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ABSTRACT

We develop an algorithm to train individually fair learning-to-rank (LTR) models.
The proposed approach ensures items from minority groups appear alongside
similar items from majority groups. This notion of fair ranking is based on the
definition of individual fairness from supervised learning and is more nuanced
than prior fair LTR approaches that simply ensure the ranking model provides
underrepresented items with a basic level of exposure. The crux of our method
is an optimal transport-based regularizer that enforces individual fairness and an
efficient algorithm for optimizing the regularizer. We show that our approach leads
to certifiably individually fair LTR models and demonstrate the efficacy of our
method on ranking tasks subject to demographic biases.

1 INTRODUCTION

Information retrieval (IR) systems are everywhere in today’s digital world, and ranking models are
integral parts of many IR systems. In light of their ubiquity, issues of algorithmic bias and unfairness
in ranking models have come to the fore of the public’s attention. In many applications, the items
to be ranked are individuals, so algorithmic biases in the output of ranking models directly affect
people’s lives. For example, gender bias in job search engines directly affect the career success of job
applicants (Dastin, 2018).

There is a rapidly growing literature on detecting and mitigating algorithmic bias in machine learning
(ML). The ML community has developed many formal definitions of algorithmic fairness along with
algorithms to enforce these definitions (Dwork et al., 2012; Hardt et al., 2016; Berk et al., 2018; Kusner
et al., 2018; Ritov et al., 2017; Yurochkin et al., 2020). Unfortunately, these issues have received less
attention in the IR community. In particular, compared to the myriad of mathematical definitions of
algorithmic fairness in the ML community, there are only a few definitions of algorithmic fairness for
ranking. A recent review of fair ranking (Castillo, 2019) identifies two characteristics of fair rankings:

1. sufficient exposure of items from disadvantaged groups in rankings: Rankings should display a
diversity of items. In particular, rankings should take care to display items from disadvantaged
groups to avoid allocative harms to items from such groups.

2. consistent treatment of similar items in rankings: Items with similar relevant attributes should be
ranked similarly.

There is a line of work on fair ranking by Singh & Joachims (2018; 2019) that focuses on the first
characteristic. In this paper, we complement this line of work by focusing on the second characteristic.
In particular, we (i) specialize the notion of individual fairness in ML to rankings and (ii) devise
an efficient algorithm for enforcing this notion in practice. We focus on the second characteristic
since, in some sense, consistent treatment of similar items implies adequate exposure: if there are
items from disadvantaged groups that are similar to relevant items from advantaged groups, then a
ranking model that treats similar items consistently will provide adequate exposure to the items from
disadvantaged groups.
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1.1 RELATED WORK

Our work addresses the fairness of a learning-to-rank (LTR) system with respect to the items being
ranked. The majority of work in this area requires a fair ranking to fairly allocate exposure (measured
by the rank of an item in a ranking) to items. One line of work (Yang & Stoyanovich, 2017; Zehlike
et al., 2017; Celis et al., 2018; Geyik et al., 2019; Celis et al., 2020; Yang et al., 2019b) requires a
fair ranking to place a minimum number of minority group items in the top k ranks. Another line
of work models the exposure items receive based on rank position and allocates exposure based on
these exposure models and item relevance (Singh & Joachims, 2018; Zehlike & Castillo, 2020; Biega
et al., 2018; Singh & Joachims, 2019; Sapiezynski et al., 2019). There is some work that consider
other fairness notions. The work of Kuhlman et al. (2019) proposes error-based fairness criteria, and
the framework of Asudeh et al. (2019) can handle arbitrary fairness constraints given by an oracle.
In contrast, we propose a fundamentally new definition: an individually fair ranking is invariant
to sensitive perturbations of the features of the items. For example, consider ranking a set of job
candidates, and consider the hypothetical set of candidates obtained from the original set by flipping
each candidate’s gender. We require that a fair LTR model produces the same ranking for both the
original and hypothetical set.

The work in Zehlike et al. (2017); Celis et al. (2018); Singh & Joachims (2018); Biega et al. (2018);
Geyik et al. (2019); Celis et al. (2020); Yang et al. (2019b); Wu et al. (2018); Asudeh et al. (2019)
propose post-processing algorithms to obtain a fair ranking, i.e., algorithms that fairly re-rank items
based on estimated relevance scores or rankings from potentially biased LTR models. However,
post-processing techniques are insufficient since they can be mislead by biased estimated relevance
scores (Zehlike & Castillo, 2020; Singh & Joachims, 2019) with the exception of the work in Celis
et al. (2020) which assumes a specific bias model and provably counteracts this bias. In contrast, like
Zehlike & Castillo (2020); Singh & Joachims (2019), we propose an in-processing algorithm. We
also note that there is some work on

We consider individual fairness as opposed to group fairness (Yang & Stoyanovich, 2017; Zehlike
et al., 2017; Celis et al., 2018; Singh & Joachims, 2018; Zehlike & Castillo, 2020; Geyik et al., 2019;
Sapiezynski et al., 2019; Kuhlman et al., 2019; Celis et al., 2020; Yang et al., 2019b; Wu et al., 2018;
Asudeh et al., 2019). The merits of individual fairness over group fairness have been well established,
e.g., group fair models can be blatantly unfair to individuals (Dwork et al., 2012). In fact, we show
empirically that individual fairness is adequate for group fairness but not vice versa. The work in
Biega et al. (2018); Singh & Joachims (2019) also considers individually fair LTR models. However,
our notion of individual fairness is fundamentally different since we utilize a fair metric on queries
like in the seminal work that introduced individual fairness (Dwork et al., 2012) instead of measuring
the similarity of items through relevance alone. To see the benefit of our approach, consider the job
applicant example. If the training data does not contain highly ranked minority candidates, then at
test time our LTR model will be able to correctly rank a minority candidate who should be highly
ranked, which is not necessarily true for the work in Biega et al. (2018); Singh & Joachims (2019).

2 PROBLEM FORMULATION

A query q ∈ Q to a ranker consists of a candidate set of n items that needs to be ranked dq ,

{dq1, . . . , dqn} and a set of relevance scores relq , {relq(d) ∈ R}d∈dq . Each item is represented
by a feature vector ϕ(d) ∈ X that describes the match between item d and query q where X is
the feature space of the item representations. We consider stochastic ranking policies π(· | q) that
are distributions over rankings r (i.e. permutations) of the candidate set. Our notation for rankings
is r(d): the rank of item d in ranking r (and r−1(j) is the j-ranked item). A policy generally
consists of two components: a scoring model and a sampling method. The scoring model is a
smooth ML model hθ parameterized by θ (e.g.a neural network) that outputs a vector of scores:

hθ(ϕ(d
q)) , (hθ(ϕ(d

q
1)), . . . , hθ(ϕ(d

q
n))). The sampling method defines a distribution on rankings

of the candidate set from the scores. For example, the Plackett-Luce (Plackett, 1975) model defines
the probability of the ranking r = 〈d1, . . . , dn〉 as

πθ(r | q) =
n∏

j=1

exp(hθ(ϕ(dj)))

exp(hθ(ϕ(dj))) + · · ·+ exp(hθ(ϕ(dn)))
. (2.1)

2



Published as a conference paper at ICLR 2021

To sample a ranking from the Placket-Luce model, items from a query are chosen without replacement
where the probability of selecting items is given by the softmax of the scores of remaining items. The
order in which the items are sampled defines the order of the ranking from best to worst. The goal of
the LTR problem is finding a policy that has maximum expected utility:

π∗ , argmaxπEq∼Q

[
U(π | q)

]
where U(π | q) , Er∼π(·|q)

[
∆(r, relq)

]
, (2.2)

where Q is the distribution of queries, U(π | q) is the utility of a policy π for query q, and ∆ is a
ranking metric (e.g. normalized discounted cumulative gain). In practice, we solve the empirical
version of (2.2):

π̂ , argmaxπ
1

N

N∑

i=1

[
U(π | qi)

]
, (2.3)

where {qi}Ni=1 is a training set. If the policy is parameterized by θ, it is not hard to evaluate the
gradient of the utility with respect to θ with the log-derivative trick:

∂θU(πθ | q) = ∂θEr∼πθ(·|q)

[
∆(r, relq)

]
=

∫
∆(r, relq)∂θπθ(r | q)dr

=

∫
∆(r, relq)∂θ{log πθ(r | q)}πθ(r | q)dr = Er∼πθ(·|q)

[
∆(r, relq)∂θ log πθ(r | q)

]
.

In practice, we (approximately) evaluate ∂θU(πθ | q) by sampling from πθ(· | q). This set-up is
mostly adopted from Yadav et al. (2019).

2.1 FAIR RANKING VIA INVARIANCE REGULARIZATION

We cast the fair ranking problem as training ranking policies that are invariant under certain sensitive
perturbations to the queries. Let dQ be a fair metric on queries that encode which queries should be
treated similarly by the LTR model. For example, a LTR model should similarly rank a set of job
candidates and the hypothetical set of job candidates obtained from the original set via flipping the
gender of each candidate. Hence, these two queries should be close according to dQ. We propose
Sensitive Set Transport Invariant Ranking (SenSTIR) to enforce individual fairness in ranking via the
following optimization problem:

π∗ , argmaxπEq∼Q

[
U(π | q)

]
− ρR(π), (SenSTIR)

such that ρ > 0 is a regularization parameter and

R(π) ,





supΠ∈∆(Q×Q) E(q,q′)∼Π

[
dR(π(· | q), π(· | q′))

]

subject to E(q,q′)∼Π

[
dQ(q, q

′)
]
≤ ε

Π(·,Q) = Q





(2.4)

is an invariance regularizer where dR is a metric on ranking policies, ∆(Q×Q) is the set of probability
distributions on Q×Q where Q is the set of queries, and ε > 0. At a high-level, individual fairness
requires ML models to have similar outputs for similar inputs. This property is exactly what the
regularizer encourages: the LTR model is encouraged to assign similar ranking policies (with respect
to dR) to similar queries (with respect to dQ). The problem of enforcing invariance for individual
fairness has been considered in classification (Yurochkin et al., 2020; Yurochkin & Sun, 2021).
However, these methods are not readily applicable to the LTR setting because of two main challenges:
(i) defining a fair distance dQ on queries, i.e., sets of items, and (ii) ensuring the resulting optimization
problem is differentiable.

Optimal transport distance dQ between queries We appeal to the machinery of optimal transport
to define an appropriate metric dQ on queries, i.e., sets of items. First, we need a fair metric on
items dX that encodes our intuition of which items should be treated similarly. Such a metric also
appears in the traditional individual fairness definition (Dwork et al., 2012) for classification and
regression problems. Learning an individually fair metric is an important problem of its own that
is actively studied in the recent literature (Ilvento, 2020; Wang et al., 2019; Yurochkin et al., 2020;
Mukherjee et al., 2020). In the experiment section, the fair metric on items dX is learned from data
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using existing methods. The key idea is to view queries, i.e., sets of items, as distributions on X so
that a metric between distributions can be used. In particular, to define dQ from dX , we utilize an
optimal transport distance between queries with dX as the transport cost:

dQ(q, q
′) ,





infΠ∈∆(X×X )

∫
X×X

dX (x, x′)dΠ(x, x′)

subject to Π(·,X ) = 1
n

∑n
j=1 δϕ(dq

j
)

Π(X , ·) = 1
n

∑n
j=1 δϕ(dq′

j
)

, (2.5)

where ∆(X × X ) is the set of probability distributions on X × X where X is the feature space of
item representations and δ is the Dirac delta function.

3 ALGORITHM

In order to apply stochastic optimization to Equation (SenSTIR), we appeal to duality. In particular,
we use Theorem 2.3 of Yurochkin & Sun (2021) re-written with the notation of this work:

Theorem (Theorem 2.3 of Yurochkin & Sun (2021)). If dR(π(· | q), π(· | q′)) − λdQ(q, q
′) is

continuous in (q, q′) for all λ, then the invariance regularizer R can be written as

R(π) = infλ≥0{λε+ Eq∼Q[rλ(π, q)]},where (3.1)

rλ(π, q) , supq′∈Q{dR(π(· | q), π(· | q′))− λdQ(q, q
′)}. (3.2)

In order to compute rλ(π, q), we can use gradient ascent on u(q′ | π, q, λ) , dR(π(· | q), π(· |
q′))− λdQ(q, q

′). We start by computing the gradient of dQ(q, q
′) with respect to x′ , ϕ(dq

′

). Let

x , ϕ(dq). Let Π?(q, q′) be the optimal transport plan for the problem defining dQ(q, q
′), that is

dQ(q, q
′) =

∫

X×X

dX (x, x′)dΠ?(x, x′), Π?(·,X ) = 1

n

n∑

j=1

δϕ(dq
j
), Π

?(X , ·) = 1

n

n∑

j=1

δ
ϕ(dq′

j
)
.

The probability distribution Π?(q, q′) can be viewed as a coupling matrix where Π?
i,j ,

Π?(ϕ(dqi ), ϕ(d
q′

j )). Using this notation we have

∂x′
j
dQ(q, q

′) =

n∑

i=1

Π?
i,j∂2dX (ϕ(dqi ), ϕ(d

q′

j )), (3.3)

where ∂2dX denotes the derivative of dX with respect to its second input. If dR(πθ(· | q), πθ(· |
q′)) = ‖hθ(ϕ(d

q))− hθ(ϕ(d
q′))‖22/2, then by (3.3), a single iteration of gradient ascent on dQ with

step size γ for x′ is

x
′(l+1)
j = x

′(l)
j + γ

(
∂x′

j
hθ(x

′(l))T (hθ(x
′(l))− hθ(x))− λ

n∑

i=1

Π?
i,j∂2dX (xi, x

′(l)
j )

)
. (3.4)

In our experiments, we use this choice of dR, which has been widely used, e.g., robustness in
image classification (Kannan et al., 2018; Yang et al., 2019a) and fairness (Yurochkin & Sun, 2021).
However, our theory and set-up do not preclude other metrics. We can now present Algorithm 1, an
alternating, stochastic algorithm, to solve (SenSTIR).

Algorithm 1: SenSTIR: Sensitive Set Transport Invariant Ranking

Input: Initial Parameters: θ0, λ0, ε, ρ; Step Sizes: γ, αt, ηt > 0, Training queries: Q̂
1 repeat

2 Sample mini-batch (qti , rel
qti )Bi=1 from Q̂

3 q′ti ← argmaxq′{ 12‖hθt(ϕ(d
qti ))− hθt(ϕ(d

q′))‖22 − λtdQ(qti , q
′)}, i ∈ [B] /* Using

(3.4) */

4 λt+1 ← max{0, λt + αtρ(ε− 1
B

∑B
i=1 dQ(qti , q

′
ti
))}

5 θt+1 ← θt+ηt(
1
B

∑B
i=1 ∂θ{U(πθt | qti)}−ρ(∂θhθt(q

′
ti
)−∂θhθt(qti))

T (hθt(q
′
ti
)−hθt(qti))

6 until convergence
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4 THEORETICAL RESULTS

In this section, we study the generalization performance of the invariance regularizer R(hθ) := R(πθ),
which is an instance of a hierarchical optimal transport problem that does not have known uniform
convergence results in the literature. Furthermore, the regularizer is not a separable function of the

training examples so classical proof techniques are not applicable. To state the result, suppose that d̂X
is an approximation of the fair metric dX between items that is learned from data. The corresponding
learned metric on queries is defined by

d̂Q(q, q
′) ,





infΠ∈∆(X×X )

∫
X×X

d̂X (x, x′)dΠ(x, x′)

subject to Π(·,X ) = 1
n

∑n
j=1 δϕ(dq

j
)

Π(X , ·) = 1
n

∑n
j=1 δϕ(dq′

j
)

, (4.1)

and the empirical regularizer is defined by

R̂(hθ) ,





supΠ∈∆(Q×Q) EΠ

[
dY(hθ(ϕ(d

q)), hθ(ϕ(d
q′))
]

subject to EΠ

[
d̂Q(q, q

′)
]
≤ ε

Π(·,Q) = Q̂

, (4.2)

where Q̂ is the distribution of training queries and dY is a metric on Y , {hθ(ϕ(d
q)) | q ∈ Q}.

Define a class of loss functions D by D , {dhθ
: Q × Q → R+ | hθ ∈ H}, where dh(q, q

′) ,

dY(h(ϕ(d
q)), h(ϕ(dq

′

))) andH is the hypothesis class of scoring functions.

Let N(D, d, ε) be the ε-covering of the class D with respect to a metric d. The entropy integral of D
(w.r.t. the uniform metric) measures the complexity of the class and is defined by

J(D) ,
∫ ∞

0

√
logN(D, ‖ · ‖∞, ε)dε. (4.3)

Assumption A1. Bounded diameters: supx,x′∈X dX (x, x′) ≤ DX , supy,y′∈Y dY(y, y
′) ≤ DY .

Assumption A2. Estimation error of dX is bounded: supx,x′∈X |d̂X (x, x′)− dX (x, x′)| ≤ ηd.

Theorem 4.1. If assumptions A1 and A2 hold and J(D) is finite, then with probability at least 1− t

sup
hθ∈H

|R̂(hθ)−R(hθ)| ≤
48(J(D) + ε−1DXDY)√

n
+DY

(
log 2

t

2n

) 1

2

+
DYηd

ε
,

where n is the number of training queries. A proof of the theorem is given in the appendix. The
key technical challenge is leveraging the transport geometry on the query space to obtain a uniform

bound on the convergence rate. This theorem implies that for a trained ranking model ĥθ, the error

term |R̂(ĥθ)−R(ĥθ)| is small for large n. Therefore, one can certify that the value of the regularizer

R(ĥθ) is small on yet unseen (test) data by ensuring that the value of R̂(ĥθ) is small on training data.

5 COMPUTATIONAL RESULTS

In this section, we demonstrate the efficacy of SenSTIR for learning individually fair LTR models.
One key conclusion is that enforcing individual fairness is adequate to achieve group fairness but not
vice versa. See Section B of the appendix for full details about the experiments.

Fair metric Following Yurochkin et al. (2020), the individually fair metric dX on X is defined in
terms of a sensitive subspace A that is learned from data. In particular, dX is the Euclidean distance
of the data projected onto the orthogonal complement of A. This metric encodes variation due
to sensitive information about individuals in the subspace and ignores it when computing the fair
distance. For example, A can be formed by fitting linear classifiers to predict sensitive information,
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A PROOFS OF THEORETICAL RESULTS

Theorem A.1 (Theorem 4.1). If assumptions A1 and A2 hold and J(D) is finite, then with probability
at least 1− t

sup
h∈H
|R̂(h)−R(h)| ≤ 48(J(D) + ε−1DXDY)√

n
+DY

(
log 2

t

2n

) 1

2

+
DYηd
ε

.

Proof. For queries q, q′ let

∆(q, q′) = {Π ∈ ∆(X × X ) : Π(X , ·) = 1

n

n∑

j=1

δϕ(dq
j
), Π(·,X ) = 1

n

n∑

j=1

δ
ϕ(dq′

j
)
}.

Let Π∗ ∈ argminΠ∈∆(q,q′)EΠ[dX (X,X ′)] and observe that by assumption A2 and the definition of

dQ and d̂Q we have

d̂Q(q, q
′)− dQ(q, q

′) = inf
Π∈∆(q,q′)

EΠ[d̂X (X,X ′)]− inf
Π∈∆(q,q′)

EΠ[dX (X,X ′)]

= inf
Π∈∆(q,q′)

EΠ[d̂X (X,X ′)]− EΠ∗ [dX (X,X ′)]

≤ EΠ∗ [d̂X (X,X ′)]− EΠ∗ [dX (X,X ′)]

= EΠ∗ [d̂X (X,X ′)− dX (X,X ′)]

≤ ηd.

Similarly,

dQ(q, q
′)− d̂Q(q, q

′) ≤ EΠ̂∗ [dX (X,X ′)− d̂X (X,X ′)] ≤ ηd.

It follows that

|d̂Q(q, q′)− dQ(q, q
′)| ≤ ηd. (A.1)

Next, we will bound the difference |R̂(h) − R(h)|. To lighten the notation, we write h, h′ for

h = h(φ(dq)), h′ = h(φ(dq
′

)). From the dual representation of R(h) and R̂(h) we have

R̂(h)−R(h) = inf
λ≥0
{λε+ Eq∼Q̂[r̂λ(h, q)]} − inf

λ≥0
{λε+ Eq∼Q[rλ(h, q)]} (A.2)

= inf
λ≥0
{λε+ Eq∼Q̂[r̂λ(h, q)]} − λ∗ε− Eq∼Q̂[r̂λ∗(h, q)] (A.3)

≤ Eq∼Q̂[r̂λ∗(h, q)]− Eq∼Q[rλ∗(h, q)] (A.4)

= Eq∼Q̂[rλ∗(h, q)]− Eq∼Q[rλ∗(h, q)] + Eq∼Q̂[r̂λ∗(h, q)− rλ∗(h, q)]. (A.5)

To bound the last term, note that

|r̂λ∗(h, q)− rλ∗(h, q)| = sup
q′
{d̂Y(h, h′)− λ∗dQ(q, q

′)} − sup
q′
{d̂Y(h, h′)− λ∗dQ(q, q

′)} (A.6)

≤ λ∗ sup
q′
{|dQ(q, q′)− d̂Q(q, q

′)| (A.7)

≤ λ∗ηd. (A.8)

Combining (A.8) and (A.5) yields

R̂(h)−R(h) ≤ Eq∼Q̂[rλ∗(h, q)]− Eq∼Q[rλ∗(h, q)] + λ∗ηd. (A.9)

Using a similar argument,

R(h)− R̂(h) ≤ Eq∼Q[rλ̂∗(h, q)]− Eq∼Q̂[rλ̂∗(h, q)] + λ̂∗ηd. (A.10)
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To find an upper bound on λ∗, observe that rλ(h, q) ≥ 0 for all h ∈ H, λ ≥ 0, as

rλ(h, q) = sup
q′∈X
{dY(h, h′)− λdQ(q, q

′)}

≥ dY(h, h)− λdQ(q, q) = 0.

Thus

λ∗ε ≤ λ?ε+ Eq∼Q[rλ(h, q)] = R(h) ≤ DY .

Rearranging the above yields λ∗ ≤ DY

ε
and the same upper bound is also valid for λ̂? by the same

argument.

Combining inequalities (A.9,A.10) and the bound on λ∗, λ̂∗, we can write

|R̂(h)−R(h)| ≤ sup
f∈F

∣∣∣Eq∼Q̂f(q)− Eq∼Qf(q)
∣∣∣+ DYηd

ε
,

where F = {rλ(h, ·) : λ ∈ [0, L], h ∈ H}. A standard concentration argument proves

sup
f∈F

∣∣∣Eq∼Q̂f(q)− Eq∼Qf(q)
∣∣∣ ≤ 48(J(D) + ε−1DXDY√

n
+DY(

log 2
t

2n
)

1

2

with probability at least 1− t. This completes the proof of the theorem.

The main technical novelty in this proof is the bound on λ∗ in terms of the diameter of the output
space. This restricts the set of possible c-transformed loss function class, thereby allowing us to
appeal to standard techniques from empirical process theory to obtain uniform convergence results.
Prior work in this area (e.g. Lee & Raginsky (2018)) relies on smoothness properties of the loss
instead of the geometric properties of the output space, but this precludes non-smooth output metrics.

B EXPERIMENTS

All experiments were ran a cluster of CPUS. We do not require a GPU.

B.1 DATA SETS AND PRE-PROCESSING

Synthetic Synthetic data is generated as described in the main text such that there are 100 queries
in the training set and 100 queries in the test set.

German Credit The German Credit data set (Dua & Graff, 2017) consists of 1000 individuals with
binary labels indicating if they are credit worthy or not. We use the version of the German Credit
data set that Singh & Joachims (2019) used found at https://www.kaggle.com/uciml/
german-credit. In particular, this version of the Geramn Credit data set only uses the follow-
ing features: age (integer), sex (binary, does not include any marital status information unlike
the original data set), job (categorical), housing (categorical), savings account (categor-
ical), checking account (integer), credit amount (integer), duration (integer), and
purpose (categorical). See Dua & Graff (2017) for an explanation of each feature.

Categorical features are the only features with missing data, so we treat missing data as its own
category. The following features are standardized by subtracting the mean and dividing by the
standard deviation (before this data is turned into LTR data): age, duration, and credit

amount. The remaining binary and categorical features are one hot encoded.

We use an 80/20 train/test split of the original 1000 data points, and then sample from the train-
ing/testing set with replacement to build the LTR data as discussed in the main text. For our
experiments, we use 10 random train/test splits.
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Microsoft Learning to Rank The Microsoft Learning to Rank data set (Qin & Liu, 2013) consists
of query-web page pairs each of which has 136 features and integral relevance scores in [0, 4]. We
use Fold 1’s train/validation/test split. Following Yadav et al. (2019), we use the data in Fold 1
and adopt the given train/validation/test split. The data and feature descriptions can be found at
https://www.microsoft.com/en-us/research/project/mslr/. We remove the
QualityScore feature (feature 132) since we use the QualityScore2 (feature 133) feature to
learn the fair metric, and it appears based on the description of these features, they are very similar.
We standardize the remaining features (except for the features corresponding to Boolean model,
i.e. features 96-100, which are binary) by subtracting the mean and dividing by the standard deviation.
Following Yadav et al. (2019), we remove any queries with less than 20 web pages. Furthermore,
we only consider queries that have at least one web page with a relevance of 4. For each query,
we sample 20 web pages without replacement until at least one of the 20 sampled web pages has a
relevance of 4. After pre-processing, there are 33,060 train queries, 11,600 validation queries, and
11,200 test queries.

B.2 COMPARISON METRICS

Let r be a ranking (i.e. permutation) of a set of n items that are enumerated such that r(i) ∈ [n] is
the position of the i-th item in the ranking and r−1(i) ∈ [n] is the item that is ranked i-th. Let relq(i)
be the relevance of item i given a query q.

Normalized Discounted Cumulative Gain (NDCG) Let Sn be the set of all rankings on n items.
The discounted cumulative gain (DCG) of a ranking r is

DCG(r) =

n∑

i=1

2relq(r
−1(i)) − 1

log2(i+ 1)
.

The NDCG of a ranking r is
DCG(r)

maxr′∈Sn
DCG(r′)

.

Because we learn a distribution over rankings and the number of rankings is too large, we cannot
compute the expected value of the NDCG for a given query. Thus, for each query in the test set, we
sample N rankings (where N = 10 for synthetic data, N = 25 for German credit data, and N = 32
for Microsoft Learning to Rank data) from the Placket-Luce distribution, compute the NDCG for
each of these rankings, and then take an average. We refer to this quantity as the stochastic NDCG.

Kendall’s tau correlation Let r and r′ be two rankings on n items. Then

KT(r, r′) :=
1(
n
2

)
∑

{i<j:i,j∈[n]}

sign(r(i)− r(j))sign(r′(i)− r′(j))

is the Kendall’s tau correlation between two rankings.

(Disparity of) Group exposure This definition was first proposed by Singh & Joachims (2019).
Assume each item belongs to one of two groups. Let G1 (respectively G0) be the set of items for a
query q that belongs to group 1 (respectively group 0). For i ∈ {0, 1}, let MGi

= 1
|Gi|

∑
d∈Gi

relq(d),

which is referred to as the merit of group i for query q. For a ranking r and for i ∈ {0, 1}, let
vr(Gi) =

1
|Gi|

∑
d∈Gi

1
log

2
(r(d)+1) . Because we learn a distribution over rankings and the number of

rankings is too large, we cannot compute the expected value of vr(Gi) over this distribution. Instead,
we sample N rankings (where again N = 10 for synthetic data, N = 25 for German credit data, and
N = 32 for Microsoft Learning to Rank data) from the Placket-Luce model. Let Rq be the set of
these N sampled rankings for query q. Then the stochastic disparity of group exposure for query q is





max

{
0,

1

N

∑
r∈Rq

vr(G0)

MG0

−
1

N

∑
r∈Rq

vr(G1)

MG1

}
if MG0

≥MG1
> 0

max

{
0,

1

N

∑
r∈Rq

vr(G1)

MG1

−
1

N

∑
r∈Rq

vr(G0)

MG0

}
if 0 < MG0

< MG1

0 if MG0
= 0 or MG1

= 0.
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In the language of Singh & Joachims (2019), we use the identity function for merit, and set the
position bias at position j to be 1

log
2
(1+j) just as they did.

B.3 SENSTIR IMPLEMENTATION DETAILS

We implement SenSTIR in TensorFlow and use the Python POT package to compute the fair distance
between queries and to compute Equation (3.4), which requires solving optimal transport problems.
Throughout this section, variable names from our code are italicized, and the abbreviation we use to
refer to these variables/hyperparameters are followed in parenthesis.

Fair regularizer optimization Recall that in all of the experiments, the fair metric dX on items is
the Euclidean distance of the data projected onto the orthogonal complement of a subspace. In order
to optimize for the fair regularizer in Equation (SenSTIR), first we optimize over this subspace, and
we refer to this step as the subspace attack. Note, the distance between the original queries and the
resulting adversarial queries in the subspace is 0. Second, we use the resulting adversarial queries in
the subspace as an initialization to the full attack, i.e. we find adversarial queries that have a non-zero
fair distance to the original queries. We implement both using the Adam optimizer (Kingma & Ba,
2015).

Learning rates As mentioned above, we use the Adam optimizer to optimize the fair regularizer.
For the subspace attack, we set the learning rate to adv_step(as) and train for adv_epoch(ae) epochs,
and for the full attack, we set the learning rate to l2_attack(fs) and train for adv_epoch_full(fe)
epochs. We also use the Adam optimizer with a learning rate of .001 to learn the parameters of the
score function hθ.

Fair start Our code allows training the baseline (i.e. when ρ = 0) for a percentage–given by
fair_start(frs)–of the total number of epochs before the optimization includes the fair regularizer.

Using baseline for variance reduction Following Singh & Joachims (2019), in the gradient
estimate of the empirical version of Eq∼Q

[
U(π | q)

]
in Equation (SenSTIR), we subtract off a

baseline term b(q) for each query q, where b(q) is the average utility U(π | q) over the Monte Carlo
samples for the query q. This counteracts the high variance in the gradient estimate (Williams, 1992).

Other hyperparameters In Tables 1 and 2, E stands for the total number of epochs used to update
the score function hθ, B stands for the batch size, l2 stands for the `2 regularization strength of the
weights, and MC stands for the number of Monte Carlo samples used to estimate the gradient of the
empirical version of Eq∼Q

[
U(π | q)

]
in Equation (SenSTIR) for each query.

B.4 HYPERPARAMETERS

For the synthetic data, we use one train/test split. For the German experiments, we use 10 random
train/test splits all of which use the same hyperparameters. For the Microsoft experiments, we pick
hyperparameters on the validation set (where the range of hyperparameters considered are reported
below) based on the trade-off of stochastic NDCG and individual (respectively group) fairness for
SenSTIR (respectively Fair-PG-Rank), and report the comparison metrics on the test set.

Fair metric For the synthetic data experiments, we use sklearn’s logistic regression solver to
classify majority and minority individuals with 1/100 `2 regularization strength. For German and
Microsoft, we use sklearn’s RidgeCV solver with the default hyperparameters to predict age
and quality web page score, respectively. For the German experiments, when predicting age, each
individual is represented in the training data exactly once, regardless of the number of queries that an
individual appears in.

SenSTIR For every experiment, all weights are initialized by picking numbers in [−.0001, .0001]
uniformly at random, λ in Algorithm 1 is always initialized with 2, and the learn-
ing rate for Adam for the score function hθ is always .001. For synthetic data, the
fair regularization strength ρ varied in {.0003, .001}. For German, ρ is varied in
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{.001, .01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.06, 0.07, 0.08, 0.09, .1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16,
0.17, 0.18, 0.19, 0.28, 0.37, 0.46, 0.55, 0.64, 0.73, 0.82, 0.91, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50, 100}. For
Microsoft, ρ is varied in {.00001, .0001, .001, .01, .04, .07, .1, .33, .66, 1.}. We report results for all
choices of ρ.

See Table 1 for the remaining values of hyperparameters where the column names have been defined
in the previous section except for ε, which refers to ε in the definition of the fair regularizer. For
Microsoft, the best performing hyperparameters on the validation set are reported where the `2
regularization parameter for the weights are varied in {.001, .0001, 0}, as is varied in {.01, .001}, ae
and fe are varied in {20, 40}, and ε is varied in {1, .1, .01}.

Table 1: SenSTIR hyperparameter choices

E B as ae ε fs fe frs l2 MC

Synthetic 2K 1 0.001 20 0.001 0.001 20 0 0 10
German 20K 10 .01 20 1 0.001 20 .1 0 25
Microsoft 68K 10 .01 40 .01 0.001 40 .1 0.001 32

Baseline and Project For the baseline (i.e. ρ = 0 with no fair regularization) and project baseline,
we use the same number of epochs, batch sizes, Monte Carlo samples, and `2 regularization as in
Table 1 for SenSTIR. Furthermore, we use the same weight initialization and learning rate for Adam
as in the SenSTIR experiments.

Fair-PG-Rank We use the implementation found at https://github.com/ashudeep/
Fair-PGRank for the synthetic and German experiments, whereas we use our own implementa-
tion for the Microsoft experiments because we could not get their code to run on this data. They
use Adam for optimization, and the learning rate is .1 for the synthetic data and .001 for Ger-
man and Microsoft. Let λ refer to the Fair-PG-Rank fair regularization strength. For synthetic,
λ = 25. For German, λ is varied in {.1, 1, 1.5, 2, 2.5, 3, 3.5, 4}. For Microsoft, λ is varied in
{.001, .01, .1, .5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50, 100, 500, 150, 200, 250, 300, 350, 400, 450, 500, 550,
600, 650, 700, 750, 800, 850, 900, 950, 1000}. We report results for all choices of λ. See Table 2
which summarizes the remaining hyperparameter choices.

Table 2: Fair-PG-Rank hyperparameter choices

E B l2 MC

Synthetic 5 1 0 10
German 100 1 0 25
Microsoft 68K 10 .01 32
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