0 M vl b fo oo ) brove | , (’ I_ e ..\. p
. L : FP-S SRy Gauss « trip would be .-“.J_.'H .: J
(2 4 Dyspn=0 1] o ("67 ek g?] ol 4o mectin o by meny
( ) 2 C)_; i hovericald efd l; 5 al ;- .

Figure 7. Min’s(Left), Cecil’s (Middle), Vaki’s (Rzght) wrztlen solution.

Discussion

In the first journey down the river of developing the least squares solution method, we see
that some of the students leveraged their intuitive notions of shortest distance and the span of the
transportation vectors towards a more formal symbolization using the dot product. Students
traveled down the river in their own way, spending different amounts of time on each piece of
the river journey as seen in the variety of answers within both snapshots. One takeaway is that
the least squares river journey may require more time in more areas than others. Vaki was one of
the only students to interpret X as the amounts to travel on each mode of transportation to meet
Gauss. This meaning of X is what we as experts recognize as the least squares solution to the
Meeting Gauss context. This paper is limited to an analysis of the first two days of the CTE.
Future work may investigate students’ progress on the final two days in formalizing their
thinking towards reinventing the least squares solution & = (ATA)~*ATb. On our next journey
down the least squares river, we intend to reflect on where students ended at the end of each day
of the CTE to inform future revisions of the Meeting Gauss context within the IOLA curriculum.
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