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ABSTRACT

We develop an algorithm to train individually fair learning-to-rank (LTR) models.
The proposed approach ensures items from minority groups appear alongside
similar items from majority groups. This notion of fair ranking is based on the
definition of individual fairness from supervised learning and is more nuanced
than prior fair LTR approaches that simply ensure the ranking model provides
underrepresented items with a basic level of exposure. The crux of our method
is an optimal transport-based regularizer that enforces individual fairness and an
efficient algorithm for optimizing the regularizer. We show that our approach leads
to certifiably individually fair LTR models and demonstrate the efficacy of our
method on ranking tasks subject to demographic biases.

1 INTRODUCTION

Information retrieval (IR) systems are everywhere in today’s digital world, and ranking models are
integral parts of many IR systems. In light of their ubiquity, issues of algorithmic bias and unfairness
in ranking models have come to the fore of the public’s attention. In many applications, the items
to be ranked are individuals, so algorithmic biases in the output of ranking models directly affect
people’s lives. For example, gender bias in job search engines directly affect the career success of job
applicants (Dastin, 2018).

There is a rapidly growing literature on detecting and mitigating algorithmic bias in machine learning
(ML). The ML community has developed many formal definitions of algorithmic fairness along with
algorithms to enforce these definitions (Dwork et al., 2012; Hardt et al., 2016; Berk et al., 2018; Kusner
et al., 2018; Ritov et al., 2017; Yurochkin et al., 2020). Unfortunately, these issues have received less
attention in the IR community. In particular, compared to the myriad of mathematical definitions of
algorithmic fairness in the ML community, there are only a few definitions of algorithmic fairness for
ranking. A recent review of fair ranking (Castillo, 2019) identifies two characteristics of fair rankings:

1. sufficient exposure of items from disadvantaged groups in rankings: Rankings should display a
diversity of items. In particular, rankings should take care to display items from disadvantaged
groups to avoid allocative harms to items from such groups.

2. consistent treatment of similar items in rankings: Items with similar relevant attributes should be
ranked similarly.

There is a line of work on fair ranking by Singh & Joachims (2018; 2019) that focuses on the first
characteristic. In this paper, we complement this line of work by focusing on the second characteristic.
In particular, we (i) specialize the notion of individual fairness in ML to rankings and (ii) devise
an efficient algorithm for enforcing this notion in practice. We focus on the second characteristic
since, in some sense, consistent treatment of similar items implies adequate exposure: if there are
items from disadvantaged groups that are similar to relevant items from advantaged groups, then a
ranking model that treats similar items consistently will provide adequate exposure to the items from
disadvantaged groups.
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1.1 RELATED WORK

Our work addresses the fairness of a learning-to-rank (LTR) system with respect to the items being
ranked. The majority of work in this area requires a fair ranking to fairly allocate exposure (measured
by the rank of an item in a ranking) to items. One line of work (Yang & Stoyanovich, 2017; Zehlike
et al., 2017; Celis et al., 2018; Geyik et al., 2019; Celis et al., 2020; Yang et al., 2019b) requires a
fair ranking to place a minimum number of minority group items in the top k ranks. Another line
of work models the exposure items receive based on rank position and allocates exposure based on
these exposure models and item relevance (Singh & Joachims, 2018; Zehlike & Castillo, 2020; Biega
et al., 2018; Singh & Joachims, 2019; Sapiezynski et al., 2019). There is some work that consider
other fairness notions. The work of Kuhlman et al. (2019) proposes error-based fairness criteria, and
the framework of Asudeh et al. (2019) can handle arbitrary fairness constraints given by an oracle.
In contrast, we propose a fundamentally new definition: an individually fair ranking is invariant
to sensitive perturbations of the features of the items. For example, consider ranking a set of job
candidates, and consider the hypothetical set of candidates obtained from the original set by flipping
each candidate’s gender. We require that a fair LTR model produces the same ranking for both the
original and hypothetical set.

The work in Zehlike et al. (2017); Celis et al. (2018); Singh & Joachims (2018); Biega et al. (2018);
Geyik et al. (2019); Celis et al. (2020); Yang et al. (2019b); Wu et al. (2018); Asudeh et al. (2019)
propose post-processing algorithms to obtain a fair ranking, i.e., algorithms that fairly re-rank items
based on estimated relevance scores or rankings from potentially biased LTR models. However,
post-processing techniques are insufficient since they can be mislead by biased estimated relevance
scores (Zehlike & Castillo, 2020; Singh & Joachims, 2019) with the exception of the work in Celis
et al. (2020) which assumes a specific bias model and provably counteracts this bias. In contrast, like
Zehlike & Castillo (2020); Singh & Joachims (2019), we propose an in-processing algorithm. We
also note that there is some work on

We consider individual fairness as opposed to group fairness (Yang & Stoyanovich, 2017; Zehlike
et al., 2017; Celis et al., 2018; Singh & Joachims, 2018; Zehlike & Castillo, 2020; Geyik et al., 2019;
Sapiezynski et al., 2019; Kuhlman et al., 2019; Celis et al., 2020; Yang et al., 2019b; Wu et al., 2018;
Asudeh et al., 2019). The merits of individual fairness over group fairness have been well established,
e.g., group fair models can be blatantly unfair to individuals (Dwork et al., 2012). In fact, we show
empirically that individual fairness is adequate for group fairness but not vice versa. The work in
Biega et al. (2018); Singh & Joachims (2019) also considers individually fair LTR models. However,
our notion of individual fairness is fundamentally different since we utilize a fair metric on queries
like in the seminal work that introduced individual fairness (Dwork et al., 2012) instead of measuring
the similarity of items through relevance alone. To see the benefit of our approach, consider the job
applicant example. If the training data does not contain highly ranked minority candidates, then at
test time our LTR model will be able to correctly rank a minority candidate who should be highly
ranked, which is not necessarily true for the work in Biega et al. (2018); Singh & Joachims (2019).

2 PROBLEM FORMULATION

A query ¢ € Q to a ranker consists of a candidate set of n items that needs to be ranked d? =
{d%,...,d9} and a set of relevance scores rel? £ {rel?(d) € R}4cqq. Each item is represented
by a feature vector p(d) € X that describes the match between item d and query g where X is
the feature space of the item representations. We consider stochastic ranking policies (- | ¢) that
are distributions over rankings r (i.e. permutations) of the candidate set. Our notation for rankings
is 7(d): the rank of item d in ranking 7 (and r~1(j) is the j-ranked item). A policy generally
consists of two components: a scoring model and a sampling method. The scoring model is a
smooth ML model hy parameterized by 6 (e.g.a neural network) that outputs a vector of scores:
ho(p(d?)) = (ha(p(d])), ..., he(p(d2))). The sampling method defines a distribution on rankings
of the candidate set from the scores. For example, the Plackett-Luce (Plackett, 1975) model defines
the probability of the ranking r = (d1, ..., d,) as

o exp(hg(p(d;)))
w19 =1l @ + -+ ewotuto@y

j=1

2.1
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To sample a ranking from the Placket-Luce model, items from a query are chosen without replacement
where the probability of selecting items is given by the softmax of the scores of remaining items. The
order in which the items are sampled defines the order of the ranking from best to worst. The goal of
the LTR problem is finding a policy that has maximum expected utility:

7 £ argmax, Eqwq [U(r | q)] where U(n | ¢) £ Eyor(.q) [A(r, rel?)], (2.2)

where (@ is the distribution of queries, U(x | ¢) is the utility of a policy 7 for query ¢, and A is a
ranking metric (e.g. normalized discounted cumulative gain). In practice, we solve the empirical
version of (2.2):

N

1
arg max, Z [U(m | a)], (2.3)

i=1

where {g;} Y, is a training set. If the policy is parameterized by 6, it is not hard to evaluate the
gradient of the utility with respect to 6 with the log-derivative trick:

U (g | q) = O9Errory(.|q) [A(r, relq)] = /A(r, rel!)Ogmy(r | q)dr

= /A(r, rel?)dg{log 7o (r | @) }mo(r | @)dr = Errorr, (1) [A(r, rel?)0g log mo (r | q)]

In practice, we (approximately) evaluate JyU (7g | ¢) by sampling from my(- | ¢). This set-up is
mostly adopted from Yadav et al. (2019).

2.1 FAIR RANKING VIA INVARIANCE REGULARIZATION

We cast the fair ranking problem as training ranking policies that are invariant under certain sensitive
perturbations to the queries. Let dg be a fair metric on queries that encode which queries should be
treated similarly by the LTR model. For example, a LTR model should similarly rank a set of job
candidates and the hypothetical set of job candidates obtained from the original set via flipping the
gender of each candidate. Hence, these two queries should be close according to dg. We propose
Sensitive Set Transport Invariant Ranking (SenSTIR) to enforce individual fairness in ranking via the
following optimization problem:

7 £ argmax, Eqq [U(m | q)] — pR(7), (SenSTIR)

such that p > 0 is a regularization parameter and

SUPrIeA(Qx Q) E(gq)~m [dR(W(‘ | q), (- | q’))]
R(m) £ < subject to E(g.o~nlda(q.q)] <e (2.4)

is an invariance regularizer where d is a metric on ranking policies, A(Qx Q) is the set of probability
distributions on @ x Q where Q is the set of queries, and € > 0. At a high-level, individual fairness
requires ML models to have similar outputs for similar inputs. This property is exactly what the
regularizer encourages: the LTR model is encouraged to assign similar ranking policies (with respect
to dr) to similar queries (with respect to dg). The problem of enforcing invariance for individual
fairness has been considered in classification (Yurochkin et al., 2020; Yurochkin & Sun, 2021).
However, these methods are not readily applicable to the LTR setting because of two main challenges:
(i) defining a fair distance dg on queries, i.e., sets of items, and (ii) ensuring the resulting optimization
problem is differentiable.

Optimal transport distance do between queries We appeal to the machinery of optimal transport
to define an appropriate metric dg on queries, i.e., sets of items. First, we need a fair metric on
items d x that encodes our intuition of which items should be treated similarly. Such a metric also
appears in the traditional individual fairness definition (Dwork et al., 2012) for classification and
regression problems. Learning an individually fair metric is an important problem of its own that
is actively studied in the recent literature (Ilvento, 2020; Wang et al., 2019; Yurochkin et al., 2020;
Mukherjee et al., 2020). In the experiment section, the fair metric on items d x is learned from data
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using existing methods. The key idea is to view queries, i.e., sets of items, as distributions on X so
that a metric between distributions can be used. In particular, to define dg from dx, we utilize an
optimal transport distance between queries with dx as the transport cost:

ianEA(XXX) fXXXdX(x,x’)dH(x,x’)

do(q,q') 2 { subjectto o, &) = %Z?:l Spar) | 2.5)
(X, ) = 71L Z?:l 5¢(d;1')

where A(X x X) is the set of probability distributions on X x X where X’ is the feature space of
item representations and ¢ is the Dirac delta function.

3 ALGORITHM

In order to apply stochastic optimization to Equation (SenSTIR), we appeal to duality. In particular,
we use Theorem 2.3 of Yurochkin & Sun (2021) re-written with the notation of this work:

Theorem (Theorem 2.3 of Yurochkin & Sun (2021)). If dr(7(- | ¢),7(- | ¢')) — Ado(q,q’) is
continuous in (q,q') for all \, then the invariance regularizer R can be written as

R(m) = infyso{re + Equglra(m, q)]}, where 3.1
ra(m,q) = supgeo{dr(n(- | ), 7(- | ¢')) — Mdo(q. )} 32
In order to compute 7 (7, q), we can use gradient ascent on u(q’ | 7, q,\) = dr(7(- | q),7(- |

7)) — Mdo(q, q'). We start by computing the gradient of dg (g, ¢’) with respect to z’ £ (d?'). Let
£ p(d?). Let I1*(q, ¢') be the optimal transport plan for the problem defining dg (g, ¢'), that is

. 1< 1 &
do(g,q") =/X de(ww’)dﬂ*(%w’), I (-, &) = gZ%(d?)a (X, ) = gz(sw(dj/)'
X j=1 j=1

The probability distribution I1*(¢,q’) can be viewed as a coupling matrix where II7 ; =
IT* (p(d), cp(d?l)). Using this notation we have

Dudo(q,q) ZH”ade d?), p(d?)), (3.3)

where J>d denotes the derivative of dy with respect to its second input. If dg (7mg(- | q), mo(- |

7)) = ||ha(@(d?)) — hg(p(d?))||2/2, then by (3.3), a single iteration of gradient ascent on dg with
step size ~y for 2’ is

x;(l+1) _ x;(l) oy (azghe(l‘l(l))T(he( (Z)) )\ZH* Oadx (i, 2 J(l))> ) (3.4)

In our experiments, we use this choice of dr, which has been w1dely used, e.g., robustness in
image classification (Kannan et al., 2018; Yang et al., 2019a) and fairness (Yurochkin & Sun, 2021).
However, our theory and set-up do not preclude other metrics. We can now present Algorithm 1, an
alternating, stochastic algorithm, to solve (SenSTIR).

Algorithm 1: SenSTIR: Sensitive Set Transport Invariant Ranking

Input: Initial Parameters: 0y, Ao, €, p; Step Sizes: v, az, 1 > 0, Training queries: )
repeat

Sample mini-batch (g;,, rel?: )5 | from Q

ng A argmaxqz{%tht (@(dqtl)) - h9t (@(dq ))H% - /\tdQ(qtmq/)}? (S [B] /% Using
(3.4) =/

A1 max{0, A + arple — 5 211, do(ar, . a7,))}

Orp1 = Outni(F 12y 964U (7o, | a1,)}—p(Doho, (a1,) —Doho, (¢:.))" (o, (af,)—ha, (a1.))
until convergence
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4 THEORETICAL RESULTS

In this section, we study the generalization performance of the invariance regularizer R(hg) := R(7y),
which is an instance of a hierarchical optimal transport problem that does not have known uniform
convergence results in the literature. Furthermore, the regularizer is not a separable function of the
training examples so classical proof techniques are not applicable. To state the result, suppose that dx
is an approximation of the fair metric d» between items that is learned from data. The corresponding
learned metric on queries is defined by

infrrea(xxa) Sy da(@,a’)d(z, o)

do(q,q') £ { subjectto (-, X) = £ >0, Op(at) 4.1
(X, ) = % Z?:l %(d;ﬂ)

and the empirical regularizer is defined by

suPricacoxg)  En[dy(ho((d?)), ho(p(d?))]
R(hg) £ { subject to En[do(g.q")] <e : (4.2)
where @ is the distribution of training queries and dy is a metric on ) £ {hg(0(d?)) | ¢ € Q}.

Define a class of loss functions D by D = {dy, : @ x Q@ — R | hy € H}, where dy,(q,q¢') =
dy(h(p(d?)), h(p(d?))) and H is the hypothesis class of scoring functions.

Let N(D,d, €) be the e-covering of the class D with respect to a metric d. The entropy integral of D
(w.r.t. the uniform metric) measures the complexity of the class and is defined by

J(D) £ / V1o N(D T~ Toer €)de. “3)

Assumption Al. Bounded diameters: sup,, /¢y dx(z,2') < Dx, sup, ,/cy dy(y,y’) < Dy.

Assumption A2. Estimation error of d is bounded: sup,, /¢y ldx (x,2") — da(z,2")| < 1a.

Theorem 4.1. If assumptions Al and A2 hold and J (D) is finite, then with probability at least 1 — t

671
s [Rihy) — B(h)| < 18(J(D) ;ﬁ DiDy)

log %) > | Dyna
+ =,
2n €

0y (

where n is the number of training queries. A proof of the theorem is given in the appendix. The
key technical challenge is leveraging the transport geometry on the query space to obtain a uniform
bound on the convergence rate. This theorem implies that for a trained ranking model hy, the error
term |R(hg) — R(hg)| is small for large n. Therefore, one can certify that the value of the regularizer
R(hg) is small on yet unseen (test) data by ensuring that the value of R(hg) is small on training data.

5 COMPUTATIONAL RESULTS

In this section, we demonstrate the efficacy of SenSTIR for learning individually fair LTR models.
One key conclusion is that enforcing individual fairness is adequate to achieve group fairness but not
vice versa. See Section B of the appendix for full details about the experiments.

Fair metric Following Yurochkin et al. (2020), the individually fair metric dx on X is defined in
terms of a sensitive subspace A that is learned from data. In particular, dy is the Euclidean distance
of the data projected onto the orthogonal complement of A. This metric encodes variation due
to sensitive information about individuals in the subspace and ignores it when computing the fair
distance. For example, A can be formed by fitting linear classifiers to predict sensitive information,
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Figure 1: The points represent items shaded by their relevances, and the contours represent the
predicted scores. The minority items lie on the horizontal z;-axis because their z5 value is corrupted
to 0. The blue star and black star correspond to minority and majority items that are close in the fair
metric with nearly the same relevance. However, they have wildly different predicted scores under
the baseline. Using SenSTIR, as p increases, they eventually have the same predicted scores.

like gender or age, of individuals and taking the span of the vectors orthogonal to the corresponding
decision boundaries. In each experiment, we explain how A is learned.

Baselines For all methods, we learn linear score functions iy and maximize normalized discounted
cumulative gain (NDCG), i.e., A in Equation 2.2 is NDCG. We compare SenSTIR to (1) vanilla
training without fairness (“Baseline"), i.e., p = 0, (2) pre-processing by first projecting the data onto
the orthogonal complement of the sensitive subspace and then using vanilla training (“Project”), (3)
“Fair-PG-Rank" (Singh & Joachims, 2019), a recent approach for training fair LTR models, and (4)
randomly sampling the linear weights from a standard normal (“Random") to give context to NDCG.

5.1 SYNTHETIC

We use synthetic data considered in prior fair ranking work (Singh & Joachims, 2019). Each query
contains 10 majority or minority items in R? such that 8 items per query are majority group items in
expectation. For each item, z; and 2z, are drawn uniformly from [0, 3]. The relevance of an item is
21 + 25 clipped between 0 and 5. A majority item’s feature vector is (21, 22)”, whereas a minority
item’s feature vector is corrupted and given by (z1,0)%.

Fair Metric The sensitive subspace is spanned by the hyperplane learned by logistic regression to
predict whether an item is in the majority group. Recall, the fair metric is the Euclidean distance of
the projection of the data onto the orthogonal complement of this subspace. Since this hyperplane is
nearly equal to (0, 1)T, the biased feature 25 is ignored in the fair metric.

Results Figure | illustrates SenSTIR for p € {0,.0003,.001} with ¢ = .001. Each point is colored
by its relevance, and the contours show predicted scores where redder (respectively bluer) regions
indicates higher (respectively lower) predicted scores. Minority items are on the horizontal z; -axis
because of their corrupted features. When p = 0, i.e., fairness is not enforced, this score function
badly violates individual fairness since there are pairs of items close in the fair metric but with
wildly different predicted scores because the biased feature z5 is used. For example, the bottom blue
star is a minority item with nearly the same relevance as the top black star majority item; however,
the majority item’s predicted score is much higher. When p is increased, the contours learned by
SenSTIR eventually become vertical, thereby ignoring the biased feature z5 and achieving individual
fairness. When p = .001, the scores of the blue and black star are nearly equal because they are very
close in the fair metric and the fair regularization strength is large enough.

Figure 2 illustrates another individual fairness property of SenSTIR that Fair-PG-Rank does not
satisfy: ranking stability with respect to sensitive perturbations of the features. For each test query g,
let ¢' # q be the closest test query in terms of the fair distance dg. We can view ¢’ as a hypothetical
query in the test set. For each query ¢, we sample 10 rankings corresponding to ¢ and 10 hypothetical
rankings corresponding to ¢’ based on the learned ranking policy. The (4, j)-th entry of a heatmap in
Figure 2 is the proportion of times the ¢-th ranked item for query g is ranked j-th in the hypothetical
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Figure 2: The (4, j)-th entries of these heatmaps represent the proportion of times that the i-th ranked
item is moved to position j under the corresponding hypothetical ranking. With large enough p,
SenSTIR ranks the original queries and hypothetical queries similarly as desired.

ranking. To satisfy individual fairness, the original and hypothetical rankings should be similar,
meaning the heatmaps should be close to diagonal. Even though the baseline is relatively stable for
highly and lowly ranked items, these items still change positions under the hypothetical rankings more
than 50% of the time. Although Fair-PG-Rank satisfies group fairness, it is worse than the baseline in
terms of hypothetical stability, i.e., individual fairness. In contrast, as p increases, SenSTIR becomes
stable.

5.2 GERMAN CREDIT DATA SET

Following Singh & Joachims (2019), we adapt the German Credit classification data set (Dua &
Graff, 2017), which is susceptible to gender and age biases, to a LTR task. This data set contains
1000 individuals with binary labels indicating creditworthiness. Features include demographics like
gender and age as well as information about savings accounts, housing, and employment. To simulate
LTR data, individuals are sampled with replacement to build queries of size 10. Each individual has a
binary relevance, and on average 4 individuals are relevant in each query. To apply Fair-PG-Rank,
age is the binary protected attribute where the two groups are those younger than 25 and those 25 and
older, a split proposed by Kamiran & Calders (2009). For the fair metric, the sensitive subspace is
spanned by the ridge regression coefficients for predicting age based on all other features and the
standard basis vector corresponding to age.

Comparison metrics See Section B of the appendix for the precise definitions of these metrics. To
assess accuracy, following Singh & Joachims (2019), we report the average stochastic test NDCG by
sampling 25 rankings for each query from the learned ranking policy. To assess individual fairness,
we use ranking stability with respect to demographic perturbations, which is the natural analogue of
an evaluation metric for individual fairness in classification (Yurochkin & Sun, 2021; Yurochkin et al.,
2020; Garg et al., 2018). In particular, for each query, we create a hypothetical query by flipping the
(binary) gender of each individual in the query, and deterministically rank by sorting the items by
their scores. We report the average Kendall’s tau correlation (higher implies better individual fairness)
between a test query’s ranking and its hypothetical ranking. To assess group fairness and fairly
compare to Fair-PG-Rank based on their fairness definition, we report the average stochastic disparity
of group exposure also with 25 sampled rankings per query. This metric measures the asymmetric
differences of the ratio of exposure a group receives to its relevance per query and favors the group
with less relevance for a given query. Let G (respectively G) be the set of older (respectively
younger) people for a query ¢. Fori € {0, 1}, let Mg, = (1/|Gi|) 3_ 4cq, rel’(d). If Mg, > Mg,,
let G4 = Gy, Gp = Gy and G4 = G1, Gp = G otherwise. The stochastic disparity of group
exposure for a set of rankings {r; }}, corresponding to a query is

MGA Mg

N N

. {07 NToa] 2odeia 2inl Gen@TT) | NIG5] 2edeGp Sminl oy @TD) } 6
D

Results Figure 3 illustrates the fairness versus accuracy trade-off on the test set. The error bars

represent the standard error over 10 random train/test splits. Both SenSTIR and Fair-PG-Rank

enforce fairness through regularization, so we vary the regularization strength (p for SenSTIR with €

constant). Based on the NDCG of “Random", the regularization strength ranges are reasonable for

both methods. The left plot in Figure 3 shows the average Kendall’s tau correlation (higher is better)
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Figure 3: Individual (left) and group fairness (right) versus accuracy for the German credit data set

between test queries and their gender-flipped hypotheticals versus the average stochastic NDCG. The
maximum Kendall’s tau correlation is 1, which SenSTIR achieves with relatively high NDCG. We
emphasize that the sensitive subspace that SenSTIR utilizes to define the fair query metric directly
relates to age, not gender. In other words, our goal is to mitigate unfairness that arises from age
in the training data, not gender. However, age is correlated with gender, so this metric shows the
individually fair properties of SenSTIR generalize beyond age on the test set. We imagine that ML,
systems can be unfair to people with respect to features that can be difficult to know before deploying
these systems, so although flipping gender is a simplistic choice, it illustrates that SenSTIR can
be meaningfully individually fair with respect to these potentially unknown features that were not
given special consideration when choosing the fair metric or in training with SenSTIR. Furthermore,
SenSTIR gracefully trades off NDCG for individual fairness unlike Fair-PG-Rank. “Project” is worse
in terms of individual fairness than vanilla training without enforcing fairness. Without direct age
information, perhaps ‘“Project" must more heavily rely on gender to learn accurate rankings, which
illustrates that SenSTIR’s generalization properties from age to gender are non-trivial. Disparity of
group exposure (Where smaller numbers are better) versus NDCG is depicted on the right plot of
Figure 3. This group fairness metric is exactly what Fair-PG-Rank regularizes with. On average, for
the same value of NDCG, SenSTIR typically outperforms Fair-PG-Rank showing that individual
fairness can be adequate for group fairness but not vice versa. While “Project” improves mildly upon
the baseline, it shows being “age” blind does not result in group fair rankings.

5.3 MICROSOFT LEARNING TO RANK DATA SET

The demographic biases are real in the German Credit data, but the LTR task is simulated. There
are no standard LTR data sets with demographic biases, so we consider Microsoft’s Learning to
Rank (MSLR) data set (Qin & Liu, 2013) with an artificial algorithmic fairness concern dealing with
webpage quality following Yadav et al. (2019). The data set consists of query-web page pairs from
a search engine with nearly 140 features with integral relevance scores. To apply Fair-PG-Rank,
following Yadav et al. (2019), the protected binary attribute is whether a web page is high or low
quality defined by the 40th percentile of quality scores (feature 133). For the fair metric, the sensitive
subspace is spanned by the ridge regression coefficients for predicting the quality score (feature 133)
based on all features and the standard basis vector corresponding to the quality score.

Comparison metrics Again we use average stochastic NDCG to measure accuracy, and the dispartiy
of group exposure where the groups are high and low quality web pages. To assess individual fairness,
we use the same set-up as in the German Credit experiments except the hypothetical for each test
query q is the closest query ¢’ # g with respect to the fair metric over the train and test set.

Results Figure 4 shows the fairness and accuracy trade-off on the test set. Fair-PG-Rank becomes
unstable with large fair regularization as it can drop below a random ranking in NDCG. The left plot
shows the Kendall’s tau correlation between test queries and their hypotheticals. SenSTIR gracefully
trades-off NDCG with Kendall’s tau correlation unlike Fair-PG-Rank. The right plot shows that
SenSTIR also smoothly trades-off group fairness for NDCG. In contrast, as the regularization strength
increases, both NDCG and group exposure worsen for Fair-PG-Rank, which was also observed by
Yadav et al. (2019).
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Figure 4: Individual (left) and group fairness (right) versus NDCG for the MSLR data set

6 CONCLUSION

We proposed SenSTIR, an algorithm to learn provably individually fair LTR models with an optimal
transport-based regularizer. This regularizer encourages the LTR model to produce similar ranking
policies, i.e., distributions over rankings, for similar queries where similarity is defined by a fair
metric. Our notion of a fair ranking is complementary to prior definitions that require allocating
exposure to items fairly with respect to merit. In fact, we empirically showed that enforcing individual
fairness can lead to allocating exposure fairly for groups but allocating exposure fairly for groups
does not necessarily lead to individually fair LTR models. An interesting future work direction is
studying the fairness of LTR systems in the context of long-term effects (Mladenov et al., 2020).
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A PROOFS OF THEORETICAL RESULTS

Theorem A.1 (Theorem 4.1). If assumptions Al and A2 hold and J (D) is finite, then with probability
atleast1 —t

sup | R(h) — R(h)| <

1

heH - vn 2n €
Proof. For queries q, ¢ let
1 n 1 n
A(qa q/) = {H € A(X X X) : H(Xa ) = ﬁ Zégo(d?)a H(aX) = 5 Z(Stp(d?/)}'
j=1 j=1

Let II* € arg mingea (4,4 En[dx (X, X')] and observe that by assumption A2 and the definition of
dg and JQ we have

cZ R " —d s ) = inf E ci X,X’ - inf  Epld X7X’
a(¢:q) o(a.q") cAlg.a) i [da )l cAla.a) [ ( )l
: f E Al )( ! E . l >Lf )(/
GH%q,q’) H[ X( , X )] 1T [ X( ) )]

< En-[dx (X, X')] — En- [da (X, X)]
= Enpe [dae (X, X') = de (X, X)]
< 7d-
Similarly,
do(a:q') — do(a,d') < Eq.[da(X, X') = da (X, X')] < na-
It follows that

ldo(g,q') — dg(a.4)| < na. (A1)

Next, we will bound the difference |R(h) — R(h)|. To lighten the notation, we write h, k' for
h = h(¢(d?)),h = h(¢(d9)). From the dual representation of R(h) and R(h) we have

R(h) = R(h) = inf (Ae + E,_s[7x(h. @)1} — inf {Ae + Eqqlra(h.a)]} (A2)
= )l\gf(‘){)\é + ]EQNQ[’F)\ (h,Q)]} — Ne— EqNQ[f/\* (h,q)] (A.3)
<E, olfa(h @) — Eguglra-(h, q)] (A4

=E, olra- (. @)] = Eguqlra- (b, )] + B pPx- (R q) —ra-(h,q)].  (A5)
To bound the last term, note that

[7a- (@) = ra- (b q)| = sup{dy (h, 1) = X*do(q,4')} — sup{dy (h, 1) = X*do(a,4")} (A6)
q

q
< M\ sup{ldo(q,¢) — dolq,q)| (A7)

q/
< A"ng. (A.8)

Combining (A.8) and (A.5) yields

R(h) = R(h) < E,_glra-(h,@)] = Eguglra (B, @)] + Ana. (A9)
Using a similar argument,

R(h) = R(h) < Eguqlrs. (h,a)] = E _qlrs. (B, )] + Ana. (A.10)
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To find an upper bound on \*, observe that ) (h,q) > 0forall h € H, A > 0, as

ra(h,q) = sup {dy(h,h') — Mdo(q,q')}
q'ex
> dy(h,h) — Adg(q,q) = 0.
Thus

Ae < XNe+Eqg[ra(h,q)] = R(h) < Dy.
Rearranging the above yields \* < D% and the same upper bound is also valid for A* by the same
argument.

Combining inequalities (A.9,A.10) and the bound on A*, \*, we can write

. D
|[R(h) = R(h)] < sup [E,_5f(a) — Equ f(g)]| + =2,
fer €

where F = {ry(h,-) : A € [0, L], h € H}. A standard concentration argument proves

48(J(D) + e 'DxDy log 2

E,.of(a) ~ Eqnof(a)| < D 3
sup g0l (@) —Egnqf(@)| < Tn +Dy(— =)
with probability at least 1 — ¢. This completes the proof of the theorem. O

The main technical novelty in this proof is the bound on A, in terms of the diameter of the output
space. This restricts the set of possible c-transformed loss function class, thereby allowing us to
appeal to standard techniques from empirical process theory to obtain uniform convergence results.
Prior work in this area (e.g. Lee & Raginsky (2018)) relies on smoothness properties of the loss
instead of the geometric properties of the output space, but this precludes non-smooth output metrics.

B EXPERIMENTS

All experiments were ran a cluster of CPUS. We do not require a GPU.

B.1 DATA SETS AND PRE-PROCESSING

Synthetic Synthetic data is generated as described in the main text such that there are 100 queries
in the training set and 100 queries in the test set.

German Credit The German Credit data set (Dua & Graff, 2017) consists of 1000 individuals with
binary labels indicating if they are credit worthy or not. We use the version of the German Credit
data set that Singh & Joachims (2019) used found at https://www.kaggle.com/uciml/
german-credit. In particular, this version of the Geramn Credit data set only uses the follow-
ing features: age (integer), sex (binary, does not include any marital status information unlike
the original data set), job (categorical), housing (categorical), savings account (categor-
ical), checking account (integer), credit amount (integer), duration (integer), and
purpose (categorical). See Dua & Graff (2017) for an explanation of each feature.

Categorical features are the only features with missing data, so we treat missing data as its own
category. The following features are standardized by subtracting the mean and dividing by the
standard deviation (before this data is turned into LTR data): age, duration, and credit
amount. The remaining binary and categorical features are one hot encoded.

We use an 80/20 train/test split of the original 1000 data points, and then sample from the train-
ing/testing set with replacement to build the LTR data as discussed in the main text. For our
experiments, we use 10 random train/test splits.
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Microsoft Learning to Rank The Microsoft Learning to Rank data set (Qin & Liu, 2013) consists
of query-web page pairs each of which has 136 features and integral relevance scores in [0, 4]. We
use Fold 1’s train/validation/test split. Following Yadav et al. (2019), we use the data in Fold 1
and adopt the given train/validation/test split. The data and feature descriptions can be found at
https://www.microsoft.com/en-us/research/project/mslr/. We remove the
QualityScore feature (feature 132) since we use the QualityScore?2 (feature 133) feature to
learn the fair metric, and it appears based on the description of these features, they are very similar.
We standardize the remaining features (except for the features corresponding to Boolean model,
i.e. features 96-100, which are binary) by subtracting the mean and dividing by the standard deviation.
Following Yadav et al. (2019), we remove any queries with less than 20 web pages. Furthermore,
we only consider queries that have at least one web page with a relevance of 4. For each query,
we sample 20 web pages without replacement until at least one of the 20 sampled web pages has a
relevance of 4. After pre-processing, there are 33,060 train queries, 11,600 validation queries, and
11,200 test queries.

B.2 COMPARISON METRICS

Let 7 be a ranking (i.e. permutation) of a set of n items that are enumerated such that r(¢) € [n] is
the position of the i-th item in the ranking and r~' (i) € [n] is the item that is ranked i-th. Let rel,(4)
be the relevance of item ¢ given a query q.

Normalized Discounted Cumulative Gain (NDCG) Let .S, be the set of all rankings on n items.
The discounted cumulative gain (DCG) of a ranking r is
n_grely(rm1(4) _ q

DEG(r) = log, (i + 1)

i=1
The NDCG of a ranking 7 is
DCG(r)
maxreg, DCG(T’) '

Because we learn a distribution over rankings and the number of rankings is too large, we cannot
compute the expected value of the NDCG for a given query. Thus, for each query in the test set, we
sample /N rankings (where N = 10 for synthetic data, N = 25 for German credit data, and N = 32
for Microsoft Learning to Rank data) from the Placket-Luce distribution, compute the NDCG for
each of these rankings, and then take an average. We refer to this quantity as the stochastic NDCG.

Kendall’s tau correlation Let r and r’ be two rankings on n items. Then

1 . ) AN s . )

KT(r,1’) := @] Yo siga(r(i) — r(j))sign(r’ (i) — ()
2/ {i<ji,5€n]}

is the Kendall’s tau correlation between two rankings.

(Disparity of) Group exposure This definition was first proposed by Singh & Joachims (2019).
Assume each item belongs to one of two groups. Let G (respectively Gg) be the set of items for a
query q that belongs to group 1 (respectively group 0). Fori € {0, 1}, let Mg, = ﬁ > aca, rely(d),
which is referred to as the merit of group 4 for query ¢. For a ranking r and for ¢ € {0,1}, let
v (G;) = ﬁ > dea, m. Because we learn a distribution over rankings and the number of

rankings is too large, we cannot compute the expected value of v,.(G;) over this distribution. Instead,
we sample N rankings (where again N = 10 for synthetic data, N = 25 for German credit data, and
N = 32 for Microsoft Learning to Rank data) from the Placket-Luce model. Let R, be the set of
these N sampled rankings for query g. Then the stochastic disparity of group exposure for query ¢ is

F e, vr(Go) & Soep, ve(Gh)

max < 0, Mo — Mo, if Mg, > Mg, >0
¥ Xrer, vr(G1) & Z,er, vr(Go) .
max < 0, = f\jcl - = i/l;Go if 0 < Mg, < Mg,
0 ifMGO :OOI‘]\4G1 =0.
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In the language of Singh & Joachims (2019), we use the identity function for merit, and set the
position bias at position j to be m just as they did.

B.3 SENSTIR IMPLEMENTATION DETAILS

We implement SenSTIR in TensorFlow and use the Python POT package to compute the fair distance
between queries and to compute Equation (3.4), which requires solving optimal transport problems.
Throughout this section, variable names from our code are italicized, and the abbreviation we use to
refer to these variables/hyperparameters are followed in parenthesis.

Fair regularizer optimization Recall that in all of the experiments, the fair metric dy on items is
the Euclidean distance of the data projected onto the orthogonal complement of a subspace. In order
to optimize for the fair regularizer in Equation (SenSTIR), first we optimize over this subspace, and
we refer to this step as the subspace attack. Note, the distance between the original queries and the
resulting adversarial queries in the subspace is 0. Second, we use the resulting adversarial queries in
the subspace as an initialization to the full attack, i.e. we find adversarial queries that have a non-zero
fair distance to the original queries. We implement both using the Adam optimizer (Kingma & Ba,
2015).

Learning rates As mentioned above, we use the Adam optimizer to optimize the fair regularizer.
For the subspace attack, we set the learning rate to adv_step(as) and train for adv_epoch(ae) epochs,
and for the full attack, we set the learning rate to [2_attack(fs) and train for adv_epoch_full(fe)
epochs. We also use the Adam optimizer with a learning rate of .001 to learn the parameters of the
score function hg.

Fair start Our code allows training the baseline (i.e. when p = 0) for a percentage—given by
fair_start(frs)—of the total number of epochs before the optimization includes the fair regularizer.

Using baseline for variance reduction Following Singh & Joachims (2019), in the gradient
estimate of the empirical version of E ¢ [U (m | q)] in Equation (SenSTIR), we subtract off a
baseline term b(q) for each query g, where b(q) is the average utility U (7 | ¢) over the Monte Carlo
samples for the query g. This counteracts the high variance in the gradient estimate (Williams, 1992).

Other hyperparameters In Tables | and 2, E stands for the total number of epochs used to update
the score function hy, B stands for the batch size, [2 stands for the ¢5 regularization strength of the
weights, and M C' stands for the number of Monte Carlo samples used to estimate the gradient of the
empirical version of Eqq [U (7 | ¢)] in Equation (SenSTIR) for each query.

B.4 HYPERPARAMETERS

For the synthetic data, we use one train/test split. For the German experiments, we use 10 random
train/test splits all of which use the same hyperparameters. For the Microsoft experiments, we pick
hyperparameters on the validation set (where the range of hyperparameters considered are reported
below) based on the trade-off of stochastic NDCG and individual (respectively group) fairness for
SenSTIR (respectively Fair-PG-Rank), and report the comparison metrics on the test set.

Fair metric For the synthetic data experiments, we use sklearn’s logistic regression solver to
classify majority and minority individuals with 1/100 ¢5 regularization strength. For German and
Microsoft, we use sklearn’s RidgeCV solver with the default hyperparameters to predict age
and quality web page score, respectively. For the German experiments, when predicting age, each
individual is represented in the training data exactly once, regardless of the number of queries that an
individual appears in.

SenSTIR For every experiment, all weights are initialized by picking numbers in [—.0001, .0001]
uniformly at random, A in Algorithm 1 is always initialized with 2, and the learn-
ing rate for Adam for the score function hy is always .001. For synthetic data, the
fair regularization strength p varied in {.0003,.001}. For German, p is varied in
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{.001,.01,0.02,0.03,0.04, 0.05, 0.06, 0.06, 0.07,0.08,0.09, .1,0.11,0.12,0.13,0.14, 0.15, 0.16,
0.17,0.18,0.19,0.28,0.37,0.46, 0.55,0.64,0.73,0.82,0.91, 1,2, 3,4,5,6,7,8,9, 10, 50, 100}. For
Microsoft, p is varied in {.00001,.0001,.001,.01,.04,.07,.1,.33, .66, 1.}. We report results for all
choices of p.

See Table 1 for the remaining values of hyperparameters where the column names have been defined
in the previous section except for €, which refers to € in the definition of the fair regularizer. For
Microsoft, the best performing hyperparameters on the validation set are reported where the /5
regularization parameter for the weights are varied in {.001,.0001, 0}, as is varied in {.01,.001}, ae
and fe are varied in {20,40}, and € is varied in {1, .1, .01}.

Table 1: SenSTIR hyperparameter choices

E B as ae € fs fe frs 12 MC
Synthetic 2K 1  0.001 20 0.001 0.001 20 0 0 10
German 20K 10 .01 20 1 0.001 20 .1 0 25

Microsoft 68K 10 .0l 40 .01 0.001 40 1 0.001 32

Baseline and Project For the baseline (i.e. p = 0 with no fair regularization) and project baseline,
we use the same number of epochs, batch sizes, Monte Carlo samples, and ¢, regularization as in
Table 1 for SenSTIR. Furthermore, we use the same weight initialization and learning rate for Adam
as in the SenSTIR experiments.

Fair-PG-Rank We use the implementation found at https://github.com/ashudeep/
Fair-PGRank for the synthetic and German experiments, whereas we use our own implementa-
tion for the Microsoft experiments because we could not get their code to run on this data. They
use Adam for optimization, and the learning rate is .1 for the synthetic data and .001 for Ger-
man and Microsoft. Let A refer to the Fair-PG-Rank fair regularization strength. For synthetic,
A = 25. For German, A is varied in {.1,1,1.5,2,2.5,3,3.5,4}. For Microsoft, A is varied in
{.001,.01,.1,.5,1,2,3,4,5,6,7,8,9, 10, 50, 100, 500, 150, 200, 250, 300, 350, 400, 450, 500, 550,

600, 650, 700, 750, 800, 850, 900, 950, 1000}. We report results for all choices of A. See Table 2
which summarizes the remaining hyperparameter choices.

Table 2: Fair-PG-Rank hyperparameter choices
E B 12 MC
Synthetic 5 1 0 10

German 100 1 0 25
Microsoft 68K 10 .01 32

16



	Introduction
	Related work

	Problem formulation
	Fair Ranking via Invariance Regularization

	Algorithm
	Theoretical Results
	Computational results
	Synthetic
	German Credit data set
	Microsoft Learning To Rank data set

	Conclusion
	Proofs of Theoretical Results
	Experiments
	Data sets and pre-processing
	Comparison Metrics
	SenSTIR implementation details
	Hyperparameters


