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Abstract. This paper proposes the TrafficFlowGAN, a physics-informed
flow based generative adversarial network (GAN), for uncertainty quan-
tification (UQ) of dynamical systems. TrafficFlowGAN adopts a nor-
malizing flow model as the generator to explicitly estimate the data
likelihood. This flow model is trained to maximize the data likelihood
and to generate synthetic data that can fool a convolutional discrim-
inator. We further regularize this training process using prior physics
information, so-called physics-informed deep learning (PIDL). To the
best of our knowledge, we are the first to propose an integration of
normalizing flow, GAN and PIDL for the UQ problems. We take the
traffic state estimation (TSE), which aims to estimate the traffic vari-
ables (e.g. traffic density and velocity) using partially observed data, as
an example to demonstrate the performance of our proposed model. We
conduct numerical experiments where the proposed model is applied to
learn the solutions of stochastic differential equations. The results demon-
strate the robustness and accuracy of the proposed model, together with
the ability to learn a machine learning surrogate model. We also test
it on a real-world dataset, the Next Generation SIMulation (NGSIM),
to show that the proposed TrafficFlowGAN can outperform the base-
lines, including the pure flow model, the physics-informed flow model,
and the flow based GAN model. Source code and data are available at
https://github.com/ZhaobinMo/TrafficFlowGAN.

Keywords: Uncertainty Quantification (UQ) · Normalizing Flow · Gen-
erative Adversarial Networks (GAN) · Physics-informed Deep Learning
(PIDL).

1 Introduction

Uncertainty quantification (UQ) is the process of characterizing the uncertainty
of system dynamics, accounting for two main sources of uncertainty [4]. The
aleatoric uncertainty (or data uncertainty) refers to uncertainty arising from
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external factors, such as measurement noise, and random initial or boundary
conditions. The epistemic uncertainty arises from the inadequate knowledge of
the underlying model, such as inherent stochasticity in human behavior. With
these random factors, UQ of dynamical systems is crucial to avoid potential
system oscillation or cascading errors.

Two classes of methods are developed to characterize the aforementioned
sources of uncertainty. The physics-based method assumes that the observa-
tions are generated from underlying physics imposed by Gaussian noise; thus
filtering methods or Bayesian inference can be applied to propagate uncer-
tainty. However, the physics-based method suffers from limitations such as non-
Gaussian likelihoods and high-dimensional posterior distributions [18]. In con-
trast, the data-driven method, such as generative adversarial networks (GAN)
[7], tries to characterize any distribution of data directly without making any
assumption of noise. Recently, there is a growing trend in integrating physics-
based models into the data-driven framework, namely, physics-informed deep
learning (PIDL) [12]. PIDL-based UQ methods can characterize generic data
distribution while ensuring physics consistency.

Among all PIDL models for UQ, the physics-informed GAN is the most
widely used, which has been applied to solve stochastic differential equations
[17,18,5] and quantify uncertainty in various domains [15,14]. Although GAN
generates high-quality samples [9] through adversarial training, it has stability
and convergence issues. Moreover, as GAN cannot calculate the model likelihood,
it may miss important modes of the data distribution, namely, mode collapse
[16]. In contrast, normalizing flow [6] calculates the exact data likelihood and is
trained using maximum likelihood estimation (MLE), which is an effective way
to avoid mode collapse. However, applying PIDL to the normalizing flow is still
at its nascent stage and we only find one relevant work [10].

Leveraging the pros of both the MLE and adversarial training, Flow-GAN,
a combination of normalizing flow and GAN, is first introduced in [9], which
can achieve both high data likelihood and good sample qualities. Flow-GAN has
been applied to manifold learning [3] and image-to-image translation [8]. Little
research has been documented that applies Flow-GAN to UQ problems.

In this paper, we propose TrafficFlowGAN that leverages likelihood training,
adversarial training, and PIDL for the UQ problems. To the best of our knowl-
edge, we are the first to integrate these three methods for the UQ problems.
Main contributions of this paper include:

– We propose a hybrid generative model, TrafficFlowGAN, combining nor-
malizing flow and GAN to achieve both high likelihoods and good sample
qualities and to avoid mode collapse.

– We incorporate physics information into the TrafficFlowGAN model for es-
timation accuracy and data efficiency, and use neural network surrogate
models to learn the inter-relations between the physics variables at the same
time.

– We apply the TrafficFlowGAN model to learn solutions of second-order
stochastic partial differential equations (PDEs), and demonstrate the perfor-
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mance of TrafficFlowGAN by applying it to a traffic state estimation (TSE)
problem with real-world data.

The rest of this paper is organized as follows: Section 2 introduces the back-
ground and related work. Section 3 introduces the structure of TrafficFlowGAN
for the UQ problems. Section 4 demonstrates how TrafficFlowGAN learns so-
lutions of a PDE and the relations between physics variables using a neural
network surrogate model. Section 5 demonstrates how TrafficFlowGAN char-
acterizes uncertainty from the real-world data in the TSE problem, where two
traffic models, i.e. the Aw–Rascle–Zhang (ARZ) [2] and the Lighthill-Whitham-
Richards (LWR) [11] models, are used as the physics components. Section 6
concludes our work and projects future directions in this promising arena.

2 Background and Related Work

2.1 Normalizing Flow

The flow model aims to learn an invertible function zzz = fθ(uuu) : R
D 7→ R

D, where
data uuu is sampled from a distribution pdata(uuu) and zzz ∼ pzzz(zzz) is a random noise
of the same dimension as the data. The data likelihood pθ(uuu) can be explicitly
expressed by using the change of variable formula:

pθ(uuu) = pzzz(zzz)

∣

∣

∣

∣

det

(

∂f−1
θ (zzz)

∂zzz

)
∣

∣

∣

∣

−1

. (1)

To compute pθ(uuu), it is nontrivial to choose a latent variable zzz that has an
easy form and to design the invertible function fθ so that the Jacobian deter-
minant can be easily computed. A common selection of the latent variable zzz
is the standard Gaussian, i.e. pzzz(zzz)∼N (0, IIID). To compute the Jacobian de-
terminant, RealNVP [6] designs the invertible function fθ as an affine coupling
transformation following the equations below:

fθ :=

{

zzz1:d = uuu1:d

zzzd+1:D = uuud+1:D � ekθ(uuu1:d) + bθ(uuu1:d)
, (2)

where uuu and zzz are split into two partitions at the dth elements. The scale func-
tion kθ and the translation function bθ are neural networks to be learned, which
constitute the affine transformation of the partition uuu1:d. � is the Hadamard
product or element-wise product. By this design of invertible function, the Ja-
cobian determinant in Eq. 1 can be computed by
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= e
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j [kθ(zzz1:d)]j , (3)

where j is the index of the element of kθ(zzz1:d). The inverse function f−1
θ can

also be obtained by

f−1
θ :=

{

uuu1:d = zzz1:d

uuud+1:D = (zzzd+1:D − bθ(zzz1:d))/e
kθ(zzz1:d)

. (4)
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To better accommodate the complex data distribution, fθ is further modeled
as a sequence of affine coupling transformations: fθ = fL ◦ ... ◦ f1, where L is
the total number of transformations. Let fl be the lth invertible mapping and
hhh(l) be the lth latent variable that satisfies hhh(l) = fl(hhh

(l−1)), where hhh(0) = uuu and
hhh(L) = zzz. Then the log-likelihood of uuu can be computed by:

log pθ(uuu) = log pzzz(zzz) +

L−1
∑

l=0

log

∣

∣

∣

∣

det

(

∂f−1
l (hhh(l))

∂hhh(l)

)
∣

∣

∣

∣

−1

. (5)

The computation of the log-likelihood of zzz is straightforward as zzz is assumed to
follow a standard Gaussian distribution, and each Jacobian determinant can be
calculated following Eq. 3. Thus, the exact data likelihood is tractable and the
flow model can be trained by the MLE.

2.2 Generative Adversarial Network (GAN)

GAN aims to train a generator Gθ to learn the mapping from a random noise
zzz to the corresponding state variables uuu, i.e. Gθ : zzz → uuu. The objective of the
generator Gθ is to fool an adversarially trained discriminator Dφ. Different GAN
variants use different metrics to evaluate the divergence between the prediction
distribution and the data distribution, such as the Kullback-Leibler (KL) diver-
gence, the Jensen-Shannon divergence, and the Wasserstein distance [1]. Among
these metrics, the Wasserstein distance has received growing popularity for its
stability, which optimizes the following objective:

min
θ

max
φ∈F

Epdata(uuu) [Dφ(uuu))]− Epzzz(zzz) [Dφ(Gθ(zzz))] , (6)

where θ and φ are the parameters of the generator and the discriminator, re-
spectively. F is defined such that Dφ is 1-Lipschitz.

3 Framework of TrafficFlowGAN

3.1 Problem Statement

Define the spatial and temporal domains as X and T , respectively. (x, t) ∈ X×T
is the spatio-temporal coordinate (“coordinate” for short). It is assumed that the
state variable uuu can only be observed by limited number of sensors placed at
fixed locations and at a specific frequency. Thus, we further define the observed
(labeled) region O ⊆ X×T as the spatio-temporal region where the state variable
uuu is observed, and thereby the unobserved (unlabeled) region C = X ×T \O. We
represent the continuous domain in a discrete manner using grid points. Thus, the
observed region O and the unobserved region C can be represented as collections

of discrete coordinates: O = {(x
(i)
o , t

(i)
o )}No

i=1 and C = {(x
(j)
c , t

(j)
c )}Nc

j=1, where
i and j are the indices of observed and unobserved coordinates, respectively;
No, Nc are the numbers of observed and unobserved coordinates, respectively.
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The state variable uuu is a random variable for each coordinate, i.e. uuu ∼
pdata(uuu|x, t). Our goal is to train a generator such that its prediction distri-
bution distribution pθ(ûuu|x, t) matches the data distribution pdata(uuu|x, t). Below
we will introduce how to achieve this goal with our proposed TrafficFlowGAN.

3.2 Overview of TrafficFlowGAN Structure

An overview of TrafficFlowGAN is illustrated in Fig. 1, which consists of three
main components, namely, a conditional flow fθ, a physics-based computational
graph, and a convolutional discriminator Dφ. The data is illustrated as a heatmap
in the spatio-temporal domain. We assume the data is measured by sensors at
fixed locations. Due to limited range each sensor can cover, the observation region
consists of separate horizontal “strips.” The observed and unobserved coordinates
are fed into the conditional flow model to generate predictions ûuuo and ûuuc, respec-
tively. Those predictions bifurcate into two branches. In the upper branch, ûuuc

are fed into a physics-based computational graph, which encodes physics laws, to
calculate the physics loss function. This process of calculating physics loss from
the unobserved coordinates is illustrated by grey arrows. In the lower branch, the
prediction states ûuuo and the observed states uuuo are then reshaped to constitute
the prediction matrix M̂ and the observation matrix M , respectively. These two
matrices are then fed into the convolutional discriminator. The process of cal-
culating the adversarial loss from observed coordinates and states is illustrated
by blue arrows.

We will detail each component sequentially and explain how we integrate
those components in the following subsections.

Fig. 1: Structure of the TrafficFlowGAN.
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3.3 Convolutional Neural Network as the Discriminator

Existing physics-informed GAN models construct the discriminator as a fully
connected network. By explicitly adding the spatio-temporal coordinates into the
input space, the discriminator is expected to make decisions based on the spatio-
temporal pattern, which will be represented better by the convolutional neural
network (CNN). In this work, we propose to use CNN as the discriminator.

The discriminator Dφ consists of a sequence of convolutional layers (Conv)
followed by a fully connected layer (FC). This FC layer outputs a 1 × 1 scalar
indicating if the input matrix is from observations or predictions. The pooling
layer is not used in this structure, as there is no requirement for compression in
our task.

The reshape of the observation uuu is straightforward. As we represent the
spatio-temporal domain in a discrete manner, uuu(x, t) for each coordinate can be
viewed as a “pixel”, and the dimension of uuu is its number of channels. This is the
same for reshaping the prediction ûuu to get the prediction matrix M̂ . Note that
due to randomness in data and predictions, we can sample multiple observation
matrices {M (i)}Nω

i=1 and prediction matrices {M̂ (i)}Nω

i=1, where Nω is the total
number of sampling.

The discriminator Dφ can be updated by minimizing the Wasserstein loss:

LD(φ) = −
1

Nω

Nω
∑

i=1

Dφ(M
(i))−Dφ(M̂

(i)). (7)

3.4 Conditional Flow as the Generator

We construct a conditional flow as our generator, as illustrated in Fig. 2. Assume
uuu has two elements, i.e. u1 and u2. Different from the tradition normalizing flow,
we add a prior network (p-net) to transform the standard Gaussian prior zzz =
(z1, z2) to z̃zz = (z̃1, z̃2) with shifting and scaling, considering that the magnitude
of uncertainty at different (x, t) coordinates can be different. The prior network
takes as input the coordinate (x, t) and outputs the prior mean µµµ = (µ1, µ2) and
prior standard deviation σσσ = (σ1, σ2); thus z̃zz ∼ N (µµµ,σσσ). The prior network is
followed by affine coupling layers. Each affine coupling layer consists of a scale
function (k-net) and a translation function (b-net), as introduced in Section 2.1.

Based on [19] and our experiment, the exponential operation in Eq. 2 is
numerically unstable, which may result in gradient explosion. Instead of using
the RealNVP, we replace the exponential operation in Eq. 2 with a Sigmoid
operation:

fθ :=

{

z̃zz1:d = uuu1:d

z̃zzd+1:D = uuud+1:D � Sigmoid(kθ(uuu1:d;x, t)) + bθ(uuu1:d;x, t)
, (8)

and the calculation of Jacobian determinant in Eq. 5 is thus changed to

∣

∣

∣

∣

det

(

∂f−1
θ (z̃zz)

∂z̃zz

)∣

∣

∣

∣

−1

=
∑

j

[kθ(z̃zz1:d;x, t)]j , (9)
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where j is the element index of kθ(z̃zz1:d;x, t). We define a likelihood loss function
for the generator as:

LNLL(θ) = −
Nω
∑

i=1

∑

(xo,to)∈O

log pθ(uuu|xo, to, ω
(i))

= −
Nω
∑

i=1

∑

(xo,to)∈O

log pz̃zz(z̃zz|xo, to) +

L−1
∑

l=0

log

∣

∣

∣

∣

det

(

∂f−1
l (hhh(l))

∂hhh(l)

)∣

∣

∣

∣

−1

,

(10)

which is the summation of negative log-likelihood (NLL) over all observed coor-
dinates and random events.

Fig. 2: Structure of the conditional flow with a prior network.

Apart from the likelihood loss LNLL, the flow generator fθ can also be trained
with the discriminator Dφ through adversarial training. The adversarial loss for
the generator is depicted as:

LAdv(θ) = −
1

Nω

Nω
∑

i=1

Dφ(M̂
(i)), (11)

which uses the Wasserstein objective defined in Eq. 6; M̂ is the prediction matrix
and Nω is the total number of sampling.

Using the adversarial loss LAdv alone is prone to mode collapse. We demon-
strate below how the likelihood loss LNLL can mitigate the mode collapse by one
example. Suppose the data is generated from a mixture model of two Gaussian
distributions N (−1, 1) and N (1, 1). By adversarial training, the generator may
end up only generating one mode, say N (−1, 1). In this case, the discriminator
cannot distinguish between the samples and the ground truth. If the MLE is
used, the likelihood of the missing mode is very low, resulting in a high overall
NLL. Thus, the likelihood loss LNLL can guide the generator to leave the current
local optimum.
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3.5 Physics Regularization

The conditional flow model is further regularized by the physics-informed com-
putational graph, which encodes physics prior knowledge like partial differential
equations (PDE).

Suppose data follows laws that can be depicted as stochastic PDEs below:

uuut(x, t;ω) +Nx[uuu(x, t;ω);λ(ω)] = 000, (x, t) ∈ X × T , ω ∈ Ω,

B[uuu(x, t;ω)] = 000, (x, t) ∈ ∂X × T ,

I[uuu(x, 0;ω)] = 000, x ∈ X ,

(12)

where, uuut is its partial derivative of uuu with regard to t; ∂X is the boundary of
the space domain X ; Nx is a non-linear differential operator; B is a boundary
condition operator; I is an initial condition operator; λ is the parameters of
the PDEs. ω is a random event sampled from the probability space Ω, which
represents uncertainties residing in the PDE parameters or the boundary and
initial conditions.

By encoding physics information, the physics-informed flow generator has
an additional learning objective on the unobserved region C, which encourages
the prediction of the generator to follow the physics defined by the PDE. The
physics loss function is defined as:

LPhy(θ, λ) = Eq(xc,tc)

∣

∣Epzzz(zzz) [(ûuuc)t +Nx[ûuuc;λ]]
∣

∣

2
, (13)

where ûuuc = fθ(xc, tc, zzz) is the prediction of the generator on the unobserved re-
gion. This physics loss function serves as a regularization term for the generator.
If the flow generator fθ is well trained, the physics loss needs to be as close to
zero as possible.

3.6 Training of TrafficFlowGAN

The loss function of the flow model is a weighted sum of the likelihood loss,
adversarial loss, and physics loss:

Lf (θ) = αLNLL(θ) + βLAdv(θ) + γLPhy(θ, λ), (14)

where α, β, γ ∈ (0, 1] are hyperparameters that determine the contribution of
each loss component. With the generator loss Lf (θ), the discriminator loss LD(φ)
defined in Eq. 7, and physics loss LPhy(θ, λ) defined in Eq. 13, we are ready to
introduce the training algorithm as shown in Algorithm 1.

4 Numerical Experiment: Learning Solutions of A Known

Second-order PDE

In this experiment, we apply TrafficFlowGAN to learn solutions of a known PDE
and also to learn the relations of the PDE’s parameters.
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Algorithm 1 TrafficFlowGAN Training Algorithm.

Initialization:
Initialized physics parameters λ0; Initialized networks parameters θ0, φ0; Train-
ing iterations Iter; Batch size m; Learning rate lr; Weights of loss functions α,
β, and γ.

Input: The observation data {(x
(i)
o , t

(i)
o ,uuu

(i)
o )}No

i=1 and unobserved coordinates

{x
(j)
c , t

(j)
c }

Nc

j=1.

1: for k ∈ {0, ..., Iter} do

2: Sample batches {(x
(i)
o , t

(i)
o ,uuu

(i)
o )}mi=1 and {x

(j)
c , t

(j)
c }mj=1 from the observa-

tion data and unobserved coordinates, respectively
// update the discriminator

3: Calculate LD by Eq. 7
4: φk+1 ← φk − lr ·Adam(φk,∇φLD)

// update the generator

5: Calculate LNLL by Eq. 10, LAdv by Eq. 11, and LPhy by Eq. 13
6: Calculate Lf by Eq. 14
7: θk+1 ← θk − lr ·Adam(θk,∇θLf )

// update the physics

8: λk+1 ← λk − lr ·Adam(λk,∇λLPhy)
9: end for

4.1 Numerical Data

The numerical data is generated from the ARZ model [2], which is a second-order
PDE that is used to describe the traffic dynamics. It is depicted as

{

ρt + (ρu)x = 0,

(u+ h(ρ))t + u(u+ h(ρ))x = (Ueq(ρ)− u)/τ,
(15)

where,

h(ρ) = Ueq(0)− Ueq(ρ) (16)

is the hesitation function and

Ueq(ρ) = umax(1− ρ/ρmax) (17)

is the equilibrium traffic velocity; traffic density ρ and traffic velocity u are the
state variables, i.e. uuu = (ρ, u); τ is the relaxation parameter; ρmax and umax are
the maximum traffic density and the maximum traffic velocity, respectively. In
this experiment, we study a “ring road” in t ∈ [0, 3] and x ∈ [0, 1] with a boundary
condition uuu(0, t) = uuu(1, t). We set the parameters as ρmax = 1.13, umax = 1.02,
and τ = 0.02. We set the initial conditions of ρ and u as bell-shaped functions
shown in Fig. 3(a). The x-axis is the space domain, and the y-axis is the initial
value of ρ (blue line) and u (red line). We solve Eq. 15 using the Lax-Friedrichs
scheme on a spatio-temporal grid of sizes 240×960, and the solutions ρ(x, t) and
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the loss terms defined in Eq. 18 and Eq. 19, the final physics loss can thus be
written as:

LPhy = ηL
(1)
ARZ + (1− η)L

(2)
ARZ + ξLreg, (20)

where η ∈ (0, 1] and ξ ∈ (0,∞) are hyperparameters that control the weights.

(a) (b)

Fig. 4: Physics with surrogate models. (a) is the physics for ARZ and (b) is the
physics for LWR, which will be introduced in Section 5.2.

4.3 Experiment Setting

Experiments are conducted on a Google cloud workstation with 8 Intel Xeon E5-
2686 v4 processors and an NVIDIA V100 Tensor Core GPU with 16 GB memory
in Ubuntu 18.04.3. The learning rate for the Adam optimizer is 0.0005, and
other configurations are kept as default. The configuration of the discriminator
is different for different loop detectors, which are detailed in the supplementary
materials.

4.4 Results

The results of the TrafficFlowGAN are shown in Fig. 5. Fig. 5(a) is the prediction
of the traffic density. It demonstrates that the TrafficFlowGAN can reconstruct
the traffic density with observations from 4 sensors. Two prediction snapshots
at t = 0.078 and t = 1.0 shown in Fig. 5(b) and Fig. 5(c), respectively. The blue
line stands for the mean of the ground truth; the dashed red line represents the
mean of the prediction, and the yellow band is the prediction interval. Fig. 5(d)
illustrates the relation between traffic density and traffic velocity learned by the
s-net, i.e. Ûeq(ρ̂). The solid blue line is the ground-truth relation Ueq(ρ) that
is defined in Eq. 17. The dashed black line and the dashed red line are the
Ûeq(ρ̂) at the 1st and the 15000th epochs, respectively. We can see that s-net
manages to recover the underlying traffic density-velocity relation. The reason
for the relatively poor performance for ρ > 0.9 is that the numerical data does
not contain ρ that is bigger than 0.9, as indicated by the colorbar of Fig. 3(b).
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5.2 Physics-based Computational Graph

As the underlying physics for the real-world scenario is unknown, in addition
to the ARZ, we also adopt the LWR model as our physics. LWR is depicted as
below:

{

ρt + (ρu)x = 0,

u = Ueq(ρ) , umax(1− ρ/ρmax),
(21)

which shares the same physics parameters, i.e. ρmax and umax, as the ARZ. The
physics computational graph associated with LWR is illustrated in Fig. 4(b).
The corresponding physics losses are as below:







L
(1)
LWR = |Ezzz [ρ̂t + (ρ̂û)x]|

2

L
(2)
LWR =

∣

∣

∣
Ezzz

[

(Ûeq(ρ̂)− û)
]∣

∣

∣

2 . (22)

5.3 Baselines and Metrics

We adopt the following baselines for comparison: the pure flow model, the
physics-informed flow with ARZ as the physics (PhysFlow-ARZ), the physics-
informed flow with LWR as the physics (PhysFlow-LWR), FLowGAN, and the
ARZ-based extended Kalman filter (EKF) [13]. EKF applies a non- linear version
of the Kalman filter and is widely used in nonlinear systems like the TSE.

We use the L
2 relative percentage error (RE) to measure the difference be-

tween the mean of the prediction and that of the ground truth. The reason for
choosing this metric is to mitigate the influence of the scale of the ground truth.
In addition, the reverse Kullback-Leibler (KL) divergence is used to measure the
difference between the prediction distribution and the sample distribution.

5.4 Results

Fig. 7 shows the REs (left two) and KL divergences (right two) of traffic density
ρ and velocity u of TrafficFlowGAN and the baselines. The x-axis is the num-
ber of loop detectors. Different scatter types and colors are used to distinguish
with different models. From this figure, we can see that TrafficFlowGAN-ARZ
outperforms others across nearly all numbers of loop detectors for REs, and
TrafficFlowGAN-LWR achieves the best performance for KL divergences. We
also record the training time of each model when the number of loops is 10. The
Flow-based models, including Flow and PhysFlow, cost 0.11 second per epoch.
This means that the extra computational time from calculating the physics loss
is negligible. The training time of the FlowGAN-based models, including Traf-
ficFlowGAN and FlowGAN, is 0.31 second per epoch.

Fig. 8 show the predictions of traffic density (top row) and traffic velocity
(bottom row). Fig. 8(a) and Fig. 8(d) present the heatmaps of traffic density
and traffic velocity in spatio-temporal space. Those two predictions are close to
the ground truth shown in Fig. 6. The other 4 subfigures show the snapshots of
the prediction intervals of the traffic density and velocity.
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physics-informed flow, and the flow based GAN. We also show that TrafficFlow-
GAN can learn the real-world traffic density-velocity relation simultaneously.

This work can be further improved in two directions. First, apart from the
weighted sum, other approaches to integrating the likelihood loss, adversarial
loss, and physics loss can be proposed. Second, TrafficFlowGAN needs to be
re-trained if applied to other roads or to the same road but within a new time
slot. We will work on the generalizability of TrafficFlowGAN in the future.
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