
ar
X

iv
:2

20
2.

01
90

8v
1

 [
cs

.L
G

]
 3

 F
eb

 2
02

2

Sampling with Riemannian Hamiltonian Monte Carlo in a

Constrained Space

Yunbum Kook∗, Yin Tat Lee†, Ruoqi Shen‡, Santosh S. Vempala§

February 7, 2022

Abstract

We demonstrate for the first time that ill-conditioned, non-smooth, constrained distributions in very
high dimension, upwards of 100,000, can be sampled efficiently in practice. Our algorithm incorporates
constraints into the Riemannian version of Hamiltonian Monte Carlo and maintains sparsity. This allows
us to achieve a mixing rate independent of smoothness and condition numbers.

On benchmark data sets in systems biology and linear programming, our algorithm outperforms
existing packages by orders of magnitude. In particular, we achieve a 1,000-fold speed-up for sampling
from the largest published human metabolic network (RECON3D). Our package has been incorporated
into the COBRA toolbox.

1 Introduction

Sampling is Fundamental. Sampling algorithms arise naturally in models of statistical physics, e.g.,
Ising, Potts models for magnetism, Gibbs model for gases, etc. These models directly suggest Markov chain
algorithms for sampling the corresponding configurations. In the Ising model where the vertices of a graph are
assigned a spin, i.e., ±1, in each step, we pick a vertex at random and flip its spin with some probability. The
probability is chosen so that the distribution of the vector of all spins approaches a target distribution where
the probability exponentially decays with the number of agreements in spin for pairs corresponding to edges
of the graph. In the Gibbs model, particles move randomly with collisions and their motion is often modeled
as reflecting Brownian motion. Sampling with Markov chains is today the primary algorithmic approach
for high-dimensional sampling. For some fundamental problems, sampling with Markov chains is the only
known efficient approach or the only approach to have guarantees of efficiency. Two notable examples are
sampling perfect matchings of a bipartite graph and sampling points from a convex body. These are the core
subroutines for estimating the permanent of a nonnegative matrix and estimating the volume of a convex
body, respectively. The solution space for these problems scales exponentially with the dimension. In spite
of this, polynomial-time algorithms have been discovered for both problems. The current best permanent
algorithm scales as n7 (time) [1, 20], while the current best volume algorithm scales as n3+o(1) (number of
membership tests) [21]. For the latter, the first polynomial-time algorithm had a complexity of n27 [14],
and the current best complexity is the result of many breakthrough discoveries, including general-purpose
algorithms and analysis tools.

Sampling is Ubiquitous. The need for efficient high-dimensional sampling arises in many fields. A
notable setting is metabolic networks in systems biology. A constraint-based model of a metabolic network
consists of m metabolites and n reactions, and a set of equalities and inequalities that define a set of feasible
steady state reaction rates (fluxes):

Ω =
{
v ∈ R

n | Sv = 0, l ≤ v ≤ u, cT v = α
}

∗Georgia Tech, yb.kook@gatech.edu
†University of Washington and Microsoft Research, yintat@uw.edu
‡University of Washington, shenr3@cs.washington.edu
§Georgia Tech, vempala@gatech.edu

1

http://arxiv.org/abs/2202.01908v1

where S is a stoichiometric matrix with coefficients for each metabolite and reaction. The linear equalities
ensure that the fluxes into and out of every node are balanced. The inequalities arise from thermodynamical
and environmental constraints. Sampling constraint-based models is a powerful tool for evaluating the
metabolic capabilities of biochemical networks [30, 43]. While the most common distribution used is uniform
over the feasible region, researchers have also argued for sampling from the Gaussian density restricted to the
feasible region; the latter has the advantage that the feasible set does not have to be bounded. A previous
approach to sampling, using hit-and-run with rounding [17], has been incorporated into the COBRA package
[18] for metabolic systems analysis (Bioinformatics).

A second example of mathematical interest is the problem of computing the volume of the Birkhoff poly-
tope. For a given dimension n, the Birkhoff polytope is the set of all doubly stochastic n×n matrices (or the
convex hull of all permutation matrices). This object plays a prominent role in algebraic geometry, probabil-
ity, and other fields. Computing its volume has been pursued using algebraic representations; however exact
computations become intractable even for n = 11, requiring years of computation time. Hit-and-run has
been used to show that sampling-based volume computation can go to higher dimension [9], with small error
of estimation. However, with existing sampling implementations, going beyond n = 20 seems prohibitively
expensive.

A third example is from Machine Learning, a field that is increasingly turning to sampling models of
data according to their performance in some objective. One such commonly used criterion is the logistic
regression function. The popularity of logistic regression has led to sampling being incorporated into widely
used packages such as STAN [41], PyMC3 [38], and Pyro [2].

Problem Description. In this paper, we consider the problem of sampling from distributions whose
densities are of the form

e−f(x) subject to Ax = b, x ∈ K (1.1)

where f is a convex function and K is a convex set. We assume that a self-concordant barrier φ for K is given.
Note that any convex set has a self-concordant barrier [29] and there are explicit barriers for the majority of
convex sets we use in practice [36], so this is a mild assumption. We introduce an algorithm to handle this
problem efficiently when K is a product set of Ki, each with small dimension. Many practical applications
can be written in this form with small dimensional Ki. As a special case, the algorithm can handle K in the
form of {x ∈ R

n : li ≤ xi ≤ ui for all i ∈ [n]} with li ∈ R∪{−∞} and ui ∈ R∪ {+∞}, which is the common
model structure in systems biology. Moreover, any generalized linear model exp(−∑

fi(a⊤
i x− bi)), e.g., the

logistic model, can be rewritten in the form

exp(−
∑

ti) subject to Ax = b+ s, (s, t) ∈ K (1.2)

where K = ΠKi and Ki = {(si, ti) : fi(si) ≤ ti} are 2-dimensional convex sets.

The Challenges of Practical Sampling. High dimensional sampling has been widely studied in both the
theoretical computer science and the statistics community. Many popular samplers are first-order methods,
such as MALA [37], basic HMC [34, 12] and NUTS [19], which update the Markov chain based on the
gradient information of f . The runtime of such methods can depend on the condition number of the
function f [13, 26, 6, 7, 39]. However, the condition number of real-world applications can be very large.
For example, Recon 1 [24], a reconstruction of the human metabolic network, can have condition number
as large as 106 due to the dramatically different orders of different chemicals’ concentration. Motivated by
sampling from ill-conditioned distributions, another class of samplers use higher-order information such as
Hessian of f to take into account the local structure of the problems [40, 8]. However, such samplers cannot
handle non-smooth distributions, such as hinge-loss, lasso, and uniform densities over polytopes.

For non-smooth distributions, the best polytime methods are based on discretizations of Brownian motion,
e.g., the Ball walk [22] (and its affine-invariant cousin, the Dikin walk [23]), which takes a random step in a
ball of a fixed size around the current point. Hit-and-Run [31] builds on these by avoiding an explicit step
size and going to a random point along a random line through the current point. Both approaches hit the
same bottleneck — in a polytope that contains a unit ball, the step size should be O(1/

√
n) to avoid stepping

out of the body with large probability. This leads to quadratic bounds (in dimension) on the number of
steps to “mix”.

2

http://math.sfsu.edu/beck/birkhoff/volumes.html

Due to the reduction mentioned in (1.2), non-smooth distributions can be translated to the form in (1.1)
with constraint K. Both the first and higher-order sampler and the polytime non-smooth samplers have
their limitations in handling distributions with non-smooth objective function or constraint K. Given the
limitations of all previous samplers, a natural question we want to ask is the following.

Question. Can we develop a sampler that can handle the constrained problem in (1.1) and preserve sparsity
with mixing time independent of the condition number?

In some applications, smoothness and condition number can be controlled with tailor-made models. Our
goal here is to propose a general solver that can sample from any non-smooth distributions as given. For
traditional samplers such as the Ball walk and Hit-and-Run, as mentioned earlier, the step size needs to be
small so that the process does not step out. An approach that gets around this bottleneck is Hamiltonian
Monte Carlo (HMC), where the next step is given by a point along a Hamiltonian-preserving curve according
to a suitably chosen Hamiltonian. It has two advantages. First, the steps are no longer straight lines in
Euclidean space, and we no longer have the concern of “stepping out”. Second, the process is symplectic and
measure-preserving, and hence the filtering step is easy to compute. It was shown in [28] that significantly
longer steps can be taken and the process with a convergence analysis in the setting of Hessian manifolds,
leading to subquadratic convergence for uniformly sampling polytopes.

To make this practical, however, remains a challenge. There are two high-level difficulties. One is that
many real-world instances are highly skewed (far from isotropic) and hence it is important to use the local
geometry of the density function. This means efficiently computing or maintaining second-order information
such as a Hessian of the logarithm of the density. This can be done in the Riemannian HMC (RHMC)
framework [15, 28], but the computation of the next step requires solving the Hamiltonian ODE to high
accuracy, which in turn needs the computation of leverage scores, a procedure that takes at least matrix
multiplication time in the worst case. Another important difficulty is maintaining hard linear constraints.
Existing high-dimensional packages do allow for constraints (they must be somehow incorporated into the
target density), and RHMC is usually considered with a full-dimensional feasible region such as a full-
dimensional polytope. This can also be done in the presence of linear equalities by working in the affine
subspace defined by the equalities, but this has the effect of losing any sparsity inherent in the problem and
turning all coefficient matrices and objective coefficients into dense objects, thereby potentially incurring a
quadratic blow-up.

Our Solution: Constrained Riemannian Hamiltonian Monte Carlo (CRHMC). We develop a
constrained version of RHMC, maintaining both sparsity and constraints. Our refinement of RHMC ensures
that the process satisfies the given constraints throughout, without incurring a significant overhead in time or
sparsity. It works even if the resulting feasible region is poorly conditioned. Since many instances in practice
are ill-conditioned and have degeneracies, we believe this is a crucial aspect. Our algorithm outperforms
existing packages by orders of magnitude.

In Section 2, we describe the algorithm in detail starting with its main ingredients, and concluding with a
proof that it converges to the desired distribution. We also bound the error of the simple ODE solver we use
(midpoint Euler). Following that, in Section 3, we present empirical results on several benchmark datasets,
showing that CRHMC successfully samples much larger models than previously known to be possible, and
is significantly faster in terms of rate of convergence (“number of steps”) and total sampling time. Our
complete package is available on Github.

2 Algorithm: Constrained RHMC

In this section, we propose a constrained Riemannian Hamiltonian Monte Carlo (CRHMC1) algorithm to
sample from a distributions of the form

e−f(x) subject to c(x) = 0

1pronounced “crumch”.

3

https://github.com/ConstrainedSampler/PolytopeSamplerMatlab

where the constraint function c : Rn → R
m satisfies the property that the Jacobian Dc(x) has full rank for

all x such that c(x) = 0. It is useful to keep in mind the case when c(x) = 0 is an affine subspace Ax = b,
in which case Dc(x) = A, and the full-rank condition simply says that the rows of A are independent.

We note that the constrained Hamiltonian Monte Carlo (CHMC) [3] provided the same framework that
can be extended to CRHMC, and in fact they mention CRHMC as a possible variant. However, their
algorithm for CRHMC requires eigenvalue decomposition and is not efficient for large problems. To overcome
their limitations, we start by going over basics of RHMC and CRHMC with more explicit mathematical
description in Section 2.1 and 2.2 respectively, including a proof of stationarity in Section 2.3. In Section
2.4, we claim that the introduction of a self-concordant barrier on a Hessian manifold leads to CRHMC
being independent of the condition number of distribution under a proper choice of a mass matrix. Then in
Section 2.5 we illustrate how we avoid costly steps to make CRHMC more efficient. Lastly in Section 2.6
we demonstrate how we discretize CRHMC using the implicit midpoint method, together with proofs for
stationarity of the discretized CRHMC and for fast convergence of the numerical integrator in our setting.
For missing definitions and details, we refer readers to Appendix A.

2.1 Basics of RHMC

To introduce our algorithm, we first recall the RHMC algorithm (Algorithm 1). In RHMC, we extend the
space x to the pair (x, v), where v denotes the velocity. Instead of sampling from e−f(x), RHMC samples
from the distribution e−H(x,v), where H(x, v) is the Hamiltonian, and then outputs x. To make sure the
distribution is correct, we choose the Hamiltonian such that the marginal of e−H(x,v) along v is proportional
to e−f(x). One common choice of H(x, v) is

H(x, v) = f(x) +
1
2
v⊤M(x)−1v +

1
2

log detM(x) (2.1)

where M(x) is a position-dependent positive definite matrix defined on R
n.

RHMC contains two steps. Step 1 samples v. For H of the form (2.1), it involves simply sampling from
a multivariate normal distribution. Step 2 rotates the (x, v)-space via the Hamiltonian dynamics

dx

dt
=
∂H(x, v)

∂v
,
dv

dt
= −∂H(x, v)

∂x
. (2.2)

Note that the target distribution is invariant under this ODE. Hence, one can think of this step as moving
the randomness of Step 1 from v to x.

Algorithm 1: Riemannian Hamiltonian Monte Carlo (RHMC)

Input: Initial point x(0), step size h
for k = 1, 2, · · · do

// Step 1: resample v

Sample v(k− 1
2) ∼ N (0,M(x(k−1))) and set x(k− 1

2) ← x(k−1).

// Step 2: Hamiltonian dynamics

Solve the ODE
dx

dt
=
∂H(x, v)

∂v
,
dv

dt
= −∂H(x, v)

∂x

with H defined in (2.1) and the initial point given by (x(k− 1
2), v(k− 1

2)).
Set x(k) ← x(h) and v(k) ← v(h).

end

Output: x(k)

4

2.2 Basics of CRHMC

To extend RHMC to the constrained case, we need to make sure both Step 1 and Step 2 satisfy the constraints,
so the Hamiltonian dynamic has to maintain c(x) = 0 throughout Step 2. Note that

d

dt
c(xt) = Dc(xt) ·

dxt

dt
= Dc(xt) ·

∂H(xt, vt)
∂vt

(2.3)

where Dc(x) is the Jacobian of c at x. With H defined in (2.1), Condition (2.3) becomes Dc(x)M(x)−1v = 0.
However, for full rank Dc(x), if M(x) is invertible, then Range(v) = Range(N (0,M(x))) = R

n immediately
violates this condition due to dim(Null(Dc(x)M−1(x))) = n −m. To get around this issue, we use a non-
invertible matrix M(x) with its pseudo-inverse M(x)† to satisfy Dc(x)M(x)†v = 0 for any v ∈ Range(M(x)).
Since we want the step to be able to move in all directions satisfying c(x) = 0, we impose the following
condition with Range(M(x)) = Range(M(x)†) in mind:

Range(M(x)) = Null(Dc(x)) for all x ∈ R
n, (2.4)

which can be achieved by M(x) proposed in Section 2.4.
Under the condition (2.4), we sample v from N (0,M(x)) in Step 1, which is equivalent to sampling from

e−H(x,v) subject to v ∈ Range(M(x)) = Null(Dc(x)). Also, the stationary distribution of CRHMC should
be proportional to

e−H(x,v) subject to c(x) = 0 and v ∈ Null(Dc(x)).

Here, to maintain v ∈ Null(Dc(x)) during Step 2 we add a Lagrangian term to H . Without the Lagrangian
term, vt would escape from Null(Dc(xt)) = Range(M(xt)) in Step 2 as seen in Lemma 1 below, which
contradicts Range(vt) = Range(N (0,M(xt))) = Range(M(xt)). Therefore, the constrained Hamiltonian we
propose is

H(x, v) = H(x, v) + λ(x, v)⊤c(x) with H(x, v) = f(x) +
1
2
v⊤M(x)†v + log pdet(M(x)) (2.5)

where pdet denotes pseudo-determinant and λ(x, v) is picked so that v ∈ Null(Dc(x)) (see Lemma 1). Later
in Section 2.5, we present alternative formulas for M(x)† and log pdet(M(x)) for efficient computation, and
for our case c(x) = Ax− b we prove that the constrained Hamiltonian H can be simplified without affecting
the dynamic on x.

Lemma 1. Consider the constrained Hamiltonian defined by (2.5) with Range(M(x)) = Null(Dc(x)) and

λ(xt, vt) = (Dc(xt)Dc(xt)⊤)−1

(
D2c(xt)[vt,

dxt

dt
]−Dc(xt)

∂H(xt, vt)
∂x

)
.

When the initial point satisfies c(x0) = 0, the ODE solution of (2.2) satisfies c(xt) = 0 and Dc(xt)vt =
Dc(x0)v0 for all t.

Proof. First we compute

d

dt
c(xt) = Dc(xt) ·

dxt

dt
= Dc(xt) ·

∂H(xt, vt)
∂vt

= Dc(xt)M(xt)†v +Dc(xt)Dvλ(xt, vt)⊤c(xt)

= Dc(xt)Dvλ(xt, vt)
⊤c(xt)

where we used Range(M(x)†) = Range(M(x)) = Null(Dc(x)). Since c(x0) = 0, by the uniqueness of the
ODE solution, we have that c(xt) = 0 for all t. Next we compute

dvt

dt
=− ∂H(xt, vt)

∂x

=− ∂H(xt, vt)
∂x

−Dc(xt)⊤λ(xt, vt)−Dxλ(xt, vt)⊤c(xt)

=− ∂H(xt, vt)
∂x

−Dc(xt)⊤λ(xt, vt)

5

where we used c(xt) = 0. Hence, we have

d

dt
Dc(xt)vt = D2c(xt)[vt,

dxt

dt
] +Dc(xt)

dvt

dt

= D2c(xt)[vt,
dxt

dt
]−Dc(xt)

∂H(xt, vt)
∂x

−Dc(xt)Dc(xt)⊤λ(xt, vt).

Setting λ(xt, vt) = (Dc(xt)Dc(xt)⊤)−1(D2c(xt)[vt,
dxt

dt]−Dc(xt)
∂H(xt,vt)

∂x), we have that d
dtDc(xt)vt = 0 and

thus Dc(xt)vt = Dc(x0)v0 for all t (i.e., vt ∈ Null(Dc(xt)) during Step 2).

Remark. Rather than resampling the velocity at every step, we may change the velocity more gradually,
using the following update:

v′ ←
√
βv +

√
1− βz

where z ∼ N (0,M(x)) and β is a parameter. We note that this step is time-reversible, i.e., P(v|x)P(v →
v′) = P(v′|x)P(v′ → v) (see Theorem 8).

2.3 Stationarity of CRHMC

An algorithmic description of CRHMC is the same as Algorithm 1 with the constrained H in place of the
unconstrained H . In this section, we prove that the Markov chain defined by CRHMC projected to x satisfies
detailed balance with respect to its target distribution proportional to e−f(x) subject to c(x) = 0, leading to
the target distribution being stationary.

To formalize this, we introduce a few notations here. Let M = {x ∈ R
n : c(x) = 0} be a manifold in R

n

and π(x) be a desired distribution onM proportional to e−f(x) satisfying
∫

M π(x)dx = 1. We denote the set
of velocity v at x ∈ M (i.e., cotangent space) by TxM = Null(Dc(x)) = {v ∈ R

n : Dc(x)M(x)†v = 0}. Let
Th be the map sending (x, v) to (x′, v′) = (x(h), y(h)) in Step 2 and define Fx,h(v) := (π1 ◦ Th)(x, v) = x′,
where π1(x, v) := x is the projection to the position space x. For a matrix A, we denote by |A| the absolute
value of its determinant | det(A)|.
Theorem 2. For x, x′ ∈ M, let Px(x′) be the probability density of the one-step distribution to x′ starting
at x in CRHMC (i.e., transition kernel from x to x′). It satisfies detailed balance with respect to the desired
distribution π (i.e., π(x)Px(x′) = π(x′)Px′(x)).

Proof. Fix x and x′ inM. Let C1 be the normalization constant of e−f(x) (i.e., π(x) = C1e
−f(x)). The tran-

sition kernel Px(x′) is characterized as the pushforward by Fx,h of the probability measure v ∼ N (0,M(x))
on TxM, so it follows that

Px(x′) = C2

∫

Vx

e− 1
2 log pdet(M(x))− 1

2 v⊤M(x)†v

|DFx,h(v)| dv,

where C2 is the normalization constant of e− 1
2 log pdet(M(x))− 1

2 v⊤M(x)†v and Vx = {v ∈ TxM : Fx,h(v) = x′}
is the set of velocity in cotangent space at x such that the Hamiltonian ODE with step size h sends (x, v) to
(x′, v′). As c(x) = 0 for x ∈M, it follows that

π(x)Px(x′) = C1C2

∫

Vx

e−f(x)− 1
2 log pdet(M(x))− 1

2 v⊤M(x)†v−λ(x,v)⊤c(x)

|DFx,h(v)| dv = C1C2

∫

Vx

e−H(x,v)

|DFx,h(v)|dv.

Going forward, we use three important properties of the Hamiltonian dynamic including reversibility,
Hamiltonian preservation, and volume preservation, which still hold for the constrained Hamiltonian H .
Due to reversibility T−h(x′, v′) = (x, v), we can write

π(x′)Px′(x) = C1C2

∫

Vx′

e−H(x′,v′)

|DFx′,−h(v′)|dv
′,

where Vx′ = {v′ ∈ Tx′M : Fx′,−h(v′) = x} is the counterpart of Vx. From reversibility T−h ◦ Th = I, the
inverse function theorem implies DT−h = (DTh)−1. Now let us denote

6

DTh(x, v) =

[
A B
C D

]
& DT−h(x′, v′) =

[
A′ B′

C′ D′

]
,

where each entry is a block matrix with the same size. Note that DFx,h(v) = B and DFx′,−h(v′) = B′ hold
by the definition of Jacobian. Together with DT−h = (DTh)−1, a formula for the inverse of a block matrix
results in

|DFx′,−h(v′)| = |B′| = |B|
|D||A−BD−1C| =

|B|
|DTh(x, v)| = |B| = |DFx,h(v)|,

where we use the property of volume preservation in the fourth equality (i.e., |DTh(x, v)| = 1). Finally, the
property of Hamiltonian preservation implies H(x, v) = H(x′, v′) and thus

∫

Vx′

e−H(x′,v′)

|DFx′,−h(v′)|dv
′ =

∫

Vx

e−H(x,v)

|DFx,h(v)|dv.

Therefore, π(x)Px(x′) = π(x′)Px′(x) holds.

Similar reasoning in Theorem 3 in [3] leads to π-irreducibility of this Markov chain, so CRHMC converges
to the unique stationary distribution π ∝ e−f(x).

2.4 Condition Number Independence via Self-concordant Barrier

Choice of M(x). In the previous section, we promised a Hamiltonian for sampling e−f(x) subjects to
the constraint c(x) = 0. The construction relies on having a family of positive semi-definite matrix M(x)
satisfying the condition (2.4) (i.e., Range(M(x)) = Null(Dc(x))). One natural choice is the orthogonal
projection to Null(Dc(x)):

Q(x) = I −Dc(x)⊤(Dc(x)Dc(x)⊤)−1Dc(x). (2.6)

In this case, our algorithm is similar to [3].
For the problem we care about, there are often extra constraints on x. For concreteness, let us discuss

a simple constraint K = {x ≥ 0}. In the standard HMC algorithm, we note that dx
dt ∼ N (0,M(x)−1).

To ensure every direction is moving towards/away from x = 0 multiplicative, a natural choice of M is
M(x) = diag(x−2). To generalize this to any convex set K, we make use of some convex function φ(x),
called a barrier function, defined on K such that φ(x)→ +∞ as x→ ∂K. Using the barrier function φ, we
can define the corresponding family of positive semi-definite matrices g(x) = ∇2φ(x). For the constrained
case, we define M(x) to be some matrix such that its range matches the null space of Dc(x) and M(x) agrees
with g(x) on the range. Formally, M(x) should be set to fulfill

u⊤M(x)u = u⊤g(x)u for all u ∈ Range(M(x)),

Range(M(x)) = Null(Dc(x)).

Solving this equation, we have
M(x) = Q(x)⊤ · g(x) ·Q(x) (2.7)

where Q(x) is the symmetric matrix defined in (2.6).

Independence of Condition Number. We are able to show that sampling using M defined in (2.7)
is independent of the condition number of the distribution. First, [27] shows that for a Hessian manifold,
the distribution satisfies a Poincaré constant given by the ratio between the Hilbert distance and geodesic
distance. Then, for a self-concordance barrier, [32] (see Lemma 3) shows that the ratio between the Hilbert
distance and geodesic distance can be bounded by the self-concordance parameter. Finally, by [8], our process
converges in chi-square distance with an exponential convergence rate that only depends on the Poincaré
constant.

7

2.5 Efficient Computation of ∂H/∂x and ∂H/∂v

With M(x) = Q(x) · g(x) · Q(x), now we have the complete description of the algorithm and should be
able to efficiently compute ∂H/∂x and ∂H/∂v to solve the Hamiltonian ODE. However, when using the
algorithm as it is, we face several challenges. First of all, it involves computing the pseudo-inverse and its
derivatives, which takes O(n3) except for very special matrices. Next, the Lagrangian term in the constrained
Hamiltonian dynamic requires additional computation such as the second-order derivative of c(x). Lastly, a
naive approach to computing leverage scores in ∂H/∂x results in a very dense matrix.

We address each of the challenges as follows. In Section 2.5.1, we present alternative formulas for pseudo-
inverse and pseudo-determinant that can leverage existing sparse linear system solvers. Then we show in
Section 2.5.2 that the Lagrangian term can be dropped without affecting the dynamic on x at least when
c(x) = Ax − b. Finally in Section 2.5.3, we discuss how to obtain leverage scores in an efficient manner by
computing only small portion of an inverse matrix and tracking the sparsity pattern of matrices.

2.5.1 Avoiding pseudo-inverse and pseudo-determinant

We give equivalent formulas for M(x)† and log pdetM(x) that can take advantage of sparse linear system
solvers. We note that existing sparse linear system solvers can solve large classes of sparse linear system
much faster than O(n3) time [11]. The equivalent formulas we provide avoid the expensive pseudo-inverse
and pseudo-determinant computations, and are one crucial reason of our improved practical performance.

We start with a formula for M(x)†.

Lemma 3. Let M(x) = Q(x)·g(x)·Q(x) where Q(x) = I−Dc(x)⊤(Dc(x)·Dc(x)⊤)−1Dc(x) is the orthogonal
projection to the null space of Dc(x). Then, Dc(x) ·M(x)† = 0 and M(x)† = g(x)− 1

2 · P (x) · g(x)− 1
2 with

P (x) = I − g(x)− 1
2 ·Dc(x)⊤(Dc(x) · g(x)−1 ·Dc(x)⊤)−1Dc(x) · g(x)− 1

2 .

Remark. As mentioned earlier, a majority of convex sets appearing in practice are of the form K =
∏

i Ki,
where Ki are constant dimensional convex sets. In this case, we will choose g(x) to be a block diagonal
matrix with each block of size O(1). Hence, the bottleneck of applying P (x) to a vector is simply solving a
linear system of the form (Dc · g−1 ·Dc⊤)u = b for some b.

Proof. Recall that Range(M(x)†) = Range(M(x)). Hence, for any u ∈ R
n, we have that M(x)†u ∈

Range(M(x)). Since Range(M(x)) ⊆ Range(Q(x)) and Range(Q(x)) = Null(Dc(x)) due to the definition of
the orthogonal projection Q(x), it follows that Dc(x) ·M(x)†u = 0 for all u.

For the formula of M(x)†, we simplify the notation by ignoring the parameter x. Let N = g− 1
2Pg− 1

2

and J = Dc(x). The goal is to prove that M † = N . First, we show some basic identities about Q and N :

QN =Qg− 1
2 (I − g− 1

2 J⊤(Jg−1J⊤)−1Jg− 1
2)g− 1

2

=(I − J⊤(JJ⊤)−1J)(g−1 − g−1J⊤(Jg−1J⊤)−1Jg−1)

=g−1 − J⊤(JJ⊤)−1Jg−1

− (g−1J⊤(Jg−1J⊤)−1Jg−1 − J⊤(JJ⊤)−1Jg−1J⊤(Jg−1J⊤)−1Jg−1)

=N (2.8)

Similarly, we have NQ = N , QgN = Q, and NgQ = Q. To prove that M † = N , we need to check that MN
and NM are symmetric, MNM = N , and NMN = N .

For symmetry of MN and NM , we note that MN = QgQN = QgN = Q and NM = NQgQ = NgQ =
Q. For the formula of MNM and NMN , we note that that Q is a projection matrix and hence

MNM = QM = QQgQ = QgQ = M,

NMN = QN = N.

Therefore, we have M † = N .

Another bottleneck of the algorithm is to compute log pdetM(x). The next lemma shows a simpler
formula that can take advantage of sparse Cholesky decomposition.

8

Lemma 4. We have that

log pdet(M(x)) = log det g(x) + log det
(
Dc(x) · g(x)−1 ·Dc(x)⊤)

− log det
(
Dc(x) ·Dc(x)⊤)

.

Proof. We simplify the notation by ignoring the parameter x and letting J = Dc(x). Let

f1(g) = log pdet(Q · g ·Q)

f2(g) = log det g + log detJg−1J⊤ − log detJJ⊤

Clearly, f1(I) = f2(I) = 0, and hence it suffices to prove that their derivatives are the same.
Note that Range(Q · g · Q) = Null(J) and Range(J⊤) is the orthogonal complement of Null(J). Since

J⊤(JJ⊤)−1J is the orthogonal projection to Range(J⊤), all of its eigenvectors in Range(J⊤) have eigenvalue
1 and all the rest in Null(J) have eigenvalue 0. Therefore, by padding eigenvalue 1 on Range(J⊤) =
Null(J)⊥ = Range(QgQ)⊥, we have

pdet(Q · g ·Q) = det(Q · g ·Q+ J⊤(JJ⊤)−1J)

= det(Q · g ·Q+ (I −Q))

Using D log detA(g)[u] = Tr(A(g)−1DA(g)[u]), the directional derivative of f1 on direction u is

Df1(g)[u] = Tr
(
(Q · g ·Q + (I −Q))−1Q · u ·Q

)

Let N = (Q · g ·Q)†. As shown in the proof of Lemma 3, we have NQ = QN = N and QgN = Q. By using
these identities, we can manually check that (Q · g ·Q+ (I −Q))−1 = N + (I −Q). Hence,

Df1(g)[u] = Tr ((N + (I −Q))Q · u ·Q) = Tr(NuQ)

= Tr(QNu) = Tr(Nu)

where we used idempotence of the projection matrix Q (i.e., Q2 = Q).
On the other hand, we have

Df2(g)[u] = Tr(g−1u)− Tr
(
(Jg−1J⊤)−1(Jg−1ug−1J⊤)

)

= Tr
(
(g−1 − g−1J⊤(Jg−1J⊤)−1Jg−1)u

)

= Tr(Nu)

where we used the alternative formula of N in Lemma 3. This shows that the derivative of f1 equals to that
of f2 at any point g ≻ 0. Since the set of positive definite matrices is connected and f1(I) = f2(I), this
implies that f1(g) = f2(g) for all g ≻ 0.

Combining Lemma 3 and Lemma 4, we have the following formula of the Hamiltonian.

H(x, v) =H(x, v) + λ(x, v)⊤c(x)

H(x, v) =f(x) +
1
2
v⊤g(x)− 1

2

(
I − g(x)− 1

2 ·Dc(x)⊤(Dc(x) · g(x)−1 ·Dc(x)⊤)−1Dc(x) · g(x)− 1
2

)
g(x)− 1

2 v

+
1
2

(
log det g(x) + log det

(
Dc(x) · g(x)−1 ·Dc(x)⊤)

− log det
(
Dc(x) ·Dc(x)⊤))

2.5.2 Simplification for subspace constraints

For the case c(x) = Ax − b, the constrained Hamiltonian is

H(x, v) =f(x) +
1
2
v⊤g− 1

2 (I − P) g− 1
2 v +

1
2

(
log det g + log detAg−1A⊤ − log detAA⊤)

+ λ⊤c (2.9)

where P = g− 1
2A⊤(Ag−1A⊤)−1Ag− 1

2 . The following lemma shows that the dynamic corresponding to H
above is equivalent to a simpler H . The key observation is that the algorithm only needs to know x(h) in
the HMC dynamic, and not v(h). Thus we can replace H by any other H that produces the same x(h).

9

Lemma 5. The Hamiltonian dynamic on x corresponding to (2.9) is same as the dynamic on x corresponding
to

H(x, v) = f(x) +
1
2
v⊤g− 1

2 (I − P) g− 1
2 v +

1
2

(
log det g + log detAg−1A⊤)

(2.10)

where P = g− 1
2A⊤(Ag−1A⊤)−1Ag− 1

2 . Furthermore, we have

dx

dt
= g− 1

2 (I − P) g− 1
2 v, (2.11)

dv

dt
= −∇f(x) +

1
2
Dg

[
dx

dt
,
dx

dt

]
− 1

2
Tr(g− 1

2 (I − P) g− 1
2Dg). (2.12)

Proof. Note that the dynamic on x corresponding to (2.9) is given by

dx

dt
=
∂H

∂v
= g− 1

2 (I − P) g− 1
2 v + (Dvλ)⊤c

= g− 1
2 (I − P) g− 1

2 v (2.13)

where we used that c(x) = 0 (Lemma 1).
Now let us compute the dynamic on v. Note that

v⊤g− 1
2 (I − P) g− 1

2 v = v⊤g−1v − v⊤g−1A⊤(A · g−1 · A⊤)−1Ag−1v.

Hence, we have

Dx

(
1
2
v⊤g− 1

2 (I − P) g− 1
2 v

)
=− 1

2
v⊤g−1 ·Dg · g−1v + v⊤g−1 ·Dg · g−1A⊤(A · g−1 · A⊤)−1Ag−1v

− 1
2
v⊤g−1A⊤(A · g−1 · A⊤)−1A · g−1 ·Dg · g−1 · A⊤(A · g−1 ·A⊤)−1Ag−1v

=− 1
2
v⊤g− 1

2 (I − P)g− 1
2 ·Dg · g− 1

2 (I − P)g− 1
2 v

=− 1
2
Dg

[
dx

dt
,
dx

dt

]
,

where we used dx
dt = g− 1

2 (I − P)g− 1
2 v in (2.13). Therefore, it follows that

dv

dt
= −∂H

∂x
− (Dvλ)⊤c−A⊤λ (2.14)

= −∇f(x) +
1
2
Dg

[
dx

dt
,
dx

dt

]
− 1

2
Tr(g−1Dg) +

1
2

Tr
(
(Ag(x)−1A⊤)−1Ag(x)−1 ·Dg · g(x)−1A⊤)

−A⊤λ

= −∇f(x) +
1
2
Dg

[
dx

dt
,
dx

dt

]
− 1

2
Tr(g− 1

2 (I − P) g− 1
2Dg)−A⊤λ

where we used that c = 0 again in the second equality.
Recall that dx

dt = g− 1
2 (I − P) g− 1

2 v. In this formula, let us perturb v by A⊤y for any y as follows.

(I − P) g− 1
2 (v +A⊤y) = (I − P) g− 1

2 v +
(
I − g− 1

2A⊤(Ag−1A⊤)−1Ag− 1
2

)
g− 1

2A⊤y

= (I − P) g− 1
2 v + (g− 1

2A⊤y − g− 1
2A⊤(Ag−1A⊤)−1(Ag−1A⊤)y)

= (I − P) g− 1
2 v + (g− 1

2A⊤y − g− 1
2A⊤y)

= (I − P) g− 1
2 v.

Hence, removing A⊤λ from dv
dt in (2.14) does not change the dynamic on x, and thus we have the new

dynamic given simply by (2.11) and (2.12). By repeating this proof, one can check that the simplified
Hamiltonian (2.10) also yields (2.11) and (2.12).

10

2.5.3 Efficient Computation of Leverage Score

As mentioned earlier, each step for solving the Hamiltonian ODE requires computation of leverage scores.
Even after simplifying the Hamiltonian in Section 2.5.2, we still have a term for the leverage scores,
Tr(g− 1

2 (I − P) g− 1
2Dg) in dv

dt , and the diagonal entries of P = g− 1
2A⊤(Ag−1A⊤)−1Ag− 1

2 should be re-
alized to compute dv

dt . Since (Ag−1A⊤)−1 can be extremely dense even when A is very sparse, a naive
approach such as direct computation of the inverse leads to a dense matrix and dense-matrix multiplication.

In this section, we discuss how we efficiently compute the diagonal entries of A⊤(Ag−1A⊤)−1A. Our
idea is based on the fact that certain entries of (Ag−1A⊤)−1 can be computed as fast as computing sparse
Cholesky decomposition of Ag−1A⊤ [42, 4], which can be O(n) time faster than computing (Ag−1A⊤)−1 in
many settings.

For simplicity, we focus on the case g(x) as a diagonal matrix, since we use the log-barrier φ(x) =
−∑m

i=1(log(xi − li) + log(ui − xi)) in implementation. We first note that we maintain a “sparsity pattern”
sp(M) of a sparse matrix M so that we handle only these entries in downstream tasks. The sparsity pattern
indicates “candidates” of nonzero entries of a matrix (i.e., sp(M) ⊇ nnz(M) = {(i, j) : Mij 6= 0}). For
instance, it is obvious that sp(cc⊤) = {(i, j) : cicj 6= 0} = nnz(cc⊤) for a column vector c and that
sp(Ag−1A⊤) =

⋃
i∈[n] sp(AiA

⊤
i) follows from the equality Ag−1A⊤ =

∑n
i=1(Ag− 1

2)i(Ag− 1
2)⊤

i , where Mi

denote the ith column of M (See Theorem 2.1 in [10]). Then we compute the Cholesky decomposition to
obtain a sparse triangular matrix L such that LL⊤ = Ag−1A⊤ with a property sp(Ag−1A⊤) ⊆ sp(L⊤)∪sp(L)
(See Theorem 4.2 in [10]).

Once the sparsity pattern of L is identified, we compute S := (Ag−1A⊤)−1|sp(L), the restriction of S to
sp(L), that is, the inverse matrix S is computed only for entries in sp(L). [42, 4] showed that this matrix S
can be computed as fast as the Cholesky decomposition of Ag−1A⊤.

For completeness, we explain how they compute S efficiently. Let L0DL
⊤
0 be the LDL decomposition of

Ag−1A⊤ such that the diagonals of L0 is one and so L = L0D
1
2 , and it easily follows that

S = D−1L−1
0 + (I − L⊤

0)S = D− 1
2L−1 + (I − L⊤D− 1

2)−1S.

Since D−1L−1
0 is lower triangular and I − L⊤

0 is strictly upper triangular, symmetry of S implies that S
can be computed from the bottom row to the top row one by one. We note that the computation of S on
any entry in sp(L) only requires previously computed S on entries in sp(L), due to the sparsity pattern of
I − L⊤D− 1

2 . [42, 4] showed that the total cost of computing S is O(
∑n

i=1 n
2
i) for backward substitution,

where ni is the number of nonzeros in the ith column of L. This exactly matches the cost of computing L. In
our experiments, for many sparse matrices A, we found that O(

∑n
i=1 n

2
i) is roughly O(n1.5) and it is much

faster than dense matrix inverse.
We have presented methods to save computational cost, avoiding full computation of the inverse (Ag−1A⊤)−1.

This attempt is justified by the fact that only entries of Ag−1A⊤ in sp(L) ∪ sp(L⊤) matter in computing
diag(A⊤SA) = diag(A⊤(Ag−1A⊤)−1A).

Lemma 6. Computation of diag(A⊤(Ag−1A⊤)−1A) involves accessing only entries of (Ag−1A⊤)−1 in
sp(Ag−1A⊤).

Proof. Let M := (Ag−1A⊤)−1 ∈ R
m×m, σi := (A⊤(Ag−1A⊤)−1A)ii for i ∈ [n], and ai be the ith column of

A. Observe that
σi = a⊤

i (Ag−1A⊤)−1ai = Tr(a⊤
i Mai) = Tr(Maia

⊤
i).

As the entries of M only in sp(aia
⊤
i) matter when computing the trace, we have that all the entries of M

used for computing σi for all i ∈ [n] are included in
⋃n

i=1 sp(aia
⊤
i) = sp(Ag−1A⊤).

Now let us divide the diagonals of S by 2. Then we have (Ag−1A⊤)−1|sp(L)∪sp(L⊤) = S + S⊤ and thus

diag(A⊤(Ag−1A⊤)−1A) = diag(A⊤(Ag−1A⊤)−1|sp(L)∪sp(L⊤)A) = diag(A⊤SA+A⊤S⊤A) = 2 · diag(A⊤SA)

and the last term can be computed efficiently using S. In our experiment, the cost of computing leverage
score is roughly twice the cost of computing Cholesky decomposition in all datasets.

11

Finally, we discuss another approach to compute leverage score with the same asymptotic complexity.
We consider the function

V (g) = log detAg−1A⊤

where g is a sparse matrix g ∈ R
sp(g) and V is defined only on R

sp(g). Note that V (g) can be computed
using Cholesky decomposition of A⊤g−1A⊤ and multiplying the diagonal of the decomposition. Next, we
note that

∇V (g) = −(g−1A⊤(Ag−1A⊤)−1Ag−1)|sp(g).

Hence, we can compute leverage score by first computing ∇V (g) via automatic differentiation, and the time
complexity of computing ∇V is only a small constant factor more than the time complexity of computing
V [16]. The only problem with this approach is that the Cholesky decomposition algorithm is an algorithm
involving a large loop and sparse operations and existing automatic differentiation packages are not efficient
to differentiate such functions.

2.6 Discretization

We discuss how to implement our Hamiltonian dynamic using the implicit midpoint method in Section 2.6.1
and present theoretical guarantees of correctness and efficiency of the discretized CRHMC in Section 2.6.2.

2.6.1 Discretized CRHMC based on Implicit Midpoint Integrator

In our algorithm, we discretize the Hamiltonian process into steps of step size h and run the process for T
iterations (see Algorithm 2). Starting from (x(0), v(0)), let (x(t), v(t)) be the point obtained after iteration t.
In the beginning of each iteration, we compute the Cholesky decomposition of Ag(x)−1A⊤ for later use and
resample the velocity with momentum. As noted previously in Lemma 5, for c(x) = Ax− b we can just use
the simplified Hamiltonian in (2.10)

H(x, v) = f(x) +
1
2
v⊤g(x)− 1

2 (I − P (x)) g(x)− 1
2 v +

1
2

(
log det g(x) + log detAg(x)−1A⊤)

instead of the constrained Hamiltonian H + λ⊤c. We solve the Hamiltonian dynamic for H by the implicit
midpoint method, which we will discuss below, and then use a Metropolis filter onH to ensure the distribution
is correct.

Implicit Midpoint Method. We elaborate on how the implicit midpoint integrator works (see Algorithm
3), which is known to be symplectic (so measure-preserving) and reversible. Let us writeH(x, v) = H1(x, v)+
H2(x, v), where

H1(x, v) = f(x) +
1
2

(
log det g(x) + log detAg(x)−1A⊤)

H2(x, v) =
1
2
v⊤g(x)− 1

2 (I − P (x)) g(x)− 1
2 v

Starting from (x0, v0), in the first step of the integrator, we run the process on the Hamiltonian H1 with

step size h
2 to get (x1/3, v1/3), and this discretization leads to x1/3 = x0 + h

2
∂H1

∂v (x0, v0) and v1/3 = v0 −
h
2

∂H1

∂x (x0, v0). Note that x1/3 = x0 due to ∂H1

∂v = 0. In the second step of the integrator, we run the process
on H2 with step size h by solving

x 2
3

= x 1
3

+ h
∂H2

∂v

(
x 1

3
+ x 2

3

2
,
v 1

3
+ v 2

3

2

)

v 2
3

= v 1
3
− h∂H2

∂x

(
x 1

3
+ x 2

3

2
,
v 1

3
+ v 2

3

2

)

To this end, starting from x2/3 = x1/3 and v2/3 = v1/3, we apply x2/3 ← x1/3 + h∂H2

∂v

(
x1/3+x2/3

2 ,
v1/3+v2/3

2

)

and v2/3 ← v1/3 − h∂H2

∂x

(
x1/3+x2/3

2 ,
v1/3+v2/3

2

)
iteratively with the following subroutine for computing ∂H2

∂v

12

and ∂H2

∂x . According to Lemma 5, this computation involves solving g(x)−1A⊤ (
Ag(x)−1A⊤)−1

Ag(x)−1v

for some v and x. To compute
(
Ag(x)−1A⊤)−1

Ag(x)−1v, we use the Newton’s method, which iteratively
computes ν ← ν +M−1Ag(x)−1

(
v − A⊤ν

)
for some M . Note that the Newton’s method guarantees that ν

converges toM−1Ag(x)−1v ifM is invertible. Here, we chooseM = Ag(x(t))−1A⊤ to ensure fast convergence.
Since we have already computed the Cholesky decomposition of M in the beginning, M−1Ag(x)−1

(
v −A⊤ν

)

can be computed efficiently by backward and forward substitution. In the third step of the integrator, we
run the process on the Hamiltonian H1 with step size h

2 again to get (x1, v1), which results in x1 = x2/3 and

v1 = v2/3 − h
2

∂H1

∂x (x1).
Putting Algorithm 2 and Algorithm 3 together, we obtain discretization of constrained Riemannian

Hamiltonian Monte Carlo algorithm.

Algorithm 2: Discretized Constrained Riemannian Hamiltonian Monte Carlo with Momentum

Input: Initial point x(0), velocity v(0), record frequency T , step size h, ODE steps K
for t = 1, 2, · · · , T do

Let v = v(t−1) and x = x(t−1).
// Step 1: Resample v with momentum

Let z ∼ N (0,M(x)). Update v:

v ←
√
βv +

√
1− βz

// Step 2: Solve dx
dt = ∂H(x,v)

∂v , dv
dt = −∂H(x,v)

∂x via the implicit midpoint method

Use Implicit Midpoint Method(x, v, h,K) to find (x′, v′) such that

v 1
3

= v − h

2
∂H1(x, v)

∂x
(2.15)

x′ = x+ h
∂H2(x+x′

2 ,
v1/3+v2/3

2)

∂v
, v′ = v − h∂H2(x+x′

2 ,
v1/3+v2/3

2)

∂x

v′ = v 2
3
− h

2
∂H1(x′, v′)

∂x

// Step 3: Filter

With probability min
{

1, e−H(x′,v′)

e−H(x,v)

}
, set x(t) ← x′ and v(t) ← v′.

Otherwise, set x(t) ← x and v(t) ← −v.
end

Output: x(T)

2.6.2 Theoretical Guarantees

We first show that one iteration of Algorithm 2 incurs the cost of solving a few Cholesky decomposition and
O(K) sparse triangular systems. Then we show in Theorem 8 that when Algorithm 3 converges, Algorithm
2 has a stationary density proportional to exp(−f(x)). In Lemma 11, we show Algorithm 3 converges fast.

Theorem 7. The cost of each iteration of Algorithm 2 is solving O(1) Cholesky decomposition and O(K)
triangular systems, where K is the number of iterations in Algorithm 3.

Proof. We first solve the Cholesky decomposition to get Lt−1L
⊤
t−1 = Ag(x(t−1))−1A⊤ at the beginning of

13

Algorithm 3: Implicit Midpoint Method

Input: Initial point x, velocity v, step size h, ODE steps K

// Step 1: Solve dx
dt = ∂H1(x,v)

∂v , dv
dt = −∂H1(x,v)

∂x

Set x 1
3
← x and v 1

3
← v − h

2
∂H1(x,v)

∂x .

// Step 2: Solve dx
dt = ∂H2(x,v)

∂v , dv
dt = −∂H2(x,v)

∂x via implicit midpoint

Set ν ← 0.
for k = 1, 2, · · · ,K do

Let xmid ← 1
2

(
x 1

3
+ x 2

3

)
and vmid ← 1

2

(
v 1

3
+ v 2

3

)

Set ν ← ν +
(
LL⊤)−1

Ag(xmid)−1
(
vmid −A⊤ν

)

Set x 2
3
← x 1

3
+ hg(xmid)−1

(
vmid −A⊤ν

)

and v 2
3
← v 1

3
− h

2Dg(xmid)
[
g(xmid)−1

(
vmid −A⊤ν

)
, g(xmid)−1

(
vmid −A⊤ν

)]

end

// Step 3: Solve dx
dt = ∂H1(x,v)

∂v , dv
dt = −∂H1(x,v)

∂x

Set x1 ← x 2
3

and v1 ← v 2
3
− h

2
∂H1

∂x (x 2
3
, v 2

3
).

Output: x1,v1

iteration. Recall that

H(x, v) = H1(x, v) +H2(x, v)

=

(
f(x) +

1
2

(log det g(x) + log detAg(x)−1A⊤)

)

+

(
1
2
v⊤g(x)− 1

2

(
I − g(x)− 1

2A⊤(Ag(x)−1A⊤)−1Ag(x)− 1
2

)
g(x)− 1

2 v

)
.

The value of H(x(t−1), v(t−1)) should be computed later for the filter step and can be efficiently computed by
the givenLt−1L

⊤
t−1 = Ag(x(t−1))−1A⊤and solving two sparse triangular systems (i.e., L−⊤

t−1(L−1
t−1(Ag(x)− 1

2))).
We need the same cost (i.e., Cholesky decomposition and solving two triangular systems) for the value of
H(x′, v′), where (x′, v′) is the output of Algorithm 3. We note that L inherits sparsity of A and thus each
triangular system can be solved efficiently by backward and forward substitution.

In the implicit midpoint method, one main component is computation of ∂H1(x,v)
∂x in Step 1 and ∂H1

∂x (x 2
3
, v 2

3
)

in Step 3 due to leverage scores. As seen in Section 2.5.3, the cost for these computations is within a constant
factor of solving the Cholesky decomposition for Ag(x(t−1))−1A⊤ and Ag(x 2

3
)−1A⊤. Another component is

solving O(K) triangular systems to update ν in Step 2.
Adding up all these costs, each iteration of Algorithm 2 only requires solving O(1) Cholesky decomposition

and O(K) sparse triangular systems.

Theorem 8. The Markov chain defined by Algorithm 2 projected to x has a stationary density proportional
to exp(−f(x)).

Proof. Each iteration consists of two stages: resampling velocity with momentum in Step 1 (i.e., (x, v) to
(x, v)) and solving ODE followed by the filter in Step 2 and 3 (i.e., (x, v) to (x′, v′)). To prove the claim,
we show that Step 1 is time-reversible with respect to the conditional distribution π(v|x) and that Step 2
followed by Step 3 is also time-reversible with respect to π(x, v).

We begin with the first part. We have π(v|x) = N (0,M(x)) due to the definition of H . Since v|x ∼
N (0,M(x)) and z ∼ N (0,M(x)) are independent Gaussians, the update rule v =

√
βv +

√
1− βz implies

π(v|x) = N (0,M(x)). Let P(z) be the probability density and C be the normalization constant for Gaussian

14

N (0,M(x)). Then, the time-reversibility w.r.t. π(v|x) is immediate from the following computation:

π(v|x)P(v → v) = C2 exp(−1
2
v⊤M †v) · exp(−1

2
(v −√βv)⊤M †(v −√βv)

1− β)

= C2 exp

(
−1

2

(
v⊤M †v +

v⊤M †v

1− β +
βv⊤M †v

1− β −
√
β

1− β (v⊤M †v + v⊤M †v)

))

= C2 exp

(
−1

2

(
v⊤M †v

1− β +
v⊤M †v

1− β −
√
β

1− β (v⊤M †v + v⊤M †v)

))

π(v|x)P(v → v) = C2 exp(−1
2
v⊤M †v) · exp(−1

2
(v −√βv)⊤M †(v −√βv)

1− β)

= C2 exp

(
−1

2

(
v⊤M †v +

v⊤M †v

1− β +
βv⊤M †v

1− β −
√
β

1− β (v⊤M †v + v⊤M †v)

))

= C2 exp

(
−1

2

(
v⊤M †v

1− β +
v⊤M †v

1− β −
√
β

1− β (v⊤M †v + v⊤M †v)

))

=⇒ π(v|x)P(v → v) = π(v|x)P(v → v)

The second part follows from a stronger statement due to symmetry of v in H(x, v): In the space where
(x, v) and (x,−v) are identified, the Markov chain defined by Step 2 and 3 satisfies detailed balance with
respect the density π([x, v]) proportional to exp(−H(x, v)), where [x, v] denotes the identified point for (x, v)
and (x,−v). Consider the pairs [x, v] = {(x, v), (x,−v)} and [x′, v′] = {(x′, v′), (x′,−v′)} where in Step 2
(x, v) goes to (x′, v′) and (x′,−v′) goes to (x,−v) due to reversibility of the implicit midpoint method. We
now verify that the filtering probability is the same in either direction, using the measure-preserving property
of Step 2

π(x, v)P ((x, v)→ (x′, v′)) = π(x, v) min

{
1,
π(x′, v′)
π(x, v)

}

= min {π(x, v), π(x′, v′)}
= min {π(x,−v), π(x′,−v′)}

= π(x′,−v′) min

{
1,

π(x,−v)
π(x′,−v′)

}

= π(x′,−v′)P ((x′,−v′)→ (x,−v)) .

Therefore, for any two pairs [x, v] and [x′, v′], we have π([x, v])P ([x, v]→ [x′, v′]) = π([x′, v′]P ([x′, v′]→ [x, v]).
Finally, since the Markov chain defined by Algorithm 2 is irreducible, it has a unique stationary distribution
proportional to exp(−f(x)).

Theorem 8 shows that if Step 2 of Algorithm 2 can be solved exactly, the algorithm will converge to the
stationary distribution. Next, we show in Lemma 11 that Algorithm 3 converges to the solution of (2.15) in
logarithmically many iterations. Theorem 8 and Lemma 11 together show that our algorithm can converge to
the stationary distribution efficiently (see Remark 12). To show the convergence of Algorithm 3, we denote
by T the map induced by one iteration of Step 2.

Definition 9. Let

T (x, v, ν) =




x 1

3
+ hg(xmid)−1(vmid −A⊤λ1)

v 1
3
− h

2Dg(xmid)[g(xmid)−1(vmid −A⊤λ1), g(xmid)−1(vmid −A⊤λ1)]
λ1





where xmid = 1
2 (x 1

3
+x), vmid = 1

2 (v 1
3

+v), and λ1 = ν+(LL⊤)−1Ag(vmid)−1
(
vmid −A⊤ν

)
. Let (x∗

2
3

, v∗
2
3

, ν∗)

be the fixed point of T .

We assume g is given by the Hessian of a highly self-concordant barrier φ.

15

Definition 10. We say a barrier φ is highly self-concordant if it satisfies for all h ∈ R
d and x ∈ R

d

∣∣D3φ(x)[h, h, h]
∣∣ ≤ 2

(
D2φ(x)[h, h]

)3/2
and

∣∣D4φ(x)[h, h, h, h]
∣∣ ≤ 6

(
D2φ(x)[h, h]

)2

Note that the log-barrier is highly self-concordant. We can show that for small enough step size h, Algorithm
3 can solve (2.15) to δ-accuracy in logarithmically many iterations.

Lemma 11. Suppose g(x) = ∇2φ(x) for some highly self-concordant barrier φ. For any input (x 1
3
, v 1

3
), let

(x(k)
2
3

, v
(k)
2
3

, ν(k)) be points obtained after k iterations in Step 2 of Algorithm 3. Let (x̃ 2
3
, ṽ 2

3
) be the solution

for (x 2
3
, v 2

3
) in the following equation

x 2
3

= x 1
3

+ h
∂H2

∂v

(
x 1

3
+ x 2

3

2
,
v 1

3
+ v 2

3

2

)
, v 2

3
= v 1

3
− h∂H2

∂x

(
x 1

3
+ x 2

3

2
,
v 1

3
+ v 2

3

2

)
.

Let ‖x‖A := x⊤Ax for a matrix A. For any (x, v, ν), define the norm

‖(x, v, λ)‖ := ‖x‖g(x 1
3

) + ‖v‖g(x 1
3

)−1 + h‖A⊤ν‖g(x 1
3

)−1 .

If
∥∥∥(x(0)

2
3

, v
(0)
2
3

, ν(0))− (x̃ 2
3
, ṽ 2

3
, ν∗)

∥∥∥ ≤ r with h ≤ r ≤ min(1
10 ,

√
h

4 ,
‖v∗‖g(x0)−1

4), then

∥∥∥(x(L)
2
3

, v
(L)
2
3

, ν(L))− (x̃ 2
3
, ṽ 2

3
, ν∗)

∥∥∥ ≤ δ

for some L = O
(

log1/C
r
δ

)
, where C = On(h) is the Lipschitz constant of the map T .

Proof. Since (x∗
2
3

, v∗
2
3

, ν∗) is the fixed point of T (i.e., ν∗ = λ1), we have

ν∗ = ν∗ + (LL⊤)−1Ag(xmid)−1
(
vmid −A⊤ν∗)

and thus Ag(xmid)−1vmid = Ag(xmid)−1A⊤ν∗. For invertible Ag(xmid)−1A⊤, we have

ν∗ =
(
Ag(xmid)−1A⊤)−1

Ag(xmid)−1vmid.

Similarly by using the definition of the fixed point and this new formula for ν∗,

x∗
2
3

= x 1
3

+ hg(xmid)−1vmid − hg(xmid)−1A⊤ν∗

= x 1
3

+ hg(xmid)−1vmid − hg(xmid)−1A⊤ (
Ag(xmid)−1A⊤)−1

Ag(xmid)−1vmid

= x 1
3

+ h
∂H2

∂v
(xmid, vmid)

and

v∗
2
3

= v 1
3
− h

2
Dg(xmid)[g(xmid)−1(vmid −A⊤ν∗), g(xmid)−1(vmid −A⊤ν∗)]

= v 1
3
− h∂H2

∂x
(xmid, vmid)

which shows that (x∗
2
3

, v∗
2
3

) is exactly the solution for (x, v) in the equation

x = x 1
3

+ h
∂H2

∂v

(
x 1

3
+ x

2
,
v 1

3
+ v

2

)
, v = v 1

3
− h∂H2

∂x

(
x 1

3
+ x

2
,
v 1

3
+ v

2

)
.

Next, we show that the iterations in Step 2 converges to (x∗
2
3

, v∗
2
3

, ν∗). If
∥∥∥(x(0)

2
3

, v
(0)
2
3

, ν(0))− (x∗
2
3

, v∗
2
3

, ν∗)
∥∥∥ ≤ r

for some C = On(h), we have
∥∥∥(x(ℓ)

2
3

, v
(ℓ)
2
3

, ν(ℓ))− (x∗
2
3
, v∗

2
3
, ν∗)

∥∥∥ =
∥∥∥T (x(ℓ−1)

2
3

, v
(ℓ−1)
2
3

, ν(ℓ))− T (x∗
2
3
, v∗

2
3
, ν∗)

∥∥∥

≤ C
∥∥∥(x(ℓ−1)

2
3

, v
(ℓ−1)
2
3

, ν(ℓ−1))− (x∗
2
3
, v∗

2
3
, ν∗)

∥∥∥

≤ Cℓ
∥∥∥(x(0)

2
3

, v
(0)
2
3

, ν(0))− (x∗
2
3
, v∗

2
3
, ν∗)

∥∥∥ ,

16

Bio Model Full-dim Consts (m) Vars (n) nnz

ecoli 24 72 95 291

cardiac_mit 12 230 220 228

Aci_D21 103 856 851 1758

Aci_MR95 123 917 994 2859

Abi_49176 157 952 1069 2951

Aci_20731 164 1009 1090 2946

Aci_PHEA 328 1319 1561 4640

iAF1260 572 1668 2382 6368

iJO1366 590 1805 2583 7284

Recon1 932 2766 3742 8717

Recon2 2430 5063 7440 19791

Recon3 5335 8399 13543 48187

LP Model Full-dim Consts (m) Vars (n) nnz

israel 142 174 316 2519

gfrd_pnc 544 616 1160 2393

25fv47 1056 821 1876 10566

pilot_ja 1002 940 2267 11886

sctap2 1410 1090 2500 7334

ship08l 2700 778 4363 9434

cre_a 3703 3516 7248 17368

woodw 4656 1098 8418 23158

80bau3b 9233 2262 12061 22341

ken_18 49896 105127 154699 295946

Table 1: Constraint-based models. Each constraint-based model has a form of {x ∈ R
n : Ax = b, l ≤ x ≤ u}

for A ∈ R
m×n, b ∈ R

m and l, u ∈ R
n, where the rows and columns correspond to constraints and variables

respectively. The full-dimension of each model is obtained by transforming its degenerate subspace to a
full dimensional representation (i.e., A′x ≤ b′), and we count the number of nonzero (nnz) entries of a
preprocessed matrix A.

where the first equality follows from (x∗
2
3
, v∗

2
3
, ν∗) is the fixed point of T and the second inequality follows

from Lemma 14. Therefore, we have
∥∥∥(x(L)

2
3

, v
(L)
2
3

, ν(L))− (x∗
2
3

, v∗
2
3

, ν∗)
∥∥∥ ≤ δ for L = O

(
logC

r
δ

)
.

Remark 12. Lemma 11 shows that Algorithm 3 converges to the solution of (2.15) in logarithmically many
iterations for small enough step size h. In Step 1 of Algorithm 2, v is resampled so that every iteration of
Algorithm 2 is a non-degenerate map. Then, the total variation distance between the distributions generated
by solving (2.15) using Algorithm 3 and solving (2.15) exactly in one iteration of Algorithm 2 can be bounded
by error due to Algorithm 3. Theorem 8 shows that if Step 2 of Algorithm 2 can solve (2.15) exactly, then
the process will converge to the exact stationary distribution. Therefore, in order for the accumulated error
of Algorithm 2 to remain bounded for polynomially many steps, it suffices to run logarithmically many
iterations in Algorithm 3. Any small bias due to the numerical error in the ODE computation is corrected
by the filter, and maintaining as small error as possible is important to keep the acceptance probability high.

3 Experiments

In this section, we describe experiments on real-world datasets to examine how effective CRHMC is and
compare it with existing samplers. We start by elaborating on experimental settings for reproducibility in
Section 3.1. Then we demonstrate that CRHMC is able to sample larger models than previously known
to be possible, and is significantly faster in terms of rate of convergence and sampling time in Section 3.2
and Section 3.3, respectively. We also examine its behavior on benchmark instances such as simplices and
Birkhoff polytopes in Section 3.4.

3.1 Experimental Setting

Specification. We performed experiments on the Standard DS12 v2 model from MS Azure cloud, which
has a 2.1GHz Intel Xeon Platinum 8171M CPU (4 cores) and 28GB memory.

Dataset. As listed in Table 1, we used twelve constraint-based metabolic models from molecular systems
biology in the COBRA Toolbox v3.0 [18]2 and ten real-world LP examples randomly chosen from NETLIB

2https://github.com/opencobra/cobratoolbox

17

LP test sets3. A polytope from each model is defined by

{x ∈ R
n : Ax = b, l ≤ x ≤ u}

for A ∈ R
m×n, b ∈ R

m, and l, u ∈ R
n, which is input to CRHMC for uniform sampling. If a model is

unbounded, we make it bounded by setting l = max(l,−107) and u = min(u, 107). As existing packages
require full-dimensional representations of polytopes (i.e., {x : A′x ≤ b′}), we transformed all constraint-
based models to prepare instances for them as follows: (1) first preprocess each model by removing redundant
constraints and appropriately scaling it, (2) find its corresponding full-dimensional description, and (3) round
it via the maximum volume ellipsoid (MVE) algorithm making the polytope more amenable to sampling. We
note that a full-dimensional polytope can be transformed into a constraint-based polytope and vice versa,
so CRHMC can be run on either representation.

Implementation. CRHMC implemented in MATLAB and C++ is available at this repository, which is
also integrated into the COBRA Toolbox. Our implementation can be run to sample from general logconcave
densities and has a feature for parallelization.

Preprocessing. We preprocessed each constrained-based model prior to sampling. This preprocessing
consists mainly of simplifying polytopes, scaling properly for numerical stability, and finding a feasible
starting point. To simplify a given polytope, we check if li = ui for each i ∈ [n] and then incorporate
such variables xi into Ax = b. Any dense column is split into several columns with less non-zero entries by
introducing additional variables. Then we remove dependent rows of A by Cholesky decomposition. Then
we find the Dikin ellipsoid of the polytope. If the width along some axis is smaller than a preset tolerance,
then we fix variables in such directions, reducing columns of A. Lastly, we run the interior-point method
with the log-barrier to find an analytic center of the polytope, which will be used as a starting point in
sampling. When finding the analytic center of the simplified polytope, if a coordinate of the analytic center
is too close to a boundary (to be precise, smaller than a preset tolerance boundary 10−8), then we assume
that the inequality constraint (either xi ≤ ui or li ≤ xi) is tight, and we collapse such a variable by moving
it into the constraints Ax = b. We go back to the step for removing dependent rows and repeat until no
more changes are made to A. Along with simplification, we keep rescaling A, b, l, u for numerical stability.

Competitors. For comparison, we used as a baseline the Coordinate Hit-and-Run algorithm implemented
in two different languages. The former is Coordinate Hit-and-Run with Rounding (CHRR) written in
MATLAB [9, 17] and the latter is the same algorithm (CDHR) with an R interface and a C++ library,
VolEsti [5]. We note that popular sampling packages such as STAN and Pyro were not included in the
experiments as they do not support constrained-based models. Even after transforming our dataset to their
formats, the transformed dataset were too ill-conditioned for those algorithms to run.

We briefly explain how CHRR works. First, rounding via the MVE algorithm finds the maximum volume
ellipsoid inscribed in the polytope and applies, to the polytope, an affine transformation that makes this
ellipsoid a unit ball. This procedure puts a possibly highly-skewed polytope into John’s position, which
guarantees that the polytope contains a unit ball and is contained in a ball of radius n. This position still
has a beneficial effect on sampling in practice in the sense that the random walk can converge in fewer steps.
After the transformation, the random walk based on Coordinate Hit-and-Run (CHAR) chooses a random
coordinate and moves to a random point on the line through the current point along the chosen coordinate.

When running CHRR and CDHR, we recorded a sample every n2 steps. The mixing rate (i.e., the number
of steps required to get a sample from a target distribution) of Hit-and-Run (HAR), a general version of
CHAR choosing a random direction (unit vector) instead of a random coordinate, is O∗(n2R2) for a polytope
P with Bn ⊆ P ⊆ R ·Bn, where Bn is the unit ball in R

n [31]. It was proved only recently that CHAR mixes
in O∗(n9R2) steps on such a polytope [25, 33]. Even though this bound is not as tight as the mixing-rate
bound for HAR, it was reported in [17] that CHRR mixes in the same number of steps as HAR empirically.
Moreover, the per-step complexity of CHAR can be n times faster than that of HAR, so CHAR brings a
significant speed-up in practice.

3http://www.netlib.org/lp/data/

18

https://github.com/ConstrainedSampler/PolytopeSamplerMatlab
https://github.com/opencobra/cobratoolbox%20%20

102 103 104 105

Dimension

101

102

103

104

105

106

107

108

109

S
te

p/
S

am
pl

e

Mixing 5DWH

CRHMC: dim0.52�

CHRR: dim2.71�

CDHR: dim2.14

102 103 104 105 106

NNZ

102

103

S
te

p/
S

am
pl

e

Mixing 5DWH

CRHMC: nnz0.53

Figure 3.1: Mixing rate of CRHMC and the competitors. Mixing rate of CRHMC was sub-linear in dimension
and the nnz of a preprocessed matrix A in a model, whereas the others needed quadratically many steps to
converge to uniform distribution. In particular for our dataset, CRHMC mixed up to 6 orders of magnitude
earlier than the others. Note that mixing rate of CHAR was very close to quadratic growth when using the
full-dimensional scale (the first column in Table 1).

We proceeded with the following additional steps for fair comparison. First, as the VolEsti package does
not support the MVE rounding, we rounded each polytope by the MVE algorithm in the CHRR package
and then transformed the rounded polytope so that the R interface can read the data file. Next, we limited
all algorithms to a single core, since the R interface uses a single core as a default whereas MATLAB uses
as many available cores as possible.

Measurements. To evaluate the quality of sampling methods, we measured two quantities, the number
of steps per effective sample Ns (i.e., mixing rate) and the sampling time per effective sample, Ts. The
effective sample size (ESS) can be thought of as the number of actual independent samples, taking into
account correlation of samples from a target distribution. Thus the number of steps per effective sample Ns

is estimated by the total number of steps divided by the effective sample size, and the sampling time Ts is
estimated as the total sampling time divided by the effective sample size.

In the experiments, each algorithm attempted to draw 1000 uniform samples from a model to get accurate
estimates, with limits on running time set to 1 day (3 days for the largest instance ken_18) and memory
usage to 6GB. If an algorithm passes either the time or the memory limit, we stop the algorithm and measure
the quantities of interest based on samples drawn until that moment. After getting uniform samples, we
thinned the samples twice to ensure independence of samples; first we computed the ESS of the samples,
only kept ESS many samples, and repeated this one more time.

In what follows, we estimated the above quantities only if the ESS is more than 10 and an algorithm
does not run into any error while running4.

3.2 Sub-linear Mixing Rate

We examined how the number of steps per effective sample Ns grows with the number of nonzeros (nnz)
of matrix A (after preprocessing) and the number of variables (dimension in the figure). To this end, we
counted the total number of steps taken until termination of algorithms and divided it by the effective sample
size of drawn samples. Note that we thinned twice to ensure independence of samples used.

The mixing rate of CRHMC was sub-linear in both dimension and nnz, whereas previous implementations
based on CHAR required at least n2 steps per sample as seen in Figure 3.1. On the dataset, mixing rate

4When running CDHR from the VolEsti package on some instances, we got an error message “R session aborted and R
encountered a fatal error”.

19

102 103 104 105

Dimension

10 -4

10 -3

10 -2

10 -1

100

101

102

103

104

105

T
im

e/
S

am
pl

e
(s

)

Sampling Time

CRHMC: dim1.50�

CHRR: dim3.14�

CDHR: dim3.16

102 103 104 105 106

NNZ

10 -3

10 -2

10 -1

100

101

102

103

104

T
im

e/
S

am
pl

e
(s

)

Sampling Time

CRHMC: nnz1.50

Figure 3.2: Sampling time of CRHMC and the competitors. The sampling time per effective sample of
CRHMC was sub-quadratic in dimension and the nnz of a preprocessed matrix A in a model, while the
others indicates at least a cubic dependency on dimension. In particular for our dataset, CRHMC was able
to obtain a statistically independent sample up to 4 orders of magnitude faster than the others. This benefit
of speed-up was actually straightforward from the figure, since CHRR could not obtain enough samples from
instances with more than 5000 variables until it ran out of time.

attained was up to 6 orders of magnitude faster for CRHMC compared to CHAR, implying that CRHMC
converged to uniform distribution substantially faster than the other competitors. This gap in mixing rate
increased super-linearly in dimension, enabling CRHMC to run on large instances of dimension up to 100000.

3.3 Sub-quadratic Sampling Time

We next examined the sampling time Ts in terms of both the nnz of A and the dimension of the instance.
We computed the runtime of algorithms until their termination divided by the effective sample size of drawn
samples, where we ignored time taken for the preprocessing. Note that the sampling time Ts is essentially
multiplication of the mixing rate and the per-step complexity (i.e., how much time each step takes).

As shown in Figure 3.2 and Table 2, we found that the per-step complexity was small enough to make
the sampling time sub-quadratic in both dimension and nnz, whereas prior implementations based on CHAR
had at least a cubic dependency on dimension, despite of a low per-step complexity. On our dataset, the
sampling time of CRHMC was up to 4 orders of magnitude less than that of CHRR and CDHR. While
CHRR can be used on dimension only up to a few thousands, increasing benefits of sampling time in higher
dimension allows CRHMC to run on dimension up to 0.1 million.

3.4 CRHMC on Structured Instances

To see the behavior of CRHMC on very large instances, we ran the algorithm on three families of structured
polytopes – hypercube, simplex, and Birkhoff polytope – up to dimension half-million. We attempted to
draw 500 uniform samples with a 1 day time limit (except for 2 days for half-million-dimensional Birkhoff
polytope). We recall the definitions of these polytopes.

Hypercube. The n-dimensional hypercube is defined by {x ∈ R
n : − 1

2 ≤ xi ≤ 1
2 for all i ∈ [n]}. Note

that it has no equality constraint and its full-dimension is n.

Simplex. The n-dimensional simplex is defined by {x ∈ R
n : 0 ≤ xi for all i ∈ [n],

∑n
i=1 xi = 1}. Note

that its full-dimension is n− 1.

20

Bio Model Vars (n) nnz CRHMC CHRR CDHR

ecoli 95 291 0.0098 0.0365 0.0022

cardiac_mit 220 228 0.0100 0.0059 0.0005

Aci_D21 851 1758 0.4257 0.6884 0.2974

Aci_MR95 994 2859 0.9624 2.0668 0.5237

Abi_49176 1069 2951 0.9608 1.9395 0.9622

Aci_20731 1090 2946 0.1540 2.3014 1.1086

Aci_PHEA 1561 4640 0.3701 12.06 -

iAF1260 2382 6368 4.4355 3687.2 -

iJO1366 2583 7284 4.1608 70.5 35.556

Recon1 3742 8717 0.7184 208.5 -

Recon2 7440 19791 2.6116 10445* -

Recon3 13543 48187 31.114 29211* -

LP Model Vars (n) nnz CRHMC CHRR CDHR

israel 316 2519 0.1186 1.2224 0.4426

gfrd_pnc 1160 2393 0.2199 40.988 18.468

25fv47 1876 10566 0.8159 199.9 -

pilot_ja 2267 11886 1.3490 5059* -

sctap2 2500 7334 0.6752 520.2 -

ship08l 4363 9434 0.6258 6512 -

cre_a 7248 17368 2.2205 30455* -

woodw 8418 23158 2.0689 30307* -

80bau3b 12061 22341 11.881 47432* -

ken_18 154699 295946 1616.3 - -

Table 2: Sampling time per effective sample of CHRR and CRHMC. We note that CRHMC is 1000 times
faster than CHRR on the latest metabolic network (Recon3). Sampling time with asterisk (*) indicates that
the effective sample size is less than 10.

21

101 102 103 104 105 106

Dimension

101

102

103

104

S
te

p/
S

am
pl

e

Mixing Rate

Cube: dim0.34

Simplex: dim 0.33

Birkhoff: dim 0.43

101 102 103 104 105 106

Dimension

10 -3

10 -2

10 -1

100

101

102

103

104

T
im

e/
S

am
pl

e
(s

)

Sampling Time

Cube: dim0.76

Simplex: dim 0.83

Birkhoff: dim 1.08

Figure 3.3: Mixing rate and sampling time on structured polytopes including hybercubes, simplices, and
Birkhoff polytopes. CRHMC is scalable up to 0.5 million dimension on hypercubes and simplices and up to
0.1 million dimension on Birkhoff polytopes. We note that on the 0.5 million dimensional Birkhoff polytope
the ESS is only 16, which is not reliable compared to the ESS on the other instances.

Birkhoff Polytope. The nth Birkhoff polytope Bn is the set of all doubly stochastic n× n matrices (or
the convex hull of all permutation matrices), which is defined as

Bn = {(Xij)i,j∈[n] :
∑

j

Xij = 1 for all i ∈ [n],
∑

i

Xij = 1 for all j ∈ [n], and Xij ≥ 0}.

Namely, Bn is defined in a constrained R
n2

-dimensional space, and its full-dimension is n2−(2n−1) = (n−1)2.
We ran CRHMC on B√

n to examine its efficiency on (roughly) n-dimensional Birkhoff polytope.
To the best of our knowledge, this is the first demonstration that it is possible to sample such a large

model. As seen in Figure 3.3, CRHMC can scale smoothly up to half-million dimension on hypercubes and
simplices and up to dimension 105 for Birkhoff polytopes (we could not obtain a reliable estimate of mixing
rate and sampling time on the half-million dimensional Birkhoff polytope, as the ESS is only 16 after 2 days).
However, we believe that one can find room for further improvement of CRHMC by tuning parameters or
leveraging engineering techniques. We also expect that CRHMC enables us to estimate the volume of Bn

for n ≥ 20, going well beyond the previously best possible dimension.

Acknowledgment. The authors are grateful to Ben Cousins for helpful discussions, and to Ronan Fleming,
Ines Thiele and their research groups for advice on metabolic models. This work was supported in part by
NSF awards DMS-1839116, DMS-1839323, CCF-1909756, CCF-2007443 and CCF-2134105.

References

[1] Ivona Bezáková, Daniel Štefankovič, Vijay V Vazirani, and Eric Vigoda. Accelerating simulated anneal-
ing for the permanent and combinatorial counting problems. SIAM Journal on Computing, 37(5):1429–
1454, 2008.

[2] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Kar-
aletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep Universal
Probabilistic Programming. Journal of Machine Learning Research (JMLR), 20:28:1–28:6, 2019.

[3] Marcus Brubaker, Mathieu Salzmann, and Raquel Urtasun. A family of MCMC methods on implicitly
defined manifolds. In Artificial intelligence and statistics (AISTATS), pages 161–172, 2012.

22

[4] Yogin E Campbell and Timothy A Davis. Computing the sparse inverse subset: an inverse multifrontal
approach. University of Florida, Technical Report TR-95-021, 1995.

[5] Apostolos Chalkis and Vissarion Fisikopoulos. volEsti: Volume approximation and sampling for convex
polytopes in R. arXiv preprint arXiv:2007.01578, 2020.

[6] Yuansi Chen, Raaz Dwivedi, Martin J Wainwright, and Bin Yu. Fast mixing of Metropolized Hamil-
tonian Monte Carlo: Benefits of multi-step gradients. Journal of Machine Learning Research (JMLR),
21:92–1, 2020.

[7] Xiang Cheng, Niladri S Chatterji, Peter L Bartlett, and Michael I Jordan. Underdamped Langevin
MCMC: a non-asymptotic analysis. In Conference on Learning Theory (COLT), pages 300–323. PMLR,
2018.

[8] Sinho Chewi, Thibaut Le Gouic, Chen Lu, Tyler Maunu, Philippe Rigollet, and Austin J Stromme.
Exponential ergodicity of mirror-Langevin diffusions. arXiv preprint arXiv:2005.09669, 2020.

[9] Ben Cousins and Santosh Vempala. A practical volume algorithm. Mathematical Programming Com-
putation, 8(2):133–160, 2016.

[10] Timothy A Davis. Direct methods for sparse linear systems. SIAM, 2006.

[11] James W Demmel. Applied numerical linear algebra. SIAM, 1997.

[12] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid Monte Carlo.
Physics letters B, 195(2):216–222, 1987.

[13] Raaz Dwivedi, Yuansi Chen, Martin J Wainwright, and Bin Yu. Log-concave sampling: Metropolis-
Hastings algorithms are fast! In Conference on Learning Theory (COLT), pages 793–797. PMLR,
2018.

[14] Martin Dyer, Alan Frieze, and Ravi Kannan. A random polynomial-time algorithm for approximating
the volume of convex bodies. Journal of the ACM (JACM), 38(1):1–17, 1991.

[15] Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo meth-
ods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):123–214, 2011.

[16] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algorithmic
differentiation. SIAM, 2008.

[17] Hulda S Haraldsdóttir, Ben Cousins, Ines Thiele, Ronan MT Fleming, and Santosh Vempala. Chrr:
coordinate hit-and-run with rounding for uniform sampling of constraint-based models. Bioinformatics,
33(11):1741–1743, 2017.

[18] Laurent Heirendt, Sylvain Arreckx, Thomas Pfau, Sebastián N Mendoza, Anne Richelle, Almut Heinken,
Hulda S Haraldsdóttir, Jacek Wachowiak, Sarah M Keating, Vanja Vlasov, et al. Creation and analysis
of biochemical constraint-based models using the COBRA Toolbox V. 3.0. Nature protocols, 14(3):639–
702, 2019.

[19] Matthew D Hoffman, Andrew Gelman, et al. The No-U-Turn sampler: adaptively setting path lengths
in Hamiltonian Monte Carlo. Journal of Machine Learning Research (JMLR), 15(1):1593–1623, 2014.

[20] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm for the
permanent of a matrix with nonnegative entries. Journal of the ACM (JACM), 51(4):671–697, 2004.

[21] He Jia, Aditi Laddha, Yin Tat Lee, and Santosh Vempala. Reducing isotropy and volume to KLS: an
O∗(n3ψ2) volume algorithm. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing (STOC), pages 961–974, 2021.

[22] Ravi Kannan, László Lovász, and Miklós Simonovits. Random walks and an O∗(n5) volume algorithm
for convex bodies. Random Structures & Algorithms, 11(1):1–50, 1997.

23

[23] Ravindran Kannan and Hariharan Narayanan. Random walks on polytopes and an affine interior point
method for linear programming. Mathematics of Operations Research, 37(1):1–20, 2012.

[24] Zachary A King, Justin Lu, Andreas Dräger, Philip Miller, Stephen Federowicz, Joshua A Lerman,
Ali Ebrahim, Bernhard O Palsson, and Nathan E Lewis. BiGG Models: A platform for integrating,
standardizing and sharing genome-scale models. Nucleic acids research, 44(D1):D515–D522, 2016.

[25] Aditi Laddha and Santosh Vempala. Convergence of Gibbs sampling: Coordinate Hit-and-Run mixes
fast. The 37th International Symposium on Computational Geometry (SoCG), 2021.

[26] Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Logsmooth gradient concentration and tighter runtimes for
metropolized Hamiltonian Monte Carlo. In Conference on Learning Theory (COLT), pages 2565–2597.
PMLR, 2020.

[27] Yin Tat Lee and Santosh S Vempala. Geodesic walks in polytopes. In Proceedings of the 49th Annual
ACM SIGACT Symposium on theory of Computing (STOC), pages 927–940, 2017.

[28] Yin Tat Lee and Santosh S Vempala. Convergence rate of Riemannian Hamiltonian Monte Carlo and
faster polytope volume computation. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 1115–1121, 2018.

[29] Yin Tat Lee and Man-Chung Yue. Universal barrier is n-self-concordant. Mathematics of Operations
Research, 2021.

[30] Nathan E Lewis, Harish Nagarajan, and Bernhard O Palsson. Constraining the metabolic genotype–
phenotype relationship using a phylogeny of in silico methods. Nature Reviews Microbiology, 10(4):291–
305, 2012.

[31] László Lovász and Santosh Vempala. Hit-and-run from a corner. SIAM Journal on Computing,
35(4):985–1005, 2006.

[32] Hariharan Narayanan. Randomized interior point methods for sampling and optimization. The Annals
of Applied Probability, 26(1):597–641, 2016.

[33] Hariharan Narayanan and Piyush Srivastava. On the mixing time of coordinate Hit-and-Run. Combi-
natorics, Probability and Computing, pages 1–13, 2021.

[34] Radford M Neal et al. MCMC using Hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011.

[35] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2003.

[36] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex programming.
SIAM, 1994.

[37] Gareth O Roberts and Richard L Tweedie. Exponential convergence of Langevin distributions and their
discrete approximations. Bernoulli, pages 341–363, 1996.

[38] John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck. Probabilistic programming in Python
using PyMC3. PeerJ Computer Science, 2:e55, 2016.

[39] Ruoqi Shen and Yin Tat Lee. The randomized midpoint method for log-concave sampling. arXiv
preprint arXiv:1909.05503, 2019.

[40] Umut Simsekli, Roland Badeau, Taylan Cemgil, and Gaël Richard. Stochastic quasi-newton Langevin
Monte Carlo. In International Conference on Machine Learning (ICML), pages 642–651. PMLR, 2016.

[41] Stan Development Team. RStan: the R interface to Stan, 2020. R package version 2.21.2.

24

[42] Kazuhiro Takahashi. Formation of sparse bus impedance matrix and its application to short circuit
study. In Proceeding of PICA Conference, June, 1973, 1973.

[43] Ines Thiele, Neil Swainston, Ronan MT Fleming, Andreas Hoppe, Swagatika Sahoo, Maike K Aurich,
Hulda Haraldsdottir, Monica L Mo, Ottar Rolfsson, Miranda D Stobbe, et al. A community-driven
global reconstruction of human metabolism. Nature biotechnology, 31(5):419–425, 2013.

25

A Missing Definitions and Details

A.1 Definitions

Pseudo-inverse. For a matrix A ∈ R
m×n, it is well known that there always exists the unique pseudo-

inverse matrix A† that satisfies the following conditions:

1. A†AA† = A†

2. AA†A = A

3. AA† and A†A are symmetric

It is also well known that Null(A†) = Null(A⊤) and Range(A†) = Range(A⊤).

Pseudo-determinant. For a square matrix A, its pseudo-determinant pdet(A) is defined as the product
of non-zero eigenvalues of A.

Leverage Score. For a matrix A ∈ R
m×n, the leverage score of the ith row is (A(A⊤A)†A⊤)ii for i ∈ [m].

When A is full-rank, it is simply (A(A⊤A)−1A⊤)ii.

Log-barrier. For a polytope P = {x ∈ R
n : Ax ≤ b} where A ∈ R

m×n and b ∈ R
m, let us denote the ith

row of A by ai and the ith row of b by bi. The log-barrier of P is defined by

φ(x) = −
m∑

i=1

log(bi − a⊤
i x).

Note that its Hessian matrix ∇2φ(x) is diagonal.

A.2 Details

Inverse and Determinant of Block Matrix. For a square matrixM =

[
A B
C D

]
with blocksA,B,C,D

of same size, if D and A−BD−1C are invertible, then its inverse and determinant can be computed by

M−1 =

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A −BD−1C)−1BD−1

]

det(M) = det(D) det(A−BD−1C).

Cholesky Decomposition. For a symmetric positive definite matrix A, there exists a lower triangular
matrix L such that LL⊤ = A.

26

B Bound on Algorithm Error

Recall that ‖v‖2A = v⊤Av for a matrix A.

Lemma 13. Suppose g(x) = ∇2φ(x) for some highly self-concordance barrier φ. Then, we have that

• (1− ‖y − x‖g(x))2g(x) � g(y) � 1
(1−‖y−x‖g(x))2 g(x),

• ‖Dg(x)[v, v]‖g(x)−1 ≤ 2‖v‖2
g(x),

• ‖Dg(x)[v, v]−Dg(y)[v, v]‖g(x)−1 ≤ 6
(1−‖y−x‖g(x))3 ‖v‖2

g(x)‖y − x‖g(x).

Proof. The first fact follows from Theorem 4.1.6 in [35]. The second fact follows from Lemma 4.1.2 in [35].
The third fact is from the following calculation:

‖Dg(y)[v, v]−Dg(x)[v, v]‖g(x)−1

≤
∫ 1

0

‖D2g(x+ t(y − x))[v, v, y − x]‖g(x)−1dt

≤
∫ 1

0

1
1− t‖y − x‖g(x)

‖D2g(x+ t(y − x))[v, v, y − x]‖g(x+t(y−x))−1dt

≤
∫ 1

0

6
1− t‖y − x‖g(x)

‖v‖2
g(x+t(y−x))‖y − x‖g(x+t(y−x))dt

≤
∫ 1

0

6
(1− t‖y − x‖g(x))4

dt · ‖v‖2
g(x)‖y − x‖g(x)

≤ 6
(1− ‖y − x‖g(x))3

‖v‖2
g(x)‖y − x‖g(x).

where the third and fifth line follow from the first fact, and the fourth line follows from Proposition 9.1.1 in
[36].

Lemma 14. Let g(x) = ∇2φ(x) for some highly self-concordance barrier φ. Given x0, v0 and L such that
LL⊤ = Ag(x0)−1A⊤, consider the map

T (x, v, λ) =




x0 + hg(x1/2)−1(v1/2 −A⊤λ1)

v0 − h
2Dg(x1/2)[g(x1/2)−1(v1/2 −A⊤λ1), g(x1/2)−1(v1/2 −A⊤λ1)]

λ1





where x1/2 = (x0 + x)/2, v1/2 = (v0 + v)/2 and λ1 = λ+ (LL⊤)−1Ag(x1/2)−1
(
v1/2 − A⊤λ

)
. Let (x∗, v∗, λ∗)

be a fixed point of T . For any x, v, λ, we define the norm

‖(x, v, λ)‖ = ‖x‖g(x0) + ‖v‖g(x0)−1 + h‖A⊤λ‖g(x0)−1 .

Let Ω = {(x, v, λ) : ‖(x, v, λ) − (x∗, v∗, λ∗)‖ ≤ r} with h ≤ r ≤ min(1
10 ,

√
h

4 ,
‖v∗‖g(x0)−1

4). Suppose that

(x0, v0, 0) ∈ Ω. Then, for any (x, v, λ), (x, v, λ) ∈ Ω, we have

‖T (x, v, λ) − T (x, v, λ)‖ ≤ C‖(x, v, λ) − (x, v, λ)‖

where C = (3r
h + ‖v∗‖g(x0)−1)(400r + 18h‖v∗‖g(x0)−1).

Remark 15. Note that we should think r = Θn(h) because that is the distance between (x0, v0, 0) and
(x∗, v∗, λ∗). In that case, the Lipschitz constant of T is On(h‖v∗‖2

g(x0)−1) = On(h). Hence, if the step size
h is small enough, then T is a contractive mapping. In practice, we can take h close to a constant because
g is decomposable into barriers in each dimension and the bound can be improved using this.

27

Proof. We use T (x, v, λ)x to denote the x component of T (x, v, λ) and similarly for T (x, v, λ)v and T (x, v, λ)λ.
For simplicity, we write g0 = g(x0), g1/2 = g(x1/2) and g1/2 = g(x1/2). By the assumption, we have that

‖x− x0‖g0 ≤ ‖x− x∗‖g0 + ‖x∗ − x0‖g0 ≤ 2r.

Similarly, ‖x− x0‖g0 ≤ 2r.
We first bound T (x, v, λ)λ. Note that

T (x, v, λ)λ − T (x, v, λ)λ = α1 + α2 + α3 + α4

where

α1 = (I − (LL⊤)−1Ag−1
0 A⊤)(λ− λ),

α2 = (LL⊤)−1Ag−1
0 (v1/2 − v1/2),

α3 = (LL⊤)−1A(g−1
1/2 − g−1

0)((v1/2 −A⊤λ)− (v1/2 −A⊤λ)),

α4 = (LL⊤)−1A(g−1
1/2 − g−1

1/2)(v1/2 −A⊤λ).

Using that LL⊤ = Ag(x0)−1A⊤, we have α1 = 0. For α2, we have

‖A⊤α2‖2
g−1

0

= (v1/2 − v1/2)⊤g−1
0 A⊤(LL⊤)−1Ag−1

0 A⊤(L⊤L)−1Ag−1
0 (v1/2 − v1/2)

= (v1/2 − v1/2)⊤g−1
0 A⊤(Ag−1

0 A⊤)−1Ag−1
0 (v1/2 − v1/2)

≤ (v1/2 − v1/2)⊤g−1
0 (v1/2 − v1/2)

=
1
4
‖v − v‖2

g−1
0

where we use LL⊤ = Ag(x0)−1A⊤ and g
−1/2
0 A⊤(Ag−1

0 A⊤)−1Ag
−1/2
0 = B⊤(BB⊤)−1B � I for B = Ag

−1/2
0 .

For α3, by self-concordance of g (Lemma 13) and ‖x− x0‖g0 ≤ 2r, we have

(1− r)2g0 � g1/2 �
1

(1− r)2
g0 (B.1)

and hence (g1/2
0 (g−1

1/2−g−1
0)g1/2

0)2 � ((1− r)−2−1)2I. Using this and P = g
−1/2
0 A⊤(Ag−1

0 A⊤)−1Ag
−1/2
0 � I,

we have

‖A⊤α3‖g−1
0

= ‖g1/2
0 (g−1

1/2 − g−1
0)((v1/2 −A⊤λ)− (v1/2 −A⊤λ))‖P

≤ ‖g1/2
0 (g−1

1/2 − g−1
0)((v1/2 −A⊤λ)− (v1/2 −A⊤λ))‖2

≤ ((1 − r)−2 − 1)‖g−1/2
0 ((v1/2 −A⊤λ)− (v1/2 −A⊤λ))‖2

≤ ((1 − r)−2 − 1)(
1
2
‖v − v‖g−1

0
+ ‖A⊤(λ− λ)‖g−1

0
).

Using r ≤ 1/10, we have

‖A⊤α3‖g−1
0
≤ 1.2r‖v − v‖g−1

0
+ 2.4r‖A⊤(λ − λ)‖g−1

0
.

For α4, similarly, we have

‖A⊤α4‖g−1
0
≤ ((1− 0.5‖x− x‖g1/2

)−2 − 1)‖v1/2 −A⊤λ‖g−1
0

≤ ((1− 0.6‖x− x‖g0)−2 − 1)‖v1/2 −A⊤λ‖g−1
0

≤ 1.5‖x− x‖g0‖v1/2 −A⊤λ‖g−1
0

where we used g1/2 � 1.2g0 (by (B.1)) in the second inequality and ‖x− x‖g0 ≤ ‖x− x∗‖g0 + ‖x− x∗‖g0 ≤ 1
5

at the end. Combining everything, we have

‖A⊤(T (x, v, λ)λ − T (x, v, λ)λ)‖g−1
0

= ‖A⊤(λ1 − λ1)‖g−1
0

≤ 0.7‖v − v‖g−1
0

+ 2.4r‖A⊤(λ− λ)‖g−1
0

+ 1.5‖x− x‖g0‖v1/2 −A⊤λ‖g−1
0
. (B.2)

28

Now we bound T (x, v, λ)x. Note that

T (x, v, λ)x − T (x, v, λ)x = hβ1 + hβ2

where

β1 =g−1
1/2((v1/2 −A⊤λ1)− (v1/2 −A⊤λ1)),

β2 =(g−1
1/2 − g−1

1/2)(v1/2 −A⊤λ1).

By a proof similar to above, we have

‖β1‖g0 ≤ 1.2(‖v1/2 − v1/2‖g−1
0

+ ‖A⊤(λ1 − λ1)‖g−1
0

),

‖β2‖g0 ≤ 0.6‖x− x‖g0‖v1/2 −A⊤λ1‖g−1
0
.

and thus

‖T (x, v, λ)x − T (x, v, λ)x‖g0

≤ 0.6h‖v − v‖g−1
0

+ 1.2h‖A⊤(λ1 − λ1)‖g−1
0

+ 0.6h‖x− x‖g0‖v1/2 −A⊤λ1‖g−1
0
.

Finally, we bound T (x, v, λ)v . We split the term

T (x, v, λ)v − T (x, v, λ)v =
h

2
γ1 +

h

2
γ2

where

γ1 =Dg(x1/2)[g−1
1/2(v1/2 −A⊤λ1), g−1

1/2(v1/2 −A⊤λ1)]

−Dg(x1/2)[g−1
1/2(v1/2 −A⊤λ1), g−1

1/2(v1/2 −A⊤λ1)],

γ2 =Dg(x1/2)[g−1
1/2(v1/2 −A⊤λ1), g−1

1/2(v1/2 −A⊤λ1)]

−Dg(x1/2)[g−1
1/2(v1/2 −A⊤λ1), g−1

1/2(v1/2 −A⊤λ1)].

Let η = g−1
1/2(v1/2 −A⊤λ1) and η = g−1

1/2(v1/2 −A⊤λ1). For γ1, we have that

‖Dg(x1/2)[η, η]−Dg(x1/2)[η, η]‖g−1
1/2

≤ 2‖Dg(x1/2)[η − η, η]‖g−1

1/2
+ ‖Dg(x1/2)[η − η, η − η]‖g−1

1/2

≤ 4‖η − η‖g1/2
‖η‖g1/2

+ 2‖η − η‖2
g1/2

where we use Lemma 13. Using g1/2 � 1.2g0 (by (B.1)),

‖γ1‖g−1
0
≤4‖(v1/2 −A⊤λ1)− (v1/2 −A⊤λ1)‖g−1

0
‖v1/2 −A⊤λ1‖g−1

0

+ 2‖(v1/2 −A⊤λ1)− (v1/2 −A⊤λ1)‖2
g−1

0

.

For γ2, we use Lemma 13 and get

‖γ2‖g−1
0
≤ 4

(1− 0.6‖x− x‖g0)3
‖v1/2 −A⊤λ1‖2

g−1
0

‖x− x‖g0

≤ 6‖v1/2 −A⊤λ1‖2
g−1

0

‖x− x‖g0 .

Combining everything, we have

‖T (x, v, λ)v − T (x, v, λ)v‖g−1
0

≤ 2h‖(v1/2 −A⊤λ1)− (v1/2 −A⊤λ1)‖g−1
0
‖v1/2 −A⊤λ1‖g−1

0

+ h‖(v1/2 −A⊤λ1)− (v1/2 −A⊤λ1)‖2
g−1

0

+ 3h‖v1/2 − A⊤λ1‖2
g−1

0

‖x− x‖g0

29

Combining the bounds for Tλ, Tx, Tv, we have

‖T (x, v, λ) − T (x, v, λ)‖
≤ 0.7h‖v − v‖g−1

0
+ 2.4rh‖A⊤(λ− λ)‖g−1

0
+ 1.5h‖x− x‖g0‖v1/2 −A⊤λ‖g−1

0

+ 0.6h‖v − v‖g−1
0

+ 1.2h‖A⊤(λ1 − λ1)‖g−1
0

+ 0.6h‖x− x‖g0‖v1/2 −A⊤λ1‖g−1
0

+ 2h‖(v1/2 −A⊤λ1)− (v1/2 −A⊤λ1)‖g−1
0
‖v1/2 −A⊤λ1‖g−1

0

+ h‖(v1/2 −A⊤λ1)− (v1/2 −A⊤λ1)‖2
g−1

0

+ 3h‖v1/2 −A⊤λ1‖2
g−1

0

‖x− x‖g0 .

To simplify the terms, we note that

‖v1/2 −A⊤λ1‖g−1
0
≤‖v1/2 −A⊤λ‖g−1

0
+ ‖A⊤(LL⊤)−1Ag−1

1/2

(
v1/2 −A⊤λ

)
‖g−1

0

=‖v1/2 −A⊤λ‖g−1
0

+ ‖g1/2
0 g−1

1/2

(
v1/2 −A⊤λ

)
‖P

≤‖v1/2 −A⊤λ‖g−1
0

+ ‖g1/2
0 g−1

1/2

(
v1/2 −A⊤λ

)
‖2

≤3‖v1/2 −A⊤λ‖g−1
0
.

Using this and simplifying, we have

‖T (x, v, λ) − T (x, v, λ)‖
≤1.3h‖v − v‖g−1

0
+ 2.4rh‖A⊤(λ− λ)‖g−1

0
+ 3.3h‖x− x‖g0‖v1/2 −A⊤λ‖g−1

0

+ 1.2h‖A⊤(λ1 − λ1)‖g−1
0

+ 6h(
1
2
‖v − v‖g−1

0
+ ‖A⊤(λ1 − λ1)‖g−1

0
)‖v1/2 −A⊤λ‖g−1

0

+ h‖v − v‖2
g−1

0

+ 2h‖A⊤(λ1 − λ1)‖2
g−1

0

+ 27h‖v1/2 −A⊤λ‖2
g−1

0

‖x− x‖g0 .

Next, we note that

‖v1/2 −A⊤λ‖g−1
0
≤1

2
‖v − v∗‖g−1

0
+

1
2
‖v0 − v∗‖g−1

0
+ ‖v∗‖g−1

0

+
1
2
‖A⊤λ−A⊤λ∗‖g−1

0
+

1
2
‖A⊤λ−A⊤λ∗‖g−1

0
+ ‖A⊤λ∗‖g−1

0

≤1
2
r +

1
2
r + ‖v∗‖g−1

0
+

r

2h
+

r

2h
+
r

h
≤ 3r

h
+ ‖v∗‖g−1

0

Using this, (B.2), h ≤ r, r2 ≤ h
16 , r ≤ ‖v∗‖g−1

0
/4, we have

‖A⊤(λ1 − λ1)‖g−1
0
≤ ‖v − v‖g−1

0
+ 3r‖A⊤(λ− λ)‖g−1

0
+ (

5r
h

+ 2‖v∗‖g−1
0

)‖x− x‖g0

≤ r +
3r2

h
+

5r2

h
+ 2r‖v∗‖g−1

0
≤ 8r2

h
+ 2r‖v∗‖g−1

0
≤ 1

30

Hence, we can further simplify it to

‖T (x, v, λ) − T (x, v, λ)‖
≤2.3h‖v − v‖g−1

0
+ 2.4rh‖A⊤(λ− λ)‖g−1

0
+ 3.3h‖x− x‖g0‖v1/2 −A⊤λ‖g−1

0

+ 3.2h‖A⊤(λ1 − λ1)‖g−1
0

+ 6h(
1
2
‖v − v‖g−1

0
+ ‖A⊤(λ1 − λ1)‖g−1

0
)‖v1/2 −A⊤λ‖g−1

0

+ 27h‖v1/2 −A⊤λ‖2
g−1

0

‖x− x‖g0

≤(
3r
h

+ ‖v∗‖g−1
0

)(6h‖v − v‖g−1
0

+ 9h‖A⊤(λ1 − λ1)‖g−1
0

+ 31h‖x− x‖g0)

+ 2.4rh‖A⊤(λ − λ)‖g−1
0

where we used ‖v1/2 −A⊤λ‖g−1
0
≤ 3r

h + ‖v∗‖g−1
0

and r ≥ h. Using the bound on ‖A⊤(λ1 − λ1)‖g−1
0

, we have

‖T (x, v, λ) − T (x, v, λ)‖

≤(
3r
h

+ ‖v∗‖g−1
0

)(15h‖v − v‖g−1
0

+ 27rh‖A⊤(λ− λ)‖g−1
0

+ 9h(
36r
h

+ 2‖v∗‖g−1
0

)‖x− x‖g0)

+ 2.4rh‖A⊤(λ− λ)‖g−1
0

≤(
3r
h

+
1
4r

)(15h‖v − v‖g−1
0

+ 30rh‖A⊤(λ− λ)‖g−1
0

+ 9h(
36r
h

+ 2‖v∗‖g−1
0

)‖x− x‖g0)

≤(
3r
h

+ ‖v∗‖g−1
0

)(400r + 18h‖v∗‖g−1
0

)‖(x, v, λ) − (x, v, λ)‖.

31

	1 Introduction
	2 Algorithm: Constrained RHMC
	2.1 Basics of RHMC
	2.2 Basics of CRHMC
	2.3 Stationarity of CRHMC
	2.4 Condition Number Independence via Self-concordant Barrier
	2.5 Efficient Computation of H/x and H/v
	2.5.1 Avoiding pseudo-inverse and pseudo-determinant
	2.5.2 Simplification for subspace constraints
	2.5.3 Efficient Computation of Leverage Score

	2.6 Discretization
	2.6.1 Discretized CRHMC based on Implicit Midpoint Integrator
	2.6.2 Theoretical Guarantees

	3 Experiments
	3.1 Experimental Setting
	3.2 Sub-linear Mixing Rate
	3.3 Sub-quadratic Sampling Time
	3.4 CRHMC on Structured Instances

	A Missing Definitions and Details
	A.1 Definitions
	A.2 Details

	B Bound on Algorithm Error

