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Systems of equations are a core topic in linear algebra courses. Solving systems with no or 
infinitely many solutions tends to be less intuitive for students. In this study, we examined two 
students’ reasoning about the relationship between the structure of a system of linear equations 
and its solution set, particularly when creating systems with a certain number of equations and 
unknowns. Using data from a paired teaching experiment, we found that both students favored 
the notion of parallel planes, geometrically and numerically, in the case of a system having no 
solution or infinitely many solutions. We also found that algebraic or numerical approaches 
were used as the main way of developing systems with a unique solution, especially in systems 
with more than two equations and two unknowns. Throughout the tasks, one student generally 
used geometric approaches and the other toward algebraic and numerical approaches.  

Keywords: solution sets, linear systems of equations, Realistic Mathematics Education, paired 
teaching experiment, linear algebra 

Systems of linear (SLE)equations are a fundamental topic of introductory linear algebra 
courses. Systems are one way to model relationships among multiple quantities (Smith & 
Thompson, 2007). Students from applied science, technology, engineering, and mathematics 
make up a dominant portion of those enrolled in linear algebra in the U.S. and Canada, and 
applications related to linear systems are an important component of their learning in this course 
(Andrews-Larson et al., in press). In applied contexts, SLE often do not have a unique solution, 
so in this work we focus on students’ reasoning about SLE with non-unique solutions.  
Students at a variety of levels have exhibited greater levels of success solving systems of 

linear equations with unique solutions as compared to solving inconsistent systems or systems 
with an infinite number of solutions (Harel, 2017; Huntley et al., 2007; Oktaç, 2018), and this 
has been linked to procedural and rule-based approaches to students’ solving processes. Oktaç 
(2018), for example, found that interpreting the result “x=x” was not intuitive for students. Such 
approaches tend to be unhelpful to students when linking algebraic and geometric representations 
of systems and their solution sets. It has more recently been documented that, in the context of 
introductory linear algebra, though students are relatively successful at rewriting systems as 
augmented matrices and row reducing with technological assistance, many students experience a 
disconnect in reinterpreting solutions in relation to the original system (Zandieh & Andrews-
Larson, 2019). In this paper, we identify resources in students’ reasoning that may help address 
this disconnect, drawing on data from a teaching experiment. Our research question is: How did 
students reason about the relationship between the structure of a system of linear equations and 
its solution set, including their reasoning about the graphical representation of the solution set? 

Theoretical Framing 
In this paper we focus on how students symbolize systems of linear equations that have one, 

infinitely many or no solutions, and how the students relate their symbolizations to various 
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graphical representations. In doing this we follow Larson and Zandieh (2013) who describe a 
system of equations as one way to symbolize a relationship between variables and scalars. They 
compare and contrast this symbolization to others such as a vector equation (a linear combination 
of vectors equaling another vector) or a linear transformation stated in function notation. 
Collectively they refer to these as interpretations of the matrix equation A𝑥⃗=𝑏$⃗ . Paired with these 
symbolic expressions are different graphical representations.  For example, a system of two 
equations with two unknowns is depicted graphically as two lines with the intersection of the 
lines denoting the solution. In contrast a linear combination graphically is indicated by scalars 
stretching each of two vectors with the vectors being added in a tip to tail manner.   
In a later paper, Zandieh and Andrews-Larson (2019) extend their work to symbolizations of 

augmented matrices and discuss how the solution(s) to a system of equations may be expressed 
using both implicit and explicit notation. For example, the statement of a system of equations to 
be solved is already an implicit description of the solution space. In this paper we focus on two 
students’ growing recognition of how the components of the symbolic expression that implicitly 
describes the solution set (i.e., the system of linear equations) relates to the graphical inscriptions 
that illustrate the solution space.  

 
Methods 

      This proposal reports findings from a paired teaching experiment (PTE) conducted as part of 
a larger NSF-funded project aimed at extending inquiry-oriented curricula in linear algebra. The 
task sequence was designed to support students’ reinvention of ways to reason about solution 
sets to systems of linear equations (SLE). We conducted a task-based PTE with two students for 
four consecutive days on Zoom to see how students reason about solutions to SLE related to the 
task and how their reasoning evolved throughout the sequence of tasks (Steffe & Thompson, 
2000). The participants we call Student R and Student L were undergraduate math majors also 
studying to be secondary teachers; one was a white woman and one a white man, respectively. 
They had no experience with linear algebra but had taken Calculus I at the time of the PTE. Two 
authors conducted the PTE with one leading the interview and the other taking notes and asking 
clarifying questions. We present findings from the last day of the PTE, in which students started 
working individually on the given tasks and shared their initial thoughts with each other. The 
leading interviewer prompted with questions about their thinking in the moment and leveraged 
their ideas to help them advance their mathematical thinking. While this proposal emphasizes the 
last day of the PTE, relevant results from the first three days are included in the task description 
to give readers the basic context of the instructional sequence.  
      The Day 1 and 2 tasks were designed to support students in reinventing the notion of large or 
infinite solution sets corresponding to a SLE. On Day 1, the students worked with a constraint of 
meal plans that included three variables, B, L, D (# of breakfasts, lunches, and dinners), where 
B+L+D=210. They used ordered n-tuples to organize a large set of solutions satisfying the 
constraint. On Day 2, the students made predictions about how the set of solutions to 
B+L+D=210 and 5B+7L+10D=1500 (an added meal plan constraint) would look geometrically. 
The students agreed the graphs of the two equations would intersect more than once because they 
found several solutions to both equations (for more details, see Smith et al., 2021b). Day 3 
focused on graphing the two meal plan constraints in GeoGebra. This was the first time the 
students used GeoGebra in the PTE. Based on this work they concluded that each constraint 
constitutes a plane and the solutions found on Day 2 are on the same line where the two planes 
intersect. They were guided to the next task called “Intersections of Three Planes” (Wawro et al., 
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2013). Given the new SLE where the third equation is the sum of the first two equations, the 
students were asked to find the closest graphic from options (a) through (f), focusing on the 
intersection of the three planes. At first, they were not allowed to do any calculations nor use 
GeoGebra. The options consisted of graphics such as three planes having no intersection and 
intersecting at a point, line, or plane, as shown in Figure 1. Results from these tasks will be 
discussed in the next section. 
 

  
Figure 1. Examples of options in the Intersections of Three Planes task (Wawro et al., 2013). 

      On Day 4, the students continued to work on the Intersection of Three Planes task with a 
different approach. Using GeoGebra as an aid, they engaged in the activity to construct a SLE 
that looks like one of the options’ graphics. The students started manipulating the given SLE 
(where the third equation is the sum of the first two) to satisfy the graphics. The students then 
worked on a task involving creating SLE that met a specified number of equations, unknowns, 
and solutions described in a table, called the Example Generation task. In this paper, we use 
abbreviations to report these more succinctly. For example, 2E2U refers to 2 equations and 2 
unknowns and 3E2U refers to 3 equations and 2 unknowns. This task also included a prompt to 
make generalizations about SLE regarding the number of solutions, equations, and unknowns. 
      Our data sources include Zoom video recordings, students’ written work, and field notes. The 
Day 3 and 4 video recordings were transcribed in spreadsheets. Two of the authors watched and 
reviewed the videos and transcripts and created reflective notes focusing on the students’ 
reasoning about creating SLE with specific solution sets using an emergent coding method 
(Glaser & Strauss, 2017). We paid special attention to what students were referring to when 
reasoning about solutions, including students’ attention to specific traits of the SLE as written 
and traits of its graph. We discussed the students’ quotes and gestures that offered insight into 
their mathematical reasoning about SLE. Based on the findings, we were able to describe the 
differences and similarities between students’ reasoning about SLE in relation to specified 
solution sets. 
 

Findings 
We found that Student R and Student L developed geometric and numeric strategies, 

respectively, for reasoning about parallel planes, and leveraged these strategies heavily in 
constructing systems of linear equations with specific types of solution sets. In this section, we 
illustrate how this strategy emerged from students’ efforts to construct a system with particular 
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visual characteristics in GeoGebra and provide evidence regarding how students leveraged these 
strategies to construct systems with no solution, unique solution, and infinite solutions -- even as 
the numbers of equations and unknowns in these systems varied. 

Intersections of Three Planes Task 
When working on the modified version of the Intersections of Three Planes task, students 

looked at scenario (a) in which three planes intersect at a point and initially noted that they did 
not think it was possible. Student R drew on her knowledge of systems of line equations by 
drawing three lines as a way to represent three planes to see if they could intersect in a point.  
R: I didn't even think (a) was possible at first, but I drew out a picture of what I thought it 
could be. And I was like, maybe, I guess it is possible for planes to intersect in a point. 
But I thought only lines could intersect in a point. 

Int (interviewer): Can you show what you drew? [Student R shows Figure 2] ... Tell me how 
you were thinking about what you drew. 

R: I thought, these are lines technically, but I was like, even if they were extending, if they 
were all going different directions, then I just drew three random lines that all intersected 
only in the middle. 

 

 
Figure 2. Student R’s two-dimensional reasoning about three planes intersecting at a point. 

 
Student (R) drew on her prior knowledge to make sense of a new type of intersection. She 
conjectured, through the lens of intersecting lines as shown in Figure 2, that it could be possible 
for three planes to intersect at a point. Both students revisited this idea in the Example 
Generation task. 
The rest of this section will highlight students’ initial reasoning with parallel planes that they 

used later in the Example Generation task. When starting the modified Intersections of Three 
Planes task, Student R stated that she initially thought the parallel option “would be easier 
because… if you just double the values, then it’ll be the same plane. But maybe if you manipulate 
the number that it’s set equal to, to not be double, if you doubled the coefficients of the 
variables… [then] I think we can make the planes parallel.” She pointed out that every value 
cannot be multiplied by the same number, but parallel planes might be achievable by changing 
the constant by a different factor from the coefficients. While working on making three parallel 
planes, Student R referred to the “slopes” of the equations in terms of the coefficients in each. 
She reasoned that to make parallel lines they needed to create equivalent slopes in the equations, 
then expanded that reasoning to planes.  
Int: So why do you think you have to make them the same for all of them? 
R: If we want the slope to be the same, they all have to be multiplied by the same. I can't 
think of the words… We want the slopes to be there's a word that I can't think of, 
related… 

L: Parallel. Yeah, related. 
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R: So like, if you change the coefficient of one number, it's no longer gonna be parallel 
because then the slopes of the equations aren't the same anymore. 

Int: So like, what if your original equation was x plus three y plus z and you're trying to 
make one parallel by changing the coefficients?  [Referring to L's eq7: x+3y+z=6] 

L: ... like 2x+6y+2z is equal to like, whatever. I believe that would make it as well… Then, 
so then 2x+6y+2z=6. 

Int: So you doubled one side but not the other. So it kept the slope the same.  
L: Right. Exactly. 

Both students reasoned that all the coefficients in an equation must be multiplied by the same 
number to have the same “slope” as the original equation. They said that if one coefficient is not 
multiplied, then the plane will no longer be parallel to the original. Once again, it was mentioned 
that the ‘right side’ (or constant) cannot be changed by the same amount as the coefficients. 
The students used the parallel planes they had just developed to recreate a system consisting 

of two parallel planes with a third plane intersecting both. When asked about the number of 
solutions to the SLE, Student R relied on the fact that two of the planes are parallel and said 
“Zero. Because two of the planes are parallel. And those are never going to have a solution that 
makes them both true.” Student L came to the same conclusion but by reasoning numerically, 
stating, “And also because you have x+y+z is two, and x+y+z is eight. So that doesn't really 
make sense either, because you can't have three numbers that equal two and also equal eight, 
when you add them together.” 
Overall, we found that students’ previous knowledge regarding systems was essential to 

students’ development of SLE in relation to graphical representations. Students wondered about 
the possibility of a unique solution for a system with three planes. Because they had never seen it 
previously, they explored this possibility by drawing on their knowledge of a system of 
equations in a 2-dimensional setting. The students developed initial reasoning for parallel planes, 
seemingly relying on what they knew about parallel lines. This reasoning about parallel lines and 
planes became a way for students to reason about systems with infinitely many and no solutions. 
 
Example Generation Task 
Constructing systems with no solutions. In this section, we will describe our findings 

regarding students’ reasoning while creating SLE with no solutions. The students’ work on the 
example generation task began in the context of 2E2U (two equations and two unknowns). In 
this case, the students started with one equation, x+y=3, and created another equation by 
multiplying each coefficient by two to get, 2x+2y=3. As they explained with planes in the 
previous task, the constant cannot be multiplied by the same number as the coefficients, or else 
the second equation is actually the same line as the first. When students subsequently worked to 
construct an example of a system with 3E2U with no solution, they added another parallel line to 
their previous example. The interviewer probed on whether this was the only way a SLE with no 
solution could be constructed. 
Int: So would it have to be parallel? 
R: I guess not. We could do like we just did with the last one we did with three variables. 
Maybe. That also has no solutions. 

L: If it wasn't parallel, wouldn't they eventually come to a point or something? 
R: Well, equation one and equation two are parallel. But if I change the third equation, 
instead of it being parallel as well, if I make it not parallel, then it's kind of like what we 
just did. How there's no solution because these two lines are parallel. 
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Student R mentioned their previous example in which there were two parallel planes and one 
plane intersecting the two, except with lines this time. The students used similar thinking to 
create a system of 3E3U with no solution with parallel planes. 
 
Constructing systems with infinitely many solutions. When constructing systems of 

equations with infinitely many solutions, the pair began by working on the case with 2E2U. 
Student R created two copies of the same line by multiplying x+y=3 (equation one) by 2 and 
explaining, “If we wanted infinitely many solutions, we can just do like 2x+2y=6 with equation 
one. And then they're the exact same line.” The students used a similar process to construct a 
system of 3E2U and voiced that multiplying the second and third equations by some value is the 
only way they understand creating a system of lines with infinitely many solutions. Student L 
wondered, “Is there? I'm not sure if there's another way to have infinitely many solutions.” When 
shifting to the cases with 2E3U and 3E3U, the pair leveraged their previous work, and created 
equations representing the same planes. 
 
Constructing systems with unique solutions. In working to construct a system of 2E2U 

with a unique solution, Student L used a heavily numeric approach and started with one 
equation, found a viable solution to that equation, then created a second equation in which the 
previously viable solution satisfies. In other words, Student L started with the equation x+y=3 
and a solution of x=2, y=1 and developed 2x+y=5 as a second equation. He explained, “So I just 
used x+y is equal to three. And then I said, okay, x is equal to two y is equal to one. So, then I 
was just like, well, two times two is four plus that one is five. So that should give us the one 
solution. It'll be two, one.” The students only referenced the geometry of this SLE by describing 
(2, 1) as the point of intersection. In moving to 3E2U, Student L did something similar by 
building another equation based on a selected solution that satisfies the two originally developed 
equations: “Just like how we did it with the, the two equations and two unknowns. I was just 
thinking, well, we have x+y is equal to three. And then if x is two, y is one. So then, in 2x+y, it 
would make it five. And then if you were to add like another one to just like another coefficient to 
that x, it would make it 3x+y. And now you just go to seven.” Once again, neither student 
explicitly referenced geometry as they built this SLE. 
In shifting to the case with 2E3U, student L stuck with his numerical approach, presumably 

because it had been successful previously. Student R thought more geometrically, arguing that it 
was impossible for the system to have a single solution because two planes cannot intersect at a 
single point. She explained, “When we were doing the algebra part of it, I was more like maybe 
there is only one solution. But because when you look at it, it's hard to just tell from the numbers. 
There's no way just to look at it and be like there's a million solutions. I know what they all are. 
But when you look at the graph, it becomes clear that there's no way that these two planes are 
going to ever intersect in just a point because they’re planes. And there's only two of them.” 
Student L tried a guess-and-check method, but he later accepted Student R’s justification because 
he could not find a system that had only one solution. In the case of 3E3U, the students 
questioned whether it was possible to have a single solution, thus revisiting their previous query. 
Their intuition told them that it was possible. They constructed the SLE in GeoGebra by creating 
two planes that intersect in a line and then added a plane that intersected that line at one point. 
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Making Generalizations 
At the end of the interview, the interviewer asked students for generalizations about systems 

and their solutions. We found that both students attended to ideas they developed when 
reasoning about parallel planes, such as looking at coefficients and constants. 
R: I would say pay attention to the coefficients and maybe look for like how the equations 
could be maybe parallel… or how they’re intersecting… Parallel will tell you that 
there would be no solutions for the system. 

L: I would also say, make sure to pay attention to the constant. So like whatever you're 
setting it equal to, x+y is equal to three. So for instance, it had no solutions, we know that 
the constant is just going to stay the same, because the lines are going to be parallel… 
The constant is going to change based on how the other equations change. 

Student R eventually came to reason about the number of equations and unknowns, something 
that had not been deeply discussed previously. She stated, “In the beginning, we were trying to 
find a solution to that system of equations that had only two equations and three unknowns. Now 
I know in the future, don't waste your time looking, doing substitution. It's not gonna work… 
Maybe because there's more unknowns than equations, you don't have enough information to 
use substitution or anything because there's not going to be a single solution. I don't know if 
that's true.” It could be that the design of the Example Generation task led Student R to connect 
that the reason two planes could not have one solution was because there were fewer equations 
than unknowns (along with her geometric reasoning), leading her to conjecture that there can 
never be one solution to a system with that trait. 
 

Discussion 
On Day 4 of the PTE, Student R generally oriented her reasoning around a geometric 

approach to make sense of no, unique, and infinitely many solutions. She predicted how the 
graphs of solutions would look as she modified the coefficients in the SLE and used the same 
strategy when constructing SLE in the Example Generation Task. On the other hand, Student L 
leveraged a numerical approach to reason about solutions to various SLE. He began by choosing 
specific tuples satisfying a first equation or concluded no solution by examining the coefficients 
and constants in equations. Then, the parallel graphics became sensible to him. The two students’ 
different ways of reasoning seemed to reflect their interpretation of solution to SLE: It is the 
intersection of graphs [R] and the point(s) in the intersections of graphs that satisfies all 
equations in the SLE [L]. In the case of 2E3U, Student R’s geometric approach allowed her to 
conclude that this type of system can never have a unique solution. She subsequently conjectured 
that this might be true in all cases where the number of equations is less than the number of 
variables. Throughout the task sequence, Student R’s geometric reasoning was more useful in 
some cases, and Student L’s numerical reasoning in other cases, but both students relied on their 
understanding of parallel lines and planes in many of the infinitely many and no solutions cases. 
This study demonstrates ways students can reason about solutions to SLE without having learned 
row reduction, pointing out potential areas for connections between students’ prior knowledge 
and what is to be learned. 
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