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ABSTRACT

While end-to-end training of Deep Neural Networks

(DNNs) yields state of the art performance in an increas-

ing array of applications, it does not provide insight into, or

control over, the features being extracted. We report here on

a promising neuro-inspired approach to DNNs with sparser

and stronger activations. We use standard stochastic gradient

training, supplementing the end-to-end discriminative cost

function with layer-wise costs promoting Hebbian (“fire to-

gether,” “wire together”) updates for highly active neurons,

and anti-Hebbian updates for the remaining neurons. In-

stead of batch norm, we use divisive normalization of activa-

tions (suppressing weak outputs using strong outputs), along

with implicit ℓ2 normalization of neuronal weights. Experi-

ments with standard image classification tasks on CIFAR-10

demonstrate that, relative to baseline end-to-end trained ar-

chitectures, our proposed architecture (a) leads to sparser

activations (with only a slight compromise on accuracy),

(b) exhibits more robustness to noise (without being trained

on noisy data), (c) exhibits more robustness to adversarial

perturbations (without adversarial training).

Index Terms— Interpretable ML, Hebbian learning,

neuro inspired, machine learning

1. INTRODUCTION

Since their original breakthrough in image classification per-

formance, DNNs trained with backpropagation have attained

outstanding performance in a wide variety of fields [2, 3, 4, 5].

Yet there remain fundamental concerns regarding their lack

of interpretability and robustness (e.g, to noise, distribution

shifts, and adversarial perturbations). In this paper, we ex-

plore the thesis that a first step to alleviating these problems

is to exert more control on the features being extracted by

DNNs. Specifically, while standard DNNs produce a large

fraction of small activations at each layer, we seek architec-

tures which produce a small fraction of strong activations,

while continuing to utilize existing network architectures for
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feedforward inference and existing software infrastructure for

stochastic gradient training.

1.1. Approach and Contributions

In order to attain sparse, strong activations at each layer, we

employ the following neuro-inspired strategy for modifying

standard DNN training and architecture:

Hebbian/anti-Hebbian (HaH) Training: We supplement a

standard end-to-end discriminative cost function with layer-

wise costs at each layer which promote neurons producing

large activations and demote neurons producing smaller acti-

vations. The goal is to develop a neuronal basis that produces

a distributed sparse code, without requiring a reconstruction

cost as in standard sparse coding [6].

Neuronal Competition via Normalization: We further in-

crease sparsity by introducing Divisive Normalization (DN),

which enables larger activations to suppress smaller activa-

tions. In order to maintain a fair competition among neu-

rons, we introduce Implicit ℓ2 Normalization of the neuronal

weights, so that each activation may be viewed as a geometric

projection of the layer input onto the “direction” of the neu-

ron. (Using implicit rather than explicit weight normalization

in our inference architecture simplifies training.)

We report on experiments with CIFAR-10 image classi-

fication, comparing a baseline VGG-16 network trained end-

to-end against the same architecture with HaH training and

DN. Both architectures employ implicit weight normaliza-

tion, which we have verified does not adversely impact ac-

curacy. We demonstrate that the activations in our proposed

architecture are indeed more sparse than for the baseline net-

work. Furthermore, robustness against noise and adversar-

ial perturbations is enhanced, without having used noise aug-

mentation or adversarial training.

1.2. Related Work

Hebbian learning has a rich history in artificial neural net-

works, dating back to the neocognitron [7], and including

recent attempts at introducing it into deep architectures [8].

However, to the best of our knowledge, ours is the first paper

to clearly demonstrate gains in robustness from its incorpo-

ration in DNNs. Divisive normalization is a widely accepted
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Fig. 1: Our model consists of two different types of blocks: first 6 blocks are Hebbian-anti-Hebbian (HaH) while the rest are

regular VGG blocks. HaH blocks use a weight normalized convolutional layer, followed by ReLU, divisive normalization and

thresholding. Regular VGG blocks use a weight normalized convolutional layer followed by ReLU and batch norm.

concept in neuroscience [9, 10], and versions of it have been

shown to be competitive with other normalization techniques

in deep networks [11]. Our novel contribution is in show-

ing that divisive normalization can be engineered to enhance

sparsity and robustness. Finally, sparse coding with a recon-

struction objective was shown to lead to neuro-plausible out-

comes in a groundbreaking paper decades ago [6]. In contrast

to the iterative sparse coding and dictionary learning in such

an approach, our HaH-based training targets strong sparse ac-

tivations in a manner amenable to standard stochastic gradient

training.

Recent work showing potential robustness gains by di-

rectly including known aspects of mammalian vision in

DNNs includes [12], which employs Gabor filter blocks

and stochasticity, and [13], which employs neural activity

measurements from mice for regularization in DNNs. Rather

than incorporating specific features from biological vision,

we use neuro-inspiration to extract broad principles that can

be folded into data-driven learning and inference in DNNs.

2. MODEL

We now describe how we incorporate HaH training and

divisive normalization into a standard CNN for image classi-

fication. We consider a “classical” CNN for our experiments–

VGG-16 [14] applied to CIFAR-10, rather than variants of

ResNet [15], because residual connections complicate our

interpretation of building models from the bottom-up using

HaH learning. Since we wish to build robustness from the

bottom up, we modify the first few convolutional blocks to in-

corporate neuro-inspired principles. We term these modified

blocks “HaH blocks.”

Each HaH block employs convolution with implicit

weight normalization, followed by ReLU, then divisive nor-

malization, and then thresholding. Implicit weight normaliza-

tion enables us to interpret the convolution outputs for each

filter as projections, and we have verified that employing

it in all blocks of a baseline VGG-16 architecture does not

adversely impact accuracy (indeed, it slightly improves it).

Each standard (non-HaH) block in our architecture therefore

also employs convolution with implicit weight normalization,

followed by ReLU, but uses batch norm rather than divisive

normalization. Each HaH block contributes a HaH cost for

training, so that the overall cost function used for training is

the standard discriminative cost and the sum of the HaH costs

from the HaH blocks.

We now describe the key components of our architecture,

shown in Fig. 1.

2.1. Inference in a HaH block

Implicit weight normalization: Representing the convolu-

tion output at a given spatial location from a given filter as

a tensor inner product 〈·, ·〉 between the filter weights w and

the input x, the output of the ReLU unit following the filter is

given by

y = ReLU

(

〈w,x〉

||w||2

)

(1)

This effectively normalizes the weight tensor of each filter to

unit ℓ2 norm, without actually having to enforce an ℓ2 norm

constraint in the cost.

Divisive normalization: If we have N filters in a given HaH

block, let y1(loc), ..., yN (loc) denote the corresponding acti-

vations computed as in (Eq. 1) for a given spatial location loc.

Let M(loc) = 1
N

∑N

k=1 yk(loc) denote the mean of the acti-

vations at a given location, and let Mmax = maxlocM(loc)
denote the maximum of this mean over all locations. We nor-

malize each activation using these terms as follows:

zk(loc) =
yk(loc)

σMmax + (1− σ)M(loc)
, k = 1, ..., N (2)

where 0 ≤ σ ≤ 1 is a hyperparameter which can be sepa-

rately tuned for each HaH block. Thus, in addition to creating

competition among neurons at a given location by dividing

by M(loc), we also include Mmax in the denominator in or-

der to suppress contributions at locations for which the input

is “noise” rather than a strong enough “signal” well-aligned

with one or more of the filters. This particular implemen-

tation of divisive normalization ensures that the output of a

HaH-block is scale-invariant (i.e., we get the same output if

we scale the input to the block by any positive scalar).



Adaptive Thresholding: Finally, we ensure that each neuron

is producing significant outputs by neuron-specific threshold-

ing after divisive normalization. The output of the kth neuron

at location loc is given by

ok(loc) =

{

zk(loc) if zk(loc) ≥ τk
0, otherwise

(3)

where the threshold τk is neuron and image specific. For ex-

ample, we may set τk to the 90th percentile of the statistics

of zk(loc) in order to get an activation rate of 10% for each

neuron for every image. Another simple choice that works

well, but gives higher activation rates, is to set τk to the mean

of zk(loc) for each image.

2.2. HaH Training

For an N -neuron HaH block with activations yk(loc), k =
1, ..., N at location loc, the Hebbian/anti-Hebbian cost seeks

to maximize the average of the top K activations, and to

minimize the average of the remaining N − K activations,

where K is a hyperparameter. Thus, sorting the activations

{yk(loc)} so that y(1)(loc) ≥ y(2)(loc) ≥ ... ≥ y(N)(loc),
the contribution to the HaH cost (to be maximized) is given

by

Lblock(loc) =
1

K

K
∑

k=1

y(k)(loc)− λ
1

N −K

N
∑

k=K+1

y(k)(loc)

(4)

where λ ≥ 0 is a hyperparameter determining how much

to emphasize the anti-Hebbian component of the adaptation.

The overall HaH cost for the block, Lblock, which we wish to

maximize, is simply the mean over all locations and images.

The overall loss function to be minimized is now given by

L = Ldisc −
∑

HaH blocks

αblockLblock (5)

where Ldisc is the standard discriminative loss, and {αblock ≥
0} are hyper-parameters determining the relative weight of

the HaH costs across blocks.
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Fig. 2: HaH blocks yield sparser activations than baseline.

The measure of sparsity is the Hoyer ratio [16] of ℓ1 norm to

ℓ2 norm of activations across channels, averaged across spa-

tial locations, and then normalized to lie in [0,1] (lower values

correspond to more sparsity).

3. EXPERIMENTS

We consider VGG-16 with the first 6 blocks (each block

includes conv, ReLU, batch norm) replaced by HaH blocks

(each block includes conv, ReLU, divisive norm, threshold-

ing). In our training, we use Adam optimizer [17] with an

initial learning rate of 10−3, multiplied by 0.1 at epoch 60

and again at epoch 80. We train all models for 100 epochs on

CIFAR-10. We choose τk in Eq. 3 to keep 20% of activations.

We use [4.5× 10−3, 2.5× 10−3, 1.3× 10−3, 1× 10−3, 8×
10−4, 5 × 10−4] for α in Eq. 5. We use 0.1 for λ and set

K to 10% of number of filters in each layer in Eq. 4 and set

σ = 0.1 in Eq. 2. Details about other hyper-parameters can

be found in our code repository [1].

Sparser activations: Fig. 2 shows that the activations in these

first 6 blocks are indeed more sparse for our architecture than

for baseline VGG.

Enhanced robustness to noise: We borrow the concept of

signal-to-noise-ratio (SNR) from wireless communication to

obtain a block-wise measure of robustness. Let fn(x) denote

the input tensor at block n in response to clean image x, and

fn(x + w) the input tensor when the image is corrupted by

Conv Layer Inputs

SNRn = 

Clean Image

Noisy Image

2

2

n n

2

2

n
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Fig. 3: a: To compute the SNR at the nth block inputs, we divide the ℓ2 norm of the block input corresponding to clean image

by the ℓ2 norm of the difference of block corresponding to clean and noisy images. b: Comparison of SNR values of the block

inputs for the standard base model (gray) and ours (red).
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Fig. 4: Comparison of classification accuracies as a function

of noise σ. To provide a concrete sense of the impact of noise,

noisy images at increasing values of σ are shown below the

graph.

noise w. As illustrated in Fig. 3a, we define SNR as

SNRn = 10 log10

(

Ex∼Dtest

[

||fn(x)||
2
2

||fn(x+ w)− fn(x)||22

])

dB

(6)

converting to logarithmic decibel (dB) scale as is common

practice. Fig. 3b shows that the SNR for our model comfort-

ably exceeds that of the standard model, especially in the first

6 HaH blocks.

These higher SNR values also translate to gains in ac-

curacy with noisy images: Fig. 4 compares the accuracy of

our model and the base model for different levels of Gaussian

noise. There are substantial accuracy gains at high noise lev-

els: 64% vs. 26% at a noise standard deviation of 0.1, for

example.

Enhanced robustness to adversarial attacks: While we

have not trained with adversarial examples, we find that, as

expected, the noise rejection capabilities of the HaH blocks

also translates into gains in adversarial robustness relative

to the baseline VGG model. This holds for state-of-the-art

gradient-based attacks [18, 19], as well as AutoAttack, an en-

semble of parameter-free attacks suggested by RobustBench

[20]. We observe no additional benefit of using gradient-free

attacks, and conclude that the robustness provided by our

scheme is not because of gradient-masking. Because of space

constraints, we only report on results from minimum-norm

adversarial attacks and AutoAttack.

Fig. 5 shows that the minimum distortion needed to flip

Table 1: Enhanced accuracy against noise and adversarial at-

tacks

Clean
Noisy

(σ = 0.1)

Adv (ℓ∞)

(ǫ = 2/255)

Adv (ℓ2)

(ǫ = 0.25)

Standard 92.5% 26.6% 10.4% 13.9%

Ours 87.3% 64.0% 21.5% 27.6%

Base Ours
0.0

2.5
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Fig. 5: The average norm of minimum-norm adversarial at-

tacks is higher for our model for all ℓp norms considered.

the prediction of our model (computed using the recently

proposed fast minimum norm computation method [19]) is

higher for our model for all the ℓp attacks considered.

We have also obtained substantial gains in adversarial ac-

curacy against all four ℓp norm attacks (p = 0, 1, 2,∞) used

as benchmarks in adversarial machine learning. Table 1 dis-

plays a subset of results demonstrating accuracy gains against

noise and adversarial perturbations, at the expense of a slight

decrease in clean accuracy.

Ablation: Since we have different components in our HaH

blocks, we explore the effectiveness of each component by

doing an ablation study. Table 2 summarizes the contribution

from each of the components. We see that all of the compo-

nents (HaH training, divisive normalization, adaptive thresh-

olding) play an important role in obtaining the reported gains

in robustness to noise and adversarial attacks.

4. CONCLUSION

Our results indicate the promise of incorporating appropri-

ately engineered neuro-inspired principles into DNN architec-

tures and training. We have chosen supervised learning with-

out augmentation for this initial exposition, but we hope these

results motivate further exploration in developing a funda-

mental understanding of HaH training and inference, as well

as in extensive experimentation with a variety of architec-

tures, training techniques (including unsupervised and semi-

supervised learning, and data augmentation) and applications.

Table 2: Accuracies for ablation study

Clean
Noisy

(σ = 0.1)

Adv (ℓ∞)

(ǫ = 2/255)

Adv (ℓ2)

(ǫ = 0.25)

All included 87.3% 64.0% 21.5% 27.6%

No HaH loss 89.7% 50.4% 8.8% 11.7%

Batch norm

instead of

divisive norm

90.4% 46.7% 12.3% 17.4%

No

thresholding
89.9% 37.5% 3.7% 2.5%
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