Multi-Agent Path Finding
for Precedence-Constrained Goal Sequences

Han Zhang

University of Southern California
Los Angeles, CA, USA
zhan645@usc.edu

Brian C. Williams

Massachusetts Institute of Technology

Cambridge, MA, USA
williams@csail. mit.edu

ABSTRACT

With the rising demand for deploying robot teams in autonomous
warehouses and factories, the Multi-Agent Path Finding (MAPF)
problem has drawn more and more attention. The classical MAPF
problem and most of its variants focus on navigating agent teams
to goal locations while avoiding collisions. However, they do not
take into account any precedence constraints that agents should
respect when reaching their goal locations. Planning with prece-
dence constraints is important for real-world multi-agent systems.
For example, a mobile robot can only pick up a package at a sta-
tion after it has been delivered by another robot. In this paper, we
study the Multi-Agent Path Finding with Precedence Constraints
(MAPF-PC) problem, in which agents need to visit sequences of
goal locations while satisfying precedence constraints between the
goal locations. We propose two algorithms for solving this problem
systematically: Conflict-Based Search with Precedence Constraints
(CBS-PC) is complete and optimal, and Priority-Based Search with
Precedence Constraints (PBS-PC) is incomplete but more efficient
in finding near-optimal solutions in practice. Our experimental
results show that CBS-PC scales to dozens of agents and hundreds
of goal locations and precedence constraints, and PBS-PC scales
to hundreds of agents, around one thousand goal locations, and
hundreds of precedence constraints.

KEYWORDS
Multi-Agent Path Finding; Precedence Constraints

ACM Reference Format:

Han Zhang, Jingkai Chen, Jiaoyang Li, Brian C. Williams, and Sven Koenig.
2022. Multi-Agent Path Finding for Precedence-Constrained Goal Sequences.
In Proc. of the 21st International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2022), Online, May 9-13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION

In intelligent warehouse and factory systems, large teams of robots
are expected to complete constantly dispatched tasks effectively.
One typical example is the Kiva (now: Amazon Robotics) warehouse

Han Zhang and Jingkai Chen contributed equally to this work.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Jingkai Chen
Massachusetts Institute of Technology
Cambridge, MA, USA
jkchen@csail. mit.edu

Jiaoyang Li
University of Southern California
Los Angeles, CA, USA
jlaoyanl@usc.edu

Sven Koenig
University of Southern California
Los Angeles, CA, USA
skoenig@usc.edu

system, in which hundreds of Kiva robots are coordinated to trans-
port movable shelving units on the fly without human intervention
[17]. The Multi-Agent Path Finding (MAPF) problem is the problem
of navigating a team of agents from their start locations to their goal
locations while avoiding collisions. Due to the rising demand for
developing such multi-robot systems, MAPF has drawn more and
more attention, and MAPF algorithms are regarded as fundamental
techniques for coordinating the motions of robot teams.

Although classical MAPF algorithms can find effective plans for
navigating mobile robots in autonomous warehouses, they only
plan for agents to reach single goal locations. In real-world systems,
we often need to coordinate robots that fulfill streams of tasks
with precedence constraints over relatively long time horizons. For
example, a mobile robot needs to move to several stations to deliver
different packages, and another mobile robot can only pick up a
package after it has been delivered to the corresponding station.

However, existing MAPF algorithms do not consider precedence
constraints between goals when planning the path to reach a se-
quence of goal locations for each agent [5]. This motivates us to
study the Multi-Agent Path Finding with Precedence Constraints
(MAPF-PC) problem, in which agents need to complete sequences
of goals (by reaching the goal locations) while satisfying precedence
constraints between the goals. We present two algorithms for solv-
ing MAPF-PC: Conflict-Based Search with Precedence Constraints
(CBS-PC) and Priority-Based Search with Precedence Constraints
(PBS-PC), which generalize the state-of-the-art MAPF algorithms
CBS [14] and PBS [10], respectively. We also propose several im-
provements to CBS-PC. Like CBS and PBS, CBS-PC is complete and
optimal, and PBS-PC is incomplete but more efficient in obtaining
near-optimal plans in practice.

We benchmarked CBS-PC and PBS-PC on MAPF-PC instances
with different numbers of agents, goals, and precedence constraints.
The results show that the most advanced CBS-PC variant scales to
dozens of agents and hundreds of goal locations and precedence
constraints, and PBS-PC scales to hundreds of agents, around one
thousand goal locations, and hundreds of precedence constraints.

2 PRELIMINARIES

In this section, we introduce MAPF, CBS, prioritized planning, and
PBS to provide the necessary background for the MAPF-PC problem
and our MAPF-PC algorithms.

2.1 MAPF

The MAPF problem is defined by an undirected graph G = (V, E)
and a set of m agents {a; ...a;,}. Each agent g; has a start vertex
s; € V and a goal vertex g; € V. In each timestep, an agent either
moves to a neighboring vertex, waits at its current vertex, or ter-
minates at its goal vertex (that is, does not move anymore). Both
move and wait actions have unit cost, and terminate actions have
zero cost. A path of an agent is a sequence of actions that leads it
from its start vertex to its goal vertex and ends with a terminate
action. The path cost of a path is the accumulated cost of all actions
in this path. A vertex conflict happens when two agents stay at the
same vertex simultaneously, and an edge conflict happens when
two agents traverse the same edge in opposite directions simulta-
neously. A solution is a set of conflict-free paths of all agents. A
solution is an optimal solution iff there is no other solution with
a smaller objective value. Two common objectives for MAPF are
the Sum of path Costs (SoC) and the makespan. The SoC is the sum
of the path costs of the paths of all agents, and the makespan is
the maximum path cost of the paths of all agents. Solving MAPF
optimally is NP-hard for either objective [12, 18].

2.2 CBS

CBS [14] is a complete and optimal two-level MAPF algorithm. On
the high level, CBS performs a best-first search on a Constraint
Tree (CT). Each CT node contains (1) a set of constraints! and (2) a
set of paths, one for each agent, that satisfy all these constraints.
The cost of a CT node is the SoC or makespan of all its paths,
depending on the objective of the MAPF problem. CBS starts with
the root CT node, which has an empty set of constraints and a
path for each agent that has the minimum path cost when ignoring
conflicts. When expanding a CT node, CBS returns the paths of it
as a solution if the paths are conflict-free. Otherwise, CBS picks a
conflict to resolve, splits the CT node into two child CT nodes, and
adds a constraint to each child CT node to prohibit either one or the
other of the two conflicting agents from using the conflicting vertex
or edge at the conflicting timestep. CBS then calls its low level to
replan the path of the newly constrained agent in each child CT
node. On the low level, for a given CT node and a given agent, CBS
finds a path for the agent that has the minimum path cost while
satisfying all constraints of the CT node but ignoring conflicts.

2.3 Prioritized Planning and PBS

Prioritized planning is a simple-yet-effective MAPF algorithm that
plans the agents according to a predefined total priority ordering.
A priority ordering < is a strict partial order on {a; ... an} where
a; < aj indicates that agent a; is of higher priority than agent a;.
A total priority ordering < satisfies that, for any two agents a; and
aj, we have either a; < aj or a;j < a;. Prioritized planning plans
for agents in the order from highest priority to lowest priority. For
each agent, it finds a path that has the minimum path cost among
all paths that avoid conflicts with the paths of all higher-priority
agents. Whether prioritized planning finds a solution often depends

The constraints in a CT are added by CBS to solve the MAPF instance. They are
different from precedence constraints, which characterize a MAPF-PC instance and
are thus part of the input.

on the predefined priority ordering, and it is not always easy to
find a priority ordering that works.

PBS [10] is a two-level MAPF algorithm which systematically
searches for such a priority ordering. On the high level, it performs
a depth-first search on a Priority Tree (PT). Each PT node N contains
(1) a priority ordering < and (2) a set of paths, one for each agent,
that respects its priority ordering, i.e., the paths of any two agents
a; and a;j with a; <y a; are conflict-free. PBS starts with the root
PT node, which has an empty priority ordering (that is, no agent
is of higher priority than another) and thus a path for each agent
that has the minimum path cost when ignoring conflicts. When
expanding a PT node, PBS picks a pair of conflicting agents a; and
a;j and splits the PT node into two child PT nodes, each extending
the priority ordering of its parent PT node with either a; < a; or
aj < a;. PBS then calls its low level to replan the paths of the child
nodes so that their paths respect their priority orderings. On the
low level, for each PT node, PBS uses topological sorting according
to the priority ordering to order the agents and plans paths for them
in that order. Like prioritized planning, PBS plans a path for each
agent that has the minimum path cost among all paths that avoid
conflicts with the paths of higher-priority agents. A PT node is
pruned if PBS cannot find such a path for at least one agent. When
generating a PT node, PBS returns the paths of it as a solution if
the paths are conflict-free. PBS is neither optimal nor complete, but
existing work shows that it often finds solutions that are close to
optimal and scales well to large numbers of agents [9, 10].

3 PROBLEM DEFINITION

The MAPF-PC problem is defined by an undirected graph G =
(V,E), a set of m agents {aj ...am}, and a set of precedence con-
straints 7°. Each agent a; has a start vertex s; € V and a sequence
of I; goals [91 9; .
g] loc € V. When agent a; is at g] loc, it can (but is not required to)

. g ']. Each goal g corresponds to a goal vertex

complete goal g{ . Complete actions take zero timesteps and have
zero cost. We use T(g) to denote the completion timestep of gl
Each precedence constraint (g] gl) € 7 is a tuple of two goals
91 and g{, and means that g must be completed before g] An

algent must complete its goals in the order of the goal sequence
and terminates when it completes its last goal. The completion
timesteps of all goals must satisfy the precedence constraints as
well. Besides vertex and edge conflicts, we consider a new type of

conflict called precedence conﬂlct A precedence conflict happens
when there exists a pair of goals 91 and 91' such that r(gl) > T(g])
and (g{ R gl.,) € 7. In MAPF-PC, a path for an agent also needs to
specify the completion timestep of each goal of the agent. A path
segment for goal gl]. is a sequence of actions from the completion of
gl{_l (or timestep 0 if j = 1) to the completion of g{. A solution to a
MAPF-PC instance is a set of conflict-free paths for all agents.

The MAPF problem is a sub-class of the MAPF-PC problem
where each agent has only one goal and 7~ = 0. Therefore, solving
MAPF-PC optimally is also NP-hard.

4 CBS WITH PRECEDENCE CONSTRAINTS

We introduce CBS-PC, a complete and optimal algorithm that solves
the MAPF-PC problem. In this paper, we are interested in minimiz-
ing the SoC. However, CBS-PC can be adapted to other objectives,
such as minimizing the makespan or the sum of goal completion
timesteps, by making small modifications to its low level.

4.1 High Level of CBS-PC

On the high level, CBS-PC resolves vertex and edge conflicts in the
same way as CBS. Consider the case when CBS-PC picks a prece-

dence conflict between goals gl/ an g{,l that violates the precedence
constraint (glj , g{,,) (in other words, g'l/ needs to be completed before
g{,l, but this is not satisfied by the paths of the CT node). We use t to

denote T(g{) as specified by the path of agent a;. CBS-PC splits the
CT node into two child CT nodes and resolves the precedence con-
flict by adding one of the following completion timestep constraints
to one child CT node and the other one to the other child CT node:

(1) r(g{,’) > t: agent a must complete g{,l after timestep t.., In
the child CT node, the path of a; is replanned, and 9{" is
thus completed after gl/ .

(2) r(g{,,) < t:agent ay must complete g{,l no later than timestep
t, which is already satisfied by the path of a;;. However, due
to precedence constraint (g{ , g{,), we have r(g{) <t-1,
which is not satisfied by the path of a;. In the child CT node,
both constraints f(g{,) <tand T(g{) <t —1are added, the

path of a; is replanned, and gg, is thus completed at least one
timestep earlier than before.

When generating a child CT node with the completion timestep
constraint in (1), the precedence conflict is immediately resolved

’

since ajy is forced to complete g;, after a; completes g{ . When gen-
erating a child CT node with the completion timestep constraints
in (2), CBS-PC tries to find a path for a; that completes g{ earlier

than ¢, which is the timestep when g{ is completed in the parent
CT node. Such a path often does not exist as ¢ is often the earliest
timestep when a; can complete g{ , in which case CBS-PC prunes
the child CT node. However, if such a path does exist, it is possible
that the new path of agent a; still does not complete g{ earlier than

T(g{,), in which case the two agents still have the precedence con-

flict. Nevertheless, T(g{) is guaranteed to decrease by at least one
timestep. So, if CBS-PC continues to try to resolve the precedence
conflict between the two agents, it will eventually either prune the
branch that involves the repeatedly occurring precedence conflict
or generate a child CT node where it is resolved.

One needs to decide which conflict to choose if the CT node to
be expanded contains multiple conflicts. Existing work shows that
choosing conflicts that increase the path cost in the child CT nodes
can improve the efficiency of CBS [1]. CBS-PC follows this principle
and prefers precedence conflicts over vertex or edge conflicts (and
breaks ties randomly) because the completion timestep constraint
(1) often increases the path cost. We have also tried the conflict
prioritization method in [1], but, unfortunately, this method turned
out to be too computationally expensive for MAPF-PC instances

Figure 1: An example of low-level planning in CBS-PC.
Agent a; has two goals g% and g%. Crosses represent ver-
tex constraints on a;, and the numbers below them are the
timesteps that a; is not allowed to stay at the vertices. For
example, a; is not allowed to stay at C5 at timesteps 5 and 6.

since it needs to find all paths with the minimum path costs (known
as MDD [15]) that complete all goals of each agent involved in each
conflict.

4.2 Low Level of CBS-PC

On the low level, we need to plan a path for an agent that (1) com-
pletes all its goals in order, (2) satisfies the constraints imposed by
the high level, and (3) minimizes the path cost. One might consider
planning the path segments for all goals sequentially instead of
planning the entire path at once. The following example shows that
planning sequentially can result in a sub-optimal path.

ExaMmPLE 1. Figure 1 shows an example where agent ay has mul-
tiple vertex constraints, represented as crosses on their vertices and
numbers that specify their timesteps. If we plan path segments se-
quentially from one goal to the next, we first find a path segment to
C5 at timestep 4 and then plan the path segment to C9. Because of
the vertex constraints on B5, C5, and C6 at timestep 5, a; can move
only to C4 at timestep 5. Then, at the next timestep, because of the
vertex constraints on C4 and C5 at timestep 6, a; can move only to
C3, and so on. Eventually, a; moves back to C1 at timestep 8 and
thus can reach C9 at timestep 16 the earliest. However, if we plan the
entire path of ai at once, a1 can reach C9 already at timestep 12 when
following the blue arrows.

CBS-PC uses the Multi-Label A* (MLA*) algorithm [5, 9] to find a
minimum-cost path that satisfies all constraints of the CT node. We
extend MLA" to support completion timestep constraints: (1) An
agent can complete a goal only at a timestep that is larger than the
lower bound on the completion timestep of the goal, if provided, and
(2) MLA* prunes any low-level search nodes in which the agent can
reach a goal vertex only after the upper bound on the completion
timestep of the goal, if provided.

4.3 Theoretical Analysis

CBS-PC differs from CBS in how the low level plans paths and
how it addresses precedence conflicts. MLA" is complete and opti-
mal [5]. Resolving precedence conflicts with completion timestep
constraints does not rule out any solution of a MAPF-PC instance
and, for every cost c, there is only a finite number of CT nodes with
cost ¢ in CBS-PC. With a proof similar to the one for CBS, we can
therefore show that CBS-PC is complete and optimal.

@ Id(gl', loc, gﬁ loc), +00) @
—_—

Icl(‘\'l.g,'. loc), +00) .

-~

S

*s [1400)
[d(sy, g1. loc), +o0) @
B — ..
NSRS

[d(s3, g',' loc), +0)

Lok
[00)~

Figure 2: The STN for the root CT node of the MAPF-PC in-
stance in Example 2.

4.4 Improvements

We now present three techniques for improving the efficiency of
CBS-PC. One of them is a specialized technique for MAPF-PC, and
the other two are adopted from existing work on improving CBS.

Constraint propagation: CBS-PC only adds completion timestep
constraints when it picks a precedence conflict to split on. However,
additional completion timestep constraints can be inferred from
the existing ones in a way similar to how f(g{) <t —1is inferred
in Completion Timestep Constraint (2).

When generating a CT node, CBS-PC builds a Simple Temporal
Network (STN) for the CT node [3]. An STN is a directed acyclic
graph (V, 7 C). Each vertex v € V represents a time point, called an
event, and 7(v) represents the occurrence time of v. Each STN has a
reference event xo € V that represents the “beginning of time,” and
7(xp) is conventionally set to 0. Each edge (v,0”) € 7C, annotated
with an interval [LB, UB], indicates that v must occur between LB
and UB time units after v’, that is, 7(v") - 7(v) € [LB,UBJ. To
construct the STN for a CT node, for each goal g{ , CBS-PC adds

a vertex vlj to the STN to represent the completion of g{ . CBS-PC
adds edges to the STN in three cases:

(1) We use d(x,y) to denote the minimum cost needed to move
from x to y in graph G while ignoring constraints and con-
flicts. For each agent a;, CBS-PC adds edge (xo, vil) with
interval [d(s,,g1 loc), +00) to the STN, and, for each pair of
consecutive goals g] and g]+1 CBS-PC adds edge (vj]H)
with interval d(g] loc, g]+ loc), +00) to the STN.

(2) For each precedence constraint (gl gl) € 7, CBS-PC adds

Ui,) with interval [1, +o0) to the STN.

(3) For each completiop timestep constraint T(g{) > t, CBS-
PC adds edge (xo, u{) with interval [t + 1, +o0) to the STN.
Similarly, for each completion timestep constraint f(g{) <t
CBS-PC adds edge (xo, v{) with interval [0, ¢] to the STN.

The lower and upper bounds on the completion timestep of each
goal in the STN can be computed using the Bellman-Ford algorithm.
Each lower and upper bound can be converted to a completion
timestep constraint. CBS-PC adds these constraints to the generated
CT node if the CT node does not contain them already.

edge (vi ,

ExaMPLE 2. Consider a MAPF-PC instance with three agents. Agent
ai has two goals, and agents a and a3 both have one goal. T =
{(g%, g%), (gi, g%), (g%, gé)}. Figure 2 shows the corresponding STN for

T({L'll) > (/(\,.\q,‘. loc)

T(g) <d(sy, g f loc)
1({,]) <d(s), g \ loc) =1

T(L) <d(sy, t\ loc)
r(L‘) <d(s;. gl loc) — 1
(g)>¢/\‘ M loc) j \
(o S ol
m,)s(/(\,” ! loc) + 1 ©(87) > d(sy, 8. loc)
(g)) < d(sy, 8. loc) 7(g3) > d(s. g]. loc) + 1

" /A

(a) (b)

7(g 1)>(/(s‘ x,, loc) + 1

Figure 3: CTs of CBS-PC with and without constraint propa-
gation when solving the MAPF-PC instance in Example 2.

the root CT node. The four solid edges are due to Case (1), and the
three dashed edges are due to Case (2). We assume that d(s1, g}.loc) >
d(sz,g%.loc) > d(33,g§,loc).

Figure 3a shows the CT of CBS-PC without constraint propagation.
The text next to the edges describes the constraints added to the CT
nodes. Crossed-out CT nodes are pruned because CBS-PC cannot find
paths for some agents. CBS-PC generates multiple CT nodes to resolve
the precedence conflicts between g% and g;, g% and gé, and g% and
gé, respectively. Figure 3b shows the CT of CBS-PC with constraint
propagation. The blue text next to the root CT node describes the
constraints generated from constraint propagation, which impose
lower bounds on the completion timesteps of the goals. Since the low-
level planner is aware of these completion timestep constraints, the
paths in the root CT node do not exhibit the previously mentioned
precedence conflicts.

Disjoint splitting: Different from the standard splitting rule of
CBS, disjoint splitting [8] picks one conflicting agent and then (1)
adds a constraint to one child CT node to prohibit this agent from
using the conflicting vertex or edge at the conflicting timestep and
(2) adds a constraint to the other child CT node to force this agent
to use the conflicting vertex or edge at the conflicting timestep,
which implies that no other agent can use the conflicting vertex
or edge at the conflicting timestep. Since disjoint splitting is able
to speed up different variants of CBS significantly, we use it in the
context of CBS-PC as well.

Target reasoning: A vertex conflict is a target conflict [7] if
and only if one of the conflicting agents, denoted as a;, terminates
before the conflicting timestep, denoted as ¢. It is inefficient for CBS-
PC to resolve target conflicts with only vertex and edge constraints.

Instead, target reasoning [7] uses constraints T(gii) > t (the path
of a; needs to be replanned) and r(gfi) < t (the path of the other
conflicting agent needs to be replanned because only a; is allowed

to occupy gi" .oc at timestep ?) to resolve target conflicts. Note that
I; denotes the number of goals of agent a;.

'0' 'l\ N "' '2\

|‘ 81 |81
ST]‘.F ~"I'2‘

‘ 83/ 83

Figure 4: A two-agent MAPF-PC instance. Both agents have
two goals. Solid-line arrows represent the sequence of goal
vertices that agents need to visit, and dashed-line arrows rep-
resent the precedence constraints between goals.

v

5 PBS WITH PRECEDENCE CONSTRAINTS

We now introduce a suboptimal but more scalable MAPF-PC algo-
rithm, called PBS-PC, which adopts the PBS algorithm for MAPF
to solve our MAPF-PC problem. We start with a naive variant of
PBS for MAPF-PC, which assigns priorities to agents to resolve
conflicts. We explain why naive PBS does not find a solution for a
simple MAPF-PC instance, which motivates us to introduce an ad-
vanced variant, called PBS-PC, which resolves conflicts by assigning
priorities to goals.

5.1 Naive PBS for MAPF-PC

Unlike CBS, PBS can be used to solve the MAPF-PC problem without
any change on the high level. On the low level, when PBS plans for
an agent, it uses MLA” to find a path that has the minimum cost
among all paths that avoid vertex, edge, and precedence conflicts
with the paths of all higher-priority agents. However, planning
for one agent after another can fail even for a simple MAPF-PC
instance.

ExampLE 3. Consider the two-agent MAPF-PC instance shown
in Figure 4, where agents a; and az have two goals each and T~ =
{(g},g%), (g%,g%)}, that is, the first goal of a1 must be completed
before the first goal of ap and the second goal of a1 must be completed
after the second goal of az. In the root PT node, which has no priority
ordering between aj and ag, PBS plans for each agent individually.
We have r(g}) =5 and 7(g3) = 3, which is a precedence conflict. PBS
splits the root PT node into two child PT nodes. In one child PT node, it
extends the priority ordering with ay < ap, meaning that it plans the
path of ay first. This path has T(g%) =5 and T(gf) = 8. PBS cannot
find a path for az because it is impossible to satisfy r(g;) > 5 and
T(g%) < 8 simultaneously. In the other child PT node, it extends the
priority ordering with ag < ay, meaning that it plans the path of ay
first. This path has T(g%) =3 and T(g%) = 8. PBS cannot find a path
for ay because it is impossible to satisfy T(gi) < 3. Thus, naive PBS
fails immediately for this simple MAPF-PC instance.

5.2 PBS-PC

PBS cannot solve the MAPF-PC instance of Example 3 because
imposing priority orderings on agents is insufficient for resolving
conflicts caused by the precedence constraints among goals. We
thus propose PBS-PC, which assigns priority orderings to pairs of
goals and plans the path segment for one goal at a time.
Algorithm 1 shows the high level of PBS-PC. We use I to denote
the list of goals of all agents. Like PBS, PBS-PC performs a depth-
first search on the high level and stores all generated but not yet

Algorithm 1: High-Level Search of PBS-PC
1 <Root¢— O, Root.conflict < empty

; foreach pair of consecutive goals glj and g{ " do
3 L <Root — <Root U {g] < 9;+1};

foreach <g{ g{,/) €7 do

5 L <Root <= <Root Y {9{ < 9{:}2

6 Root.paths[g{] «— empty for each goal g{;

7 STACK <« {Root};

8 while STACK is not empty do

N

N

9 N « STACK.pop();

10 succ «— UpdatePath(N); // Algorithm 2
1 if succ is false then

12 L continue;

13 if N.conflictis empty then

14 L return N.paths;

15 (g{g{,l) «— N.conflict;

16 foreach g € {g{,gl].,,} dq)

17 g’ « the goal in {g{,glj., 1\ {9}

18 N’ « N;

19 <nv <N Ufg<g'h

20 N’.conflict «— empty;

21 foreach ¢’ € ({¢g”" | ¢’ <n» 9"’} U {g’}) do
22 | N’.paths[g”’] — empty;

23 Insert N’ into STACK;

24 return “No Solution”;

expanded PT nodes in a stack. Unlike PBS, the root PT node of
PBS-PC does not always have an empty priority ordering. PBS-
PC initializes the priority ordering (Lines 2-5) by (1) adding g{ <
g{ o < Root for each pair of consecutive goals of the same agent
and (2) adding g{ < g{,l to <Root for each precedence constraint

(g{ , g{,/) € 7 between the goals of two different agents. For each
node N, N.paths stores the path segment of each goal. PBS-PC
begins with an empty path segment for each goal in the root PT node
(Line 6). When expanding a PT node, PBS-PC invokes Algorithm 2
to plan path segments (Line 10). Algorithm 2 plans for the goals
in a topologically sorted order according to the priority ordering
(Line 25) and plans for one goal at a time until:

(1) PBS-PC cannot find a path segment for a goal (Lines 5-6),
and the PT node is pruned on Lines 11-12;

(2) PBS-PC finds a conflict among non-empty path segments
(Lines 33-35), and the PT node is split into two child PT nodes
on Lines 15-23; or

(3) the path segments for all goals are found, and PBS-PC returns
a solution for the MAPF-PC instance on Lines 13-14.

Function FindConflictingGoal(N, g) returns a goal whose planned
path segment has vertex or edge conflicts with the path segment of
g or returns empty if no such goal exists. When generating a child
PT node, PBS-PC extends the priority ordering of the parent PT

Algorithm 2: UpdatePath(PT node N)

25 TopologicalSort(T,<N);
26 foreach g €T do
27 if N.paths|g] is empty then

28 p « PlanPath(N, g); // Algorithm 3
29 if p is empty then

30 L return false;

31 | N.paths[g] < p;

32 g’ « FindConflictingGoal(N, g);
f ¢’ is not empty then
34 N.conflict — (g, 9’);

-

33

35 return true;

36 return true;

Algorithm 3: PlanPath(PT node N, goal g{)

s P — {N.paths[g] | g <n g };

3g if j > 1 then

39 ty CompletionTimestep(N,paths[g{_l]);
locy «— g{_l.loc;

11 else

42 to «— 0;

43 locy < s;;

44 T « max{CompletionTimestep(N .paths[g]) | (gg{) €T}
or —1 if there is no such g that (g, g{ YeT;

45 p < a minimum-cost path segment for goal g{ that starts at

vertex locg at timestep t, ends at vertex glj. doc after
timestep T, and does not conflict with any path in P (or
empty if no such path exists);

46 return p;

node with a new pair of goals. Let g’ denote the goal of the lower
priority in the new ordered pair. PBS-PC empties the path segments
of ¢’ and all paths that are of lower priority than it.

Algorithm 3 plans the path segment for goal g{ JIf j =1, that is,

gl]. is the first goal of the agent, the start timestep and start vertex
of search are set to 0 and the start vertex of the agent, respectively.
Otherwise, the start timestep and start vertex are set to the com-
pletion timestep and goal vertex of the immediate previous goal of

g{ , respectively. The earliest timestep when a; is allowed to com-

plete 9{ can be computed by checking the completion timesteps

of all goals that need to be completed before g{ (whose path seg-
ments have already been planned because goals are planned in a
topologically sorted order).

In any PT node of PBS-PC, there is no precedence conflict be-
tween any two non-empty path segments because Algorithm 3 only
finds path segments that satisfy all precedence constraints. The
returned solution does not contain a vertex or edge conflict because,
if there is one, the conflict will be found in Line 32, and PBS-PC
would not return the set of paths as a solution. Therefore, solutions

(a) random-32-32-20

(b) warehouse-10-20-10-2-1

Figure 5: The grid maps of the MAPF-PC instances used in
the experimental evaluation.

returned by PBS-PC are conflict-free. Similar to PBS, PBS-PC is
neither complete nor optimal.

6 EXPERIMENTAL EVALUATION

In this section, we compare the results of different variants of CBS-
PC, PBS, and PBS-PC on MAPF-PC instances with four-neighbor
grid maps. The variants of CBS-PC are CBS-PC, CBS-PC-c, CBS-PC-
t, CBS-PC-d, and CBS-PC-dct, where c adds constraint propagation,
d adds disjoint splitting, and t adds target reasoning. All algorithms
were implemented in C++2 and share the same code base as much
as possible. We ran all experiments on t2.]large AWS EC2 instances
with 8GB of memory. The time limit for solving each MAPF-PC
instance was five minutes.

To generate a MAPF-PC instance, we randomly generated the
start vertex of each agent and a set of goal vertices. Then, we began
with an empty precedence constraint set 7, repeatedly picked a
random precedence constraint and added it to 7 if it was not in
7 already and would not introduce cycles, until the number of
precedence constraints reached a given number (specified below).
Then, we used the Token Passing algorithm [11] to assign goals
greedily and generate the goal sequence for each agent.

We picked two grid maps from the MAPF benchmark [16]: random-
32-32-20 and warehouse-10-20-10-2-1 (shown in Figure 5). For each
grid map, we ran two sets of experiments: (1) MAPF-PC instances
with different numbers of agents (ranging from 30 to 100), 200 goals,
and 120 precedence constraints. (2) MAPF-PC instances with dif-
ferent numbers of precedence constraints (ranging from 80 to 280),
200 goals, and 60 agents. For each number of agents or precedence
constraints, we generated 50 random instances.

Comparing variants of CBS-PC: Figures 6 and 7 show the
results for the CBS-PC variants. The success rate of an algorithm is
the percentage of MAPF-PC instances that it solves within the time
limit. For the CBS-PC variants without target reasoning, CBS-PC-d
almost always had slightly higher success rates than CBS-PC. CBS-
PC-c had similar or slightly worse success rates than the other two
variants when the number of precedence constraints was less than
200 because the computational overhead outweighs the benefit
of the technique. However, it had better success rates than the
other two variants when the number of precedence constraints was
large enough (namely, at least 240) because constraint propagation
significantly reduced the number of precedence conflicts that need
to be resolved.

The CBS-PC variants with target reasoning, CBS-PC-t and CBS-
PC-dct, had better success rates than the other three variants in
most of the experiments. CBS-PC-dct had better success rates than

Zhttps://github.com/HanZhang39/MAPE-PC

—— CBS-PC —e— CBS-PCd —+— CBS-PC-dct
—+— CBS-PC-c —»— CBS-PC-t
1.0 1.0
8 8
5] 5
[+4 24
205 205
8 8
E 5
) @ e
0.0 = 0.0
30 40 50 60 70 80 90 100 80 120 160 200 240 280
Agents Precedence Constraints

(a) Success rates for different num- (b) Success rates for different num-
bers of agents bers of precedence constraints

o o
| £
S 102 g 10°
<2 <@
[[
E E
£ £
E E}
& 10! & 10!
30 40 50 60 70 80 90 80 120 160 200 240
Agents Precedence Constraints

(c) Runtimes for different numbers (d) Runtimes for different numbers
of agents of precedence constraints

Figure 6: Results for CBS-PC variants on random-32-32-20.

1.0 1.0
2 2
5 5
o [24
305 205
8 8
S S
(2] (2]
0.0 0.04
30 40 50 60 70 80 90 100 80 120 160 200 240 280

Agents Precedence Constraints

(a) Success rates for different num- (b) Success rates for different num-
bers of agents bers of precedence constraints

o o

= =

. S .

g 107 M g 102 //4—\—
v 1

1S £

= =1

E S

& 10! & 10!

30 40 50 60 70 80 90 80 120 160 200 240
Agents Precedence Constraints

(c) Runtimes for different numbers (d) Runtimes for different numbers
of agents of precedence constraints

Figure 7: Results for CBS-PC variants on warehouse-10-20-
10-2-1.

CBS-PC-t when the number of precedence constraints was large but
similar success rates otherwise. The runtimes of CBS-PC-dct and
CBS-PC-t are averaged over all instances solved by both of them.
CBS-PC-dct and CBS-PC-t had similar average runtimes except
for some instances with a large number of precedence constraints
that CBS-PC-dct solved faster. We omit the runtimes of the other
three variants because they solved too few instances within the
time limit.

Comparing PBS and PBS-PC: Figures 8 and 9 show the re-
sults for PBS and PBS-PC. In general, PBS-PC outperformed PBS
in terms of both success rate and runtime. The success rates of
PBS stayed similar or even increased when the number of agents

increased. However, the success rates of PBS quickly dropped when
the number of precedence constraints increased, which shows that
PBS did not do a good job at solving MAPF-PC instances with
complex precedence constraints.

Comparing CBS-PC and PBS-PC: In general, PBS-PC outper-
formed all CBS-PC variants in terms of both success rate and run-
time. In Figures 8e, 8f, 9e, and 9f, we show the suboptimality results
for PBS-PC. The suboptimality ratio of PBS-PC on an instance is the
ratio of the SoC of the solution it finds to the optimal SoC. The dots
show the suboptimality ratios of PBS-PC on MAPF-PC instances
that were solved by some variant of CBS-PC and the lines show the
average suboptimality ratios. The suboptimality ratios of PBS-PC
were on average less than 1.1 in most cases and around 1.2 in the
worst case. The average suboptimality ratios of PBS-PC increased
as the number of agents increased. Interestingly, the average sub-
optimality ratios of PBS-PC decreased as the number of precedence
constraints increased, likely because agents are less likely to have
vertex or edge conflicts when they need to wait longer due to the
increasing number of precedence constraints.

Scalability of PBS-PC: We ran two additional experiments for
only PBS-PC on warehouse-10-20-10-2-1 to see how PBS-PC scales
on difficult instances: (1) MAPF-PC instances with different num-
bers of agents m (ranging from 100 to 500), 2m goals, and m prece-
dence constraints. (2) MAPF-PC instances with different numbers
of goals n (ranging from 800 to 1800), 0.5n precedence constraints
were 0.5n, and 200 agents. Figure 10 shows the results. PBS-PC
solved all instances with up to 300 agents in Experiment (1) and all
instances with 800 goals in Experiment (2).

7 RELATED WORK

Numerous algorithms have been developed to solve multi-task
multi-agent path-finding problems by assigning tasks (in form of
goal locations) to agents with the purpose of minimizing the execu-
tion time. One representative approach is to formulate the problem
as Vehicle Routing Problem with Time Windows (VRPTW) and
minimize the execution time over the entire time horizon [2, 6]. A
survey of task-assignment algorithms can be found in [4]. How-
ever, most of these algorithms ignore collisions and thus cannot be
directly used in safety-critical scenarios. Moreover, as our MAPF-
PC algorithms are capable of planning with goal vertex sequences
and precedence constraints, they can be used in conjunction with
most of the aforementioned task-assignment algorithms to gen-
erate collision-free paths with respect to the assigned goal vertex
sequences.

Among all algorithms that plan collision-free paths for streams
of tasks, the algorithms in [2, 13] are able to handle precedence
constraints between tasks and thus are most related to ours. [2]
presents a four-level algorithm that is able to solve the general
Precedence-Constrained multi-agent Task Assignment and Path
Finding (PC-TAPF) problem, although it is demonstrated only on
assembly scenarios. Its first level iteratively searches for promis-
ing task assignments, and the other three levels plan collision-free
paths based on the task assignment. As the path planning module
of this algorithm solves the same problem as MAPF-PC, it is nei-
ther complete nor optimal since it plans each path segment in a
myopic way and thus does not consider the feasibility or optimality

PBS-PC —+— PBS

—
o
=
=3

Success Rate
j=}
b
Success Rate
(=]
s

0.

.0 0.0 4+
30 40 50 60 70 80 90 100 80 120 160 200 240 280
Agents Precedence Constraints

(a) Success rates for different num- (b) Success rates for different num-
bers of agents bers of precedence constraints

o o
20 ERUG
S S
&)
< 10 //\k—o\./‘/ 2 10!
E E
21 g1
30 40 50 60 70 80 90 100 80 120 160 200
Agents Precedence Constraints

(c) Runtimes for different numbers (d) Runtimes for different numbers

of agents of precedence constraints
> >
=12 =12
E E
a a
o o
2 2
S 3
(2] (2]
1.0 1.0

30 40 50 60 70 80 90 100 80 120 160 200 240 280
Agents Precedence Constraints

(e) Suboptimalities for different num- (f) Suboptimalities for different num-
bers of agents bers of precedence constraints

Figure 8: Results for PBS-PC and PBS on random-32-32-20.

of achieving the subsequent tasks. In comparison, CBS-PC gener-
ates provably optimal plans. While both the algorithm in [2] and
PBS-PC are suboptimal, PBS-PC is able to plan for 300 agents with
800 goals while the algorithm in [2] can merely plan for 40 agents
with 60 tasks in the same runtime. [13] also presents a complete
algorithm for solving a multi-task multi-robot path-finding problem
with precedence constraints. However, this algorithm relies on the
assumption that each task can only have one precedence constraint,
which prevents the algorithm from solving realistic scenarios with
complex precedence constraints. For example, one needs to intro-
duce several precedence constraints to model a scenario where
multiple packages need to be delivered to the same location before
a robot picks them up all together.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the MAPF-PC algorithms CBS-PC and
PBS-PC. CBS-PC is complete and optimal, and we proposed several
improvements for it. PBS-PC is incomplete and suboptimal but
efficient in practice. Our experimental results showed that the most
advanced CBS-PC variants scale to dozens of agents and hundreds
of goals and precedence constraints and PBS-PC scales to hundreds
of agents, around one thousand goals, and hundreds of precedence
constraints.

An interesting direction for future work is to extend the MAPF-
PC problem with other types of inter-goal constraints, such as

1.0

=
=)

anaiEa

Success Rate
o
b
Success Rate
(=]
s

0.0 0.0
30 40 50 60 70 80 90 100 80 120 160 200 240 280
Agents Precedence Constraints

(a) Success rates for different num- (b) Success rates for different num-
bers of agents bers of precedence constraints

T T

g 1 M g 10

& 8§ 1]
2 10! o 10!

E E

S S

30 40 50 60 70 80 90 100 80 120 160 200
Agents Precedence Constraints

(c) Runtimes for different numbers (d) Runtimes for different numbers
of agents of precedence constraints

)
=
)

—
-
—_
—

Suboptimality

Suboptimality

=
o
=
=}

30 40 50 60 70 80 90 100 80 120 160 200 240 280
Agents Precedence Constraints

(e) Suboptimalities for different num- (f) Suboptimalities for different num-
bers of agents bers of precedence constraints

Figure 9: Results for PBS-PC and PBS on warehouse-10-20-
10-2-1.

1.0 1.0

0.5 0.5

Success Rate
Success Rate

0.0 0.0
100 150 200 250 300 350 400 450 500 800 1000 1200 1400 1600 1800
Agents Goals

(a) Success rates for different num- (b) Success rates for different num-
bers of agents bers of goals

Figure 10: Scalability results for PBS-PC on warehouse-10-
20-10-2-1.

simple temporal constraints between the completion timesteps of
goals. Another direction is to study different types of MAPF-PC
algorithms, such as bounded sub-optimal or anytime algorithms.

9 ACKNOWLEDGMENTS

The research at the University of Southern California was supported
by the National Science Foundation (NSF) under grant numbers
1409987, 1724392, 1817189, 1837779, and 1935712 as well as a gift
from Amazon. The research at Massachusetts Institute of Technol-
ogy was supported by Kawasaki Heavy Industry, Ltd (KHI) under
grant number 030118-00001. This article solely reflects the opinions
and conclusions of its authors and not the sponsoring organizations,
agencies, or the U.S. government.

=

=

REFERENCES

[1] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betza-

lel, and Solomon Eyal Shimony. 2015. ICBS: Improved Conflict-Based Search
Algorithm for Multi-Agent Pathfinding. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI). 740-746.

Kyle Brown, Oriana Peltzer, Martin A. Sehr, Mac Schwager, and Mykel J. Kochen-
derfer. 2020. Optimal Sequential Task Assignment and Path Finding for Multi-
Agent Robotic Assembly Planning. In Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA). 441-447.

Rina Dechter, Itay Meiri, and Judea Pearl. 1991. Temporal Constraint Networks.
Artificial intelligence 49 (1991), 61-95.

Maria L. Gini. 2017. Multi-Robot Allocation of Tasks with Temporal and Ordering
Constraints. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
4863-4869.

Florian Grenouilleau, Willem-Jan van Hoeve, and John N Hooker. 2019. A Multi-
Label A* Algorithm for Multi-Agent Pathfinding. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling (ICAPS). 181-185.
Gilbert Laporte and Ibrahim H. Osman. 1995. Routing Problems: A Bibliography.
Annals of Operations Research 61, 1 (1995), 227-262.

Jiaoyang Li, Graeme Gange, Daniel Harabor, Peter J. Stuckey, Hang Ma, and
Sven Koenig. 2020. New Techniques for Pairwise Symmetry Breaking in Multi-
Agent Path Finding. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS). 193-201.

Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Ariel Felner, Hang Ma, and Sven
Koenig. 2019. Disjoint Splitting for Multi-Agent Path Finding with Conflict-Based
Search. In Proceedings of the International Conference on Automated Planning and
Scheduling (ICAPS). 279-283.

Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Kumar,
and Sven Koenig. 2021. Lifelong Multi-Agent Path Finding in Large-Scale Ware-
houses. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
11272-11281.

Hang Ma, Daniel Harabor, Peter J. Stuckey, Jiaoyang Li, and Sven Koenig. 2019.
Searching with Consistent Prioritization for Multi-Agent Path Finding. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI). 7643-7650.
Hang Ma, Jiaoyang Li, T. K. Satish Kumar, and Sven Koenig. 2017. Lifelong
Multi-Agent Path Finding for Online Pickup and Delivery Tasks. In Proceedings
of the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS). 837-845.

Hang Ma, Craig A. Tovey, Guni Sharon, T. K. Satish Kumar, and Sven Koenig. 2016.
Multi-Agent Path Finding with Payload Transfers and the Package-Exchange
Robot-Routing Problem. In Proceedings of the AAAI Conference on Artificial Intel-
ligence (AAAI). 3166-3173.

[13] James Motes, Read Sandstrom, Hannah Lee, Shawna Thomas, and Nancy M.

Amato. 2020. Multi-Robot Task and Motion Planning with Subtask Dependencies.
IEEE Robotics and Automation Letters 5, 2 (2020), 3338-3345.

Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. 2015. Conflict-
Based Search for Optimal Multi-Agent Pathfinding. Artificial Intelligence 219
(2015), 40-66.

Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. 2013. The Increasing
Cost Tree Search for Optimal Multi-Agent Pathfinding. Artificial Intelligence 195
(2013), 470-495.

Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T.
Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Eli Boyarski,
and Roman Bartak. 2019. Multi-Agent Pathfinding: Definitions, Variants, and
Benchmarks. Proceedings of the Symposium on Combinatorial Search (SoCS) (2019),
151-158.

Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. 2007. Coordinating
Hundreds of Cooperative, Autonomous Vehicles in Warehouses. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI). 1752-1760.

Jingjin Yu and Steven M. LaValle. 2013. Structure and Intractability of Optimal

Multi-Robot Path Planning on Graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI). 1444-1449.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 MAPF
	2.2 CBS
	2.3 Prioritized Planning and PBS

	3 Problem Definition
	4 CBS with Precedence Constraints
	4.1 High Level of CBS-PC
	4.2 Low Level of CBS-PC
	4.3 Theoretical Analysis
	4.4 Improvements

	5 PBS with Precedence Constraints
	5.1 Naïve PBS for MAPF-PC
	5.2 PBS-PC

	6 Experimental Evaluation
	7 Related Work
	8 Conclusions and Future Work
	9 Acknowledgments
	References

