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Private Convex Optimization via Exponential Mechanism

Sivakanth Gopi∗ Yin Tat Lee † Daogao Liu ‡

Abstract

In this paper, we study private optimization problems for non-smooth convex functions
F (x) = Eifi(x) on R

d. We show that modifying the exponential mechanism by adding an ℓ2
2

regularizer to F (x) and sampling from π(x) ∝ exp(−k(F (x) + µ‖x‖2
2
/2)) recovers both the

known optimal empirical risk and population loss under (ε, δ)-DP. Furthermore, we show how

to implement this mechanism using Õ(nmin(d, n)) queries to fi(x) for the DP-SCO where n is
the number of samples/users and d is the ambient dimension. We also give a (nearly) matching

lower bound Ω̃(nmin(d, n)) on the number of evaluation queries.
Our results utilize the following tools that are of independent interest:

• We prove Gaussian Differential Privacy (GDP) of the exponential mechanism if the loss
function is strongly convex and the perturbation is Lipschitz. Our privacy bound is optimal

as it includes the privacy of Gaussian mechanism as a special case and is proved using the
isoperimetric inequality for strongly log-concave measures.

• We show how to sample from exp(−F (x)−µ‖x‖2
2
/2) for G-Lipschitz F with η error in total

variation (TV) distance using Õ((G2/µ) log2(d/η)) unbiased queries to F (x). This is the
first sampler whose query complexity has polylogarithmic dependence on both dimension
d and accuracy η.
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1 Introduction

Differential Privacy (DP), introduced in [DMNS06, DKM+06], is increasingly becoming the univer-
sally accepted standard in privacy protection. We see an increasing array of adoptions in indus-
try [App17, EPK14, BEM+17, DKY17] and more recently the US census bureau [Abo16, KCK+18].
Differential privacy allows us to quantify the privacy loss of an algorithm and is defined as follows.

Definition 1.1 ((ε, δ)-DP). A randomized mechanism M is (ε, δ)-differentially private if for any
neighboring databases D,D′ and any subset S of outputs, one has

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

In this paper, we say D and D′ are neighboring databases if they agree on all the user inputs except
for a single user’s input.

Privacy concerns are particularly acute in machine learning and optimization using private user
data. Suppose we want to minimize some loss function F (x;D) : K → R for some domain K where
D is some database. We want to output a solution xpriv using differentially private mechanism M
such that we minimize the excess empirical risk

E
M
[F (xpriv;D)]− F (x∗;D), (1)

where x∗ ∈ K is the true minimizer of F (x;D).

Exponential Mechanism One of the first mechanisms invented in differential privacy, the expo-
nential mechanism, was proposed by [MT07] precisely to solve this. It involves sampling xpriv from
the density

πD(x) ∝ exp (−kF (x;D)) . (2)

Here k controls the privacy-vs-utility tradeoff, large k ensures that we get a good solution but
less privacy and small k ensures that we get good privacy but we lose utility. Suppose ∆F =
supD∼D′ supx |F (x;D)−F (x;D′)| is the sensitivity of F , where the supremum is over all neighboring
databases D,D′. Then choosing k = ε

2∆F
, the exponential mechanism satisfies (ε, 0)-DP.

Exponential mechanism is widely used both in theory and in practice, such as in mechanism
design [HK12], convex optimization [BST14, MV21], statistics [WZ10, WM10, AKRS19], machine
learning and AI [ZP19]. Even for infinite and continuous domains, exponential mechanism can
be implemented efficiently for many problems [HT10, CSS13, KT13, BV19, CKS20]. There are
also several variants and generalizations of the exponential mechanism which can improve its utility
based on different assumptions [TS13, BNS13, RS16, LT19]. See [LT19] for a survey of these results.

DP Empirical Risk Minimization (DP-ERM) In many applications, the loss function is
given by the average of the loss of each user:

F (x;D) := 1

n

n∑

i=1

f(x; si). (3)

where D = {s1, s2, · · · , sn} is the collection of users si and f(x; si) is the loss function of user si.
Throughout this paper, we assume f(x; s) is convex and f(x; s) − f(x; s′) is G-Lipschitz for

all s, s′, and K ⊂ R
d is convex with diameter D.1 We call the problem of minimizing the excess

1Some of our results can handle the unconstrained domain, such as K = R
d.
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empirical risk in (3) as DP Empirical Risk Minimization (DP-ERM). This setting is well studied
by the DP community with many exciting results [CM08, RBHT12, CMS11, JT14, BST14, KJ16,
FTS17, ZZMW17, Wan18, INS+19, BFTT19, FKT20, KLL21, BGN21, LL21, AFKT21, SSTT21,
MBST21, GTU22].2

In particular, [BST14] shows that exponential mechanism in (2) achieves the optimal excess
empirical risk of O

(
GDd
nε

)
under (ε, 0)-DP. On the other hand, [BST14, BFTT19, BFGT20] show

that noisy gradient descent on F (x;D) achieves an excess empirical risk of

O

(
GD

√
d log(1/δ)

nε

)
(4)

under (ε, δ)-DP, which is also shown to be optimal [BST14]. This is a significant
√
d improvement

over the exponential mechanism.
Exponential mechanism is a universally powerful tool in differential privacy. However, nearly

all of the previous works on DP-ERM rely on noisy gradient descent or its variants to achieve the
significant

√
d improvement over exponential mechanism under (ε, δ)-DP. One natural question is

whether noisy gradient descent has some extra ability that exponential mechanism lacks or we didn’t
use exponential mechanism optimally in this setting. This brings us to the first question.

Question 1. Can we obtain the optimal empirical risk in (1) under (ε, δ)-DP using exponential
mechanism?

DP Stochastic Convex Optimization (DP-SCO) Beyond the privacy guarantee and the
empirical risk guarantee, another important guarantee is the generalization guarantee. Formally,
we assume the users are sampled from an unknown distribution P over convex functions. We define
the loss function as

F̂ (x) = E
s∼P

[f(x; s)]. (5)

We want to design a DP mechanism M which outputs xpriv given users D = {s1, s2, . . . , sn}
independently sampled from P and minimize the excess population loss

E
M,D∼P

[F̂ (xpriv)]− F̂ (x∗) (6)

where x∗ is the minimizer of F̂ (x). We call the problem of minimizing the excess population loss in
(6) as DP Stochastic Convex Optimization (DP-SCO). By a suitable modification of noisy stochastic
gradient descent, [BFTT19, FKT20] show that one can achieve the optimal population loss of

O

(
GD

(
1√
n
+

√
d log(1/δ)

εn

))
. (7)

[BFTT19] bounds the generalization error by showing that running SGD on smooth functions is
stable and [FKT20] proposes an iterative localization technique. Note that only the algorithm for
smooth functions in [BFTT19] can achieve both optimal empirical risk and optimal population loss
at the same time, with the price of taking more gradient queries and loss of efficiency. It is unclear
to us how one can obtain both using current techniques for non-smooth functions. This brings us
to the second question.

Question 2. Can we achieve both the optimal empirical risk and the optimal population loss for
non-smooth functions with the same algorithm?

2Most of the literature uses a stronger assumption that f(x; s) is G-Lipschitz, while some of our results only need
to assume the difference f(x; s)− f(x; s′) is G-Lipschitz.
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Sampling Without extra smoothness assumptions on f , currently, there is no optimally efficient
algorithm for both problems. For example, with oracle access to gradients of f , the previous best
algorithms for DP-SCO use:

• Õ(nd) queries to ∇f(x; s) (by combining [FKT20], Moreau-Yosida regularization and cutting
plane methods),

• Õ(min(n3/2, n2/
√
d)) queries to ∇f(x; s) [AFKT21],

• Õ(min(n5/4d1/8, n3/2/d1/8)) queries to ∇f(x; s) [KLL21].

Combining these results, this gives an algorithm for DP-SCO that uses

Õ(min(nd, n5/4d1/8, n3/2/d1/8, n2/
√
d))

many queries to ∇f(x; s). Although the information lower bound for non-smooth functions with
the gradient queries is open, it is unlikely that the answer involves four different cases.

In this paper, we focus on the function value query (zeroth order query) on f(x; s). This query is
weaker than gradient query as it obtains d times less information. They are used in many practical
applications such as clinical trials and ads placement when the gradient is not available and is also
useful in bandit problems. This brings us to the third question.

Question 3. Can we obtain an algorithm with optimal query complexity for DP-SCO for zeroth
order query model?

1.1 Our Contributions

In this paper, we give a positive answer to all these questions using the Regularized Exponential
Mechanism. If we add an ℓ22 regularizer to F and sample xpriv from the density

exp
(
−k
(
F (x;D) + µ ‖x‖22 /2

))
, (8)

then, for a suitable choice of µ and k, we recover the optimal excess risk in (4) for DP-ERM and
optimal population loss in (7) for DP-SCO. Finally, we give an algorithm to sample xpriv from the
density (8) with nearly optimal number of queries to f(x; s) (See Figure 1). To the best of our
knowledge, our algorithm is the first whose query complexity has polylogarithmic dependence in
both dimension and accuracy (in TV distance).

Formally, our result is follows:

Theorem 1.2 (DP-ERM, Informal). Let K be a convex set with diameter D and {f(·; s)} be a
family of convex functions on K where f(·; s)− f(·; s′) is G-Lipschitz for all s, s′. Given a database
D = {s1, s2, · · · , sn}, for any ε, δ ∈ (0, 1

10),
3 the regularized exponential mechanism

x(priv) ∝ exp

(
−k ·

(
1

n

n∑

i=1

f(x; si) +
µ

2
‖x‖22

))

is (ε, δ)-DP with expected excess empirical loss

2GD
√
d log(1/δ)

εn

for some appropriate choices of k and µ. Furthermore, if f(·; s) is G-Lipschitz for all s, we can

sample x(priv) using O( ε2n2

log(1/δ) log
2(ndδ )) queries in expectation to the values of f(x; s).

3See Theorem 6.2 for general conclusions for all ε > 0
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Theorem 1.3 (DP-SCO, Informal). Let K be a convex set with diameter D and {f(·; s)} be a
family of convex functions on K where f(·; s)− f(·; s′) is G-Lipschitz for all s, s′. Given a database
D = {s1, s2, · · · , sn} of samples from some unknown distribution P. For any ε, δ ∈ (0, 1

10),
4 the

regularized exponential mechanism

x(priv) ∝ exp

(
−k ·

(
1

n

n∑

i=1

f(x; si) +
µ

2
‖x‖22

))

is (ε, δ)-DP with expected excess population loss

2GD√
n

+
2GD

√
d log(1/δ)

εn

for some appropriate choice of k and µ. Furthermore, if f(·; s) is G-Lipschitz for all s, we can

sample x(priv) using O(min{ ε2n2

log(1/δ) , nd} log2(ndδ )) queries in expectation to the values of f(x; s) and
the expected number of queries is optimal up to logarithmic terms.

For DP-SCO, we provide a nearly matching information-theoretic lower bound on the number
of value queries (Section 7), proving the optimality of our sampling algorithm. Moreover, when f is
already strongly convex, our proof shows the exponential mechanism (without adding a regularizer)
itself simultaneously achieves both the optimal excess empirical risk and optimal population loss.

In a concurrent and independent work, [GTU22] study the DP properties of Langevin Diffusion,
and provide optimal/best known private empirical risk and population loss under both pure-DP
(δ = 0) and approximate-DP (δ > 0) constraints. Utility/privacy trade-off of non-convex functions
is also discussed.

2 Techniques

The main contribution of this paper is the discovery that adding regularization terms in exponential
mechanism leads to optimal algorithms for DP-ERM and DP-SCO. For this, we develop some
important tools that could be of independent interest. We now briefly discuss each of the main
tools.

2.1 Gaussian Differential Privacy (GDP) of Regularized Exponential Mecha-
nism

To analyze the privacy of the regularized exponential mechanism, we need to bound the privacy
curve between a strongly log-concave distribution and its Lipschitz perturbation in the exponent.
[MASN16] gave a nearly tight (up to constants) privacy guarantee of exponential mechanism if
the distribution exp(−kF (x;D)) satisfies Logarithmic Sobolev inequality (LSI). Since strongly log-
concave distributions satisfy LSI, their result immediately gives the (ε, δ)-DP guarantee of our
algorithm. However, this gives a sub-optimal privacy bound because it does not fully take advantage
of the strongly log-concave property.

Instead, we show directly that the privacy curve between a strongly log-concave distribution and
its Lipschitz perturbation in the exponent is upper bounded by the privacy curve of an appropriate
Gaussian mechanism. This new proof uses the notion of tradeoff function introduced in [DRS19]
and the isoperimetric inequality for strongly log-concave distribution.

4See Theorem 6.9 for general conclusions for all ε > 0.
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Theorem 2.1. Given convex set K ⊆ R
d and µ-strongly convex functions F, F̃ over K. Let P,Q be

distributions over K such that P (x) ∝ e−F (x) and Q(x) ∝ e−F̃ (x). If F̃ − F is G-Lipschitz over K,
then for all ε > 0,

δ(P ‖ Q)(ε) ≤ δ
(
N (0, 1)

∥∥∥∥ N
(
G√
µ
, 1

))
(ε).

This proves that the privacy curve for distinguishing between P,Q is upper bounded the privacy
curve of a Gaussian mechanism with sensitivity G/

√
µ and noise scale 1.

Tightness: Note that Theorem 2.1 is completely tight because it contains the privacy of Gaussian
mechanism as a special case. If F (x) = ‖x‖22 /2 and F̃ (x) = ‖x− a‖22 /2 for some a ∈ R

d, then
F̃ (x) − F (x) = −〈x, a〉 + ‖a‖22 /2 is G-Lipschitz with G = ‖a‖2 and F, F̃ are 1-strongly convex.
And P = N (0, Id) and Q = N (a, Id). Therefore:

δ(P ‖ Q) = δ(N (0, Id) ‖ N (a, Id)) = δ(N (0, 1) ‖ N (‖a‖2 , 1))

which is precisely the upper bound guaranteed by the theorem.

2.2 Generalization Error of Sampling

Many important and fundamental problems in machine learning, optimization and operations re-
search are special cases of SCO, and ERM is a classic and widely-used approach to solve it, though
their relationships are not well-understood. If one can solve the ERM problem optimally and get
the exact optimal solution x∗ to minimizing F (·;D) (see Equation 3), then [SSSSS09] showed x∗ will
also be a good solution to the SCO for strongly convex functions. But in most situations, solving
ERM optimally costs too much or even impossible. Can we find a approximately good solution to
ERM and hope that it is also a good solution for SCO? [Fel16] provides a negative answer and shows
there is no good uniform convergence between F (·;D) and F̂ , that is there always exists x ∈ K such
that |F (x;D) − F̂ (x)| is large. This fact forces us to find approximate solution to ERM with very
high accuracy, which makes the algorithms inefficient.

Prior works proposed a few interesting ways to overcome this difficulty, such as the uniform sta-
bility in [HRS16] and the iterative localization technique in [AFKT21]. Roughly speaking, uniform
stability means that if running algorithms on neighboring datasets lead to similar output distribu-
tions, then the generalization error of the ERM algorithm is bounded. Thus a good solution to ERM
obtained by a stable algorithm is also a good solution for SCO. [BFTT19] makes use of the stability
of running SGD on smooth functions to get a tight bound on the population loss for DP-SCO.

Recall F (x;D) and F̂ (x) are defined in Equation (3) and (5) respectively. Our result enriches
the toolbox of bounding the generalization error and provides new insights for this problem.

Theorem 2.2. Suppose {fi} is a family of µ-strongly convex functions over K and fi − fi′ is G-
Lipschitz for any two functions fi, fi′ in the family. For any k > 0 and suppose the n samples in
data set D are drawn i.i.d from the underlying distribution, then by sampling x(sol) from density
∝ e−kF (x(sol);D), the population loss satisfies

E[F̂ (x(sol))]−min
x∈K

F̂ (x) ≤ G2

µn
+
d

k
.

Considering two neighboring datasets D and D′, our result is based on bounding the Wasser-
stein distance between the distributions proportional to e−kF (x;D) and e−kF (x;D′), which means the

6



sampling scheme is stable and leads to the G2

µn term in generalization error. The other term d
k is

excess empirical loss of the sampling mechanism. One advantage of our result is that it works for
both smooth and non-smooth functions. Moreover, we may choose the value k carefully and get a
solution with both optimal empirical loss and optimal population loss.

2.3 Non-smooth Sampling and DP Convex Optimization

Implementing the exponential mechanism involves sampling from a log-concave distribution. When
the negative log-density function F is smooth, i.e. the gradient of F is Lipschitz, there are many
efficient algorithms for this sampling tasks such as [Dal17, LSV18, MMW+21, CV19, DMM19, SL19,
CDWY20, LST20]. For example, if F = 1

n

∑n
i=1 fi and each fi is 1-strongly convex with κ-Lipschitz

gradient,5 we can sample x ∼ exp(−F (x)) in Õ(n+ κmax(d,
√
nd) log(1/δ)) iterations with δ error

in total variation distance and each iteration involves computing one ∇fi(x) [LST21]. Note that
this is nearly linear time when n≫ κ2d and the δ error in total variation distance can be translated
to an extra δ error in the (ε, δ)-DP guarantee.

Complexity Oracle Guarantee

[BST14] dO(1) F (x) D∞ ≤ ε
[CDJB20] GO(1)d5/2/ε4 ∇F (x) W2 ≤ δ

[JLLV21] + [Che21] d3 F (x) TV ≤ δ
[GT20] α2G4d

ε2 ∇F (x) Dα ≤ ε
[LC21] G2

δ ∇F (x) TV ≤ δ
This G2 fi(x) TV ≤ δ

Figure 1: The complexity of sampling from exp(−F (x)) where F = 1
n

∑
i fi is 1-strongly convex

and fi are G-Lipschitz and convex. For applications in differential privacy, ε is a constant and
δ = n−Θ(1). Polylogarithmic terms are omitted. Only the last result uses the summation structure
and queries only one fi each step.

Unfortunately, when the functions fi are only Lipschitz but not smooth, this problem is more
difficult. In Table 1, we summarize some existing results on this topic. They use different guarantees
such as Renyi divergence Dα of order α, Wasserstein distance W2 and total variation distance TV
(defined in subsection 3.3). For applications in differential privacy, we need either polynomially
small W2 or TV distance, or ε small Dα distance.

All previous results for non-smooth function use oracle access to F or ∇F (instead of fi) and
have iterative complexity at least d iterations for W2 or TV distance smaller than 1/d. Because of
this, our algorithm is significantly faster than the previous algorithms and can handle the case when
F is expectation of (infinitely many) fi directly. For example, to get the optimal private empirical
loss with typical settings where ε = Θ(1) and δ = 1/nΘ(1), the previous best samplers use Õ(n4d)
many queries to ∇fi(x) by [GT20] or Õ(nd3) many queries to fi(x) by combining [JLLV21] and
[Che21]. In comparison, our algorithm only takes Õ(n2) many fi(x).

Our result is based on the alternating sampler proposed in [LST21] and a new rejection sampling
scheme.

Theorem 2.3. Given a µ-strongly convex function ψ(x) defined on a convex set K ⊆ R
d and +∞

outside. Given a family of G-Lipschitz convex functions {fi(x)}i∈I defined on K and an initial point

5For convenience, we used fi to denote the function f(·; si) in this and Section 5.
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x0 ∈ K. Define the function F̂ (x) = Ei∈I fi(x) + ψ(x) and the distance D = ‖x0 − x∗‖2 for some
x∗ = argminx∈K F̂ (x). For any δ ∈ (0, 1/2), we can generate a random point x that has δ total
variation distance to the distribution proportional to exp(−F̂ (x)) in

T := Θ

(
G2

µ
log2

(
G2(d/µ +D2)

δ

))
steps.

Furthermore, each steps accesses only O(1) many fi(x) and samples from exp(−ψ(x)− 1
2η‖x− y‖22)

for O(1) many y in expectation with η = Θ(G−2/ log(T/δ)).

3 Preliminaries

3.1 Differential Privacy

A DP algorithm M usually satisfies a collection of (ε, δ)-DP guarantees for each ε, i.e., for each ε
there exists some smallest δ for which M is (ε, δ)-DP. By collecting all of them together, we can
form the privacy curve or privacy profile which fully characterizes the privacy of a DP algorithm.

Definition 3.1 (Privacy Curve). Given two random variables X,Y supported on some set Ω, define
the privacy curve δ(X‖Y ) : R≥0 → [0, 1] as:

δ(X‖Y )(ε) = sup
S⊂Ω

Pr[Y ∈ S]− eε Pr[X ∈ S].

One can explicitly calculate the privacy curve of a Gaussian mechanism as

δ(N (0, 1) ‖ N (s, 1))(ε) = Φ
(
−ε
s
+
s

2

)
− eεΦ

(
−ε
s
− s

2

)
(9)

where Φ(·) is the Gaussian cumulative distribution function (CDF) [BW18].
We say a differentially private mechanism M has privacy curve δ : R≥0 → [0, 1] if for every

ε ≥ 0, M is (ε, δ(ε))-differentially private, i.e., δ(M(D)‖M(D′))(ε) ≤ δ(ε) for all neighbouring
databases D,D′. We will also need the notion of tradeoff function introduced in [DRS19] which is
an equivalent way to describe the privacy curve δ(P‖Q).

Definition 3.2 (Tradeoff function). Given two (continuous) distributions P,Q, we define the trade-
off function6 T (P‖Q) : [0, 1]→ [0, 1] as

T (P‖Q)(z) = inf
S:P (S)=1−z

Q(S).

It is easy to compute explicitly the tradeoff function for Gaussian mechanism [DRS19],

T (N (0, 1)‖N (s, 1))(z) = Φ(Φ−1(1− z)− s). (10)

Note that perfect privacy is equivalent to the tradeoff function Id(z) = 1−z and the closer a tradeoff
function is to Id, better the privacy. The tradeoff function T (P‖Q) and the privacy curve δ(P‖Q)
are related via convex duality. Therefore to compare privacy curves, it is enough to compare tradeoff
curves.

Proposition 3.3 ([DRS19]). δ(P‖Q) ≤ δ(P ′‖Q′) iff T (P‖Q) ≥ T (P ′‖Q′)
6Tradeoff curves in [DRS19] are defined using type I and type II errors. The definition given here is equivalent to

their definition for continuous distributions.
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3.2 Optimization

Here we collect some properties of functions which are useful for optimization and sampling.

Definition 3.4 (L-Lipschitz Continuity). A function f : K → R is L-Lipschitz continuous over the
domain K ⊂ R

d if the following holds for all ω, ω′ ∈ K : |f(ω)− f(ω′)| ≤ L‖ω − ω′‖2.

Definition 3.5 (µ-Strongly convex). A differentiable function f : K → R is called strongly convex
with parameter µ > 0 if K ⊂ R

d is convex and the following inequality holds for all points ω, ω′ ∈ K,

f(ω′) ≥ f(ω) +
〈
∇f(ω), ω′ − ω

〉
+
µ

2
‖ω′ − ω‖22.

Definition 3.6 (Log-concave measure and density). A density function f : K → R≥0 is log-concave
if
∫
K f(x)dx = 1 and f(x) = exp(−F (x)) for some convex function F . We call f is µ-strongly log-

concave if F is µ-strongly convex. Similarly, we call π a log-concave measure if its density function
is log-concave, and we call π is a µ-strongly log-concave measure if its density function is µ-strongly
log-concave.

3.3 Distribution Distance and Divergence

We present some distribution distances or divergences mentioned or used in this work.

Definition 3.7. [Rén61, Rényi Divergence] Suppose 1 < α <∞ and π, ν are measures with π ≪ ν.
The Rényi divergence of order α between π and ν is defined as

Dα(π‖ν) =
1

α
log

∫ (
π(x)

ν(x)

)α

ν(x)dx.

We follow the convention that 0
0 = 0. Rényi Divergence of orders α = 1,∞ are defined by continuity.

For α = 1, the limit in Rényi Divergence equals to the Kullback-Leibler divergence of π from ν,
which is defined as following:

Definition 3.8 (Kullback–Leibler divergence). The Kullback–Leibler divergence between probabil-
ity measures π and ν is defined by

DKL(π‖ν) =
∫

log
(π
ν

)
dπ.

Definition 3.9 (Wasserstein distance). Let π, ν be two probability distributions on R
d. The second

Wasserstein distance W2 between π and ν is defined by

W2(π, ν) =
(

inf
γ∈Γ(π,ν)

∫

Rd×Rd

‖x− y‖22dγ(x, y)
)1/2

,

where Γ(π, ν) is the set of all couplings of π and ν.

Definition 3.10 (Total variation distance). The total variation distance between two probability
measures π and ν on a sigma-algebra F of subsets of the sample space Ω is defined via

TV(π, ν) = sup
S∈F
|π(S)− ν(S)|.

9



3.4 Isoperimetric Inequality for Strongly Log-concave Distributions

The cumulative distribution function (CDF) of one-dimensional standard Gaussian distribution will
be denoted by Φ(x) = Pry∼N (0,1)[y ≤ x]. The following Lemma relates the expanding property of
log-concave measures with Φ.

Proposition 3.11 (Theorem 1.1. in [Led99]). Let π be a µ-strongly log-concave measure supported
on a convex set K ⊆ R

d. Let A ⊂ K by any subset such that π(A) = z. For any point x ∈ R
d,

define d(x,A) = infy∈A ‖x− y‖2. Let Ar = {x : d(x,A) ≤ r}. Then if Ar ⊆ K, for every r ≥ 0,

π(Ar) ≥ Φ(Φ−1(z) + r
√
µ).

The property above implies the concentration of Lipschitz functions over log-concave measures.

Corollary 3.12. Let π be a µ-strongly log-concave measure supported on a convex set K ⊆ R
d.

Suppose α : K → R is G-Lipschitz. For z ∈ [0, 1], define m(z) ∈ R such that Prx∼π[α(x) ≤ m(z)] =
z. Then for every r ≥ 0,

Pr
x∼π

[α(x) ≥ m(z) + r] ≤ Φ

(
Φ−1(1− z)− r

√
µ

G

)
,

Pr
x∼π

[α(x) ≤ m(z)− r] ≤ Φ

(
Φ−1(z)− r

√
µ

G

)
.

Proof. Fix some z ∈ [0, 1]. Let A = {x ∈ K : α(x) ≤ m(z)}, so π(A) = z. Let Ar = {x :
d(x,A) ≤ r}. Since α is G-Lipschitz, α(x) ≥ m(z) + r implies that d(x,A) ≥ r/G. Therefore
{x : α(x) ≥ m(z) + r} ⊂ {x : d(x,A) ≥ r/G} = Ar/G and so

Pr
x∼π

[α(x) ≥ m(z) + r] ≤ π(Ar/G)

= 1− π(Ar/G)

≤ 1−Φ

(
Φ−1(z) +

r
√
µ

G

)

= Φ

(
−Φ−1(z)− r

√
µ

G

)
.

We obtain the other inequality by applying the above inequality to −α(x).

4 GDP of Regularized Exponential Mechanism

In this section, we prove our DP result (Theorem 2.1). The proof uses the isoperimetric inequality
for strongly log-concave measures [Led99]. Intuitively, the privacy loss random variable will be
G-Lipschitz under the hypothesis and isoperimetric inequality implies that any Lipschitz function
will be as concentrated as a Gaussian with appropriate standard deviation. This allows us compare
the privacy curve δ(P ‖ Q) to that of a Gaussian mechanism. In our proof, it is actually more
convenient to compare tradeoff curves (T (P ‖ Q)) which are equivalent to privacy curves via convex
duality (Proposition 3.3 and Theorem 2.1).

Theorem 4.1. Given convex set K ⊆ R
d and µ-strongly convex functions F, F̃ over K. Let P,Q be

distributions over K such that P (x) ∝ e−F (x) and Q(x) ∝ e−F̃ (x). If F̃ − F is G-Lipschitz over K,
then for all z ∈ [0, 1],

T (P ‖ Q)(z) ≥ T
(
N (0, 1)

∥∥∥∥ N
(
G√
µ
, 1

))
(z).
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Proof. Let γ = G/
√
µ. Let α(x) = F̃ (x) − F (x) so that Q(x) ∝ e−α(x)P (x). Recall that we

have T (P‖Q)(z) = infS:P (S)=1−zQ(S). Note that the infimum is achieved when we choose S =
{x ∈ K : α(x) ≥ m(z)} for some m(z) chosen such that P (S) = Prx∼P [α(x) ≥ m(z)] = 1 − z
(Neyman-Pearson lemma). Therefore:

T (P‖Q)(z) =

∫

x∈S
Q(x)dx

=

∫
x∈S e

−α(x)P (x)dx∫
x∈K e

−α(x)P (x)dx

=

(
1 +

EP [e
−α

1S ]

EP [e−α1S ]

)−1

We will now lower bound EP [e
−α

1S ]. Let the random variable Y = α(x) where x ∼ P. Let fY (·)
be the PDF of Y .

E
P
[e−α(x)

1S ] =

∫

x:α(x)≥m(z)
e−α(x)P (x)dx = E[e−Y

1(Y ≥ m(z))] =

∫ ∞

m(z)
e−tfY (t)dt

=

∫ ∞

t=0
e−t−m(z)

(
−dPrx∼P [α(x) ≥ t+m(z)]

dt

)
dt

= e−m(z)

(
−e−t Pr

x∼P
[α(x) ≥ t+m(z)]

∣∣∣∣
∞

0

−
∫ ∞

t=0
e−t Pr

x∼P
[α(x) ≥ t+m(z)] dt

)

= (1− z)e−m(z) − e−m(z)

∫ ∞

t=0
e−t Pr

x∼P
[α(x) ≥ t+m(z)] dt

≥ (1− z)e−m(z) − e−m(z)

∫ ∞

t=0
e−tΦ(Φ−1(1− z)− t/γ)dt (Corollary 3.12)

= (1− z)e−m(z) − e−m(z)

(
(1− z)− exp

(
γ2

2
− Φ−1(1− z)γ

)
Φ(Φ−1(1− z)− γ)

)

(Claim 4.2)

= exp

(
γ2

2
+ Φ−1(z)γ −m(z)

)
Φ(−Φ−1(z)− γ)

We will now upper bound EP [e
−α

1S ] in a similar way.

E
P
[e−α(x)

1S ] =

∫

x:α(x)≤m(z)
e−α(x)P (x)dx

=

∫ ∞

t=0
e−m(z)+t

(
−dPrx∼P [α(x) ≤ m(z)− t]

dt

)
dt

= e−m(z)

(
−et Pr

x∼P
[α(x) ≤ m(z)− t]

∣∣∣∣
∞

0

+

∫ ∞

t=0
et Pr

x∼P
[α(x) ≤ m(z)− t] dt

)

= ze−m(z) + e−m(z)

∫ ∞

t=0
et Pr

x∼P
[α(x) ≤ m(z)− t] dt

≤ ze−m(z) + e−m(z)

∫ ∞

t=0
etΦ(Φ−1(z)− t/γ)dt (Corollary 3.12)

= ze−m(z) + e−m(z)

(
−z + exp

(
γ2

2
+ Φ−1(z)γ

)
Φ(Φ−1(z) + γ)

)
(Claim 4.2)

= exp

(
γ2

2
+ Φ−1(z)γ −m(z)

)
Φ(Φ−1(z) + γ)

11



Combining the two bounds, we get:

T (P‖Q)(z) =

(
1 +

EP [e
−α

1S ]

EP [e−α1S ]

)−1

≥
(
1 +

Φ(Φ−1(z) + γ)

Φ(−Φ−1(z)− γ)

)−1

= Φ(−Φ−1(z)− γ) (Using Φ(x) + Φ(−x) = 1)

= T (N(0, 1) ‖ N(γ, 1)). (Eqn (10))

We finish by calculating the integrals that showed up in the proof.

Claim 4.2. ∫ ∞

0
e−tΦ

(
a− t

γ

)
dt = Φ(a)− eγ2

2
−aγΦ(a− γ)

∫ ∞

0
etΦ

(
a− t

γ

)
dt = −Φ(a) + e

γ2

2
+aγΦ(a+ γ)

Proof.

∫ ∞

0
e−tΦ(a− t/γ)dt = −e−tΦ(a− t/γ)

∣∣∞
0
−
∫ ∞

0
e−t e

−(a−t/γ)2/2

γ
√
2π

dt

= Φ(a)−
∫ ∞

0
eγ

2/2−aγ e
−(t−(γa−γ2))2/2

γ
√
2π

dt

= Φ(a)− eγ2/2−aγΦ(a− γ).

∫ ∞

0
etΦ(a− t/γ)dt = etΦ(a− t/γ)

∣∣∞
0

+

∫ ∞

0
et
e−(a−t/γ)2/2

γ
√
2π

dt

= −Φ(a) +
∫ ∞

0
eγ

2/2+aγ e
−(t−(aγ+γ2))2/2γ2

γ
√
2π

dt

= −Φ(a) + eγ
2/2+aγΦ(a+ γ).

As a corollary to Theorem 4.1, we can bound any divergence measure that decreases under
post-processing such as Renyi divergence or KL divergence. In particular, this also implies Renyi
Differential Privacy [Mir17] of our algorithm.

Corollary 4.3. Suppose F, F̃ are two µ-strongly convex functions over K ⊆ R
d, and F − F̃ is G-

Lipschitz over K. For any k > 0, if we let P ∝ e−kF and Q ∝ e−kF̃ be two probability distributions
on K, then we have

D(P‖Q) ≤ D

(
N (0, 1)‖N

(
G
√
k√
µ
, 1

))

for any divergence measure D which decreases under post-processing. In particular,

Dα(P‖Q) ≤ αkG2

2µ
and DKL(P‖Q) ≤ kG2

2µ
.
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Proof. By Theorem 2.10 in [DRS19], if T (P‖Q) ≥ T (X‖Y ), then there exists a randomized al-
gorithm M such that M(X) = P and M(Y ) = Q. Therefore for any divergence measure which
decreases under post-processing we have,

D(P‖Q) = D(M(X)‖M(Y )) ≤ D(X‖Y ).

The rest follows from Theorem 4.1. It is well-known that Renyi divergence and KL divergence de-
crease with post-processing (see [VEH14], for example). We can also compute Dα(N (0, 1),N (s, 1)) =
αs2/2 and DKL(N (0, 1),N (s, 1)) = s2/2 [Mir17].

5 Efficient Non-smooth Sampling

In this section, we will present an efficient sampling scheme for (non-smooth) functions to com-
plement our main result first. Specifically, we study the following problem about sampling from a
(non-smooth) log-concave distribution.

Problem 5.1. Given a µ-strongly convex function ψ(x) defined on a convex set K ⊆ R
d and +∞

outside. Given a family of G-Lipschitz convex functions {fi(x)}i∈I defined on K. Our goal is to
sample a point x ∈ K with probability proportionally to exp(−F̂ (x)) where

F̂ (x) = E
i∈I

fi(x) + ψ(x).

Our sampler is based on the alternating sampling algorithm in [LST21] (See algorithm 1). This
algorithm reduces the problem of sampling from exp(−F̂ (x)) to sampling from exp(−F̂ (x)− 1

2η‖x−
y‖2) for some fixed η and for roughly 1

ηµ many different y. When the step size η is very small,
the later problem is easier because the distribution is almost like a Gaussian distribution. For our
problem, we will pick the largest step size η such that we can sample exp(−F̂ (x) − 1

2η‖x − y‖2)
using only Õ(1) many steps.

Algorithm 1: Alternating Sampler

1 Input: µ-strongly convex function F̂ , step size η > 0, initial point x0
2 for t ∈ [T ] do
3 yt ← xt−1 +

√
η · ζ where ζ ∼ N (0, Id).

4 Sample xt ∝ exp(−F̂ (x)− 1
2η‖x− yt‖22).

5 end
6 Return xT

Theorem 5.2 ([LST21, Theorem 1]). Given a µ-strongly convex function F defined on K with
an initial point x0. Let the distance D = ‖x0 − x∗‖2 for any x∗ = argminx∈K F̂ (x). Suppose

the step size η ≤ 1
µ , the target accuracy δ > 0 and the number of step T ≥ Θ( 1

ηµ log(d/µ+D2

ηδ )).
Then, Algorithm 1 returns a random point xT that has δ total variation distance to the distribution
proportional to exp(−F̂ (x)).

Now, we show that Line 4 in Algorithm 1 can be implemented by a simple rejection sampling.
The idea is to pick step size η small enough such that F̂ (x) is essentially a constant function for a
random x ∼ N (y, η · Id). The precise algorithm is given in Algorithm 2.

13



Algorithm 2: Implementation of Line 4

1 Input: convex function F̂ (x) = Ei∈I fi(x) + ψ(x), step size η > 0, current point y
2 repeat
3 Sample x, z from the distribution ∝ exp(−ψ(x)− 1

2η‖x− y‖22)
4 Set ρ← 1
5 for α = 1, 2, · · · do
6 ρ← ρ+Πα

i=1(fji(z) − fji(x)) where ji are random indices in I
7 With probability α

1+α , break

8 end
9 Sample u uniformly from [0, 1].

10 until u ≤ 1
2ρ;

11 Return x

Since F has the ψ term, instead of sampling x from N (y, η · Id), we sample from exp(−ψ(x) −
1
2η‖x − y‖2) in Algorithm 2. The following lemma shows how to decompose the distribution

exp(−F̂ (x)− 1
2η‖x−y‖2) into the distribution mentioned above and the distribution exp(−Ei∈I fi(x)).

It also calculates the distribution given by the algorithm.

Lemma 5.3. Let π be the distribution proportional to exp(−F̂ (x) − 1
2η‖x − y‖22) and let G be the

distribution proportional to exp(−ψ(x) − 1
2η‖x− y‖2). Then, we have that

dπ

dx
=
dG
dx
· exp(−Ei∈I fi(x))
Ex∼G exp(−Ei∈I fi(x))

.

Let π̃ be the distribution returns by Algorithm 2. Then, we have that

dπ̃

dx
=
dG
dx
· E(ρ|x)

E(ρ)

where ρ = min(max(ρ, 0), 2) is the truncation of ρ in Algorithm 2 to [0, 2], E(ρ|x) is the expected
value of ρ conditional on x, and E(ρ) = Ex∼G E(ρ|x). Furthermore, we have that

E(ρ|x) = exp(− E
i∈I

fi(x)) · E
z∼G

exp( E
i∈I

fi(z)).

Proof. For the true distribution π, we have

dπ

dx
=

exp(−Ei∈I fi(x)− ψ(x)− 1
2η‖x− y‖22)∫

exp(−Ei∈I fi(x)− ψ(x) − 1
2η‖x− y‖22)dx

=
exp(−Ei∈I fi(x))dGdx∫
exp(−Ei∈I fi(x))dGdx dx

=
dG
dx
· exp(−Ei∈I fi(x))
Ex∼G exp(−Ei∈I fi(x))

.

For the distribution π̃ by the algorithm, we sample x ∼ G, then accept the sample if u ≤ 1
2ρ.

Hence, we have
dπ̃

dx
=
dG
dx

Pr(u ≤ 1
2ρ|x)

Pr(u ≤ 1
2ρ)

.

Since u is uniform between 0 and 1, we have the result.
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Finally, for the expectation of ρ, we note that

EΠα
i=1(fji(z)− fji(x)) = ( E

i∈I
(fi(z) − fi(x)))α

and that the probability that the loop pass step α is exactly 1
α! . Hence, we have

E(ρ|x, z) = 1 +

∞∑

α=1

1

α!
( E
i∈I

(fi(z)− fi(x)))α = exp( E
i∈I

(fi(z)− fi(x)).

Taking expectation over z gives the result.

Note that if we always had 0 ≤ ρ ≤ 2, then E(ρ|x) = E(ρ|x) ∝ exp(−Ei∈I fi(x)) and hence
dπ
dx = dπ̃

dx . Therefore, the only thing left is to show that 0 ≤ ρ ≤ 2 with high probability and
that it does not induces too much error in total variation distance. To do this, we use Gaussian
concentration to prove that Ei∈I fi(x) is almost a constant over random x ∼ G.

Lemma 5.4 (Gaussian concentration [Led99, Eq 1.21]). Let X ∼ exp(−F̂ ) for some 1/η-strongly
convex F̂ and ℓ is a G-Lipschitz function. Then, for all t ≥ 0,

Pr[ℓ(X)− E[ℓ(X)] ≥ t] ≤ e−t2/(2ηG2).

Now, we are already to prove our main result. This shows that if η ≪ G−2, then the algorithm
indeed implements Line 4 correctly up to small error.

Lemma 5.5. If the step size η ≤ C log−1(1/δinner)G
−2 for some small enough C and the inner

accuracy δinner ∈ (0, 1/2), then Algorithm 2 returns a random point x that has δinner total variation
distance to the distribution proportional to exp(−F̂ (x) − 1

2η‖x − y‖22). Furthermore, the algorithm

accesses only O(1) many fi(x) in expectation and samples from exp(−ψ(x)− 1
2η‖x− y‖22) for O(1)

many y.

Proof. Let π be the distribution given by c · exp(−F̂ (x) − 1
2η‖x − y‖22) and π̃ is the distribution

outputted by the algorithm. By Lemma 5.3, we have

dTV(π, π̃) =

∫

Rd

∣∣∣∣
dG
dx

exp(−Ei∈I fi(x))
Ex∼G exp(−Ei∈I fi(x))

− dG
dx

E(ρ|x)
E(ρ)

∣∣∣∣ dx

= E
x∼G

∣∣∣∣
exp(−Ei∈I fi(x))

Ex∼G exp(−Ei∈I fi(x))
− E(ρ|x)

E(ρ)

∣∣∣∣ .

Let X be the random variable E(ρ|x) and X̃ be the random variable E(ρ|x). Lemma 5.3 shows that
X = exp(−Ei∈I fi(x)) · Ez∼G exp(Ei∈I fi(z)) and hence

exp(−Ei∈I fi(x))
Ex∼G exp(−Ei∈I fi(x))

=
X

Ex∼G X
.

Therefore, we have

dTV(π, π̃) = E

∣∣∣∣∣
X

EX
− X̃

E X̃

∣∣∣∣∣ ≤ E

∣∣∣∣∣
X

EX
− X̃

EX

∣∣∣∣∣+ E

∣∣∣∣∣
X̃

EX
− X̃

E X̃

∣∣∣∣∣ ≤ 2
E |X − X̃ |
|EX| . (11)
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We simplify the right hand side by lower bounding EX. By Lemma 5.4 and the fact that the
negative log-density of G is 1/η-strongly convex, we have that Ei∈I fi(z) ≥ Ex∼G Ei∈I fi(x)− 2G

√
η

with probability ≥ 1− e−2. Hence, we have

EX = E
x∼G

exp(− E
i∈I

fi(x)) · E
z∼G

exp( E
i∈I

fi(z))

≥ exp(− E
x∼G

E
i∈I

fi(x)) · E
z∼G

exp( E
i∈I

fi(z))

= E
z∼G

exp( E
i∈I

fi(z)− E
x∼G

E
i∈I

fi(x))

≥ (1− e−2) exp(−2G√η).

Using η ≤ G−2/8, we have E[X] ≥ 2
3 . Using this, (11), X = E(ρ|x) and X̃ = E(ρ|x), we have

dTV(π, π̃) ≤ 3 · E |X − X̃ | ≤ 3 · E(|ρ| · 1ρ/∈[0,2]).

We split the ρ into two terms ρ≤L and ρ>L. The first term ρ≤L is the sum of all terms added to
ρ when α ≤ L (including the initial term 1). The second term ρ>L is the sum when α > L. Hence,
we have ρ = ρ>L + ρ≤L and hence

dTV(π, π̃) ≤ 3 · E(|ρ>L| · 1ρ/∈[0,2]) + 3 · E(|ρ≤L| · 1ρ/∈[0,2]). (12)

For the term ρ>L, by a calculation similar to Lemma 5.3, we have

E(|ρ>L| · 1ρ/∈[0,2]) ≤ E |ρ>L| ≤ E
x,z

Φ( E
i∈I
|fi(z)− fi(x)|),

where Φ(t) =
∑∞

α=L+1
tα

α! is a power series in t with all positive coefficients. By picking L >

C log(1/δinner) for some large constant C, we have Φ(t) ≤ δinner
16 for all |t| ≤ 1. Let ∆ be the random

variable Ei∈I |fi(z)− fi(x)| whose randomness comes from x and z. Then, we have

E(|ρ>L| · 1ρ/∈[0,2]) ≤
δinner
16

+ E e∆1∆≥1 ≤
δinner
16

+

∞∑

k=1

ek+1 Pr
x,z

(∆ ≥ k).

Denote a function hx,z(t) := Pri∈I [|fi(z)− fi(x)| ≥ t]. Since each fi is G-Lipschitz, Lemma 5.4
shows that

Pr
x,z

[|fi(z)− fi(x)| ≥ t] ≤ 4e−t2/(8ηG2),

which implies

E
x,z

[hx,z(t)] = Pr
x,z,i

[|fi(z)− fi(x)| ≥ t] ≤ 4e−t2/(8ηG2).

By Markov inequality, for any k > 0, we know

Pr
x,z

[hx,z(t) ≥ e−k] ≤ 4ek−t2/(8ηG2).

As |fi(z) − fi(x)| ≤ G‖x− z‖2, if hx,z(t) = Pri∈I [|fi(z)− fi(x)| ≥ t] ≤ e−t2/(16ηG2), we know

E
i∈I
|fi(z)− fi(x)| ≤ t+ e−t2/(16ηG2) ·G‖x− z‖2.
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Hence, one has

Pr
x,z

[
E
i∈I
|fi(z)− fi(x)| ≥ t+ e−t2/(16ηG2)G‖x − z‖2

]
≤ Pr

x,z
[hx,z(t) ≥ e−t2/(16ηG2)]

≤ 4e−t2/(16ηG2).

By Gaussian Concentration, we know

Pr
x,z

[‖x− z‖2 ≥ t] ≤ Pr
x,z

[‖x− Ex‖2 ≥ t/2 or ‖z − E z‖ ≥ t/2]

≤ 2e−t2/(8η).

Thus we know

Pr
x,z

[ E
i∈I
|fi(z)− fi(x)| ≥ 2t]

= Pr
x,z

[ E
i∈I
|fi(z)− fi(x)| ≥ 2t, ‖x− z‖2 ≥ t/G] + Pr

x,z
[ E
i∈I
|fi(z)− fi(x)| ≥ 2t, ‖x− z‖2 < t/G]

≤ 2e−t2/(8G2η) + Pr
x,z

[ E
i∈I
|fi(z)− fi(x)| ≥ 2t, ‖x− z‖2 < t/G]

≤ 2e−t2/(8G2η) + Pr
x,z

[ E
i∈I
|fi(z)− fi(x)| ≥ t+ e−t2/(16ηG2)G‖x− z‖2]

≤ 6e−t2/(16ηG2).

Hence, we have Pr(∆ ≥ k) ≤ 6 exp(−k2/(64G2η)) and

E(|ρ>L| · 1ρ/∈[0,2]) ≤
δinner
16

+ 17

∞∑

k=1

e
k− k2

64G2η ≤ δinner
9

, (13)

where we used η ≤ 2−6G−2/ log(400/δinner) at the end.
As for the term ρ≤L, we know that

E(|ρ≤L| · 1ρ/∈[0,2])
=E(|ρ≤L| · 1ρ/∈[0,2] · 1|ρ≤L|≤2L) + E(|ρ≤L| · 1ρ/∈[0,2] · 1|ρ≤L|≥2L)

≤Pr[ρ /∈ [0, 2]] · 2L +
∞∑

k=1

2(k+1)L Pr(|ρ≤L| ≥ 2kL). (14)

Note that the term ρ≤L involves only less than L2

2 many fi(x) and fi(z). Lemma 5.4 shows that for
any i, we have

Pr
x∼G

(|fi(x)− E
x∼G

fi(x)| ≥ t) ≤ 2e−t2/(2ηG2).

By union bound, this shows

Pr
x,z∼G

(|fi(x)− fi(z)| ≥
1

4
2k for any such i) ≤ L2 exp(− 4k

32ηG2
).

Under the event |fi(x)− fi(z)| ≤ 1
32

k for all i appears in ρ≤L, we have

|ρ≤L| ≤ 1 +

L∑

α=1

Πα
i=1|fji,α(z) − fji,α(x)| ≤ 1 +

L∑

α=1

(
2k

3
)α ≤ 2kL.

17



Therefore, we have Pr(|ρ≤L| > 2kL) ≤ L2 exp(− 4k

32ηG2 ) and

∞∑

k=1

2(k+1)L Pr(|ρ≤L| > 2kL) ≤
∞∑

k=1

2(k+1)LL2 exp(− 4k

32ηG2
) ≤

∞∑

k=1

24kL exp(− 4k

32ηG2
).

Picking η ≤ 2−8G−2L−1, we have that

∞∑

k=1

2(k+1)L Pr(|ρ≤L| > 2kL) ≤
∞∑

k=1

24kL exp(−2 · 4kL) ≤
∞∑

k=1

2−kL ≤ δinner
9

(15)

by picking L > C log(1/δinner) for large enough C.
It remains to bound the term Pr[ρ /∈ [0, 2]] · 2L. We know the probability the algorithm enters

the (L + 1)-th phase is at most 1
L! ≤ 2

2L
. Hence we know Pr[ρ /∈ [0, 2]] ≤ 2

2L
+ Pr[ρ≤L /∈ [0, 2]].

Similarly, by Gaussian Concentration and union bound, we have

Pr
x,z∼G

(|fi(x)− fi(z)| ≥ 1/2 for any such i) ≤ L2 exp(− 1

8ηG2
).

Under the event that |fi(x)− fi(z)| ≤ 1/2 for all i appears in ρ≤L, we have

1−
L∑

α=1

Πα
i=1|fji,α(z)− fji,α(x)| ≤ ρ≤L ≤ 1 +

L∑

α=1

Πα
i=1|fji,α(z)− fji,α(x)|,

which implies 0 ≤ ρ≤L ≤ 2. Then we know Pr[ρ≤L /∈ [0, 2]] ≤ L2 exp(− 1
8ηG2 ). By our setting of

parameters and that L = C log(1/δinner) for some large constant C, we know

Pr[ρ /∈ [0, 2]] · 2L ≤ 2L(L2 exp(− 1

8ηG2
) +

2

2L
) ≤ δinner

9
. (16)

Combining (12), (13), (14), (15) and (16), we have the result dTV(π, π̃) ≤ δinner.
Finally, the accept probability is given by E X̃/2 and E X̃ ≥ EX − E |X − X̃| ≥ 2

3 −
δinner

3 ≥ 1
3 .

Hence, the number of access is O(1).

Combining Theorem 5.2 and Lemma 5.5, we have the following result:

Theorem 5.6. Given a µ-strongly convex function ψ(x) defined on a convex set K ⊆ R
d and +∞

outside. Given a family of G-Lipschitz convex functions {fi(x)}i∈I defined on K. Define the function
F̂ (x) = Ei∈I fi(x) + ψ(x) and the distance D = ‖x0 − x∗‖2 for some x∗ = argminx F̂ (x). For any

δ ∈ (0, 1/2), if we can get samples from exp(−ψ(x)− ‖x−y‖22
2η ) for any y ∈ R

d and η > 0, we can find

a random point x that has δ total variation distance to the distribution proportional to exp(−F̂ (x))
in

T := Θ(
G2

µ
log2(

G2(d/µ +D2)

δ
)) steps.

Furthermore, each steps accesses only O(1) many fi(x) in expectation and samples from exp(−ψ(x)−
1
2η‖x− y‖22) for O(1) many y with η = Θ(G−2/ log(T/δ)).

Proof. This follows from applying Lemma 5.5 to implement Line 4. Note that the distribution
implemented has total variation distance δinner to the required one. By setting δinner = δ/(2T ), this
only gives an extra δ/2 error in total variation distance. Finally, setting η = Θ(G−2/ log(1/δinner)),
Theorem 5.2 shows that Algorithm 2 outputs the correct distribution up to δ/2 error in total
variation distance. This gives the result.
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In the most important case of interest when ψ(x) is ℓ22 regularizer, one can see exp(−ψ(x) −
1
2η‖x − y‖22) is a truncated Gaussian distribution, and there are many results on how to sample
from truncated Gaussian, e.g. [KD99]. For more general case, there are also efficient algorithms
to do the sampling, such as the Projected Langevin Monte Carlo [BEL18]. In fact our sampling
scheme matches the information-theoretical lower bound on the value query complexity up to some
logarithmic terms, which can be reduced from the result in [DJWW15] with some modifications.
See Section 7 for a detailed discussion.

6 DP Convex Optimization

In this section we present our results about DP-ERM and DP-SCO.

6.1 DP-ERM

In this subsection, we state our result for the DP-ERM problem (3). Briefly speaking, our main
result (Theorem 2.1) shows that sampling from exp(−kF (x;D)) for some appropriately chosen k is
(ε, δ)-DP and achieves the optimal empirical risk in (4). Our sampling scheme in Section 5 provides
an efficient implementation. We start with the following lemma which shows the utility guarantee
for the sampling mechanism.

Lemma 6.1 (Utility Guarantee, [DKL18, Corollary 1]). Suppose k > 0 and F is a convex function
over the convex set K ⊆ R

d. If we sample x according to distribution ν whose density is proportional
to exp(−kF (x)), then we have

E
ν
[F (x)] ≤ min

x∈K
F (x) +

d

k
.

This is first shown by [KV06] for any linear function F , and [BST14] extends it to any convex
function F with a slightly worse constant.

Theorem 6.2 (DP-ERM). Let ε > 0, K ⊆ R
d be a convex set of diameter D and {f(·; s)}s∈D be

a family of convex functions over K such that f(x; s)− f(x; s′) is G-Lipschitz for all s, s′. For any
data-set D and k > 0, sampling x(priv) with probability proportional to exp

(
−k(F (x;D) + µ‖x‖22/2)

)

is (ε, δ(ε))-differentially private, where

δ(ε) ≤ δ
(
N (0, 1)

∥∥∥∥∥ N
(
G
√
k

n
√
µ
, 1

))
(ε).

The excess empirical risk is bounded by d
k+

µD2

2 . Moreover, if {f(·, s)}s∈D are already µ-strongly con-

vex, then sampling x(priv) with probability proportional to exp(−kF (x;D)) is (ε, δ(ε))-differentially
private where

δ(ε) ≤ δ
(
N (0, 1)

∥∥∥∥∥ N
(
G
√
k

n
√
µ
, 1

))
(ε).

The excess empirical risk is bounded by d
k .

Proof. The privacy guarantee follows directly from our main result Theorem 2.1, and the bound on
excess empirical loss can be proved by Lemma 6.1.
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Before we state the implementation results on DP-ERM, we need the following technical lemma:

Lemma 6.3. For any constants 1/2 > δ > 0 and ε > 0, if |s| ≤
√

2 log(1/(2δ)) + 2ε−
√

2 log(1/(2δ)),
one has

δ(N (0, 1) ‖ N (s, 1)) ≤ δ.

Proof. By Equation (9), we know that

δ(N (0, 1) ‖ N (s, 1))(ε) ≤ Φ
(
−ε
s
+
s

2

)
.

Without loss of generality, we assume s ≥ 0 and want to find an appropriate value of s such that

Φ
(
− ε

s +
s
2

)
≤ δ. Denote t

def
= Φ−1(1 − δ) and since 1 − Φ(t) ≤ 1

2 exp(−t2/2) for t > 0, we know
that t ≤

√
2 log(1/(2δ)). It is equivalent to solve the equation ε

s − s
2 ≥ t, which is equivalent to

0 ≤ s ≤
√
t2 + 2ε − t. Note that

√
t2 + 2ε − t decreases as t increases, which implies that we can

set s ≤
√

2 log(1/(2δ)) + 2ε−
√

2 log(1/(2δ)).

Combining the sampling scheme (Theorem 5.6) and our analysis on DP-ERM, we can get the
efficient implementation results on DP-ERM directly.

Theorem 6.4 (DP-ERM Implementation). With same assumptions in Theorem 6.2, and assume
f(·; s) is G-Lipschitz over K for all s. For any constants 1/10 > δ > 0 and ε > 0, there is an
efficient sampler to solve DP-ERM which has the following guarantees:

• The scheme is (ε, δ)-differentially private;

• The expected excess empirical loss is bounded by GD
√
d

n(
√

log(1/δ)+ε−
√

log(1/δ))
. In particular, if

ε < 1/10, the expected excess empirical loss is bounded by
2GD
√

d log(1/δ)

εn . If ε ≥ log(1/δ), the

expected excess empirical loss is bounded by O(GD
√
d

n
√
ε
).

• The scheme takes

Θ

(
ε2n2

log(1/δ)
log2(

ndε

δ
)

)

queries to the values on f(x; s) in expectation and takes the same number of samples from
some Gaussian restricted to the convex set K.

Proof. By Lemma 6.3, we can set s =
√

2 log(3/(4δ)) + 2ε−
√

2 log(3/(4δ)) to make δ(N (0, 1) ‖ N (s, 1)) ≤
2δ/3. For our setting, Theorem 6.2 shows that we have s = G

√
k

n
√
µ and hence we can take

k =
2µn2

(√
log(3/(4δ)) + ε−

√
log(3/(4δ))

)2

G2
.

Putting it into the excess empirical loss bound of d
k+

µD2

2 and setting µ = G
√
d

nD
(√

log(3/(4δ))+ε−
√

log(3/(4δ))
) ,

we get the result on the empirical loss.
Particularly, consider the case when ε < 1/10. We know the excess empirical loss is bounded

by GD
√
d

n(
√

log(3/(4δ))+ε−
√

log(3/(4δ)))
. Note that 1 + x

2 − x2

8 ≤
√
1 + x ≤ 1 + x

2 for x ≥ 0. Under the
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assumption that δ, ε ∈ (0, 1
10 ), we know GD

√
d

n(
√

log(3/(4δ))+ε−
√

log(3/(4δ)))
≤ 2GD

√
d log(4/(5δ))

nε . The case

when ε ≥ log(1/δ) also follows similarly.
To make it algorithmic, we apply Theorem 5.6 with the accuracy on the total variation distance

to be min{δ/3, 1
cncε} for some large enough constant c. This leads to (ε, δ)-DP and an extra empirical

loss and hence we use log(1/δ) rather than log(3/(4δ)) or log(4/(5δ)) in the final loss term.
The running time follows from Theorem 5.6.

6.2 DP-SCO and Generalization Error

As mentioned before, one can reduce the DP-SCO (5) to DP-ERM (3) by the iterative localization
technique proposed by [FKT20]. But this method forces us to design different algorithms for DP-
ERM and DP-SCO, and may lead to a large constant in the final loss. In this section, we show
that the exponential mechanism can achieve both the optimal empirical risk for DP-ERM and
the optimal population loss for DP-SCO by simply changing the parameters. The bound on the
generalization error works beyond differential privacy and can be useful for other (non-private)
optimization settings.

The proof will make use of one famous inequality: Talagrand transportation inequality. Recall
for two probability distributions ν1, ν2, the Wasserstein distance is equivalently defined as

W2(ν1, ν2) = inf
Γ

(
E

(x1,x2)∼Γ
‖x1 − x2‖22

)1/2

,

where the infimum is over all couplings Γ of ν1, ν2.

Theorem 6.5 (Talagrand transportation inequality). [OV00, Theorem 1] Let dπ ∝ e−F (x)dx be
a µ-strongly log-concave probability measure on K ⊆ R

d with finite moments of order 2. For all
probability measure ν absolutely continuous w.r.t. π and with finite moments of order 2, we have

W2(ν, π) ≤
√

2

µ
DKL(ν, π).

To prove our main result on bounding the generalization error of sampling mechanism, we need
the following lemma.

Lemma 6.6 (Lemma 7 in [BE02]). For any learning algorithm A and dataset D = {s1, · · · , sn}
drawn i.i.d from the underlying distribution P, let D′ be a neighboring dataset formed by replacing
a random element of D with a freshly sampled s′ ∼ P. If A(D) is the output of A with D, then

E
D
[F̂ (A(D))− F (A(D);D)] = E

D,s′∼P,A

[
f(A(D); s′)− f(A(D′); s′)

]
.

Now we begin to state and prove our main result on the generalization error.

Theorem 6.7. Suppose {f(·, s)} is a family µ-strongly convex functions over K such that f(x; s)−
f(x; s′) is G-Lipschitz for all s, s′. For any k > 0 and dataset D = {s1, s2, · · · , sn} drawn i.i.d from
the underlying distribution P, let D′ be a neighboring dataset formed by replacing a random element
of D with a freshly sampled s′ ∼ P,

W2(πD, πD′) ≤ G

nµ
.
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If we sample our solution from density πD(x) ∝ e−kF (x;D), we can bound the excess population loss
as:

E
D,x∼πD

[F̂ (x)]−min
x∈K

F̂ (x) ≤ G2

µn
+
d

k
.

Proof. Recall that

F (x;D) = 1

n

∑

si∈D
f(x; si).

We form a neighboring data set D′ by replacing a random element of D by a freshly sampled s′ ∼ P.
Let πD ∝ e−kF (x;D) and πD′ ∝ e−kF (x;D′). By Corollary 4.3, we have

DKL(πD, πD′) ≤ G2k

2n2µ
.

By the assumptions, we know both F (x;D) and F (x;D′) are µ-strongly convex and by Theorem 6.5,
we have

W2(πD, πD′) ≤
√

2

kµ
DKL(πD, πD′) ≤ G

nµ
.

By Lemma 6.6 and properties of Wasserstein distance, we have

E
D,x∼πD

[F̂ (x)− F (x;D)] = E
D,s′∼P

[
E

x∼πD

f(x; s′)− E
x′∼πD′

f(x′; s′)
]

= E
D,s′∼P

[
E

x∼πD

[
f(x; s′)− f(x; s′′)

]
− E

x′∼πD′

[
f(x′; s′)− f(x′; s′′)

]]

(where s′′ is chosen arbitrarily, note that ED,x∼πD
[f(x; s′′)] = ED′,x′∼πD′ [f(x

′; s′′)])

≤ G ·W2(πD, πD′) (f(x; s′)− f(x; s′′) is G-Lipschitz)

≤ G2

nµ
.

Hence, we know that

E
D,x∼πD

[F̂ (x)]−min
x∈K

F̂ (x) ≤ E
D,x∼πD

[F̂ (x)]− E
D
[min
x∈K

F (x;D)]

≤ E
D,x∼πD

[F̂ (x)− F (x;D)] + E
D,x∼πD

[F (x;D)−min
x∈K

F (x;D)]

≤ G2

nµ
+ E

D,x∼πD

[F (x;D)−min
x∈K

F (x;D)]

≤ G2

nµ
+
d

k
,

where the last inequality follows from Lemma 6.1.

With the bounds on generalization error, we can get our first result on DP-SCO.

Theorem 6.8 (DP-SCO). Let ε > 0, K ⊆ R
d be a convex set of diameter D and {f(·; s)}s∈D be

a family of convex functions over K such that f(x; s)− f(x; s′) is G-Lipschitz for all s, s′. For any
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data-set D and k > 0, sampling x(priv) with probability proportional to exp
(
−k(F (x;D) + µ‖x‖22/2)

)

is (ε, δ(ε))-differentially private, where

δ(ε) ≤ δ
(
N (0, 1)

∥∥∥∥∥ N
(
G
√
k

n
√
µ
, 1

))
(ε).

If users in the data-set D are drawn i.i.d. from the underlying distribution P, the excess population

loss is bounded by G
nµ + d

k + µD2

2 . Moreover, if {f(·; s)}s∈D are already µ-strongly convex, then

sampling x(priv) with probability proportional to exp(−kF (x;D)) is (ε, δ(ε))-differentially private
where

δ(ε) ≤ δ
(
N (0, 1)

∥∥∥∥∥ N
(
G
√
k

n
√
µ
, 1

))
(ε).

The excess population loss is bounded by G
nµ + d

k .

Proof. The first part about privacy is a restatement of our result on DP-ERM (Theorem 6.4). The
excess population loss (See Equation (6)) follows from the bound on generalization error (Theo-
rem 6.7) and utility guarantee (Lemma 6.1).

We give an implementation result of our DP-SCO result.

Theorem 6.9 (DP-SCO Implementation). With same assumptions in Theorem 6.8, and assume
f(·; s) is G-Lipschitz over K for all s. For 0 < δ < 1

10 and 0 < ε < 1
10 , there is an efficient algorithm

to solve DP-SCO which has the following guarantees:

• The algorithm is (ε, δ)-differentially private;

• The expected population loss is bounded by

GD

(
2
√

log(1/δ)d

εn
+

2√
n

)
,

where c > 0 is an arbitrary constant to be chosen.

• The algorithm takes

O

(
min

{
ε2n2

log(1/δ)
, nd

}
log2

(
εnd

δ

))

queries of the values of f(·, si) in expectation and takes the same number of samples from some
Gaussian restricted to the convex set K.

Remark 6.10. As for the non-typical case when ε ≥ 1/10, one can use the bound in Theorem 6.4 and
the bound on generalization error (Theorem 6.7) . Particularly, one can achieve expected population

loss O

(
GD

( √
d/n√

log(1/δ)+ε−
√

log(1/δ)
+ 1√

n

))
.

Proof. By Theorem 6.8, sampling from exp(−k(F (x;D) + µ‖x‖22/2)) when k ≤ ε2n2µ
2G2 log(3/(4δ))

is

(ε, 2δ/3)-DP. Besides, we can set k = µ
G2 min{ ε2n2

2 log(3/(4δ)) , 2nd} for arbitrarily large constant c > 0
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to make the mechanism (ε, 2δ/3)-differentially private, achieving tight population loss and decrease
the running time. Then the population loss is upper bounded by

d

k
+
µD2

2
+
G2

µn
=
G2

µ
max

{
2 log(3/(4δ))d

ε2n2
,
1

2n

}
+
µD2

2
+
G2

µn
.

By setting µ = G
D

√
2(2 log(3/(4δ))d

ε2n2 + 1
2n), the population loss is upper bounded by

GD

√
4 log(3/(4δ))d

ε2n2
+

1

n
+GD

√
1

n
≤ GD

(
2
√

log(3/(4δ))d

εn
+

2√
n

)
.

To make it algorithmic, we also apply Theorem 5.6 with the accuracy on the total variation
distance to be min{δ/3, 1

cnc} for some large enough constant c. This leads to an extra empirical loss
and hence we use log(1/δ) rather than log(3/(4δ)) in the final loss term. The runtime follows from
Theorem 5.6.

7 Information-theoretic Lower Bound for DP-SCO

In this section, we prove an information-theoretic lower bound for the query complexity required
for DP-SCO (with value queries), which matches (up to some logarithmic terms) the query com-
plexity achieved by our algorithm (in Theorem 6.9). Our proof is similar to the previous works like
[ACCD12, DJWW15] with some modifications.

Before stating the lower bound, we define some notations. Recall that we are given a set D of n
samples (users) {s1, · · · , sn}. Let Ak be the collection of all algorithms that observe a sequence of
k data points (Y 1, · · · , Y k) with Y t = f(Xt;St) where St ∈ D and Xt ∈ K are chosen arbitrarily
and adaptively by the algorithm (and possibly using some randomness).

For the lower bound, we only consider linear functions, that is we define f(x; s)
def
= 〈x, s〉. And

let PG be the collection of all distributions such that if P ∈ PG, then Es∼P ‖s‖22 ≤ G2.
And we define the optimality gap

εk(A,P,K) def
= E

D∼Pn,A
[F̂ (x̂(D))]− inf

x∈K
F̂ (x),

where F̂ (x) = Es∼P f(x; s), x̂ is the output the algorithm A given the input dataset D and the
expectation is over the dataset D ∼ Pn and the randomness of the algorithm A. Note that we can
rewrite the optimality gap as:

εk(A,P,K) = E
D∼Pn,A

[F̂ (x̂(D))]− inf
x∈K

F̂ (x)

= E
s∼P

[
E

D∼Pn,A
f(x̂(D); s)]

]
− inf

x∈K
E

s∼P
[f(x; s)]

= E
s∼P,D∼Pn,A

[x̂(D)⊤s]− inf
x∈K

E
s∼P

[x⊤s].

The minimax error is defined by

ε∗k(PG,K)
def
= inf

A∈Ak

sup
P∈PG

εk(A,P,K).
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Theorem 7.1. Let K be the ℓ2 ball of diameter D in R
d, then

ε∗k(PG,K) ≥
GD

16
min

{
1,

√
d

4k

}
.

In particular, for any (randomized) algorithm A which can observe a sequence of data points
(Y 1, · · · , Y k) with Y t = f(Xt;St) where St ∈ D = {s1, s2, . . . , sn} and Xt ∈ K are chosen
arbitrarily and adaptively by A, there exists a distribution P over convex functions such that
Es∼P [‖∇f(x, s)‖22] ≤ G2 for all x ∈ K, such that the output x̂ of the algorithm satisfies

E
s∼P

[
E

D∼Pn,A
f(x̂; s)]

]
−min

x∈K
E

s∼P
[f(x; s)] ≥ GD

16
min

{
1,

√
d

4k

}
.

7.1 Proof of Theorem 7.1

We reduce the optimization problem into a series of binary hypothesis tests. Recall we are con-

sidering linear functions f(x; s)
def
= 〈x, s〉. Let V = {−1, 1}d be a Boolean hyper-cube and for each

v ∈ V, let Nv = N (δv, σ2Id) be a Gaussian distribution for some parameters to be chosen such that

F̂v(x)
def
= Es∼Nv [f(x; s)] = δ〈x, v〉. Note that

E
s∼Nv

[‖∇f(x, s)‖22] = E
s∼Nv

[‖s‖22] = (δ2 + σ2)d.

Therefore G =
√
d(δ2 + σ2).

Clearly the lower bound should scale linearly with D. Therefore without loss of generality, we
can assume that the diameter D = 2 and define K = {x ∈ R

d : ‖x‖2 ≤ 1} to be the unit ball. As in
[ACCD12], we suppose that v is uniformly sampled from V = {−1, 1}d. Note that if we can find a
good solution to F̂v(x), we need to determine the signs of vector v well. Particularly, we have the
following claim:

Claim 7.2 ([DJWW15]). For each v ∈ V, let xv minimize F̂v over K and obviously we know that
xv = −v/

√
d. For any solution x̂ ∈ R

d, we have

F̂v(x̂)− F̂v(x
v) ≥ δ

2
√
d

d∑

j=1

1{sign(x̂j) 6= sign(xvj )},

where the function sign(·) is defined as:

sign(x̂j) =





+ if x̂j > 0
0 if x̂j = 0
− otherwise

Claim 7.2 provides a method to lower bound the minimax error. Specifically, we define the
hamming distance between any two vectors x, y ∈ R

d as dH(x, y) =
∑

j=1 1{sign(xj) 6= sign(yj)},
and we have

ε∗k(PG,K) ≥
δ

2
√
d
{inf

v̂
E[dH(v̂, v)]}, (17)

where v̂ denotes the output of any algorithm mapping from the observation (Y 1, · · · , Y k) to {−1, 1}d,
and the probability is taken over the distribution of the underlying v, the observation (Y 1, · · · , Y k)
and any additional randomness in the algorithm.
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By Equation (17), it suffices to lower bound the value of the testing error E[dH(v̂, v)]. As
discussed in [ACCD12, DJWW15], the randomness in the algorithm can not help, and we can
assume the algorithm is deterministic, i.e. (Xt, St) is a deterministic function of Y [t−1].7 The
argument is basically based on the easy direction of Yao’s principle.

Now we continue our proof of the lower bound. We will make use of the property of the Bayes
risk.

Lemma 7.3 ([ACCD12, Lemma 1]). Consider the problem of testing hypothesis H−1 : v ∼ P−1 and

H1 : v ∼ P1, where H−1 and H1 occur with prior probability π−1 and π1
def
= 1 − π−1 respectively

prior to the experiment. For any algorithm that takes one sample v and outputs î : v → {−1, 1}, we
define the Bayes risk B be the minimum average probability that algorithm fails (v is not sampled
from Hî(v)). That is B = inf î π−1 Pr[̂i(v) = 1 | v ∼ P−1] + π1 Pr[̂i(v) = 0 | v ∼ P1]. Then, we have

B ≥ min(π−1, π1)(1− ‖P1 − P−1‖TV).

Lemma 7.4. Suppose that v is uniformly sampled from V = {−1, 1}d, then any estimate v̂ obeys

E[dH(v̂, v)] ≥ d

2

(
1− δ

√
k

σ
√
d

)
.

Proof. Let π−1 = π1 = 1/2. For each j, define P−1,j = P(Y [k] | vj = −1) and P1,j = P(Y [k] | vj = 1)
to be distributions over the observations (Y 1, · · · , Y k) conditional on vj 6= 1 and vj = 1 respectively.
Let Bj be the Bayes risk of the decision problem for j-th coordinate of v between H−1,j : vj = −1
and H1,j : vj = 1. We have that

E[dH(v̂, v)] ≥
d∑

j=1

Bj

≥π1
d∑

j=1

(1− ‖P1,j − P−1,j‖TV)

≥d
2


1− 1√

d

√√√√
d∑

j=1

‖P1,j − P−1,j‖2TV


 ,

where the first inequality follows from the definition of Bayes risk Bj, the second inequality follows
by Lemma 7.3 and the last inequality follows by the Cauchy-Schwartz inequality.

To complete the proof, it suffices to show that

d∑

j=1

‖P1,j − P−1,j‖2TV ≤
δ2

σ2
k. (18)

Assuming Equation (18) first, which will be established later. Then we know that

E[dH(v̂, v)] ≥ d

2
(1− δ

√
k

σ
√
d
).

7We use Y [t] to denote the first t observations, i.e. (Y 1, · · · , Y t)
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We will complete the proof of Lemma 7.4 by showing the following bounded total variation
distance.

Claim 7.5.

d∑

j=1

‖P1,j − P−1,j‖2TV ≤
δ2

σ2
k.

Proof. Applying Pinsker’s inequality, we know ‖P1,j−P−1,j‖2TV ≤ 1
2DKL(P−1,j‖P1,j). To bound the

KL divergence between P−1,j and P1,j over all possible Y [k], consider v′ = (v1, · · · , vj−1, vj+1, · · · , vd),
and define P−1,j,v′(Y

[k])
def
= P(Y [k] | vj = −1, v′) to be the distribution conditional on vj = −1 and

v′. We have

P−1,j(Y
[k]) =

∑

v′

Pr[v′]P−1,j,v′(Y
[k]).

The convexity of the KL divergence suggests that

DKL(P−1,j‖P1,j) ≤
∑

v′

Pr[v′]DKL(P−1,j,v′‖P1,j,v′).

Fixing any possible v′, we want to bound the KL divergence DKL(P−1,j,v′‖P1,j,v′).
Recall we are considering deterministic algorithms and (Xt, St) is a deterministic function of

Y [t−1]. Let Qi ∈ R
d×k be a (random) matrix, which records the set of points the algorithm queries

for the user si. Specifically, for t-th step, if the algorithm queries (Xt, St), then Qt
i = Xt if St = si,

otherwise Qt
i = 0, where Qt

i is the t-th column of Qi.

As we are considering linear functions, without loss of generality we can assume 〈Qj
i , Q

j′

i 〉 = 0 for
each i and any j 6= j′, and ‖Qt

i‖2 ∈ {0, 1} for any i and t. We name this assumption Orthogonal

Query. Roughly speaking, for any algorithm, we can modify it to satisfy the Orthogonal Query.
Whenever the algorithm wants to query some point, we can use Gram–Schmidt process to query
another point and satisfy Orthogonal Query, and recover the function value at the original point
queried by the algorithm.

By the chain-rule of KL-divergence, if we define P−1,j,v′(Y
t | Y [t−1]) to be the distribution of

tth observation Y t conditional on v′, vj = −1 and Y [t−1], then we have

DKL(P−1,j,v′‖P1,j,v′) =

k∑

t=1

∫

Yt−1

DKL(P−1,j,v′(Y
t | Y [t−1] = y)‖P1,j,v′(Y

t | Y [t−1] = y)dP−1,j,v′(y).

Fix Y [t−1] such that Y [t−1] = y. Since the algorithm is deterministic and (Xt, St) is fixed given
Y [t−1]. Let St = si so Xt = Qt

i.
Note that the n users in D are i.i.d. sampled. Then DKL(P−1,j,v′(Y

t | Y [t−1] = y)‖P1,j,v′(Y
t |

Y [t−1] = y) only depends on the randomness of si and the first t columns of Qi, which is denoted

by Q[t]
i . We use Y t

j to denote the observation corresponding to user sj for the tth query (if St 6= sj,

we have Y t
j = 0). Note that the observation Y

[t]
i = Q

[t]⊤
i si where si ∼ N (δv, σ2Id). Then we know

Y
[t]
i is normally distributed with mean δQ

[t]⊤
i v and co-variance σ2Q[t]⊤

i Q
[t]
i .

Recall that the KL divergence between two normal distributions is DKL(N (µ1,Σ)‖N (µ2,Σ)) =
1
2(µ1−µ2)⊤Σ−1(µ1−µ2). Recall that we have the Orthogonal Query assumption and thus Q[t]⊤

i Q
[t]
i ∈

{0, 1}t×t is a diagonal matrix. By the conditional distributions of Gaussian, we know Y t
i only

depends on the Qt
i and it is independent of Q[t−1]

i .
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Hence we have

DKL(P−1,j,v′(Y
t | Y [t−1] = y)‖P1,j,v′(Y

t | Y [t−1] = y))

=DKL(P−1,j,v′(Y
t
i | Y [t−1] = y)‖P1,j,v′(Y

t
i | Y [t−1] = y))

=
1

2
(2δQt

i(j))
2/σ2,

where Qt
i(j) is the j-th coordinate of Qt

i. Summing over the terms, one has

d∑

j=1

‖P1,j − P−1,j‖2TV ≤
1

2
DKL(P−1,j‖P1,j)

≤1

2

k∑

t=1

d∑

j=1

n∑

i=1

E[
1

2
(2δQt

i(j))
2/σ2]

≤ δ
2

σ2
k,

where the last line follows from the fact that for each t,
∑n

i=1 ‖Qt
i‖22 =

∑n
i=1

∑d
j=1(Q

t
i(j))

2 = 1 as
we only query one user for t-th step.

This completes the proof.

Having Lemma 7.4, we can complete the proof of Theorem 7.1.

Proof. of Theorem 7.1. As discussed before, we know

F̂v(x̂)− F̂v(x
v) ≥ δ

2
√
d

d∑

j=1

1{sign(x̂j) 6= sign(xvj )},

and hence we know that

ε∗k(PG,K) ≥
δ

2
√
d
inf
v̂
E[dH(v̂, v)]

≥δ
√
d

4

(
1− δ

√
k

σ
√
d

)
,

where the last line follows from Lemma 7.4. We now set δ = σ
√
d

2
√
k

and σ = G√
d+d2/4k

, so that

d(σ2 + δ2) = G2. Hence one has

ε∗k(PG,K) ≥
δ
√
d

8
=
Dδ
√
d

16
=

GD

16
√

1 + 4k
d

≥ GD

16
min

{
1,

√
d

4k

}
.

Thus we complete the proof.

Corollary 7.6 (Lower bound for DP-SCO). For any (non-private) algorithm which makes less than

O
(
min{ ε2n2

log(1/δ) , nd}
)

function value queries, there exist a convex domain K ⊂ R
d of diameter D,

a distribution P supported on G-Lipschitz linear functions f(x; s)
def
= 〈x, s〉, such that the output x̂

of the algorithm satisfies that

E
s∼P

[〈x̂, s〉]−min
x∈K

E
s∼P

[〈x, s〉] ≥ Ω

(
GD√

1 + log(n)/d
·min

{√
log(1/δ)d

εn
+

1√
n
, 1

})
.
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Proof. Note that Theorem 7.1 almost gives us what we want, except that the Lipschitz constant of
the functions in the hard distribution is bounded only on average by G. To get distributions over
G-Lipschitz functions, we just condition on the bad event not happening.

Recall that we are considering the set of distributions Nv = N (δv, σ2Id) for which Es∼Nv ‖s‖22 ≤
G2 = d(δ2 + σ2). And we proved that infA∈Ak

supv∈V Es∼Nv,A[F̂v(x̂k) − F̂ ∗
v ] ≥ GD

16 min

{
1,
√

d
4k

}

in Theorem 7.1, where x̂k is the output of A with k observations Y [k]. To prove Corollary 7.6, we
need to modify the distribution of s to satisfy the Lipschitz continuity.

In particularly, for some constant c, we know

E[F̂v(x̂k)− F̂ ∗
v ]

=E

[
F̂v(x̂k)− F̂ ∗

v | max
si∈D
‖si‖2 ≤ cG

√
1 + log(nd)/d

]
Pr
[
max
si∈D
‖si‖2 ≤ cG

√
1 + log(nd)/d

]
+

E

[
F̂v(x̂k)− F̂ ∗

v | max
si∈D
‖si‖2 > cG

√
1 + log(nd)/d

]
Pr
[
max
si∈D
‖si‖2 > cG

√
1 + log(nd)/d

]
.

By the concentration of spherical Gaussians, we know if s ∼ N (δv, σ2Id), then

Pr
[
‖s− δv‖22 ≤ σ2d(1 + 2

√
ln(1/η)/d + 2 ln(1/η)/d)

]
≥ 1− η.

We can choose the constant c large enough, such that Pr[maxsi∈D ‖si‖2 ≤ cG
√

1 + log(nd)/d] ≥
1− 1/poly(nd), which implies

inf
A∈Ak

sup
v∈V

E
D∼Nn

v ,A

[
F̂v(x̂k)− F̂ ∗

v | max
si∈D
‖si‖2 ≤ cG

√
1 + log(nd)/d

]
≥ Ω(GD

min{
√
d,
√
k}√

k
).

If we use the distributions conditioned on maxsi∈D ‖si‖2 ≤ cG
√

1 + log(nd)/d rather than the
Gaussians, and scale the constant to satisfy the assumption on Lipschitz continuity, we can prove
the statement. Particularly, let G′ = cG(

√
1 + log(nd)/d). If the algorithm can only make k =

O
(
min{ ε2n2

log(1/δ) , nd}
)

observations, we know

inf
A∈Ak

sup
v∈V

E
D∼Nn

v ,A

[
F̂v(x̂k)− F̂ ∗

v | max
si∈D
‖si‖2 ≤ G′

]

≥Ω
(
GD ·min

{
(

√
log(1/δ)d

εn
+

1√
n
), 1

})

=Ω

(
G′D√

1 + log(nd)/d
·min

{√
log(1/δ)d

εn
+

1√
n
, 1

})
,

which proves the lower bound claimed in the Corollary statement.

Corollary 7.7 (Lower bound for sampling scheme). Given any G > 0 and µ > 0. For any algorithm

which takes function values queries less than O
(
G2

µ /(1 + log(G2/µ)/d)
)

times, there is a family of

G-Lipschitz linear functions {fi(x)}i∈I defined on some ℓ2 ball K ⊂ R
d, such that the total variation

distance between the distribution of the output of the algorithm and the distribution proportional to
exp(−Ei∈I fi(x)− µ‖x‖2/2) is at least min(1/2,

√
dµ/G2).
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Proof. By a similar argument in the proof of Corollary 7.6, for any algorithm which can only make k
observations, there are a family of G-Lipschitz linear functions restricted on an ℓ2 ball K of diameter
D centered at 0 such that

E

[
F̂v(x̂k)− F̂ ∗

v

]
≥Ω

(
GD√

1 + log(k)/d
·min

{√
d

k
, 1

})
, (19)

where F̂ ∗
v = minx∈K F̂v(x) and x̂k ∈ K is the output of A.

Suppose we have a sampling algorithm that takes k queries. We use it to sample from x(sol) pro-
portional to p(x) := exp(−F̂v(x)−µ

2‖x‖2) on K with total variation distance η ≤ min(1/2,
√
dµ/G2).

Lemma 6.1 shows that

E[F̂v(x
(sol)) +

µ

2
‖x(sol)‖2] ≤ min

x∈K

(
F̂v(x) +

µ

2
‖x‖2

)
+O(d) +O(η) · (GD + µD2),

where the last term involving η is due to the total variation distance between x(sol) and p. Setting
D =

√
d/µ and using the diameter of K is D and η ≤ min(1/2,

√
dµ/G2), we have

E[F̂v(x
(sol))] ≤ min

x∈K
F̂v(x) +

µ

2
D2 +O(d+ η · (GD + µD2))

≤ min
x∈K

F̂v(x) +O(d).

Note that we set D =
√
d/µ. Comparing with (19), we have

G
√
d/µ√

1 + log(k)/d
min

{√
d

k
, 1

}
≤ O(d).

If d ≤ G2/µ ≤ exp(d), we have

G
√
d/µ

√
d

k
≤ O(d)

and hence k = Ω(G2/µ). If G2/µ ≥ exp(d), we have

G
√
d/µ√

log(k)/d

√
d

k
≤ O(d)

and hence k = Ω( G2d/µ
log(G2/µ)

). If G2/µ ≤ d, we can construct our function only on the first O(G2/µ)

dimensions to get a lower bound k = Ω(G2/µ). Combining all cases gives the result.
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