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Mutex propagation is a form of efficient constraint propagation popularly used in AI plan-
ning to tightly approximate the reachable states from a given state. We utilize this idea in 
the context of Multi-Agent Path Finding (MAPF). When adapted to MAPF, mutex prop-
agation provides stronger constraints for conflict resolution in CBS, a popular optimal 
search-based MAPF algorithm, as well as in MDD-SAT, an optimal satisfiability-based MAPF 
algorithm. Mutex propagation provides CBS with the ability to break symmetries in MAPF 
and provides MDD-SAT with the ability to make stronger inferences than unit propagation. 
While existing work identifies a limited form of symmetries and requires the manual de-
sign of symmetry-breaking constraints, mutex propagation is more general and allows for 
the automated design of symmetry-breaking constraints. Our experimental results show 
that CBS with mutex propagation is capable of outperforming CBSH-RCT, a state-of-the-art 
variant of CBS, with respect to the success rate. We also show that MDD-SAT with mutex 
propagation often performs better than MDD-SAT with respect to the success rate.

 2022 Elsevier B.V. All rights reserved.

1. Introduction

The Multi-Agent Path Finding (MAPF) problem is a generalization of the single-agent path finding problem to multiple 
agents. Each agent is required to move from a given start vertex to a given goal vertex on a given graph while avoiding 
conflicts (collisions) with other agents. A conflict happens when two agents stay at the same vertex or traverse the same 
edge in opposite directions at the same time. Common objectives for the MAPF problem include minimizing the sum of the 
path costs [1] and minimizing the makespan [2]. Under both objectives, the MAPF problem is NP-hard [3,4] and arises in 
many real-world application domains, including automated warehouse robots [5] and aircraft-towing vehicles [6].

Conflict-Based Search (CBS) [7] is a popular algorithm for solving the MAPF problem optimally for both objectives. It 
is a two-level MAPF algorithm that starts with a minimum-cost path for each agent which might conflict with the other 
paths. On the high level, CBS maintains a Constraint Tree (CT) and resolves conflicts between pairs of agents by adding 
spatio-temporal constraints to prohibit one of the agents from occupying the conflicting vertex or traversing the conflicting 
edge at the conflicting timestep. On the low level, CBS finds individual minimum-cost paths for each agent satisfying the 
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spatio-temporal constraints specified by the high-level CT node. CBS expands high-level CT nodes in a best-first order and 
returns a set of paths as solution when they are conflict-free. Many improvements to CBS have been made, such as adding 
conflict-selection strategies [8] and heuristic guidance [9]. Recent work has demonstrated significant improvement on CBS 
by identifying specific cases where CBS expands a large number of CT nodes to resolve all conflicts between a pair of agents 
and developing specific techniques to handle each of these cases efficiently. Such cases are referred to as “symmetries”, and 
the techniques for handling them are called symmetry-breaking techniques.

An important alternative to search-based MAPF algorithms is the compilation-based paradigm, where the MAPF problem 
is first reduced to a target problem, such as Boolean SATisfiability (SAT) [10,11], Constraint Satisfaction [12] or Answer Set 
Programming [13], and then solved by an existing solver for the target problem, which often implements multiple techniques 
to find a solution (or rule out its existence) efficiently. In case of SAT as the target problem, complete SAT solvers, such as 
MDD-SAT, implement Boolean constraint propagation (unit propagation), backjumping, clause learning and even techniques 
from local search, such as restarts and randomization [14–16]. However, the reduction must be done with care to allow the 
SAT solver to find a solution efficiently.

In this article, we utilize a well-known technique, called mutex propagation, from AI planning.1 It is a form of constraint 
propagation corresponding to directed 3-consistency, which in turn is a truncated form of path consistency [17]. Like all 
constraint propagation techniques, it makes implicit constraints explicit, and it does so efficiently. In AI planning, mutex 
propagation is applied to the planning graph [18] to tightly approximate the set of all reachable states from a given state 
in polynomial time [17]. It has successfully been used to design reachability heuristics for state-space planners [19], de-
sign heuristics for plan-space planners that make them competitive with state-space planners [20] and improve SAT-based 
planners [21].

Elements of the planning graph idea have reappeared in MAPF research in the form of Multi-valued Decision Diagrams 
(MDDs) [8]. MDDs are constructed for each agent individually and essentially capture reachability information for them. 
However, they do not capture reachability information for groups of agents. On the other hand, building joint MDDs for 
groups of agents is computationally prohibitive because the joint space grows exponentially in the number of agents. Know-
ing that mutex propagation alleviates this dilemma in AI planning, we seek to transfer this technique to MAPF, particularly 
in the CBS- and SAT-based frameworks.

We show that mutex propagation provides stronger constraints for conflict resolution in CBS as well as in MDD-SAT, an 
optimal SAT-based MAPF algorithm. Mutex propagation provides CBS with the ability to break symmetries in MAPF, and 
it provides MDD-SAT with the ability to make stronger inferences compared to unit propagation [11]. While existing work 
identifies a limited form of symmetries and requires the manual design of symmetry-breaking constraints [22,23], mutex 
propagation is more general and allows for the automated design of symmetry-breaking constraints. Our experimental 
results show that CBS with mutex propagation is capable of outperforming CBSH-RCT, a state-of-the-art variant of CBS, with 
respect to the success rate. We also show that MDD-SAT with mutex propagation often achieves higher success rate than 
MDD-SAT.

This paper extends our previous work presented in [24] and [25], both published in conference proceedings. These 
extensions include:

1. Generalization of the mutex propagation technique to semi-cardinal conflict reasoning and a new mutex-based tech-
nique for conflict selection.

2. A more thorough discussion of the theoretical properties of mutex propagation in MAPF.
3. Extended experimental evaluation with a larger set of benchmarks. Moreover, the same set of benchmarks is used for 

CBS with mutex propagation and MDD-SAT with mutex propagation.

2. Preliminaries

In this section, we provide background material on MAPF, CBS, MDDs and MDD-SAT.

2.1. MAPF

The MAPF problem has many variants [26]. In this article, we focus on the variant that (1) considers vertex and edge 
conflicts, (2) uses the “stay at goal vertex” assumption and (3) optimizes the sum of costs. Formally, we define the MAPF 
problem by an undirected graph G = (V , E) and a set of m agents {a1 . . .am}. Each agent has a start vertex si ∈ V and a 
goal vertex (or, synonymously, target) gi ∈ V . In each timestep, an agent either moves to a neighboring vertex or waits 
at its current vertex. When an agent is at its goal vertex, it can terminally wait there, which means that the agent waits 
there forever. Both move and wait actions have unit cost, while terminally waiting at the goal vertex has zero cost. A path
for an agent is a sequence of move and wait actions that leads the agent from its start vertex to terminally waiting at its 
goal vertex. A sub-path for an agent is a sequence of actions that leads the agent from one vertex at a specific timestep to 
another vertex at a specific timestep. The cost of a path is the accumulated cost of all actions in it. A vertex conflict happens 

1 Mutex is short for mutual exclusion.
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Algorithm 1: CBS: Solve a MAPF instance.
Input : A MAPF instance.
Output : A minimum-cost solution of the MAPF instance.

1 Root.constraints ← ∅;
2 Root.paths ← individual minimum-cost paths for all agents;
3 Root.cost ← SoC(Root.paths);
4 O P EN := {Root};
5 while O P EN is not empty do

6 n ← a CT node in O P EN with minimum cost;
7 if n.paths have no conflict then

8 return n.paths;
9 end

10 c ← choose a conflict in n.paths;
11 foreach agent ai in c do

12 Child ← copy of n;
13 Add all constraints from the constraint set for agent ai to Child.constraints;
14 Update the path for agent ai in Child.paths via a call to the low level of CBS;
15 Child.cost ← SoC(Child.paths);
16 if Child.cost < +∞ then

17 Add Child to O P EN;
18 end

19 end

20 end

21 return "no solution exists";

when two agents stay at the same vertex simultaneously, and an edge conflict happens when two agents traverse the same 
edge simultaneously in opposite directions. A solution is a set of conflict-free paths for all agents. The Sum of path Costs (SoC) 
is the sum of costs of the paths for all agents. An optimal solution is a solution with the minimum SoC.

2.2. CBS

CBS is a two-level optimal MAPF algorithm. Algorithm 1 presents the pseudocode for it. On the high level, CBS maintains 
a Constraint Tree (CT). Each CT node contains a set of constraints and a set of paths, one for each agent, satisfying all these 
constraints. The root CT node contains no constraints. The cost of a CT node is the SoC of its paths. On the low level, for each 
CT node, CBS finds an individual minimum-cost path for each agent (Lines 2 and 14), that is, a path that has the smallest cost 
among all paths satisfying all constraints of the CT node (but might conflict with the other paths). CBS uses the space-time 
A* algorithm to find individual minimum-cost paths. The individual minimum cost l�

i
of agent ai in a CT node is the cost of 

its path in the CT node. When expanding a CT node, CBS returns its paths as a solution if they are conflict-free (Lines 7-9). 
Otherwise, CBS picks a conflict and splits the CT node into two child CT nodes, one for each conflicting agent, which inherit 
all constraints of their parent CT node (Line 12). CBS calculates a constraint set for each agent and then adds all constraints 
from the constraint set to the corresponding child CT node to prohibit either one or the other of the two agents from using 
the conflicting vertex or edge at the conflicting timestep (Line 13). On the high level, CBS expands CT nodes in a best-first 
order. Therefore, the paths of the first expanded CT node with conflict-free paths form an optimal solution.

Constraints: A constraint is a spatio-temporal restriction introduced by CBS to resolve conflicts. A vertex constraint 〈ai, t, v〉

prohibits agent ai from occupying vertex v at timestep t , and an edge constraint 〈ai , t, v, v ′〉 prohibits agent ai from moving 
from vertex v to vertex v ′ , that is, traversing edge 〈v, v ′〉, between timesteps t and t + 1.

Cardinal and semi-cardinal conflicts: Two agents have a cardinal conflict in a CT node iff there does not exist a pair of conflict-
free individual minimum-cost paths for both agents (that, by definition, satisfy all constraints of the CT node). CBS cannot 
resolve all cardinal conflicts efficiently (examples are in the four cases in Fig. 1) since it needs to check all combinations of 
paths whose SoC is less than the SoC of an optimal solution, which can necessitate many CT node expansions.

We extend the definition of cardinal conflicts as follows: Agents ai and a j have a cardinal conflict within costs (li, l j) in a 
CT node iff there does not exist a pair of conflict-free paths for these two agents with costs li and l j , respectively, satisfying 
all constraints of the CT node. Cardinal conflicts are then identical to cardinal conflicts within costs (l�

i
, l�

j
). The larger the 

values of li − l�i and l j − l�j , the more the path costs of agents need to increase, and the more time-consuming it is for CBS to 
resolve all the conflicts between the two agents. This extended notion of cardinal conflicts allows us to guide the high-level 
search of CBS using mutex propagation.

Agent ai has a semi-cardinal conflict with agent a j in a CT node iff agents ai and a j do not have a cardinal conflict and 
there does not exist an individual minimum-cost path for agent ai (that, by definition, satisfies all constraints of the CT 
node) that is conflict-free with the path of agent a j in the CT node.

3
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Fig. 1. Shows some MAPF instances with cardinal conflicts in the root CT node. The white and yellow cells indicate free cells, while the gray cells indicate 
obstacles. Yellow cells highlight interesting areas that we will refer to in the text. The start vertices of the agents are marked with solid-line circles, and 
their goal vertices are marked with dashed-line circles. (a) shows a cardinal rectangle conflict instance, where one of the two agents needs to wait for one 
timestep in every optimal solution [22]. (b) shows a cardinal corridor conflict instance, where one of the two agents needs to wait until the other agent 
exits the corridor [27,28,23]. (c) shows a cardinal target conflict instance, where agent a2 needs to take the long path in the optimal solution. (d) shows 
a cardinal switching agents conflict instance, where both agents need to move to the rightmost side of the corridor in order to switch their vertices [29]. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

We extend the definition of semi-cardinal conflicts as follows: Agent ai has a semi-cardinal conflict within cost li with 
agent a j in a CT node iff agents ai and a j do not have a cardinal conflict and there does not exist a path for agent ai with 
cost li satisfying all constraints of the CT node that is conflict-free with the path of agent a j in the CT node. Semi-cardinal 
conflicts for agent ai are then identical to semi-cardinal conflicts within cost l�

i
. This extended definition of semi-cardinal 

conflicts will be used later in this article.
Two agents have a non-cardinal conflict iff their conflict is not cardinal or semi-cardinal.
Our definitions of cardinal, semi-cardinal and non-cardinal conflicts are different from those used in previous litera-

ture [8]. While our definitions are with respect to agents, those in previous literature are with respect to a specific vertex 
or edge conflict. Despite these differences, the intuitions are similar. In fact, previous literature [8] shows that prioritizing 
conflicts when choosing a conflict on Line 10 in Algorithm 1 improves the performance of CBS, where the first priority is 
given to cardinal conflicts, followed by semi-cardinal conflicts, and then to non-cardinal conflicts.

Cardinal rectangle conflicts and barrier constraints: In four-neighbor grid maps, two agents have a cardinal rectangle conflict 
in a CT node iff (1) all individual minimum-cost paths of both agents cross the same rectangular area; (2) the earliest 
possible timesteps of both agents reaching each vertex inside the rectangular area are equal; and (3) the directions of both 
agents moving through the rectangular area are same in both dimensions. Then, there does not exist a pair of conflict-free 
individual minimum-cost paths for both agents. A barrier constraint is a set of vertex constraints that prohibits one or the 
other of the two agents from leaving the rectangular area on an individual minimum-cost path. Adding barrier constraints 
significantly improves the performance of CBS [22]. Moreover, the authors of [22] prove that using barrier constraints as 
constraint sets to resolve cardinal rectangle conflicts also preserves the optimality and completeness of CBS.

Example 1. Consider the cardinal rectangle conflict instance in Fig. 1a. There does not exist a pair of conflict-free individual 
minimum-cost paths for agents a1 and a2 since any pair of individual minimum-cost paths for both agents has at least one 
vertex conflict in the yellow rectangular area. In any optimal solution, one or the other of the two agents needs to wait for 
one timestep, and the optimal SoC is 11. The barrier constraint for agent a1 is {〈a1, 2, C2〉, 〈a1, 3, C3〉, 〈a1, 4, C4〉}, and the 
barrier constraint for agent a2 is {〈a2, 3, B4〉, 〈a2, 4, C4〉}.

Cardinal corridor and target conflicts: A corridor is a chain of connected vertices, each of degree two. Two agents have 
a cardinal corridor conflict when all of their individual minimum-cost paths move through the same narrow corridor in 
opposite directions but collide inside the corridor. Fig. 1b shows an example of a corridor conflict, where the corridor is 
highlighted in yellow. Two agents have a target conflict when the individual minimum-cost path of one agent passes through 
the goal vertex of the other agent when the latter agent is terminally waiting at it (see Fig. 1c for example). The authors of 
[23] propose two symmetry-breaking techniques to detect these two classes of conflicts and resolve them efficiently with 
specific constraints.

2.3. MDDs

An MDD [29,7] MDDl
i
for agent ai in a CT node is a (l + 1)-level directed acyclic graph that consists of all paths of cost l

for agent ai satisfying all constraints of the CT node. We assume that l ≥ l�i . The MDD nodes of MDDl
i at level t correspond 

to all possible vertices of agent ai at timestep t in these paths. At level 0, MDDl
i
has a single source MDD node corresponding 

to agent ai occupying its start vertex si at timestep 0. At level l, MDDl
i
has a single sink MDD node corresponding to agent 

ai occupying its goal vertex gi at timestep l. For an MDD node n ∈ MDDl
i , we define n.level as the timestep of n and n.loc

as the vertex of n. We define the constraint on MDD node n as the vertex constraint 〈ai,n.level,n.loc〉. For an MDD edge 
e = 〈n, n′〉 ∈ MDDl

i
, we define e.level = n.level, e. f rom = n and e.to = n′ . We define the constraint on MDD edge e as the edge 

constraint 〈ai,n.level,n.loc,n′.loc〉.

4
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2.4. MDD-SAT

MDD-SAT [11] is a SAT-based MAPF solver that pioneered the use of MDDs in the compilation-based paradigm. MDD-SAT 
is also the first SAT-based MAPF solver that minimizes the SoC.2

We first describe how to construct a Boolean formula F(x) that is satisfiable iff a given MAPF instance has a solution 
with a SoC of at most x.

MDD-SAT first builds MDDs for individual agents and a given number of levels. The number of levels l for the MDDs is 
l = l0 + (x − x0) [11], where l0 is a lower bound on the makespan, calculated as the largest individual minimum cost for the 
agents, and x0 is a lower bound on the SoC, calculated as the sum of the individual minimum costs.

A propositional variable is introduced for each MDD node ni and MDD edge 〈ni, n′
i
〉 ∈ MDDl

i
. We define Xni as the 

variables corresponding to MDD nodes and Eni ,n′
i
as the variables corresponding to MDD edges. Xni is TRUE iff agent ai is in 

vertex ni .loc ∈ V at timestep ni .level, and Eni ,n′
i
is TRUE (that is, the corresponding MDD edge is selected) iff agent ai moves 

from vertex ni .loc to vertex n′
i .loc between timesteps ni .level and ni .level + 1.

The MAPF movement rules are encoded as clauses using these variables. Satisfying truth-value assignments to the 
variables correspond to paths in MDDs due to the following constraints for all MDD nodes ni ∈ MDD

li
i

and MDD edges 

〈ni, n′
i
〉 ∈ MDD

li
i
:

Xni ⇒
∨

n′
i
| 〈ni ,n

′
i
〉∈MDD

li
i

Eni ,n
′
i

(1)

∑

n′
i
| 〈ni ,n

′
i
〉∈MDD

li
i

Eni ,n
′
i
≤ 1 (2)

Xn′
i
⇒

∨

ni | 〈ni ,n
′
i
〉∈MDD

li
i

Eni ,n
′
i

(3)

∑

ni | 〈ni ,n
′
i
〉∈MDD

li
i

Eni ,n
′
i
≤ 1 (4)

Eni ,n
′
i
⇒ Xni ∧Xn′

i
. (5)

Constraints (1)-(5) ensure that the selected MDD edges form paths in the MDDs. They state that, if agent ai is in a vertex 
ni .loc at timestep ni .level, it must leave it via exactly one outgoing MDD edge 〈ni .loc, n′

i .loc〉 and appear in vertex n′
i .loc at 

timestep ni .level + 1. In particular, Constraints (1) and (2) state that, if an agent is in a vertex, it must leave that vertex 
via exactly one outgoing MDD edge. Similarly, Constraints (3) and (4) state that, if an agent is in a vertex, then it must 
arrive there via exactly one incoming MDD edge. If agent ai traverses edge 〈ni .loc, n′

i
.loc〉 then it must first enter the edge 

at timestep ni .level and leave it at timestep n′
i .level (5).

Constraints that ensure vertex conflict avoidance state that two or more agents cannot be in vertex v at a timestep t:
∑

ai∈A | ∃ni∈MDD
li
i
:(ni .loc=v∧ni .level=t)

Xni ≤ 1. (6)

All pseudo-Boolean at-most-one constraints of the form in Constraint (6) can be expressed as clauses. One possible repre-
sentation is to use a clique of binary clauses that forbids agents ai and a j to be in identical vertices ni .loc and n j .loc at 
timestep t: ¬Xni ∨ ¬Xn j

.

Constraints that ensure edge conflict avoidance state that it cannot be that agent ai traverses edge 〈u, v〉 between 
timesteps t and t + 1 and agent a j traverses edge 〈v, u〉 between timesteps t and t + 1. One possible representation of 

one of these constraints is to use the following clause for every pair of MDD edges 〈ni, n′
i
〉 ∈ MDD

li
i

and 〈n j, n′
j
〉 ∈ MDD

l j
j

with ni .loc = n′
j
.loc and n′

i
.loc = n j .loc:

¬Eni ,n
′
i
∨ ¬En j ,n

′
j
. (7)

Finally, the number of variables corresponding to MDD edges set to TRUE must be at most x to ensure that the SoC is at 
most x, which can be done with a cardinality constraint [31–33]. There are multiple approaches for encoding the cardinality 
constraint. MDD-SAT uses a sequential unary counter [31], a method inspired by Boolean circuit design; see [11] for details.

This concludes our description of how to construct a Boolean formula F(x) that is satisfiable iff a given MAPF instance 
has a solution with an SoC of at most x. Due to the construction of F(x), a solution can be read off from a satisfying 

2 The previous optimal SAT-based MAPF solvers [30,2] minimize the makespan.
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truth-value assignment of F(x), which can be found with an off-the-shelf SAT solver [15]. We construct and solve the 
Boolean formulas F(x0), F(x0 + 1), ... in sequence. An optimal solution to the given MAPF instance then corresponds to the 
truth-value assignment of the first satisfiable Boolean formula in the sequence since the satisfiability of F(x) is monotonic 
in x.

3. Mutexes and mutex propagation

In this section, we explain the original idea of mutex propagation on planning graphs and generalize it to mutex propa-
gation on MDDs for MAPF.

3.1. Mutex propagation on planning graphs

Planning graphs [17] are directed and leveled data structures containing two types of nodes, proposition nodes and action 
nodes, that are arranged into levels. Even-numbered levels contain only proposition nodes, while odd-numbered levels 
contain only action nodes. The zeroth level represents the start state. A planning graph edge connects a proposition node 
to an action node at the next level iff the proposition is a precondition of that action. A planning graph edge also connects 
an action node to a proposition node at the next level iff the proposition is made true by that action. The planning graph 
represents the effects of parallel actions, but it does so very loosely. To approximate the set of reachable states better, one 
uses mutex propagation on the planning graph with the following rules:

• Two action nodes at level i are mutex iff (1) the effect of one action is the negation of the effect of the other action; 
(2) one action deletes the precondition of the other action; or (3) there exists a precondition of one action and a 
precondition of the other action that are mutex at level i − 1.

• Two proposition nodes at level i are mutex iff (1) one proposition is the negation of the other proposition; or (2) all 
actions at level i − 1 that achieve one proposition are pairwise mutex with all actions at level i − 1 that achieve the 
other proposition.

3.2. Mutex propagation on MDDs

In the context of MAPF, MDDs are directed and leveled data structures that resemble planning graphs. However, each 
action has a single precondition because each agent at each timestep can either wait at its current vertex u or traverse some 
edge 〈u, v〉, both with the single precondition of the agent being in vertex u at that timestep. Therefore, it is not necessary 
to represent the action layers explicitly, and a collection of MDDs built individually for each agent can be seen as a special 
case of a planning graph. In addition, MDD nodes carry information about reachability both from the start vertex and to the 
goal vertex. Therefore, unlike planning graphs, MDDs don’t represent non-goal propositions in the last level. Similarly, the 
mutex propagation rules can also be simplified in the case of MDDs, as explained later, resulting in the following semantics: 

If two MDD nodes ni ∈ MDD
li
i

and n j ∈ MDD
l j
j

at level t are mutex, then there do not exist conflict-free sub-paths that 
move agents ai and a j from their start vertices at timestep 0 to the vertices ni .loc and n j .loc at timestep t . Since mutex 
propagation can be done in polynomial time, the set of reachable vertices can be efficiently and tightly approximated, from 
which useful information can be derived for symmetry breaking and guiding the high-level search of CBS.

We define two types of initial mutexes corresponding to vertex and edge conflicts in MAPF, respectively:

• Two MDD nodes ni and n j are initial mutex iff they are of MDDs for different agents, ni .level = n j .level and ni .loc =

n j .loc.
• Two MDD edges ei = 〈ni, n′

i
〉 and e j = 〈n j, n′

j
〉 are initial mutex iff they are of MDDs for different agents, ei .level =

e j .level, ni .loc = n′
j
.loc and n j .loc = n′

i
.loc.

Example 2. Fig. 2 shows the MDDs for agents a1 and a2 on the cardinal rectangle conflict instance in Fig. 1a. The label of 
each MDD node is its vertex. Initial mutexes are represented with blue dashed arcs.

At level 1, MDD nodes B2 ∈ MDD5
1 and B2 ∈ MDD5

2 are initial mutex and thus connected by a blue dashed arc because 
both agents a1 and a2 staying in vertex B2 at timestep 1 causes a vertex conflict.

We define two types of propagated mutexes expressing our mutex propagation rules:

1. Forward propagation for MDD nodes: Two MDD nodes ni and n j are propagated mutex iff they are of MDDs for different 
agents, ni .level = n j .level and all pairs of MDD edges ei and e j with ei .to = ni and e j .to = n j are either initial mutex or 
propagated mutex.

2. Forward propagation for MDD edges: Two MDD edges ei and e j are propagated mutex iff they are of MDDs for different 
agents, ei .level = e j .level and MDD nodes ei . f rom and e j . f rom are either initial mutex or propagated mutex.

6
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Fig. 2. Shows the MDDs for agents a1 and a2 and 6 levels each on the cardinal rectangle conflict instance in Fig. 1a along with the mutexes between their 
MDD nodes. Initial mutexes are represented with blue dashed arcs, and propagated mutexes are represented with red solid arcs. Edge mutexes are not 
shown here.

Algorithm 2: Generate-Mutex: Determine all mutexes between two MDDs.

Input : Two MDDs MDD
li
i
and MDD

l j
j
.

Output : A set of mutexes M .

1 queue ← all initial mutexes between MDD
li
i
and MDD

l j
j
;

2 M ← ∅;
3 while queue is not empty do

4 m ← pop a mutex from queue with the smallest level, breaking ties in favor of mutexes between MDD nodes;
5 Add m to M;
6 if m is a mutex between MDD nodes then

7 〈ni, n j〉 ←m;
8 foreach ei such that ei . f rom = ni do

9 foreach e j such that e j . f rom = n j do

10 Add 〈ei, e j〉 to queue;
11 end

12 end

13 else // m is a mutex between MDD edges
14 〈ei, e j〉 ←m;
15 ni ← ei .to;
16 n j ← e j .to;
17 is_propagated_mutex ← T rue;
18 foreach e′

i
such that e′

i
.to = ni do

19 foreach e′
j
such that e′

j
.to = n j do

20 if 〈e′
i, e

′
j〉 is not in M then

21 is_propagated_mutex ← False;
22 end

23 end

24 end

25 if is_propagated_mutex then

26 Add 〈ni,n j〉 to queue;
27 end

28 end

29 end

30 return M;

Example 3. Propagated mutexes between MDD nodes in Fig. 2 are represented with red solid arcs. Propagated mutexes 
between MDD edges are not shown. At Level 1, the MDD edges from B2 to C2 of MDD5

1 and from B2 to B3 of MDD5
2 are 

propagated mutex since B2 ∈ MDD5
1 and B2 ∈ MDD5

2 are initial mutex. At level 2, C2 ∈ MDD5
1 and B3 ∈ MDD5

2 have only one 
incoming MDD edge each, namely the MDD edges from B2 to C2 of MDD5

1 and from B2 to B3 of MDD5
2 . Thus, these MDD 

nodes are propagated mutex and connected by a red solid arc.

We define two MDD nodes or two MDD edges to be mutex iff they are initial mutex or propagated mutex. We use 
Algorithm 2 to find all mutexes between two MDDs. The algorithm is similar to AC-3 [34]. The pseudocode is only for 
illustrating the general idea and not intended to be efficient. We add all initial mutexes to a queue (Line 1) and check all 
mutexes in the order of their levels to determine whether the mutex can be propagated. The propagated mutexes are then 
added to the queue (Lines 10 and 26). For mutexes at the same level, we break ties in favor of mutexes between MDD 
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nodes (Line 4). Therefore, at the same level, we first check mutexes between MDD nodes and then mutexes between MDD 
edges.

Property 1. If two MDD nodes ni ∈ MDD
li
i
and n j ∈ MDD

l j
j
with ni .level = n j .level = l are mutex, then there does not exist a pair of 

conflict-free sub-paths pi and p j for agents ai and a j , respectively, such that sub-path pi begins at start vertex si at timestep 0 and 
reaches vertex ni .loc at timestep l and sub-path p j begins at start vertex s j at timestep 0 and reaches vertex n j.loc at timestep l.

Proof. The property is trivially true if MDD nodes ni and n j are initial mutex. For a proof of the property by contradiction 
if MDD nodes ni and n j are propagated mutex, assume that there exist two such sub-paths pi and p j that are conflict-free. 
Define ni,t as the MDD node corresponding to the vertex of agent ai at timestep t when it follows sub-path pi . Similarly, 
define n j,t as the MDD node corresponding to the vertex of agent a j at timestep t when it follows sub-path p j . By definition, 
ni,0.loc = si , n j,0.loc = s j , ni,l = ni and n j,l = n j . Using induction, we now prove the contradiction that MDD nodes ni and 
n j are not propagated mutex. In the base case, MDD nodes ni,0 and n j,0 are not mutex because si �= s j . Assume that MDD 
nodes ni,t and n j,t are not propagated mutex for timestep t < l. MDD nodes ni,t and n j,t are not initial mutex because sub-
paths pi and p j are conflict-free. We define MDD edge ei as 〈ni,t , ni,t+1〉 and MDD edge e j as 〈n j,t , n j,t+1〉. MDD edges ei
and e j are not initial mutex because sub-paths pi and p j are conflict-free. MDD edges ei and e j are not propagated mutex 
either because their source MDD nodes ni,t and n j,t are not mutex. This implies that MDD edges ni,t+1 and n j,t+1 are not 
propagated mutex. By induction, MDD nodes ni and n j are not propagated mutex, which contradicts the assumption. �

Property 2. If two MDD edges 〈ni, n′
i〉 ∈ MDD

li
i and 〈n j, n′

j〉 ∈ MDD
l j
j with ni .level = n j .level = l are mutex, then there does not exist 

a pair of conflict-free sub-paths pi and p j for agents ai and a j , respectively, such that sub-path pi begins at start vertex si at timestep 
0 and traverses edge 〈ni.loc, n′

i
.loc〉 between timesteps l and l + 1 and sub-path p j begins at start vertex s j at timestep 0 and traverses 

edge 〈n j .loc, n′
j
.loc〉 between timesteps l and l + 1.

Proof. If the MDD edges 〈ni, n′
i
〉 and 〈n j, n′

j
〉 are initial mutex, then there must exist an edge conflict between sub-paths pi

and p j between timesteps l and l +1. If the MDD edges 〈ni, n′
i
〉 and 〈n j, n′

j
〉 are propagated mutex, then, by definition, MDD 

nodes ni and n j are mutex. From Property 1, there must exist a vertex or edge conflict between sub-paths pi and p j at or 
before timestep l. �

Property 3. If two MDD nodes ni ∈ MDD
li
i and n j ∈ MDD

l j
j with ni .level = n j .level = l are not mutex, then there exists a pair of 

conflict-free sub-paths pi and p j for agents ai and a j , respectively, such that sub-path pi begins at start vertex si at timestep 0 and 
reaches vertex ni .loc at timestep l and sub-path p j begins at start vertex s j at timestep 0 and reaches vertex n j.loc at timestep l.

Proof. Because MDD nodes ni and n j are not mutex, there exists a pair of their incoming MDD edges that are not mutex. 
Therefore, the source MDD nodes of these two MDD edges are not mutex either. Continuing this backward induction, we 
can construct the desired conflict-free sub-paths. �

Theorem 1 combines Properties 1 and 3, and in doing so, it characterizes the joint-reachable states of two agents.

Theorem 1. Two MDD nodes ni ∈ MDD
li
i and n j ∈ MDD

l j
j with ni .level = n j .level = l are not mutex iff there exists a pair of conflict-

free sub-paths pi and p j for agents ai and a j , respectively, such that sub-path pi begins at start vertex si at timestep 0 and reaches 
vertex ni .loc at timestep l and sub-path p j begins at start vertex s j at timestep 0 and reaches vertex n j.loc at timestep l.

For Theorem 1 to hold, li and l j do not have to be the individual minimum costs of agents ai and a j , respectively.

Example 4. In Fig. 2, MDD nodes D4 ∈ MDD5
1 and C5 ∈ MDD5

2 at level 5 are propagated mutex. From Theorem 1, there does 
not exist a pair of conflict-free sub-paths for agents a1 and a2 such that both agents arrive at their respective goal vertices 
at timestep 5, which means that there does not exist a pair of conflict-free paths of cost 5 for the agents. Therefore, by 
definition, the conflict between them is cardinal.

4. Mutex propagation in CBS

In this section, we show how mutex propagation can be integrated into CBS. We show how mutex propagation can be 
used to identify and resolve cardinal and semi-cardinal conflicts, and we describe the resulting variant of CBS.

4.1. Identifying and resolving cardinal conflicts

In this section, we present algorithms for identifying and resolving cardinal conflicts and an algorithm for determining 
the number of levels of the MDDs needed to identify and resolve cardinal conflicts.

8
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Fig. 3. Shows the MDDs for agents a1 and a2 , with 4 and 6 levels, respectively, on the cardinal target conflict instance in Fig. 1c. There are no mutexes 
between the two MDDs.

Algorithm 3: Classify-Conflict: Determine whether agents ai and a j have a cardinal conflict within costs (li, l j).

Input : Two MDDs MDD
li
i
and MDD

l j
j
with li ≤ l j .

Output : The conflict type of agents ai and a j , which is PC, AC or NC.

1 N
′

j
← MDD nodes at level li of MDD

l j
j
that are not mutex with the sink MDD node of MDD

li
i
;

2 if N
′

j
= ∅ then

3 return PC;
4 end

5 foreach n j ∈ N ′
j do

6 if there exists a sub-path in MDD
l j
j
from n j to its sink MDD node that does not traverse any MDD node n with n.loc = gi and n.level > li

then

7 return NC;
8 end

9 end

10 return AC;

4.1.1. Identifying cardinal conflicts
In Example 4, we show how mutex propagation can be used to identify cardinal conflicts between two MDDs with the 

same number of levels. Here, we show how to generalize this technique to identify cardinal conflicts between any two 
MDDs. This generalization requires us to handle the corner case where an agent can terminally wait at its goal vertex: 
Two agents with different individual minimum costs can have vertex conflicts after one agent terminally waits at its goal 
vertex, as shown in Fig. 3. These conflicts are not captured by mutexes. Algorithm 2 does not generate any mutexes for 
these two MDDs, but there exists a cardinal conflict because the individual minimum-cost path of agent a2 traverses the 
goal vertex of agent a1 after agent a1 terminally waits at it. To be able to identify and resolve such cardinal conflicts as 
well, we distinguish two classes of cardinal conflicts:

Pre-goal cardinal conflict (PC) within costs (li, l j): There does not exist a pair of conflict-free paths for agents a1 and a2 with 
costs li and l j , respectively, satisfying all constraints of the CT node even if we do not consider conflicts that happen after 
one agent terminally waits at its goal vertex.

After-goal cardinal conflict (AC) within costs (li, l j): There exists at least one pair of conflict-free paths for agents a1 and a2
with costs li and l j , respectively, satisfying all constraints of the CT node if we do not consider conflicts that happen after 
one agent terminally waits at its goal vertex. However, for every such pair of paths, one agent traverses the goal vertex of 
the other agent after the other agent terminally waits at its goal vertex.

Given two agents ai and a j and their MDDs MDD
li
i
and MDD

l j
j
, we use Algorithm 3 to determine whether these agents 

have a cardinal conflict within costs (li, l j). Algorithm 3 returns PC, AC or NC (“Not a Cardinal conflict”). Without loss of 

generality, we assume that li ≤ l j throughout this article. Algorithm 3 first checks whether all MDD nodes of MDD
l j
j
at level 

li are mutex with the sink MDD node of MDD
li
i
. If so, then it classifies the conflict as a PC. Otherwise, it checks whether 

there exists an MDD node n j ∈ MDD
l j
j
at level li that is not mutex with the sink MDD node of MDD

li
i
and a sub-path in 

MDD
l j
j
from MDD node n j to its sink MDD node that does not traverse any MDD node with vertex gi , that is, the goal 

vertex of agent ai (lines 5-6). If so, it classifies the conflict as an NC. If such an MDD node and sub-path do not exist, then 
it classifies the conflict as an AC.

Theorem 2. Algorithm 3 returns NC for given MDD
li
i
and MDD

l j
j
iff there exists a pair of conflict-free paths pi and p j for agents ai and 

a j with costs li and l j , respectively.

Proof. First, assume that there exist such conflict-free paths pi and p j with costs li and l j , respectively. From Theorem 1, 

the MDD node n j ∈ MDD
l j
j
corresponding to the vertex of agent a j at timestep li is not mutex with the sink MDD node of 

MDD
li
i
. Therefore, MDD node set N ′

j
in Algorithm 3 is not empty. Since paths pi and p j are conflict-free, agent a j following 

9
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Algorithm 4: Generate-Constraints-PC: Generate constraints for PCs.

Input : Two MDDs MDD
li
i
and MDD

l j
j
.

Output : Constraint set C i for agent ai and constraint set C j for agent a j .

1 C i ← constraints on every MDD node of MDD
li
i
that is mutex with all MDD nodes of MDD

l j
j
at the same level;

2 C j ← constraints on every MDD node of MDD
l j
j
that is mutex with all MDD nodes of MDD

li
i
at the same level;

3 return 〈C i, C j〉;

p j does not traverse vertex gi at or after timestep li . Thus, there exists a sub-path in MDD
l j
j
from MDD node n j to its sink 

MDD node that does not traverse any MDD node with vertex gi , and Algorithm 3 returns NC.

Now assume that Algorithm 3 returns NC. From Line 6 of Algorithm 3, there exists a sub-path p in MDD
l j
j
from an MDD 

node n j ∈ N ′
j
to its sink MDD node that does not traverse any MDD node with vertex gi . From Line 1 of Algorithm 3, MDD 

node n j is not mutex with the sink MDD node of MDD
li
i
. From Theorem 1, there exists a pair of conflict-free sub-paths pi

and p j for agents ai and a j , respectively, such that sub-path pi begins at start vertex si at timestep 0 and reaches goal 
vertex gi at timestep li and sub-path p j begins at start vertex s j at timestep 0 and reaches vertex n j .loc at timestep li . If 
agent ai follows sub-path pi until timestep li and then terminally waits at goal vertex gi and agent a j follows sub-path p j

until timestep li , then follows sub-path p and terminally waits at goal vertex g j , then these two paths are conflict-free and 
of costs li and l j , respectively. �

For Theorem 2 to hold, li and l j do not have to be the individual minimum costs of agents ai and a j , respectively.

Corollary 1. Algorithm 3 returns PC or AC for given MDD
l�
i

i
and MDD

l�
j

j
iff agents ai and a j have a cardinal conflict, where l�

i
and l�

j
are 

the individual minimum costs of agents ai and a j , respectively.

Proof. Algorithm 3 returns either PC, NC, or AC. From Theorem 2, Algorithm 3 returns NC for given MDD
l�
i

i
and MDD

l�
j

j

iff there exists a pair of conflict-free paths pi and p j for agents ai and a j with costs l�i and l�j , respectively. Therefore, 

Algorithm 3 returns PC or AC for given MDD
l�
i

i
and MDD

l�
j

j
iff such paths pi and p j do not exist, and thus, by definition, 

agents ai and a j have a cardinal conflict. �

4.1.2. Resolving cardinal conflicts

For given MDD
li
i
and MDD

l j
j
for which Classify-Conflict returns PC, we use Algorithm 4 to generate the constraint sets 

C i and C j for agents ai and a j , respectively. Constraint set C i contains the constraints on every MDD node of MDD
li
i
that is 

mutex with all MDD nodes of MDD
l j
j
at the same level. Similarly, constraint set C j contains the constraints on every MDD 

node of MDD
l j
j
that is mutex with all MDD nodes of MDD

li
i
at the same level.

Property 4. In case Algorithm 3 returns PC for given MDD
li
i
and MDD

l j
j
, for constraint sets C i and C j generated by Algorithm 4, if 

the path pi of agent ai violates a constraint in C i , and the path p j of agent a j violates a constraint in C j , then the two paths are not 
conflict-free.

Proof. Define 〈ai, ti, v i〉 and 〈a j, t j, v j〉 as the two constraints violated by paths pi and p j , respectively. If ti ≤ t j , define 

n j ∈ MDD
l j
j as the MDD node corresponding to the vertex of p j at timestep ti . From Line 1 of Algorithm 4, the MDD 

node ni ∈ MDD
li
i
with ni .loc = v i and ni .level = ti is mutex with MDD node n j . From Theorem 1, paths pi and p j are not 

conflict-free. A similar proof works for ti ≥ t j . �

For given MDD
li
i and MDD

l j
j for which Classify-Conflict returns AC, we use Algorithm 5 to generate the constraint sets 

C i and C j for agents ai and a j , respectively, making use of the following two cost constraints [23]:

1. 〈ai, l〉 forces the path cost of agent ai to be larger than l.
2. 〈ai, l〉 forces the path cost of agent ai to be less than or equal to l.

These two cost constraints can be implemented easily by changing the termination condition in the A* algorithm that 
CBS uses to find individual minimum-cost paths: If constraint 〈ai , l〉 is provided, the low-level search for ai terminates only 
if it expands a node that is associated with location gi and its timestep is larger than l; If constraint 〈ai, l〉 is provided, the 
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Algorithm 5: Generate-Constraints-AC: Generate constraints for ACs.

Input : Two MDDs MDD
li
i
and MDD

l j
j
with li ≤ l j .

Output : Constraint set C i for agent ai and constraint set C j for agent a j .
1 C i ← {cost constraint 〈ai, li〉};

2 N j ← MDD nodes of MDD
l j
j
at level li that are mutex with the sink MDD node of MDD

li
i
;

3 NAC ← MDD nodes n ∈ MDD
l j
j
with n.loc = gi and n.level > li ;

4 C j ← {cost constraint 〈ai, li〉} ∪ {constraints on all MDD nodes in N j ∪ NAC };
5 return 〈C i, C j〉;

low-level search for ai prunes any node that has f -value larger than l (since all paths represented by such a node only reach 
gi after timestep l). Constraint set C i contains only the cost constraint 〈ai, li〉. Constraint set C j contains the cost constraint 

〈ai, li〉, the constraints on all MDD nodes of MDD
l j
j
at level li that are mutex with the sink MDD node of MDD

li
i
and the 

constraints on all MDD nodes n ∈ MDD
l j
j
with n.loc = gi and n.level > li . Cost constraint 〈ai, li〉 implies that no other agent 

can use gi after timestep l, and, therefore it also applies to agent a j .

Property 5. In case Algorithm 3 returns AC for given MDD
li
i
and MDD

l j
j
, for constraint sets C i and C j generated by Algorithm 5, if 

the path pi of agent ai violates a constraint in C i , and the path p j of agent a j violates a constraint in C j , then the two paths are not 
conflict-free.

Proof. Constraint set C i contains the cost constraint that the path cost of agent ai should be larger than li . If agent ai
violates this cost constraint, then agent ai occupies goal vertex gi at timestep li and afterward. Constraint set C j contains 
the vertex constraints on all MDD nodes in MDD node set N j ∪ NAC . MDD node set NAC contains all those MDD nodes 

of MDD
l j
j at levels larger than li whose vertices are the goal vertex gi . If agent a j violates the constraint on an MDD node 

n ∈ NAC , it must have a conflict with agent ai because agent ai occupies goal vertex gi at timestep n.level. MDD node set N j

contains all those MDD nodes of MDD
l j
j that are mutex with the sink MDD node of MDD

li
i . If agent a j violates the constraint 

on an MDD node n ∈ N j , it must have a conflict with agent ai at or before timestep li because agent ai occupies goal vertex 
gi at timestep li , according to Theorem 1. �

Properties 4 and 5 ensure that the constraint sets generated by Algorithms 4 and 5 do not rule out any pairs of conflict-
free paths for their agents. For them to hold, li and l j do not have to be the individual minimum costs of agents ai and a j , 
respectively.

Property 6. Algorithms 4 and 5 generate constraint sets that increase the individual minimum costs of their agents.

Proof. If Algorithm 3 outputs PC, then constraint set Ck, k ∈ {i, j}, contains constraints on all MDD nodes of MDD
lk
k

at level 

li because the sink MDD node of MDD
li
i
is mutex with all MDD nodes of MDD

l j
j
at level li . Therefore, any path of agent ak

satisfying the constraints of constraint set Ck must have a cost of at least lk + 1.
If Algorithm 3 outputs AC, then constraint set C i contains only the cost constraint 〈ai, li〉. Therefore, any path of agent 

ai satisfying the constraints of constraint set C i must have a cost of at least li + 1. For agent a j , constraint set C j contains 
constraints on all MDD nodes in MDD node sets N j and NAC . We prove by contradiction that there does not exist a path 
for agent a j of cost less than or equal to l j . Assume that such a path p exists. We define N ′

j
as the set of MDD nodes of 

MDD
l j
j at level li that are not mutex with the sink MDD node of MDD

li
i . Path p must traverse the vertex of an MDD node 

in MDD node set N ′
j at timestep li because the constraint set for agent a j contains vertex constraints for the vertices of 

the other MDD nodes of MDD
l j
j
at timestep li . Because Algorithm 3 outputs AC, from Line 6, all sub-paths in MDD

l j
j
from 

any MDD node in MDD node set N ′
j
to the sink MDD node of MDD

l j
j
traverse some MDD node in MDD node set NAC , but 

the constraint set for agent a j contains a vertex constraint for the vertex of each MDD node in MDD node set NAC at the 
timestep that corresponds to its level. Therefore, such a path p does not exist. �

Property 6 ensures that, in every child CT node generated with the new constraints in the constraint sets from Algo-
rithms 4 or 5, the individual minimum cost of at least one agent increases. All other individual minimum costs stay the 
same. Therefore, the SoC of that child CT node is larger than the SoC of its parent CT node.
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Algorithm 6: Generate-Constraints-C: Generate constraints for cardinal conflicts.

Input : Two agents ai and a j with l�
i
≤ l�

j
and Classify-Conflict(MDD

l�
i

i
, MDD

l�
j

j
) �= NC.

Output : Constraint set C i for agent ai and constraint set C j for agent a j .
1 di ← 0;
2 d j ← 0;

3 while Classify-Conflict(MDD
l∗
i
+di+1

i
, MDD

l∗
j
+d j+1

j
) �= NC do

4 di ← di + 1;
5 d j ← d j + 1;

6 end

7 while Classify-Conflict(MDD
l∗
i
+di+1

i
, MDD

l∗
j
+d j

j
) �= NC do

8 di ← di + 1;
9 end

10 if Classify-Conflict(MDD
l�
i
+di

i
, MDD

l�
j
+d j

j
) = PC then

11 return Generate-Constraints-PC(MDD
l�
i
+di

i
, MDD

l�
j
+d j

j
);

12 else // Classify-Conflict returns AC

13 return Generate-Constraints-AC(MDD
l�
i
+di

i
, MDD

l�
j
+d j

j
);

14 end

Moreover, Properties 4-6 do not rely on li and l j being the individual minimum costs of agents ai and a j , respectively. 
Therefore, we can pick any li and l j as long as agents ai and a j have a cardinal conflict within costs (li, l j), that is, Algo-

rithm 3 returns AC or PC for given MDD
li
i
and MDD

l j
j
.

In practice, to keep the sizes of the constraint sets C i and C j small (which could reduce the runtime of the low-level 
search of CBS), we remove the constraints on all such MDD nodes n from the constraint set Ck , k ∈ {i, j}, if the constraints 
on all predecessors of MDD node n in the MDD are also in constraint set Ck . Such constraints are redundant because the 
agent cannot reach vertex n.loc at timestep n.level.

Example 5. In Fig. 2, the constraints generated by Algorithm 4 are those of the MDD nodes which are filled with solid blue. 
After removing redundancies, the constraint set C1 for agent a1 contains constraints 〈a1, 2, C2〉, 〈a1, 3, C3〉, and 〈a1, 4, C4〉, 
while the constraint set C2 for agent a2 contains constraints 〈a2, 3, B4〉 and 〈a2, 4, C4〉. These two constraint sets are exactly 
the barrier constraints for this cardinal rectangle conflict.

Overall, our way of generating constraints for cardinal conflicts guarantees the optimality and completeness of CBS, since 
the proof of Theorem 2 in [22] applies.

4.1.3. Determining the numbers of levels of MDDs

For some cardinal conflicts, the minimum SoC of conflict-free paths for the two conflicting agents is much larger than the 
sum of their individual minimum costs. If we generate constraints using MDDs for the conflicting agents whose numbers 
of levels are the respective individual minimum costs, CBS still needs to expand multiple CT nodes to resolve all conflicts 
between the conflicting agents. An example is a cardinal corridor conflict where, in any optimal solution, one agent needs to 
wait for a certain number k of timesteps to allow the other agent to traverse the corridor. If Algorithms 4 and 5 use MDDs 
whose numbers of levels are the respective individual minimum costs, the constraints generated by them can increase the 
cost of either agent by only one. Therefore, CBS needs to increase the CT to a depth of at least k to find an optimal solution. 
Without heuristic guidance, CBS thus needs to expand ω(2k) CT nodes.

To resolve cardinal conflicts efficiently when the agents need to increase the sum of their individual minimum costs by 
more than one, we aggressively increase the numbers of levels of their MDDs before using them to generate the constraint 
sets. We can use Algorithms 4 and 5 as long as agents ai and a j have a cardinal conflict within costs (li, l j), that is, Algo-

rithm 3 returns AC or PC for given MDD
li
i
and MDD

l j
j
. Algorithm 6 shows a way to determine the numbers of levels which 

satisfy this requirement. It first tries to increase li and l j simultaneously, and then tries to increase only li . As shown in Algo-

rithm 6, we begin with di = d j = 0 and increase di and d j simultaneously until Classify-Conflict(MDD
l�
i
+di+1

i
, MDD

l�
j
+d j+1

j
)

returns NC (Lines 3-6). We then increase only di until Classify-Conflict(MDD
l�
i
+di+1

i
, MDD

l�
j
+d j

j
) returns NC (Lines 7-9). 

Finally, MDD
l�
i
+di

i
and MDD

l�
j
+d j

j
are used to generate the constraint sets on Lines 10-14.

Example 6. In any optimal solution of the cardinal corridor conflict instance in Fig. 1b, one of the two agents has a cost 
of 11. In the root CT node, the individual minimum costs are l�

i
= l�

j
= 6. Classify-Conflict in Algorithm 6 returns PC for 
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up to and including di = 4 and d j = 4 but not for di = 5 and d j = 4 or for di = 5 and d j = 5. Therefore, Algorithm 6 uses 
MDD10

1 and MDD10
2 to generate the constraint sets. After removing redundancies, the constraint set for agent a1 is C1 =

{〈a1,5, B5〉, 〈a1,6, B4〉, 〈a1,6, B5〉, 〈a1,7, B3〉, 〈a1,7, B4〉}, which prevents the agent from arriving in its goal vertex C5 be-
fore timestep 11. Similarly, the constraint set for agent a2 is C2 = {〈a2,5, B1〉, 〈a2,6, B2〉, 〈a2,6, B1〉, 〈a2,7, B3〉, 〈a2,7, B2〉}, 
which prevents the agent from arriving in its goal vertex C1 before timestep 11. Conceptually, the constraint set for each 
agent prevents the agent from leaving the corridor before some timestep. If we use the approach in [23] to resolve this 
corridor conflict, the constraint set for a1 would contain vertex constraints on B5 at timesteps 5-9. The constraint set gen-
erated by mutex reasoning also prevents agent a1 from reaching B5 at timesteps 5-9 indirectly and has some extra vertex 
constraints inside the corridor.

We also investigated alternative ways of choosing the numbers of MDD levels:

• A1 We begin with di = d j = 0 and, in each iteration, randomly choose di or d j . If di is chosen, increase di by one 

if Classify-Conflict(MDD
l�
i
+di+1

i
, MDD

l�
j
+d j

j
) returns NC. Otherwise, if d j is chosen, increase d j by one if Classify-

Conflict(MDD
l�
i
+di

i
, MDD

l�
j
+d j+1

j
) returns NC. We repeat this procedure until both Classify-Conflict(MDD

l�
i
+di+1

i
,

MDD
l�
j
+d j

j
) and Classify-Conflict(MDD

l�
i
+di

i
, MDD

l�
j
+d j+1

j
) return NC. Finally, MDD

l�
i
+di

i
and MDD

l�
j
+d j

j
are used to gen-

erate the constraint sets.

• A2 We begin with d = di = d j = 0 and increase d until Classify-Conflict(MDD
l�
i
+d+1

i
, MDD

l�
j
+d+1

j
) returns NC. We then 

increase only di until Classify-Conflict(MDD
l�
i
+d+di+1

i
, MDD

l�
j
+d

j
) returns NC. We then increase only d j until Classify-

Conflict(MDD
l�
i
+d

i
, MDD

l�
j
+d+d j+1

j
) returns NC. Finally, if di > d j , MDD

l�
i
+d+di

i
and MDD

l�
j
+d

j
are used to generate the 

constraint sets. Otherwise, MDD
l�
i
+d

i
and MDD

l�
j
+d+d j

j
are used to generate the constraint sets.

A1 is an alternative way to which we add randomness, and A2 is similar to Algorithm 6 except that, after simultaneously 
increasing li and l j , it chooses and increases the one of li and l j which allows larger increasing of MDD lengths. Our 
experimental results show that all three ways of choosing the numbers of MDD levels perform similarly across different 
MAPF instances. Therefore, we use Algorithm 6 exclusively in this article.

4.2. Identifying and resolving semi-cardinal conflicts

In this section, we present the algorithm for identifying and resolving semi-cardinal conflicts and an algorithm for de-
termining the needed number of levels of the MDDs. Since our proposed algorithm for doing so is straightforward, we omit 
presenting it in pseudo-code but describe it using text. Let p j denote the path of agent a j in the CT node. Our algorithm 
identifies the following cases of semi-cardinal conflicts: (a) There does not exist a path pi for agent ai that is conflict-free 
with p j since p j traverses gi at timestep t ≥ li ; (b) There does not exist a path pi for agent ai that is conflict-free with p j

since p j traverses a specific vertex at timestep t ≤ li ; and (c) There does not exist a path pi for agent ai that is conflict-

free with p j since p j traverses a specific edge at timestep t . Our algorithm uses MDD
li
i
and MDD

l�
j

j
to identify and resolve 

semi-cardinal conflicts between agents ai and a j within cost li as follows:

1. If p j traverses goal vertex gi at timestep t > li , the constraint sets C i and C j for agents ai and a j , respectively, are the 
same as the constraint sets for target conflicts in goal vertex gi at timestep t [23].

2. If p j traverses a vertex at timestep t ≤ li and the corresponding MDD node of MDD
l�
j

j
at level t is mutex with all MDD 

nodes of MDD
li
i
at level t , the constraint set C i for agent ai is the set of constraints on all MDD nodes of MDD

li
i
at level 

t . The constraint set C j for agent a j is the set of constraints on all MDD nodes of MDD
l�
j

j
at level t that are mutex with 

all MDD nodes of MDD
li
i
at level t .

3. If p j traverses an edge between timesteps t < li and t+1 and the corresponding MDD edge of MDD
l�
j

i
at level t is mutex 

with all MDD edges of MDD
li
i
at level t , the constraint set C i for agent ai is the set of constraints on all MDD edges of 

MDD
li
i
at level t . The constraint set C j for agent a j is the set of constraints on all MDD edges of MDD

l�
j

j
at level t that 

are mutex with all MDD edges of MDD
li
i
at level t .

Property 7. In case our algorithm identifies a semi-cardinal conflict for given MDD
li
i
and MDD

l j
j
, for constraint sets C i and C j generated 

by our algorithm, if the path pi of agent ai violates a constraint in C i and the path p j of agent a j violates a constraint in C j , then the 
two paths are not conflict-free.
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Proof. For Case 1, the proof of Property 5 applies, except that the path of agent a j is now fixed. For Case 2, the proof 
of Property 4 applies under the same conditions. For Case 3, define 〈ai , t, v i, v ′

i
〉 and 〈a j, t, v j, v ′

j
〉 as the two constraints 

violated by paths pi and p j , respectively. From Property 2, paths pi and p j are not conflict-free. �

Property 7 ensures that the constraint sets generated by our algorithm don’t rule out any pairs of conflict-free paths 
for the corresponding agents. Moreover, the property does not rely on li being the individual minimum cost of agent ai . 
Therefore, we can pick any li as long as agent ai has a semi-cardinal conflict within cost li with agent a j . Thus, we begin 
with d = 0 and increase d until our algorithm no longer identifies a semi-cardinal conflict within cost l�i + d + 1. Finally, 

MDD
l�
i
+d

i
and MDD

l�
j

j
are used to generate the constraint sets.

Overall, our way of generating constraint sets for semi-cardinal conflicts guarantees the optimality and completeness of 
CBS, since the proof of Theorem 2 in [22] applies.

4.3. CBS with mutex propagation

In this section, we describe how to incorporate our mutex propagation techniques into CBS, as shown in Algorithm 1.
Before choosing a conflict on Line 10, CBS now uses our techniques to identify cardinal and semi-cardinal conflicts. As 

before, the first priority is given to cardinal conflicts, followed by semi-cardinal conflicts, and then to non-cardinal conflicts. 
It then uses our techniques to determine the constraint sets to be used on Line 13.

While generating the constraint sets for resolving the conflicts, CBS automatically determines the new individual mini-
mum costs of the corresponding agents: If CBS chooses a cardinal conflict between agents ai and a j within costs 〈li, l j〉, then 
the individual minimum cost of agent ai changes from l�

i
to li + 1 in one child CT node and the individual minimum cost 

of agent a j changes from l�j to l j + 1 in the other child CT node. If CBS chooses a semi-cardinal conflict between agents ai
and a j within cost l j , then the individual minimum cost of agent a j changes from l�

j
to l j + 1 in one child CT node. In both 

cases, all other individual minimum costs stay the same, that is, the increase in the individual minimum cost of the affected 
agent is identical to the increase in the SoC from the parent CT node to the child CT node. Larger increases might allow the 
high-level search of CBS to terminate earlier. Thus, in the high-level search, if CBS chooses a cardinal conflict, it chooses one 
with the largest min(li − l�

i
, l j − l�

j
) among all cardinal conflicts, breaking ties in favor of the largest max(li − l�

i
, l j − l�

j
). If CBS 

chooses a semi-cardinal conflict, it chooses one with the largest l j − l�
j
.

Our mutex propagation techniques incur a computational overhead per CT node expansion. To keep this overhead small, 
we implemented CBS to cache the MDDs and the constraints for cardinal conflicts in two hash tables, using the indices of 
the agents and the sets of all constraints imposed on them as keys. We didn’t implement CBS to cache the constraints for 
semi-cardinal conflicts since this requires including the path of one of the two agents in the keys. Therefore, the cached 
semi-cardinal constraints are reused less often than the cached cardinal constraints.

5. Mutex propagation in MDD-SAT

In this section, we describe how mutex propagation can be incorporated into MDD-SAT and the advantages that result 
thereof.

MDD-SAT already uses MDDs to construct the Boolean formula F(x) in conjunctive normal form for which an off-the-
shelf SAT solver determines the satisfiability. Thus, it is easy to integrate knowledge about pairs of MDD nodes that are 
mutex with each other into the construction of F(x). If MDD nodes ni and n j in the MDDs for agents ai and a j are mutex 
at level t , we simply add the binary clause (¬Xni ∨ ¬Xn j

) to F(x), which states that the two agents cannot be in vertices 
ni .loc and n j .loc, respectively, at timestep t .

5.1. Mutex propagation versus unit propagation in MDD-SAT

In this section, we study the power of mutex propagation in MDD-SAT by comparing it to unit propagation (UP) [35], a 
standard technique implemented in SAT solvers. UP is a form of resolution inference that is used by SAT solvers to extend 
a partial consistent assignment of truth values to Boolean variables, as follows: If there exists a clause in which all literals 
but one are FALSE in the partial assignment, then the last literal must be TRUE for the clause as well as F(x) to be TRUE.

Mutexes are expressed as binary clauses, such as (¬Xni ∨ ¬Xn j
). Setting Xni to TRUE enables UP to set Xn j

to FALSE. 
However, UP can sometimes make the same inference without the binary clause expressing the mutex, as shown in the 
following example.

Fig. 4 (left) shows a corridor consisting of three vertices u, v and w and two agents a1 and a2 that need to traverse it 
in opposite directions. Fig. 5 shows the MDDs for agents a1 and a2 , both with 3 levels, in which nodes corresponding to 
vertices u, v and w for agent a1 are denoted nu1 , n

v
1 , and nw

1 , respectively, and nodes corresponding to u, v and w for agent 
a2 are denoted nu2 , n

v
2 , and nw

2 , respectively.
Agents a1 and a2 cannot both be in vertex v at timestep 1 due to a vertex conflict. Mutex propagation hence discovers 

that agent a1 cannot be in vertex w at timestep 2 if agent a2 is in vertex u at timestep 2, resulting in the binary clause 
(¬Xnw

1
∨ ¬Xnu2

) expressing the mutex. Setting Xnw
1

to TRUE then enables UP to set Xnu2
to FALSE. However, UP can make 
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Fig. 4. Shows two simple MAPF instances, where agent a1 has to move from vertex u to vertex w and agent a2 has to move from vertex w to vertex u.

Fig. 5. Shows the MDDs for agents a1 and a2 and three levels each on the MAPF instance in Fig. 4 (left). Corresponding Boolean variables are shown.

Fig. 6. Shows the MDDs for agents a1 and a2 and five levels each on the MAPF instance in Fig. 4 (right).

the same inference in several ways without the binary clause expressing the mutex, one of which is as follows: Setting 
Xnw

1
to TRUE enables UP to set Env

1 ,nw
1

to TRUE due to the binary clause (¬Xnw
1

∨ Env
1 ,nw

1
) corresponding to Constraint (3) in 

Section 2.4. Next, UP can set Xnv
1
to TRUE due to the binary clause (¬Env

1 ,nw
1

∨Xnv
1
) corresponding to Constraint (5), Xnv

2
to 

FALSE due to the binary clause (¬Xnv
1

∨Xnv
2
) corresponding to Constraint (6), and Env

2 ,nu2
to FALSE due to the binary clause 

(¬Env
2 ,nu2

∨ Xnv
2
) corresponding to Constraint (5). Finally, UP can set Xnu2

to FALSE due to the binary clause (¬Xnu2
∨ Env

2 ,nu2
)

corresponding to Constraint (3).
In the above example, all relevant clauses are binary and benefit UP. In general, however, mutex propagation is strictly 

more powerful than UP.

Property 8. Formula F(x) with clauses expressing the mutexes allows for strictly stronger Boolean constraint propagation compared 
to the same formula without such clauses.

Proof. Fig. 4 (right) shows a corridor that is similar to the one in Fig. 4 (left), except that the agents can now bypass each 
other between vertices u and v and between vertices v and w . Fig. 6 shows the corresponding two MDDs, both with 5 
levels. Agents a1 and a2 cannot both be in vertex v at timestep 2 due to a vertex conflict. Mutex propagation then discovers 
mutexes between agent a1 being in vertices x′ or y′ at timestep 3 and agent a2 being in vertices x or y at timestep 3, and 
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Table 1

Shows the number of CT node expansions on different cardinal conflict 
instances. The “Size” and “Length” of the cardinal rectangle and cardinal 
corridor conflict instances are the size and length of the yellow areas 
in Figs. 1a and 1b, respectively. The “Size” of the cardinal target conflict 
instances is the map size. The “Width” of the cardinal switching agents 
conflict instances is the map width.

Cardinal Rectangle Conflict Instance

Size 5 × 5 6× 6 7× 7 8× 8
CBSH 225 1,316 8,524 52,042
CBSH-RCT 1 1 1 1
CBSH-M 1 1 1 1
CBSH-MS 1 1 1 1

Cardinal Corridor Conflict Instance

Length 12 14 16 18
CBSH 9,851 45,260 > 52,938 > 49,717
CBSH-RCT 1 1 1 1
CBSH-M 1 1 1 1
CBSH-MS 1 1 1 1

Cardinal Target Conflict Instance

Size 5 × 5 6× 6 7× 7 8× 8
CBSH 22,134 > 148,966 > 170,132 > 129,534
CBSH-RCT 37,031 > 169,869 > 153,794 > 99,235
CBSH-M 1 1 1 1
CBSH-MS 1 1 1 1

Cardinal Switching Agents Conflict Instance

Width 7 8 9 10
CBSH > 183,832 > 154,385 > 213,224 > 221,836
CBSH-RCT > 349,461 > 359,559 > 329,361 > 355,826
CBSH-M 19 32 130 32
CBSH-MS 10 27 71 104

finally, a mutex between agent a1 being in vertex w at timestep 4 and agent a2 being in vertex u at timestep 4, expressed 
as the binary clause (¬Xnw

1
∨ ¬Xnu2

). Setting Xnw
1

to TRUE then enables UP to set Xnu2
to FALSE.

UP cannot make the same inference without the binary clauses expressing the mutexes: Setting Xnw
1

to TRUE does 
not enable UP to set the truth value of any other variable since none of the clauses containing Xnw

1
, namely, (¬Xnw

1
∨

E
nx

′

1 ,nw
1

∨ E
n
y′

1 ,nw
1

) corresponding to Constraint (3), (¬E
nx

′

1 ,nw
1

∨ Xnw
1
) corresponding to Constraint (5), and (¬E

n
y′

1 ,nw
1

∨ Xnw
1
)

corresponding to Constraint (5), becomes a unit clause. �

6. Experimental results

In this section, we report experimental results for CBS and MDD-SAT with mutex propagation. We implemented all MAPF 
solvers in C++ and ran all experiments on t2.large AWS EC2 instances with 8 GB of memory.

6.1. Evaluation of mutex propagation in CBS

In this section, we report on experiments with different variants of CBSH, a state-of-the-art CBS-based solver with heuris-
tic guidance [36]. We use CBSH and CBSH-RCT [23], a variant of CBSH with three symmetry-breaking techniques, namely, 
for rectangle, corridor, and target conflicts, as baselines and compare them to variants of CBSH with mutex propagation. 
The variants of CBSH with mutex propagation that we consider are: CBSH-M, CBSH-MS, CBSH-M-L and CBSH-MS-L, where 
M stands for mutex reasoning for only cardinal conflicts, MS stands for mutex reasoning for cardinal and semi-cardinal 
conflicts, and L stands for selecting the conflicts to be resolved based on path costs. All MAPF solvers share the same code-
base, except for conflict classification and constraint generation. In Section 6.1.1, we compare CBSH with mutex propagation 
against the baselines. In Section 6.1.2, we compare different variants of CBSH with mutex propagation and different ways of 
determining the numbers of levels of MDDs.

6.1.1. Comparison of CBSH with mutex propagation against the baseline algorithms

Cardinal conflict instances: We use the cardinal conflict instances in Fig. 1. Table 1 shows the number of CT node 
expansions of CBSH, CBSH-RCT, CBSH-M and CBSH-MS. We omit CBSH-M-L and CBSH-MS-L since they yield the same results 
as CBSH-M and CBSH-MS, respectively. The Prefix “>” in an entry means that the MAPF solver doesn’t solve the instance 
within a runtime limit of 5 minutes, and the number after “>” is the number of CT node expansions when the runtime 
limit is reached. The number of CT node expansions is large for CBSH on all instances. The number of CT node expansions is 
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Fig. 7. Shows the success rates of various CBS-based MAPF solvers on several different maps with varying numbers of agents.

1 for CBSH-RCT on the cardinal rectangle conflict and cardinal corridor conflict instances because it uses symmetry-breaking 
techniques. CBSH-RCT solves these instances faster than CBSH-M and CBSH-MS because the rectangle and corridor reasoning 
techniques have a smaller runtime overhead than mutex propagation. However, the number of CT node expansions is 1 for 
CBSH-M and CBSH-MS not only on these instances but also on the cardinal target conflict instances. The numbers of CT 
node expansions for CBSH-M and CBSH-MS are smaller than those for CBSH and CBSH-RCT on the cardinal switching agents 
conflict instances as well, where CBSH-M and CBSH-MS expands only 3 CT nodes with cardinal conflicts at the bottom of 
the CT and only CT nodes with semi-cardinal conflicts and non-cardinal conflicts in the rest of the CT. Overall, CBSH-M and 
CBSH-MS solve all cardinal instances with a small number of CT node expansions and with a runtime of less than 1 second.

Benchmark instances: We use four-neighbor grid map instances from the MAPF benchmark set in [26]. These include 
5 small maps: 2 empty maps of sizes 8 × 8 (empty-8-8) and 16 × 16 (empty-16-16), respectively, a 32 × 32 map with 
random blocked grid cells (random-32-32-20), and 2 64 ×64 maps divided into regular rooms of sizes 8 ×8 (room-64-64-8) 
and 16 × 16 (room-64-64-16), respectively, interconnected via doors. We also use 6 large maps: 2 128 × 128 maze maps 
with corridor widths 1 (maze-128-128-1) and 10 (maze-128-128-10), respectively, a 161 ×63 warehouse map with corridor 
width 1 (warehouse-10-20-10-2-1), and 3 game maps (‘ost003d’, ‘lak303d’, and ‘brc202d’).

We vary the number of agents and, for each number of agents, average over 25 “even scenarios”3 from the benchmark 
set. Fig. 7 shows the success rates of CBSH, CBSH-RCT, CBSH-M, CBSH-MS, CBSH-M-L and CBSH-MS-L, which specify the 
percentage of instances solved by each algorithm within the runtime limit of 2 minutes. All variants of CBSH with mu-
tex propagation outperform CBSH in terms of success rate on all maps. This shows that the runtime overhead of mutex 
reasoning is outweighed by its benefits in improving the total runtime. The addition of conflict selection (L) improves the 
success rate of both CBSH-M and CBSH-MS on all maps. On empty-8-8, empty-16-16, maze-128-128-1, and random-32-32-
20, CBSH-RCT has higher success rate than all mutex propagation variants because its symmetry-breaking techniques run 
faster than mutex propagation. On maze-128-128-10, room-64-64-8, room-64-64-16, and game maps, both CBSH-M-L and 
CBSH-MS-L outperform CBSH-RCT because they identify conflicts that CBSH-RCT does not identify. CBSH-M(-L) outperforms 
or has a similar success rate as CBSH-MS(-L) because CBSH-MS(-L) does not identify many semi-cardinal conflicts but runs 
slower than CBSH-M(-L).

The average runtime ratios of mutex reasoning, that is, the fraction of runtime expended on mutex propagation and 
constraint generation, in CBSH-M-L and CBSH-MS-L are shown in Fig. 8. The runtime ratios differ on different maps. In 
empty-16-16 and random-32-32-20, we observe that the addition of semi-cardinal conflict reasoning increases the runtime 
ratio of mutex reasoning. In empty-16-16, CBSH-M-L incurs the smallest runtime ratio of mutex reasoning, which implies 

3 a category of instances described in [26].
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Fig. 8. Shows the average runtime ratios of mutex reasoning in CBSH-M-L and CBSH-MS-L on different representative maps with varying numbers of agents.

Fig. 9. Shows the success rates of different variants of CBSH-M, implementing different ways of determining the numbers of MDD levels, on different 
representative maps with varying numbers of agents.

that there are relatively fewer cardinal conflicts encountered by CBSH-M-L. In Fig. 7, we observe that CBSH-M-L is outper-
formed by CBSH-RCT. On the other hand, in ‘lak303d’, CBSH-M-L and CBSH-MS-L spend a large portion of time on mutex 
reasoning, which implies that there are a larger number of cardinal conflicts in these instances. In Fig. 7, we also observe 
that CBSH-M-L outperforms CBSH-RCT since it is able to identify more cardinal conflicts.

6.1.2. Comparison of different ways of determining the numbers of MDD levels
In this section, we show that it is important for CBSH with mutex propagation to try to increase the numbers of MDD 

levels before generating the constraint sets. We also show that the performance of the solver is not significantly affected by 
the exact choice of determining the numbers of MDD levels among the alternatives discussed in Section 4.1.3. We compare 
CBSH-M against CBSH-M-Baseline, a variant that does not increase the numbers of MDD levels, and CBSH-M-A1 and CBSH-
M-A2, two other variants that implement the two alternative ways of determining the numbers of MDD levels. Fig. 9 shows 
the success rates of these four solvers. CBSH-M, CBSH-M-A1, and CBSH-M-A2 have very similar success rates on all maps. 
CBSH-M-Baseline has a slightly higher success rate than them on empty-16-16 because most cardinal conflicts on this map 
can be resolved efficiently without the solver increasing the numbers of MDD levels and CBSH-M-Baseline has a smaller 
runtime overhead than the other three solvers. However, on random-32-32-20 and lak303d, CBSH-M-Baseline has a lower 
success rate than the other three solvers because there are some cardinal conflicts that it cannot resolve efficiently while 
the other three solvers can.

6.2. Evaluation of mutex propagation in MDD-SAT

In this section, we experiment with different variants of MDD-SAT. We use MDD-SAT as a baseline and compare it to 
MDD-SAT with mutex propagation, namely, MDD-SAT-mutex. Both MAPF solvers share the same codebase written in C++. 
We use the Glucose 3.0 SAT solver [16].

We use the same 11 four-neighbor grid maps of Section 6.1 while varying the number of agents and, for each number 
of agents, average over 25 “even scenarios” from the benchmark set. Fig. 10 shows the success rates of MDD-SAT and 
MDD-SAT-mutex within a runtime limit of 5 minutes.

MDD-SAT-mutex is often faster than MDD-SAT, even though it spends a significant amount of time on mutex propagation. 
Overall, the runtime advantage of mutex propagation is less pronounced for SAT-based MAPF solvers compared to CBS-based 
MAPF solvers.

Fig. 11 shows the average runtime ratios of mutex propagation in MDD-SAT-mutex for different maps. Generally, we 
observe that the runtime ratios of mutex propagation in MDD-SAT-mutex are much lower compared to those in CBS. The 
runtime ratio is as high as 40% on random-32-32-20 and as low as 10% on ‘lak303d’. We also observe that the runtime ratio 
of mutex propagation increases with the number of agents until a certain threshold is reached. After this, the runtime of 
the SAT solver becomes the dominating factor in the overall runtime.

It is also important to note that mutex propagation in MDD-SAT-mutex is used only for preprocessing the MDDs, that 
is, it is executed only once before extracting a valid solution from the MDDs via the SAT solver. This is in contrast to CBS, 
where mutex propagation is interleaved with CT node expansions. This accounts for the lower runtime ratios of mutex 
propagation in MDD-SAT-mutex compared to those in CBS.
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Fig. 10. Shows the success rates of MDD-SAT and MDD-SAT-mutex on several different maps with varying numbers of agents.

Fig. 11. Shows the average runtime ratio of mutex propagation in MDD-SAT-mutex on different representative maps with varying numbers of agents.

The similarity of success rates of MDD-SAT and MDD-SAT-mutex in some benchmarks (when the corresponding plots are 
close to each other), or the result that MDD-SAT-mutex solves few more instances within the given time limit means that 
MDD-SAT-mutex is constant factor faster than MDD-SAT.

Additional results concerning the number of clauses being generated by MDD-SAT and MDD-SAT-mutex are shown in 
Table 2. We can observe that the number of clauses generated by mutex propagation in MDD-SAT-mutex is substantially 
smaller than the number of clauses of the original encoding represented by MDD-SAT. However the number of clauses 
generated by mutex propagation quickly grows for increasing number of agents. This can be explained by more complex 
agents’ interactions when more agents are present.

7. Related work

Our work is related to merging MDDs in [29] since merging MDDs, like mutex propagation, can also be used to determine 
the existence of conflict-free paths. Different from mutex propagation, merging MDDs finds all reachable states instead of 
all mutually exclusive states. It is also applicable to more than two agents. However, it becomes very time-consuming as 
the number of agents increases.

Our work is also related to CBS with improved heuristics (CBSH2) [9] since CBSH2 also uses reasoning about agent pairs 
to determine the minimum increment of the SoC for pairs of agents. In particular, the heuristic used by CBSH with mutex 
propagation is equivalent to the DG heuristic of CBSH2 because a cardinal conflict defined in this article is equivalent to a 
pair of dependent agents defined in [9]. In addition, the number of levels determined in Section 4.1.3 can also be used to 
improve the WDG heuristic of CBSH2, which we leave for future work.
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Table 2

Number of clauses generated by MDD-SAT and MDD-SAT-mutex. The 
percentage of clauses generated during mutex propagation is shown. 
Results per number of agents are aggregated across scenarios out of 25 
scenarios solved within the time limit.

Number of agents empty-16-16

MDD-SAT MDD-SAT-mutex % of derived

10 14165 14175 0.07
20 89606 89969 0.40
30 3115189 3288143 5.26

Number of agents random-32-32-20

MDD-SAT MDD-SAT-mutex % of derived

8 17599 17640 0.23
12 432852 438309 1.25
16 14021125 14625268 4.13

Number of agents lak303d

MDD-SAT MDD-SAT-mutex % of derived

5 63670 63675 <0.01
10 1323064 1323202 0.01
15 50505605 50644713 0.27

Our work is also related to mutex reasoning built into the makespan-optimal SAT-based MAPF solver in [37]. Mutexes 
are computed for each pair of vertices and each pair of agents via search in the joint search space corresponding to config-
urations of the pair of agents. No mutex propagation is used.

Finally, our work is related to [38], [39], and [40], where graph structures in mutex networks (such as cliques) are 
detected. After the detection, the mutexes represented by these structures are encoded using representations more sophisti-
cated than pairwise binary mutex clauses. However, these MAPF solvers benefit only marginally from such representations.

8. Conclusions and future work

In this article, we studied mutex propagation in the context of MAPF to efficiently reason about the interactions of pairs 
of agents and infer applicable constraints from the resulting mutexes. We also proposed a novel algorithmic framework 
for automatically identifying cardinal conflicts and generating strong constraint sets for guiding the high-level search of CBS 
while preserving its optimality guarantee. Our experimental results report significant improvements over the state-of-the-art 
CBS-based and SAT-based MAPF solvers with respect to runtime and success rate.

Interesting directions for future work include: (a) Applying mutex propagation to variants of MAPF problems where 
conflicts are implicitly represented, such as the robust MAPF problem [41] and the MAPF problem with generalized con-
flicts [42]; (b) Studying mutex propagation for incomplete Boolean models of MAPF where the formula is built lazily [43]; 
and (c) Studying efficient Boolean encodings of the large mutex networks that arise in MDDs.
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