
Multi-Agent Path Finding
for Precedence-Constrained Goal Sequences

Han Zhang
University of Southern California

Los Angeles, CA, USA
zhan645@usc.edu

Jingkai Chen
Massachusetts Institute of Technology

Cambridge, MA, USA
jkchen@csail.mit.edu

Jiaoyang Li
University of Southern California

Los Angeles, CA, USA
jiaoyanl@usc.edu

Brian C. Williams
Massachusetts Institute of Technology

Cambridge, MA, USA
williams@csail.mit.edu

Sven Koenig
University of Southern California

Los Angeles, CA, USA
skoenig@usc.edu

ABSTRACT

With the rising demand for deploying robot teams in autonomous

warehouses and factories, the Multi-Agent Path Finding (MAPF)

problem has drawn more and more attention. The classical MAPF

problem and most of its variants focus on navigating agent teams

to goal locations while avoiding collisions. However, they do not

take into account any precedence constraints that agents should

respect when reaching their goal locations. Planning with prece-

dence constraints is important for real-world multi-agent systems.

For example, a mobile robot can only pick up a package at a sta-

tion after it has been delivered by another robot. In this paper, we

study the Multi-Agent Path Finding with Precedence Constraints

(MAPF-PC) problem, in which agents need to visit sequences of

goal locations while satisfying precedence constraints between the

goal locations. We propose two algorithms for solving this problem

systematically: Conflict-Based Search with Precedence Constraints

(CBS-PC) is complete and optimal, and Priority-Based Search with

Precedence Constraints (PBS-PC) is incomplete but more efficient

in finding near-optimal solutions in practice. Our experimental

results show that CBS-PC scales to dozens of agents and hundreds

of goal locations and precedence constraints, and PBS-PC scales

to hundreds of agents, around one thousand goal locations, and

hundreds of precedence constraints.

KEYWORDS

Multi-Agent Path Finding; Precedence Constraints

ACM Reference Format:

Han Zhang, Jingkai Chen, Jiaoyang Li, Brian C. Williams, and Sven Koenig.

2022. Multi-Agent Path Finding for Precedence-Constrained Goal Sequences.

In Proc. of the 21st International Conference on Autonomous Agents and Mul-

tiagent Systems (AAMAS 2022), Online, May 9ś13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION

In intelligent warehouse and factory systems, large teams of robots

are expected to complete constantly dispatched tasks effectively.

One typical example is the Kiva (now: Amazon Robotics) warehouse

Han Zhang and Jingkai Chen contributed equally to this work.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9ś13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

system, in which hundreds of Kiva robots are coordinated to trans-

port movable shelving units on the fly without human intervention

[17]. The Multi-Agent Path Finding (MAPF) problem is the problem

of navigating a team of agents from their start locations to their goal

locations while avoiding collisions. Due to the rising demand for

developing such multi-robot systems, MAPF has drawn more and

more attention, and MAPF algorithms are regarded as fundamental

techniques for coordinating the motions of robot teams.

Although classical MAPF algorithms can find effective plans for

navigating mobile robots in autonomous warehouses, they only

plan for agents to reach single goal locations. In real-world systems,

we often need to coordinate robots that fulfill streams of tasks

with precedence constraints over relatively long time horizons. For

example, a mobile robot needs to move to several stations to deliver

different packages, and another mobile robot can only pick up a

package after it has been delivered to the corresponding station.

However, existing MAPF algorithms do not consider precedence

constraints between goals when planning the path to reach a se-

quence of goal locations for each agent [5]. This motivates us to

study the Multi-Agent Path Finding with Precedence Constraints

(MAPF-PC) problem, in which agents need to complete sequences

of goals (by reaching the goal locations) while satisfying precedence

constraints between the goals. We present two algorithms for solv-

ing MAPF-PC: Conflict-Based Search with Precedence Constraints

(CBS-PC) and Priority-Based Search with Precedence Constraints

(PBS-PC), which generalize the state-of-the-art MAPF algorithms

CBS [14] and PBS [10], respectively. We also propose several im-

provements to CBS-PC. Like CBS and PBS, CBS-PC is complete and

optimal, and PBS-PC is incomplete but more efficient in obtaining

near-optimal plans in practice.

We benchmarked CBS-PC and PBS-PC on MAPF-PC instances

with different numbers of agents, goals, and precedence constraints.

The results show that the most advanced CBS-PC variant scales to

dozens of agents and hundreds of goal locations and precedence

constraints, and PBS-PC scales to hundreds of agents, around one

thousand goal locations, and hundreds of precedence constraints.

2 PRELIMINARIES

In this section, we introduce MAPF, CBS, prioritized planning, and

PBS to provide the necessary background for theMAPF-PC problem

and our MAPF-PC algorithms.



2.1 MAPF

The MAPF problem is defined by an undirected graph 𝐺 = (𝑉 , 𝐸)

and a set of𝑚 agents {𝑎1 . . . 𝑎𝑚}. Each agent 𝑎𝑖 has a start vertex

𝑠𝑖 ∈ 𝑉 and a goal vertex 𝑔𝑖 ∈ 𝑉 . In each timestep, an agent either

moves to a neighboring vertex, waits at its current vertex, or ter-

minates at its goal vertex (that is, does not move anymore). Both

move and wait actions have unit cost, and terminate actions have

zero cost. A path of an agent is a sequence of actions that leads it

from its start vertex to its goal vertex and ends with a terminate

action. The path cost of a path is the accumulated cost of all actions

in this path. A vertex conflict happens when two agents stay at the

same vertex simultaneously, and an edge conflict happens when

two agents traverse the same edge in opposite directions simulta-

neously. A solution is a set of conflict-free paths of all agents. A

solution is an optimal solution iff there is no other solution with

a smaller objective value. Two common objectives for MAPF are

the Sum of path Costs (SoC) and the makespan. The SoC is the sum

of the path costs of the paths of all agents, and the makespan is

the maximum path cost of the paths of all agents. Solving MAPF

optimally is NP-hard for either objective [12, 18].

2.2 CBS

CBS [14] is a complete and optimal two-level MAPF algorithm. On

the high level, CBS performs a best-first search on a Constraint

Tree (CT). Each CT node contains (1) a set of constraints1 and (2) a

set of paths, one for each agent, that satisfy all these constraints.

The cost of a CT node is the SoC or makespan of all its paths,

depending on the objective of the MAPF problem. CBS starts with

the root CT node, which has an empty set of constraints and a

path for each agent that has the minimum path cost when ignoring

conflicts. When expanding a CT node, CBS returns the paths of it

as a solution if the paths are conflict-free. Otherwise, CBS picks a

conflict to resolve, splits the CT node into two child CT nodes, and

adds a constraint to each child CT node to prohibit either one or the

other of the two conflicting agents from using the conflicting vertex

or edge at the conflicting timestep. CBS then calls its low level to

replan the path of the newly constrained agent in each child CT

node. On the low level, for a given CT node and a given agent, CBS

finds a path for the agent that has the minimum path cost while

satisfying all constraints of the CT node but ignoring conflicts.

2.3 Prioritized Planning and PBS

Prioritized planning is a simple-yet-effective MAPF algorithm that

plans the agents according to a predefined total priority ordering.

A priority ordering ≺≺≺ is a strict partial order on {𝑎1 . . . 𝑎𝑚} where

𝑎𝑖 ≺ 𝑎 𝑗 indicates that agent 𝑎𝑖 is of higher priority than agent 𝑎 𝑗 .

A total priority ordering ≺≺≺ satisfies that, for any two agents 𝑎𝑖 and

𝑎 𝑗 , we have either 𝑎𝑖 ≺ 𝑎 𝑗 or 𝑎 𝑗 ≺ 𝑎𝑖 . Prioritized planning plans

for agents in the order from highest priority to lowest priority. For

each agent, it finds a path that has the minimum path cost among

all paths that avoid conflicts with the paths of all higher-priority

agents. Whether prioritized planning finds a solution often depends

1The constraints in a CT are added by CBS to solve the MAPF instance. They are
different from precedence constraints, which characterize a MAPF-PC instance and
are thus part of the input.

on the predefined priority ordering, and it is not always easy to

find a priority ordering that works.

PBS [10] is a two-level MAPF algorithm which systematically

searches for such a priority ordering. On the high level, it performs

a depth-first search on a Priority Tree (PT). Each PT node𝑁 contains

(1) a priority ordering ≺≺≺𝑁 and (2) a set of paths, one for each agent,

that respects its priority ordering, i.e., the paths of any two agents

𝑎𝑖 and 𝑎 𝑗 with 𝑎𝑖 ≺𝑁 𝑎 𝑗 are conflict-free. PBS starts with the root

PT node, which has an empty priority ordering (that is, no agent

is of higher priority than another) and thus a path for each agent

that has the minimum path cost when ignoring conflicts. When

expanding a PT node, PBS picks a pair of conflicting agents 𝑎𝑖 and

𝑎 𝑗 and splits the PT node into two child PT nodes, each extending

the priority ordering of its parent PT node with either 𝑎𝑖 ≺ 𝑎 𝑗 or

𝑎 𝑗 ≺ 𝑎𝑖 . PBS then calls its low level to replan the paths of the child

nodes so that their paths respect their priority orderings. On the

low level, for each PT node, PBS uses topological sorting according

to the priority ordering to order the agents and plans paths for them

in that order. Like prioritized planning, PBS plans a path for each

agent that has the minimum path cost among all paths that avoid

conflicts with the paths of higher-priority agents. A PT node is

pruned if PBS cannot find such a path for at least one agent. When

generating a PT node, PBS returns the paths of it as a solution if

the paths are conflict-free. PBS is neither optimal nor complete, but

existing work shows that it often finds solutions that are close to

optimal and scales well to large numbers of agents [9, 10].

3 PROBLEM DEFINITION

The MAPF-PC problem is defined by an undirected graph 𝐺 =

(𝑉 , 𝐸), a set of𝑚 agents {𝑎1 . . . 𝑎𝑚}, and a set of precedence con-

straints T . Each agent 𝑎𝑖 has a start vertex 𝑠𝑖 ∈ 𝑉 and a sequence

of 𝑙𝑖 goals [𝑔
1

𝑖 , 𝑔
2

𝑖 . . . 𝑔
𝑙𝑖
𝑖
]. Each goal 𝑔

𝑗
𝑖
corresponds to a goal vertex

𝑔
𝑗
𝑖
.𝑙𝑜𝑐 ∈ 𝑉 . When agent 𝑎𝑖 is at 𝑔

𝑗
𝑖
.𝑙𝑜𝑐 , it can (but is not required to)

complete goal 𝑔
𝑗
𝑖
. Complete actions take zero timesteps and have

zero cost. We use 𝜏 (𝑔
𝑗
𝑖
) to denote the completion timestep of 𝑔

𝑗
𝑖
.

Each precedence constraint ⟨𝑔
𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′
⟩ ∈ T is a tuple of two goals

𝑔
𝑗
𝑖
and 𝑔

𝑗 ′

𝑖′
and means that 𝑔

𝑗
𝑖
must be completed before 𝑔

𝑗 ′

𝑖′
. An

agent must complete its goals in the order of the goal sequence

and terminates when it completes its last goal. The completion

timesteps of all goals must satisfy the precedence constraints as

well. Besides vertex and edge conflicts, we consider a new type of

conflict called precedence conflict. A precedence conflict happens

when there exists a pair of goals 𝑔
𝑗
𝑖
and 𝑔

𝑗 ′

𝑖′
such that 𝜏 (𝑔

𝑗
𝑖
) ≥ 𝜏 (𝑔

𝑗 ′

𝑖′
)

and ⟨𝑔
𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′
⟩ ∈ T . In MAPF-PC, a path for an agent also needs to

specify the completion timestep of each goal of the agent. A path

segment for goal 𝑔
𝑗
𝑖
is a sequence of actions from the completion of

𝑔
𝑗−1
𝑖

(or timestep 0 if 𝑗 = 1) to the completion of 𝑔
𝑗
𝑖
. A solution to a

MAPF-PC instance is a set of conflict-free paths for all agents.

The MAPF problem is a sub-class of the MAPF-PC problem

where each agent has only one goal and T = ∅. Therefore, solving

MAPF-PC optimally is also NP-hard.





v1
1

x0

v2
1

v1
2

v1
3

[d(s1, g1
1. loc), +∞)

[d(s2, g1
2. loc), +∞)

[d(s3, g1
3. loc), +∞)

. loc, g2
1. loc), +∞)[d(g1

1

∞)[1,+

∞)[1,+

∞)[1,+

Figure 2: The STN for the root CT node of the MAPF-PC in-

stance in Example 2.

4.4 Improvements

We now present three techniques for improving the efficiency of

CBS-PC. One of them is a specialized technique for MAPF-PC, and

the other two are adopted from existing work on improving CBS.

Constraint propagation:CBS-PC only adds completion timestep

constraints when it picks a precedence conflict to split on. However,

additional completion timestep constraints can be inferred from

the existing ones in a way similar to how 𝜏 (𝑔
𝑗
𝑖
) ≤ 𝑡 − 1 is inferred

in Completion Timestep Constraint (2).

When generating a CT node, CBS-PC builds a Simple Temporal

Network (STN) for the CT node [3]. An STN is a directed acyclic

graph ⟨𝑉 ,TC⟩. Each vertex 𝑣 ∈ 𝑉 represents a time point, called an

event, and 𝜏 (𝑣) represents the occurrence time of 𝑣 . Each STN has a

reference event 𝑥0 ∈ 𝑉 that represents the łbeginning of time,ž and

𝜏 (𝑥0) is conventionally set to 0. Each edge ⟨𝑣, 𝑣 ′⟩ ∈ TC, annotated

with an interval [𝐿𝐵,𝑈𝐵], indicates that 𝑣 must occur between 𝐿𝐵

and 𝑈𝐵 time units after 𝑣 ′, that is, 𝜏 (𝑣 ′) − 𝜏 (𝑣) ∈ [𝐿𝐵,𝑈𝐵]. To

construct the STN for a CT node, for each goal 𝑔
𝑗
𝑖
, CBS-PC adds

a vertex 𝑣
𝑗
𝑖
to the STN to represent the completion of 𝑔

𝑗
𝑖
. CBS-PC

adds edges to the STN in three cases:

(1) We use 𝑑 (𝑥,𝑦) to denote the minimum cost needed to move

from 𝑥 to 𝑦 in graph 𝐺 while ignoring constraints and con-

flicts. For each agent 𝑎𝑖 , CBS-PC adds edge ⟨𝑥0, 𝑣
1

𝑖 ⟩ with

interval [𝑑 (𝑠𝑖 , 𝑔
1

𝑖 .𝑙𝑜𝑐), +∞) to the STN, and, for each pair of

consecutive goals 𝑔
𝑗
𝑖
and 𝑔

𝑗+1
𝑖

, CBS-PC adds edge ⟨𝑣
𝑗
𝑖
, 𝑣

𝑗+1
𝑖
⟩

with interval [𝑑 (𝑔
𝑗
𝑖
.𝑙𝑜𝑐, 𝑔

𝑗+1
𝑖

.𝑙𝑜𝑐), +∞) to the STN.

(2) For each precedence constraint ⟨𝑔
𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′
⟩ ∈ T , CBS-PC adds

edge ⟨𝑣
𝑗
𝑖
, 𝑣

𝑗 ′

𝑖′
⟩ with interval [1, +∞) to the STN.

(3) For each completion timestep constraint 𝜏 (𝑔
𝑗
𝑖
) > 𝑡 , CBS-

PC adds edge ⟨𝑥0, 𝑣
𝑗
𝑖
⟩ with interval [𝑡 + 1, +∞) to the STN.

Similarly, for each completion timestep constraint 𝜏 (𝑔
𝑗
𝑖
) ≤ 𝑡 ,

CBS-PC adds edge ⟨𝑥0, 𝑣
𝑗
𝑖
⟩ with interval [0, 𝑡] to the STN.

The lower and upper bounds on the completion timestep of each

goal in the STN can be computed using the Bellman-Ford algorithm.

Each lower and upper bound can be converted to a completion

timestep constraint. CBS-PC adds these constraints to the generated

CT node if the CT node does not contain them already.

Example 2. Consider aMAPF-PC instance with three agents. Agent

𝑎1 has two goals, and agents 𝑎2 and 𝑎3 both have one goal. T =

{⟨𝑔1
1
, 𝑔1

2
⟩, ⟨𝑔1

1
, 𝑔1

3
⟩, ⟨𝑔1

2
, 𝑔1

3
⟩}. Figure 2 shows the corresponding STN for

⋯ ⋯

τ(g1
2
) > d(s1, g1

1. loc)

τ(g1
3
) > d(s1, g1

1. loc)

τ(g1
3
) > d(s1, g1

1. loc) + 1

τ(g1
2
) ≤ d(s1, g1

1. loc)

τ(g1
1
) ≤ d(s1, g1

1. loc) − 1

τ(g1
3
) ≤ d(s1, g1

1. loc)

τ(g1
1
) ≤ d(s1, g1

1. loc) − 1

τ(g1
3
) ≤ d(s1, g1

1. loc) + 1

τ(g1
2
) ≤ d(s1, g1

1. loc)

(a)

⋯ ⋯

. . .

τ(g1
2
) > d(s1, g1

1. loc)

τ(g1
3
) > d(s1, g1

1. loc) + 1

(b)

Figure 3: CTs of CBS-PC with and without constraint propa-

gation when solving the MAPF-PC instance in Example 2.

the root CT node. The four solid edges are due to Case (1), and the

three dashed edges are due to Case (2). We assume that 𝑑 (𝑠1, 𝑔
1

1
.𝑙𝑜𝑐) >

𝑑 (𝑠2, 𝑔
1

2
.𝑙𝑜𝑐) > 𝑑 (𝑠3, 𝑔

1

3
.𝑙𝑜𝑐).

Figure 3a shows the CT of CBS-PC without constraint propagation.

The text next to the edges describes the constraints added to the CT

nodes. Crossed-out CT nodes are pruned because CBS-PC cannot find

paths for some agents. CBS-PC generates multiple CT nodes to resolve

the precedence conflicts between 𝑔1
1
and 𝑔1

2
, 𝑔1

1
and 𝑔1

3
, and 𝑔1

2
and

𝑔1
3
, respectively. Figure 3b shows the CT of CBS-PC with constraint

propagation. The blue text next to the root CT node describes the

constraints generated from constraint propagation, which impose

lower bounds on the completion timesteps of the goals. Since the low-

level planner is aware of these completion timestep constraints, the

paths in the root CT node do not exhibit the previously mentioned

precedence conflicts.

Disjoint splitting: Different from the standard splitting rule of

CBS, disjoint splitting [8] picks one conflicting agent and then (1)

adds a constraint to one child CT node to prohibit this agent from

using the conflicting vertex or edge at the conflicting timestep and

(2) adds a constraint to the other child CT node to force this agent

to use the conflicting vertex or edge at the conflicting timestep,

which implies that no other agent can use the conflicting vertex

or edge at the conflicting timestep. Since disjoint splitting is able

to speed up different variants of CBS significantly, we use it in the

context of CBS-PC as well.

Target reasoning: A vertex conflict is a target conflict [7] if

and only if one of the conflicting agents, denoted as 𝑎𝑖 , terminates

before the conflicting timestep, denoted as 𝑡 . It is inefficient for CBS-

PC to resolve target conflicts with only vertex and edge constraints.

Instead, target reasoning [7] uses constraints 𝜏 (𝑔𝑙𝑖
𝑖
) > 𝑡 (the path

of 𝑎𝑖 needs to be replanned) and 𝜏 (𝑔𝑙𝑖
𝑖
) ≤ 𝑡 (the path of the other

conflicting agent needs to be replanned because only 𝑎𝑖 is allowed

to occupy 𝑔𝑙𝑖
𝑖
.𝑙𝑜𝑐 at timestep 𝑡 ) to resolve target conflicts. Note that

𝑙𝑖 denotes the number of goals of agent 𝑎𝑖 .





Algorithm 2: UpdatePath(PT node 𝑁 )

25 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑆𝑜𝑟𝑡 (Γ,≺≺≺𝑁 );

26 foreach 𝑔 ∈ Γ do

27 if 𝑁 .paths[𝑔] is empty then

28 𝑝 ← PlanPath(𝑁,𝑔); // Algorithm 3

29 if 𝑝 is empty then

30 return false;

31 𝑁 .paths[𝑔] ← 𝑝;

32 𝑔′ ← FindConflictingGoal(𝑁,𝑔);

33 if 𝑔′ is not empty then

34 𝑁 .conflict← (𝑔,𝑔′);

35 return true;

36 return true;

Algorithm 3: PlanPath(PT node 𝑁 , goal 𝑔
𝑗
𝑖
)

37 𝑃 ← {𝑁 .𝑝𝑎𝑡ℎ𝑠 [𝑔] | 𝑔 ≺𝑁 𝑔
𝑗
𝑖
};

38 if 𝑗 > 1 then

39 𝑡0 ← CompletionTimestep(𝑁 .paths[𝑔
𝑗−1
𝑖
]);

40 𝑙𝑜𝑐0 ← 𝑔
𝑗−1
𝑖

.𝑙𝑜𝑐;

41 else

42 𝑡0 ← 0;

43 𝑙𝑜𝑐0 ← 𝑠𝑖 ;

44 𝑇 ← max{CompletionTimestep(𝑁 .paths[𝑔]) | ⟨𝑔,𝑔
𝑗
𝑖
⟩ ∈ T }

or −1 if there is no such 𝑔 that ⟨𝑔,𝑔
𝑗
𝑖
⟩ ∈ T ;

45 𝑝 ← a minimum-cost path segment for goal 𝑔
𝑗
𝑖
that starts at

vertex 𝑙𝑜𝑐0 at timestep 𝑡0, ends at vertex 𝑔
𝑗
𝑖
.𝑙𝑜𝑐 after

timestep 𝑇 , and does not conflict with any path in 𝑃 (or

empty if no such path exists);

46 return 𝑝;

node with a new pair of goals. Let 𝑔′ denote the goal of the lower

priority in the new ordered pair. PBS-PC empties the path segments

of 𝑔′ and all paths that are of lower priority than it.

Algorithm 3 plans the path segment for goal 𝑔
𝑗
𝑖
. If 𝑗 = 1, that is,

𝑔
𝑗
𝑖
is the first goal of the agent, the start timestep and start vertex

of search are set to 0 and the start vertex of the agent, respectively.

Otherwise, the start timestep and start vertex are set to the com-

pletion timestep and goal vertex of the immediate previous goal of

𝑔
𝑗
𝑖
, respectively. The earliest timestep when 𝑎𝑖 is allowed to com-

plete 𝑔
𝑗
𝑖
can be computed by checking the completion timesteps

of all goals that need to be completed before 𝑔
𝑗
𝑖
(whose path seg-

ments have already been planned because goals are planned in a

topologically sorted order).

In any PT node of PBS-PC, there is no precedence conflict be-

tween any two non-empty path segments because Algorithm 3 only

finds path segments that satisfy all precedence constraints. The

returned solution does not contain a vertex or edge conflict because,

if there is one, the conflict will be found in Line 32, and PBS-PC

would not return the set of paths as a solution. Therefore, solutions

(a) random-32-32-20 (b) warehouse-10-20-10-2-1

Figure 5: The grid maps of the MAPF-PC instances used in

the experimental evaluation.

returned by PBS-PC are conflict-free. Similar to PBS, PBS-PC is

neither complete nor optimal.

6 EXPERIMENTAL EVALUATION

In this section, we compare the results of different variants of CBS-

PC, PBS, and PBS-PC on MAPF-PC instances with four-neighbor

grid maps. The variants of CBS-PC are CBS-PC, CBS-PC-c, CBS-PC-

t, CBS-PC-d, and CBS-PC-dct, where c adds constraint propagation,

d adds disjoint splitting, and t adds target reasoning. All algorithms

were implemented in C++2 and share the same code base as much

as possible. We ran all experiments on t2.large AWS EC2 instances

with 8GB of memory. The time limit for solving each MAPF-PC

instance was five minutes.

To generate a MAPF-PC instance, we randomly generated the

start vertex of each agent and a set of goal vertices. Then, we began

with an empty precedence constraint set T , repeatedly picked a

random precedence constraint and added it to T if it was not in

T already and would not introduce cycles, until the number of

precedence constraints reached a given number (specified below).

Then, we used the Token Passing algorithm [11] to assign goals

greedily and generate the goal sequence for each agent.

We picked two gridmaps from theMAPF benchmark [16]: random-

32-32-20 and warehouse-10-20-10-2-1 (shown in Figure 5). For each

grid map, we ran two sets of experiments: (1) MAPF-PC instances

with different numbers of agents (ranging from 30 to 100), 200 goals,

and 120 precedence constraints. (2) MAPF-PC instances with dif-

ferent numbers of precedence constraints (ranging from 80 to 280),

200 goals, and 60 agents. For each number of agents or precedence

constraints, we generated 50 random instances.

Comparing variants of CBS-PC: Figures 6 and 7 show the

results for the CBS-PC variants. The success rate of an algorithm is

the percentage of MAPF-PC instances that it solves within the time

limit. For the CBS-PC variants without target reasoning, CBS-PC-d

almost always had slightly higher success rates than CBS-PC. CBS-

PC-c had similar or slightly worse success rates than the other two

variants when the number of precedence constraints was less than

200 because the computational overhead outweighs the benefit

of the technique. However, it had better success rates than the

other two variants when the number of precedence constraints was

large enough (namely, at least 240) because constraint propagation

significantly reduced the number of precedence conflicts that need

to be resolved.

The CBS-PC variants with target reasoning, CBS-PC-t and CBS-

PC-dct, had better success rates than the other three variants in

most of the experiments. CBS-PC-dct had better success rates than

2https://github.com/HanZhang39/MAPF-PC







REFERENCES
[1] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betza-

lel, and Solomon Eyal Shimony. 2015. ICBS: Improved Conflict-Based Search
Algorithm for Multi-Agent Pathfinding. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI). 740ś746.

[2] Kyle Brown, Oriana Peltzer, Martin A. Sehr, Mac Schwager, and Mykel J. Kochen-
derfer. 2020. Optimal Sequential Task Assignment and Path Finding for Multi-
Agent Robotic Assembly Planning. In Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA). 441ś447.

[3] Rina Dechter, Itay Meiri, and Judea Pearl. 1991. Temporal Constraint Networks.
Artificial intelligence 49 (1991), 61ś95.

[4] Maria L. Gini. 2017. Multi-Robot Allocation of Tasks with Temporal and Ordering
Constraints. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
4863ś4869.

[5] Florian Grenouilleau, Willem-Jan van Hoeve, and John N Hooker. 2019. A Multi-
Label A* Algorithm for Multi-Agent Pathfinding. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling (ICAPS). 181ś185.

[6] Gilbert Laporte and Ibrahim H. Osman. 1995. Routing Problems: A Bibliography.
Annals of Operations Research 61, 1 (1995), 227ś262.

[7] Jiaoyang Li, Graeme Gange, Daniel Harabor, Peter J. Stuckey, Hang Ma, and
Sven Koenig. 2020. New Techniques for Pairwise Symmetry Breaking in Multi-
Agent Path Finding. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS). 193ś201.

[8] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Ariel Felner, Hang Ma, and Sven
Koenig. 2019. Disjoint Splitting for Multi-Agent Path Finding with Conflict-Based
Search. In Proceedings of the International Conference on Automated Planning and
Scheduling (ICAPS). 279ś283.

[9] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Kumar,
and Sven Koenig. 2021. Lifelong Multi-Agent Path Finding in Large-Scale Ware-
houses. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
11272ś11281.

[10] Hang Ma, Daniel Harabor, Peter J. Stuckey, Jiaoyang Li, and Sven Koenig. 2019.
Searching with Consistent Prioritization for Multi-Agent Path Finding. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI). 7643ś7650.

[11] Hang Ma, Jiaoyang Li, T. K. Satish Kumar, and Sven Koenig. 2017. Lifelong
Multi-Agent Path Finding for Online Pickup and Delivery Tasks. In Proceedings
of the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS). 837ś845.

[12] HangMa, Craig A. Tovey, Guni Sharon, T. K. Satish Kumar, and Sven Koenig. 2016.
Multi-Agent Path Finding with Payload Transfers and the Package-Exchange
Robot-Routing Problem. In Proceedings of the AAAI Conference on Artificial Intel-
ligence (AAAI). 3166ś3173.

[13] James Motes, Read Sandström, Hannah Lee, Shawna Thomas, and Nancy M.
Amato. 2020. Multi-Robot Task and Motion Planning with Subtask Dependencies.
IEEE Robotics and Automation Letters 5, 2 (2020), 3338ś3345.

[14] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. 2015. Conflict-
Based Search for Optimal Multi-Agent Pathfinding. Artificial Intelligence 219
(2015), 40ś66.

[15] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. 2013. The Increasing
Cost Tree Search for Optimal Multi-Agent Pathfinding. Artificial Intelligence 195
(2013), 470ś495.

[16] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T.
Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Eli Boyarski,
and Roman Bartak. 2019. Multi-Agent Pathfinding: Definitions, Variants, and
Benchmarks. Proceedings of the Symposium on Combinatorial Search (SoCS) (2019),
151ś158.

[17] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. 2007. Coordinating
Hundreds of Cooperative, Autonomous Vehicles in Warehouses. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI). 1752ś1760.

[18] Jingjin Yu and Steven M. LaValle. 2013. Structure and Intractability of Optimal
Multi-Robot Path Planning on Graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI). 1444ś1449.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 MAPF
	2.2 CBS
	2.3 Prioritized Planning and PBS

	3 Problem Definition
	4 CBS with Precedence Constraints
	4.1 High Level of CBS-PC
	4.2 Low Level of CBS-PC
	4.3 Theoretical Analysis
	4.4 Improvements

	5 PBS with Precedence Constraints
	5.1 Naïve PBS for MAPF-PC
	5.2 PBS-PC

	6 Experimental Evaluation
	7 Related Work
	8 Conclusions and Future Work
	9 Acknowledgments
	References

