
Published as a conference paper at ICLR 2020

FEDERATED LEARNING WITH MATCHED AVERAGING

Hongyi Wang ∗
Department of Computer Sciences
University of Wisconsin-Madison
hongyiwang@cs.wisc.edu

Mikhail Yurochkin
IBM Research
MIT-IBM Watson AI Lab
mikhail.yurochkin@ibm.com

Yuekai Sun
Department of Statistics
University of Michigan
yuekai@umich.edu

Dimitris Papailiopoulos
Department of Electrical and Computer Engineering
University of Wisconsin-Madison
dimitris@papail.io

Yasaman Khazaeni
IBM Research
yasaman.khazaeni@us.ibm.com

ABSTRACT

Federated learning allows edge devices to collaboratively learn a shared model
while keeping the training data on device, decoupling the ability to do model
training from the need to store the data in the cloud. We propose the Federated
matched averaging (FedMA) algorithm designed for federated learning of mod-
ern neural network architectures e.g. convolutional neural networks (CNNs) and
LSTMs. FedMA constructs the shared global model in a layer-wise manner by
matching and averaging hidden elements (i.e. channels for convolution layers;
hidden states for LSTM; neurons for fully connected layers) with similar feature
extraction signatures. Our experiments indicate that FedMA not only outperforms
popular state-of-the-art federated learning algorithms on deep CNN and LSTM
architectures trained on real world datasets, but also reduces the overall commu-
nication burden.1

1 INTRODUCTION

Edge devices such as mobile phones, sensors in a sensor network, or vehicles have access to a
wealth of data. However, due to data privacy concerns, network bandwidth limitation, and device
availability, it’s impractical to gather all the data from the edge devices at the data center and conduct
centralized training. To address these concerns, federated learning is emerging (McMahan et al.,
2017; Li et al., 2019; Smith et al., 2017; Caldas et al., 2018; Bonawitz et al., 2019; Kairouz et al.,
2019) as a paradigm that allows local clients to collaboratively train a shared global model.

The typical federated learning paradigm involves two stages: (i) clients train models with their
local datasets independently, and (ii) the data center gathers the locally trained models and aggre-
gates them to obtain a shared global model. One of the standard aggregation methods is FedAvg
(McMahan et al., 2017) where parameters of local models are averaged element-wise with weights
proportional to sizes of the client datasets. FedProx (Sahu et al., 2018) adds a proximal term to
the client cost functions, thereby limiting the impact of local updates by keeping them close to
the global model. Agnostic Federated Learning (AFL) (Mohri et al., 2019), as another variant of
FedAvg, optimizes a centralized distribution that is a mixture of the client distributions.

One shortcoming of FedAvg is coordinate-wise averaging of weights may have drastic detrimental
effects on the performance of the averaged model and adds significantly to the communication bur-
den. This issue arises due to the permutation invariance of neural network (NN) parameters, i.e. for

∗Work performed while doing an internship at IBM Research.
1Code is available at https://github.com/IBM/FedMA

1

https://github.com/IBM/FedMA

Published as a conference paper at ICLR 2020

θi denote the ith neuron in the global model, and c(·, ·) be an appropriate similarity function between
a pair of neurons. Solution to the following optimization problem are the required permutations:

min
{πj

li}

L∑
i=1

∑
j,l

min
θi

πjlic(wjl, θi) s.t.
∑
i

πjli = 1 ∀ j, l;
∑
l

πjli = 1 ∀ i, j. (2)

Then ΠT
jli = πjli and given weights {Wj,1,Wj,2}Jj=1 provided by J clients, we compute the fed-

erated neural network weights W1 = 1
J

∑
jWj,1ΠT

j and W2 = 1
J

∑
j ΠjWj,2. We refer to this

approach as matched averaging due to relation of equation 2 to the maximum bipartite matching
problem. We note that if c(·, ·) is squared Euclidean distance, we recover objective function similar
to k-means clustering, however it has additional constraints on the “cluster assignments” πjli neces-
sary to ensure that they form permutation matrices. In a special case where all local neural networks
and the global model are assumed to have same number of hidden neurons, solving equation 2 is
equivalent to finding a Wasserstein barycenter (Agueh & Carlier, 2011) of the empirical distributions
over the weights of local neural networks. Concurrent work of Singh & Jaggi (2019) explores the
Wasserstein barycenter variant of equation 2.

Solving matched averaging Objective function in equation 2 can be optimized using an iterative
procedure: applying the Hungarian matching algorithm (Kuhn, 1955) to find permutation {πj

′

li }l,i
corresponding to dataset j′, holding other permutations {πjli}l,i,j 6=j′ fixed and iterating over the
datasets. Important aspect of Federated Learning that we should consider here is the data hetero-
geneity. Every client will learn a collection of feature extractors, i.e. neural network weights, rep-
resenting their individual data modality. As a consequence, feature extractors learned across clients
may overlap only partially. To account for this we allow the size of the global model L to be an un-
known variable satisfying maxj Lj ≤ L ≤

∑
j Lj where Lj is the number of neurons learned from

dataset j. That is, global model is at least as big as the largest of the local models and at most as big
as the concatenation of all the local models. Next we show that matched averaging with adaptive
global model size remains amendable to iterative Hungarian algorithm with a special cost.

At each iteration, given current estimates of {πjli}l,i,j 6=j′ , we find a corresponding global model
{θi = arg minθi

∑
j 6=j′,l π

j
lic(wjl, θi)}Li=1 (this is typically a closed-form expression or a simple

optimization sub-problem, e.g. a mean if c(·, ·) is Euclidean) and then we will use Hungarian al-
gorithm to match this global model to neurons {wj′l}

Lj′

l=1 of the dataset j′ to obtain a new global
model with L ≤ L′ ≤ L+Lj′ neurons. Due to data heterogeneity, local model j′ may have neurons
not present in the global model built from other local models, therefore we want to avoid “poor”
matches by saying that if the optimal match has cost larger than some threshold value ε, instead of
matching we create a new global neuron from the corresponding local one. We also want a modest
size global model and therefore penalize its size with some increasing function f(L′). This intuition
is formalized in the following extended maximum bipartite matching formulation:

min
{πj′

li }l,i

L+Lj′∑
i=1

Lj′∑
j=1

πj
′

liC
j′

li s.t.
∑
i

πj
′

li = 1 ∀ l;
∑
l

πjli ∈ {0, 1} ∀ i, where

Cj
′

li =

{
c(wj′l, θi), i ≤ L
ε+ f(i), L < i ≤ L+ Lj′ .

(3)

The size of the new global model is then L′ = max{i : πj
′

li = 1, l = 1, . . . , Lj′}. We note some
technical details: after the optimization is done, each corresponding ΠT

j is of size Lj ×L and is not
a permutation matrix in a classical sense when Lj 6= L. Its functionality is however similar: taking
matrix product with a weight matrix W (1)

j ΠT
j implies permuting the weights to align with weights

learned on the other datasets and padding with “dummy” neurons having zero weights (alternatively
we can pad weights W (1)

j first and complete ΠT
j with missing rows to recover a proper permutation

matrix). This “dummy” neurons should also be discounted when taking average. Without loss of
generality, in the subsequent presentation we will ignore these technicalities to simplify the notation.

To complete the matched averaging optimization procedure it remains to specify similarity c(·, ·),
threshold ε and model size penalty f(·). Yurochkin et al. (2019a;b;c) studied fusion, i.e. aggregation,

3

Published as a conference paper at ICLR 2020

of model parameters in a range of applications. The most relevant to our setting is Probabilistic
Federated Neural Matching (PFNM) (Yurochkin et al., 2019b). They arrived at a special case of
equation 3 to compute maximum a posteriori estimate (MAP) of their Bayesian nonparametric model
based on the Beta-Bernoulli process (BBP) (Thibaux & Jordan, 2007), where similarity c(wjl, θi)
is the corresponding posterior probability of jth client neuron l generated from a Gaussian with
mean θi, and ε and f(·) are guided by the Indian Buffet Process prior (Ghahramani & Griffiths,
2005). Instead of making heuristic choices, this formulation provides a model-based specification
of equation 3. We refer to a procedure for solving equation 2 with the setup from Yurochkin et al.
(2019b) as BBP-MAP. We note that their PFNM is only applicable to fully connected architectures
limiting its practicality. Our matched averaging perspective allows to formulate averaging of widely
used architectures such as CNNs and LSTMs as instances of equation 2 and utilize the BBP-MAP
as a solver.

2.2 PERMUTATION INVARIANCE OF KEY ARCHITECTURES

Before moving onto the convolutional and recurrent architectures, we discuss permutation invariance
in deep fully connected networks and corresponding matched averaging approach. We will utilize
this as a building block for handling LSTMs and CNN architectures such as VGG (Simonyan &
Zisserman, 2014) widely used in practice.

Permutation invariance of deep FCs We extend equation 1 to recursively define deep FC net-
work:

xn = σ(xn−1ΠT
n−1WnΠn), (4)

where n = 1, . . . , N is the layer index, Π0 is identity indicating non-ambiguity in the ordering of
input features x = x0 and ΠN is identity for the same in output classes. Conventionally σ(·) is any
non-linearity except for ŷ = xN where it is the identity function (or softmax if we want probabilities
instead of logits). When N = 2, we recover a single hidden layer variant from equation 1. To
perform matched averaging of deep FCs obtained from J clients we need to find permutations for
every layer of every client. Unfortunately, permutations within any consecutive pair of intermediate
layers are coupled leading to a NP-hard combinatorial optimization problem. Instead we consider
recursive (in layers) matched averaging formulation. Suppose we have {Πj,n−1}, then plugging
{ΠT

j,n−1Wj,n} into equation 2 we find {Πj,n} and move onto next layer. The recursion base for this
procedure is {Πj,0}, which we know is an identity permutation for any j.

Permutation invariance of CNNs The key observation in understanding permutation invariance
of CNNs is that instead of neurons, channels define the invariance. To be more concrete, let
Conv(x,W) define convolutional operation on input x with weights W ∈ RCin×w×h×Cout

, where
Cin, Cout are the numbers of input/output channels and w, h are the width and height of the filters.
Applying any permutation to the output dimension of the weights and then same permutation to the
input channel dimension of the subsequent layer will not change the corresponding CNN’s forward
pass. Analogous to equation 4 we can write:

xn = σ(Conv(xn−1,Π
T
n−1WnΠn)). (5)

Note that this formulation permits pooling operations as those act within channels. To apply matched
averaging for the nth CNN layer we form inputs to equation 2 as {wjl ∈ RD}C

out
n

l=1 , j = 1, . . . , J ,
where D is the flattened Cinn × w × h dimension of ΠT

j,n−1Wj,n. This result can be alternatively
derived taking the IM2COL perspective. Similar to FCs, we can recursively perform matched averag-
ing on deep CNNs. The immediate consequence of our result is the extension of PFNM (Yurochkin
et al., 2019b) to CNNs. Empirically, see Figure 1, we found that this extension performs well on
MNIST with a simpler CNN architecture such as LeNet (LeCun et al., 1998) (4 layers) and signif-
icantly outperforms coordinate-wise weight averaging (1 round FedAvg). However, it breaks down
for more complex architecture, e.g. VGG-9 (Simonyan & Zisserman, 2014) (9 layers), needed to
obtain good quality prediction on a more challenging CIFAR-10.

Permutation invariance of LSTMs Permutation invariance in the recurrent architectures is as-
sociated with the ordering of the hidden states. At a first glance it appears similar to fully con-
nected architecture, however the important difference is associated with the permutation invariance

4

Published as a conference paper at ICLR 2020

of the hidden-to-hidden weights H ∈ RL×L, where L is the number of hidden states. In particu-
lar, permutation of the hidden states affects both rows and columns of H . Consider a basic RNN
ht = σ(ht−1H + xtW), where W are the input-to-hidden weights. To account for the permutation
invariance of the hidden states, we notice that dimensions of ht should be permuted in the same way
for any t, hence

ht = σ(ht−1ΠTHΠ + xtWΠ). (6)

To match RNNs, the basic sub-problem is to align hidden-to-hidden weights of two clients with
Euclidean similarity, which requires minimizing ‖ΠTHjΠ − Hj′‖22 over permutations Π. This
is a quadratic assignment problem known to be NP-hard (Loiola et al., 2007). Fortunately, the
same permutation appears in an already familiar context of input-to-hidden matching of WΠ. Our
matched averaging RNN solution is to utilize equation 2 plugging-in input-to-hidden weights {Wj}
to find {Πj}. Then federated hidden-to-hidden weights are computed as H = 1

J

∑
j ΠjHhΠT

j

and input-to-hidden weights are computed as before. We note that Gromov-Wasserstein distance
(Gromov, 2007) from the optimal transport literature corresponds to a similar quadratic assignment
problem. It may be possible to incorporate hidden-to-hidden weightsH into the matching algorithm
by exploring connections to approximate algorithms for computing Gromov-Wasserstein barycenter
(Peyré et al., 2016). We leave this possibility for future work.

To finalize matched averaging of LSTMs, we discuss several specifics of the architecture. LSTMs
have multiple cell states, each having its individual hidden-to-hidden and input-to-hidden weights.
In out matched averaging we stack input-to-hidden weights into SD × L weight matrix (S is the
number of cell states; D is input dimension and L is the number of hidden states) when computing
the permutation matrices and then average all weights as described previously. LSTMs also often
have an embedding layer, which we handle like a fully connected layer. Finally, we process deep
LSTMs in the recursive manner similar to deep FCs.

2.3 FEDERATED MATCHED AVERAGING (FEDMA) ALGORITHM

Defining the permutation invariance classes of CNNs and LSTMs allows us to extend PFNM
(Yurochkin et al., 2019b) to these architectures, however our empirical study in Figure 1 demon-
strates that such extension fails on deep architectures necessary to solve more complex tasks. Our
results suggest that recursive handling of layers with matched averaging may entail poor overall
solution. To alleviate this problem and utilize the strength of matched averaging on “shallow” archi-
tectures, we propose the following layer-wise matching scheme. First, data center gathers only the
weights of the first layers from the clients and performs one-layer matching described previously
to obtain the first layer weights of the federated model. Data center then broadcasts these weights
to the clients, which proceed to train all consecutive layers on their datasets, keeping the matched
federated layers frozen. This procedure is then repeated up to the last layer for which we conduct
a weighted averaging based on the class proportions of data points per client. We summarize our
Federated Matched Averaging (FedMA) in Algorithm 1. The FedMA approach requires communi-
cation rounds equal to the number of layers in a network. In Figure 1 we show that with layer-wise
matching FedMA performs well on the deeper VGG-9 CNN as well as LSTMs. In the more chal-
lenging heterogeneous setting, FedMA outperforms FedAvg, FedProx trained with same number of
communication rounds (4 for LeNet and LSTM and 9 for VGG-9) and other baselines, i.e. client
individual CNNs and their ensemble.

FedMA with communication We’ve shown that in the heterogeneous data scenario FedMA out-
performs other federated learning approaches, however it still lags in performance behind the entire
data training. Of course the entire data training is not possible under the federated learning con-
straints, but it serves as performance upper bound we should strive to achieve. To further improve
the performance of our method, we propose FedMA with communication, where local clients receive
the matched global model at the beginning of a new round and reconstruct their local models with
the size equal to the original local models (e.g. size of a VGG-9) based on the matching results of
the previous round. This procedure allows to keep the size of the global model small in contrast
to a naive strategy of utilizing full matched global model as a starting point across clients on every
round.

5

Published as a conference paper at ICLR 2020

Algorithm 1: Federated Matched Averaging (FedMA)

Input : local weights of N -layer architectures {Wj,1, . . . ,Wj,N}Jj=1 from J clients
Output: global weights {W1, . . . ,WN}
n = 1;
while n ≤ N do

if n < N then
{Πj}Jj=1 = BBP-MAP

(
{Wj,n}Jj=1

)
; // call BBP-MAP to solve Eq. 2

Wn = 1
J

∑
jWj,nΠT

j ;
else

Wn =
∑K
k=1

∑
j pjkWjl,n where pk is fraction of data points with label k on worker j;

end
for j ∈ {1, . . . , J} do

Wj,n+1 ← ΠjWj,n+1 ; // permutate the next-layer weights
Train {Wj,n+1, . . . ,Wj,L} with Wn frozen;

end
n = n+ 1;

end

3 EXPERIMENTS

We present an empirical study of FedMA with communication and compare it with state-of-the-art
methods i.e. FedAvg (McMahan et al., 2017) and FedProx (Sahu et al., 2018); analyze the perfor-
mance under the growing number of clients and visualize the matching behavior of FedMA to study
its interpretability. Our experimental studies are conducted over three real world datasets. Summary
information about the datasets and associated models can be found in supplement Table 3.

Experimental Setup We implemented FedMA and the considered baseline methods in PyTorch
(Paszke et al., 2017). We deploy our empirical study under a simulated federated learning environ-
ment where we treat one centralized node in the distributed cluster as the data center and the other
nodes as local clients. All nodes in our experiments are deployed on p3.2xlarge instances on Ama-
zon EC2. We assume the data center samples all the clients to join the training process for every
communication round for simplicity.

For the CIFAR-10 dataset, we use data augmentation (random crops, and flips) and normalize each
individual image (details provided in the Supplement). We note that we ignore all batch normaliza-
tion (Ioffe & Szegedy, 2015) layers in the VGG architecture and leave it for future work.

For CIFAR-10, we considered two data partition strategies to simulate federated learning scenario:
(i) homogeneous partition where each local client has approximately equal proportion of each of
the classes; (ii) heterogeneous partition for which number of data points and class proportions are
unbalanced. We simulated a heterogeneous partition into J clients by sampling pk ∼ DirJ(0.5)
and allocating a pk,j proportion of the training instances of class k to local client j. We use the
original test set in CIFAR-10 as our global test set for comparing performance of all methods. For
the Shakespeare dataset, we treat each speaking role as a client (Caldas et al., 2018) resulting in a
natural heterogeneous partition. We preprocess the Shakespeare dataset by filtering out the clients
with less than 10k datapoints and sampling a random subset of J = 66 clients. We allocate 80% of
the data for training and amalgamate the remaining data into a global test set.

Communication Efficiency and Convergence Rate In this experiment we study performance of
FedMA with communication. Our goal is to compare our method to FedAvg and FedProx in terms
of the total message size exchanged between data center and clients (in Gigabytes) and the number
of communication rounds (recall that completing one FedMA pass requires number of rounds equal
to the number of layers in the local models) needed for the global model to achieve good perfor-
mance on the test data. We also compare to the performance of an ensemble method. We evaluate
all methods under the heterogeneous federated learning scenario on CIFAR-10 with J = 16 clients
with VGG-9 local models and on Shakespeare dataset with J = 66 clients with 1-layer LSTM net-

6

Published as a conference paper at ICLR 2020

when new clients are added to the federated learning system, while FedAvg with 9 communication
rounds deteriorates.

Interpretability One of the strengths of FedMA is that it utilizes communication rounds more ef-
ficiently than FedAvg. Instead of directly averaging weights element-wise, FedMA identifies match-
ing groups of convolutional filters and then averages them into the global convolutional filters. It’s
natural to ask “How does the matched filters look like?”. In Figure 5 we visualize the represen-
tations generated by a pair of matched local filters, aggregated global filter, and the filter returned
by the FedAvg method over the same input image. Matched filters and the global filter found with
FedMA are extracting the same feature of the input image, i.e. filter 0 of client 1 and filter 23 of
client 2 are extracting the position of the legs of the horse, and the corresponding matched global
filter 0 does the same. For the FedAvg, global filter 0 is the average of filter 0 of client 1 and filter 0
of client 2, which clearly tampers the leg extraction functionality of filter 0 of client 1.

4 CONCLUSION

We presented Federated Matched Averaging (FedMA), a layer-wise federated learning algorithm
designed for modern CNNs and LSTMs architectures that accounts for permutation invariance of
the neurons and permits global model size adaptation. Our method significantly outperforms prior
federated learning algorithms in terms of its convergence when measured by the size of messages
exchanged between server and the clients during training. We demonstrated that FedMA can effi-
ciently utilize well-trained local modals, a property desired in many federated learning applications,
but lacking in the prior approaches. We have also presented an example where FedMA can help to
resolve some of the data biases and outperform aggregate data training.

In the future work we want to extend FedMA to improve federated learning of LSTMs using approxi-
mate quadratic assignment solutions from the optimal transport literature, and enable additional deep
learning building blocks, e.g. residual connections and batch normalization layers. We also believe
it is important to explore fault tolerance of FedMA and study its performance on the larger datasets,
particularly ones with biases preventing efficient training even when the data can be aggregated, e.g.
Inclusive Images (Doshi, 2018).

REFERENCES

Martial Agueh and Guillaume Carlier. Barycenters in the wasserstein space. SIAM Journal on
Mathematical Analysis, 43(2):904–924, 2011.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konecny, Stefano Mazzocchi, H Brendan McMahan, et al. Towards
federated learning at scale: System design. arXiv preprint arXiv:1902.01046, 2019.

Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMahan, Virginia Smith, and
Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv preprint arXiv:1812.01097,
2018.

Tulsee Doshi. Introducing the inclusive images competition, 2018.

Zoubin Ghahramani and Thomas L Griffiths. Infinite latent feature models and the Indian buffet
process. In Advances in Neural Information Processing Systems, pp. 475–482, 2005.

Mikhail Gromov. Metric structures for Riemannian and non-Riemannian spaces. Springer Science
& Business Media, 2007.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

10

Published as a conference paper at ICLR 2020

Harold W Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
(NRL), 2(1-2):83–97, 1955.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. arXiv preprint arXiv:1908.07873, 2019.

Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo Oswaldo Boaventura-Netto, Peter Hahn, and
Tania Querido. A survey for the quadratic assignment problem. European journal of operational
research, 176(2):657–690, 2007.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282, 2017.

Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In Interna-
tional Conference on Machine Learning, pp. 4615–4625, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel and
distance matrices. In International Conference on Machine Learning, pp. 2664–2672, 2016.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=ryQu7f-RZ.

Olga Russakovsky. Strategies for mitigating social bias in deep learning systems. Invited talk at
Identifying and Understanding Deep Learning Phenomena workshop, ICML 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia Smith.
On the convergence of federated optimization in heterogeneous networks. arXiv preprint
arXiv:1812.06127, 2018.

Shreya Shankar, Yoni Halpern, Eric Breck, James Atwood, Jimbo Wilson, and D Sculley. No classi-
fication without representation: Assessing geodiversity issues in open data sets for the developing
world. arXiv preprint arXiv:1711.08536, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. arXiv preprint
arXiv:1910.05653, 2019.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. In Advances in Neural Information Processing Systems, pp. 4424–4434, 2017.

Romain Thibaux and Michael I Jordan. Hierarchical Beta processes and the Indian buffet process.
In Artificial Intelligence and Statistics, pp. 564–571, 2007.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, and Nghia Hoang. Sta-
tistical model aggregation via parameter matching. In Advances in Neural Information Processing
Systems, pp. 10954–10964, 2019a.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In Interna-
tional Conference on Machine Learning, pp. 7252–7261, 2019b.

11

https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ

Published as a conference paper at ICLR 2020

Mikhail Yurochkin, Zhiwei Fan, Aritra Guha, Paraschos Koutris, and XuanLong Nguyen. Scalable
inference of topic evolution via models for latent geometric structures. In Advances in Neural
Information Processing Systems, pp. 5949–5959, 2019c.

12

Published as a conference paper at ICLR 2020

A SUMMARY OF THE DATASETS USED IN THE EXPERIMENTS

The details of the datasets and hyper-parameters used in our experiments are summarized in Table
3. In conducting the “freezing and retraining” process of FedMA, we notice when retraining the last
FC layer while keeping all previous layers frozen, the initial learning rate we use for SGD doesn’t
lead to a good convergence (this is only for the VGG-9 architecture). To fix this issue, we divide
the initial learning rate by 10 i.e. using 10−4 for the last FC layer retraining and allow the clients to
retrain for 3 times more epochs. We also switch off the `2 weight decay during the “freezing and
retraining” process of FedMA except for the last FC layer where we use a `2 weight decay of 10−4.
For language task, we observe SGD with a constant learning rate works well for all considered
methods.

In our experiments, we use FedAvg and FedProx variants without the shared initialization since
those would likely be more realistic when trying to aggregate locally pre-trained models. And
FedMA still performs well in practical scenarios where local clients won’t be able to share the
random initialization.

Table 3: The datasets used and their associated learning models and hyper-parameters.

Method MNIST CIFAR-10 Shakespeare (McMahan et al., 2017)

Data points 60, 000 50, 000 1, 017, 981

Model LeNet VGG-9 LSTM
Classes 10 10 80

Parameters 431k 3, 491k 293k
Optimizer SGD SGD

Hyper-params. Init lr: 0.01, 0.001 (last layer) lr: 0.8(const)
momentum: 0.9, `2 weight decay: 10−4

B DETAILS OF MODEL ARCHITECTURES AND HYPER-PARAMETERS

The details of the model architectures we used in the experiments are summarized in this section.
Specifically, details of the VGG-9 model architecture we used can be found in Table 4 and details of
the 1-layer LSTM model used in our experimental study can be found in Table 5.

C DATA AUGMENTATION AND NORMALIZATION DETAILS

In preprocessing the images in CIFAR-10 dataset, we follow the standard data augmentation
and normalization process. For data augmentation, random cropping and horizontal random
flipping are used. Each color channels are normalized with mean and standard deviation by
µr = 0.491372549, µg = 0.482352941, µb = 0.446666667, σr = 0.247058824, σg =
0.243529412, σb = 0.261568627. Each channel pixel is normalized by subtracting the mean value
in this color channel and then divided by the standard deviation of this color channel.

D EXTRA EXPERIMENTAL DETAILS

D.1 SHAPES OF FINAL GLOBAL MODEL

Here we report the shapes of final global VGG and LSTM models returned by FedMA with com-
munication.

13

Published as a conference paper at ICLR 2020

Table 4: Detailed information of the VGG-9 architecture used in our experiments, all non-linear activation
function in this architecture is ReLU; the shapes for convolution layers follows (Cin, Cout, c, c)

Parameter Shape Layer hyper-parameter

layer1.conv1.weight 3× 32× 3× 3 stride:1;padding:1
layer1.conv1.bias 32 N/A

layer2.conv2.weight 32× 64× 3× 3 stride:1;padding:1
layer2.conv2.bias 64 N/A

pooling.max N/A kernel size:2;stride:2
layer3.conv3.weight 64× 128× 3× 3 stride:1;padding:1

layer3.conv3.bias 128 N/A
layer4.conv4.weight 128× 128× 3× 3 stride:1;padding:1

layer4.conv4.bias 128 N/A
pooling.max N/A kernel size:2;stride:2

dropout N/A p = 5%
layer5.conv5.weight 128× 256× 3× 3 stride:1;padding:1

layer5.conv5.bias 256 N/A
layer6.conv6.weight 256× 256× 3× 3 stride:1;padding:1

layer6.conv6.bias 256 N/A
pooling.max N/A kernel size:2;stride:2

dropout N/A p = 10%
layer7.fc7.weight 4096× 512 N/A

layer7.fc7.bias 512 N/A
layer8.fc8.weight 512× 512 N/A

layer8.fc8.bias 512 N/A
dropout N/A p = 10%

layer9.fc9.weight 512× 10 N/A
layer9.fc9.bias 10 N/A

Table 5: Detailed information of the LSTM architecture in our experiment

Parameter Shape

encoder.weight 80× 8

lstm.weight.ih.l0 1024× 8

lstm.weight.hh.l0 1024× 256

lstm.bias.ih.l0 1024

lstm.bias.hh.l0 1024

decoder.weight 80× 256

decoder.bias 80

14

Published as a conference paper at ICLR 2020

Table 6: Detailed information of the LSTM architecture in our experiment

Parameter Shape Growth rate (#global / #original params)

encoder.weight 80× 21 2.63× (1, 680/640)

lstm.weight.ih.l0 1028× 21 2.64× (21, 588/8, 192)

lstm.weight.hh.l0 1028× 257 1.01× (264, 196/262, 144)

lstm.bias.ih.l0 1028 1.004× (1, 028/1, 024)

lstm.bias.hh.l0 1028 1.004× (1, 028/1, 024)

decoder.weight 80× 257 1.004× (20, 560/20, 480)

decoder.bias 80 1×

Total Number of Parameters 310, 160 1.06× (310, 160/293, 584)

Table 7: Detailed information of the final global VGG-9 model returned by FRB; the shapes for convolution
layers follows (Cin, Cout, c, c)

Parameter Shape Growth rate (#global / #original params)

layer1.conv1.weight 3× 47× 3× 3 1.47× (1, 269/864)

layer1.conv1.bias 47 1.47× (47/32)

layer2.conv2.weight 47× 79× 3× 3 1.81× (33, 417/18, 432)

layer2.conv2.bias 79 1.23× (79/64)

layer3.conv3.weight 79× 143× 3× 3 1.38× (101, 673/73, 728)

layer3.conv3.bias 143 1.12× (143/128)

layer4.conv4.weight 143× 143× 3× 3 1.24× (184, 041/147, 456)

layer4.conv4.bias 143 1.12× (143/128)

layer5.conv5.weight 143× 271× 3× 3 1.18× (348, 777/294, 912)

layer5.conv5.bias 271 1.06× (271/256)

layer6.conv6.weight 271× 271× 3× 3 1.12× (660, 969/589, 824)

layer6.conv6.bias 271 1.06× (271/256)

layer7.fc7.weight 4336× 527 1.09× (2, 285, 072/2, 097, 152)

layer7.fc7.bias 527 1.02× (527/512)

layer8.fc8.weight 527× 527 1.05×, (277, 729/262, 144)

layer8.fc8.bias 527 1.02× (527/512)

layer9.fc9.weight 527× 10 1.02× (5, 270/5, 120)

layer9.fc9.bias 10 1×

Total Number of Parameters 3, 900, 235 1.11× (3, 900, 235/3, 491, 530)

D.2 HYPER-PARAMETERS FOR BBP-MAP

We follow FPNM (Yurochkin et al., 2019b) to choose the hyper-parameters of BBP-MAP, which
controls the choices of θi, ε, and the f(·) as discussed in Section 2. More specifically, there are three
parameters to choose i.e. 1) σ2

0 , the prior variance of weights of the global neural network; 2) γ0,
which controls discovery of new hidden states. Increasing γ0 leads to a larger final global model; 3)
σ2 is the variance of the local neural network weights around corresponding global network weights.
We empirically analyze the different choices of the three hyper-parameters and find the choice of

15

Published as a conference paper at ICLR 2020

γ0 = 7, σ2
0 = 1, σ2 = 1 for VGG-9 on CIFAR-10 dataset and γ0 = 10−3, σ2

0 = 1, σ2 = 1 for
LSTM on Shakespeare dataset lead to good performance in our experimental studies.

E PRACTICAL CONSIDERATIONS

Following from the discussion in PFNM, here we briefly discuss the time complexity of FedMA.
For simplicity, we focus on a single-layer matching and assume all participating clients train the
same model architecture. The complexity for matching the entire model follows trivially from this
discussion. The worst case complexity is achieved when no hidden states are matched and is equal
to O(D · (JL)2) for building the cost matrix and O((JL)3) for running the Hungarian algorithm
where the definitions of D,J , and L follow the discussion in Section 2. The best complexity per
layer is (achieved when all hidden states are matched)O(D ·L2+L3). Practically, when the number
of participating clients i.e. J is large and each client trains a big model, the speed of our algorithm
can be relatively slow.

To seed up the Hungarian algorithm. Although there isn’t any algorithm that achieves lower com-
plexity, better implementation improves the constant significantly. In our experiments, we used an
implementation based on shortest path augmentation i.e. lapsolver 2. Empirically, we observed
that this implementation of the Hungarian algorithm leads to orders of magnitude speed ups over the
vanilla implementation.

F HYPER-PARAMETERS FOR THE HANDLING DATA BIAS EXPERIMENTS

In conducting the “handling data bias” experiments. We re-tune the local epoch E for both FedAvg
and FedProx. The considered candidates of E are {5, 10, 20, 30}. We observe that a relatively
large choice of E can easily lead to poor convergence of FedAvg. While FedProx tolerates larger
choices of E better, a smaller E can always lead to good convergence. We use E = 5 for both
FedAvg and FedProx in our experiments. For FedMA, we choose E = 50 since it leads to a
good convergence. For the “oversampling” baseline, we found that using SGD to train VGG-9 over
oversampled dataset doesn’t lead to a good convergence. Moreover, when using constant learning
rate, SGD can lead to model divergence. Thus we use AMSGRAD (Reddi et al., 2018) method
for the “oversampling” baseline and train for 800 epochs. To make the comparison fair, we use
AMSGRAD for all other centralized baselines to get the reported results in our experiments. Most
of them converges when training for 200 epochs. We also test the performance of the “Entire Data
Training”, “Color Balanced”, and “No Bias” baselines over SGD. We use learning rate 0.01 and `2
weight decay at 10−4 and train for 200 epochs for those three baselines. It seems the “Entire Data
Training” and ”No Bias” baselines converges to a slightly better accuracy i.e. 78.71% and 91.23%
respectively (compared to 75.91% and 88.5% for AMSGRAD). But the “Color Balanced” doesn’t
seem to converge better accuracy (we get 87.79% accuracy for SGD and 87.81% for AMSGRAD).

2https://github.com/cheind/py-lapsolver

16

https://github.com/cheind/py-lapsolver

	Introduction
	Federated Matched Averaging of neural networks
	Matched averaging formulation
	Permutation invariance of key architectures
	Federated Matched Averaging (FedMA) algorithm

	Experiments
	Conclusion
	Summary of the datasets used in the experiments
	Details of Model Architectures and Hyper-parameters
	Data augmentation and normalization details
	Extra Experimental Details
	Shapes of Final Global Model
	Hyper-parameters for BBP-MAP

	Practical Considerations
	Hyper-parameters for the Handling Data Bias Experiments

