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Abstract—Running deep neural networks (DNNs) on tiny
Micro-controller Units (MCUs) is challenging due to their limi-
tations in computing, memory, and storage capacity. Fortunately,
recent advances in both MCU hardware and machine learning
software frameworks make it possible to run fairly complex
neural networks on modern MCUs, resulting in a new field of
study widely known as TinyML. However, there have been few
studies to show the potential for TinyML applications in cyber
physical systems (CPS).

In this paper, we present DeepPicarMicro, a small self-driving
RC car testbed, which runs a convolutional neural network
(CNN) on a Raspberry Pi Pico MCU. We apply a state-of-the-
art DNN optimization to successfully fit the well-known PilotNet
CNN architecture, which was used to drive NVIDIA’s real self-
driving car, on the MCU. We apply a state-of-art network
architecture search (NAS) approach to find further optimized
networks that can effectively control the car in real-time in an
end-to-end manner. From an extensive systematic experimental
evaluation study, we observe an interesting relationship between
the accuracy, latency, and control performance of a system. From
this, we propose a joint optimization strategy that takes both
accuracy and latency of a model in the network architecture
search process for AI enabled CPS.

Index Terms—Real-time, Autonomous Car, Convolutional Neu-
ral Network, Microcontroller, Case Study, TinyML

I. INTRODUCTION

Autonomous cyber physical systems (CPS), such as self-
driving cars and drones, are a topic with much interest in
recent years. The premise is that by employing recent advances
in machine learning (ML) algorithms such as deep neural
networks (DNNs), CPS can become more intelligent and safer,
which benefits society.

However, executing DNN models is computationally ex-
pensive. This limits their applicability to many CPS with
significant size, weight, power, cost, and real-time constraints.
Therefore, there are increasing research efforts to reduce
the computational requirements of employing DNN models.
In particular, many researchers and companies are putting
significant effort to support DNNs in tiny micro-controller
units (MCUs) due to their low cost and low power consump-
tion, despite their obvious limitations in terms of available
computing and memory resources [3], [4], [20], [21].

In this paper, we present DeepPicarMicro, a low-cost au-
tonomous car testbed to study the feasibility of Al enabled
CPS on tiny MCUs. DeepPicarMicro employs an end-to-end
deep learning approach, which utilizes a convolutional neural
network (CNN) to directly control the physical plant from the
camera based sensory input as in our prior work DeepPicar

Part Raspberry Pi 4 Raspberry Pi Pico
CPU BCM2837 RP2040
4x Cortex-A72@1.5GHz 2x Cortex-M0+@ 133MHz
48BK(1)/32KB(D) L1 cache
Memory IMB L2 (16-way) L2 cache 264KB SRAM
4GB LPDDR4
Storage 8GB+ micro-SD 2MB Flash
Power 3A <100mA

TABLE I: Comparison of hardware resources on a Raspberry
Pi 4 microprocessor and a Raspberry Pi Pico MCU.

[5]. The main difference is that DeepPicarMicro utilizes a
Raspberry Pi Pico MCU (a dual Cortex-M0+ MCU) as the
main computing platform, which is significantly less capable
than the Raspberry Pi 3/4 computing platforms used in the
DeepPicar. Note that DeepPicar’s Raspberry Pi 3/4 platforms
were capable enough to run the full unmodified PilotNet
model [5], which was used in NVIDIA’s real self-driving
car [7], in real-time. Table I shows the differences between
a Raspberry Pi 4 and a Raspberry Pi Pico MCU, the latter of
which features orders of magnitude smaller computing power
and memory/storage availability.

Using DeepPicarMicro, we want to answer the following
questions: (1) Can we run a full-sized PilotNet on a micro-
controller? (2) How can we find optimized neural network
architectures for a target micro-controller? (3) What are the
relationships between accuracy, latency, and control perfor-
mance of an end-to-end DNN model in controlling CPS?

From an extensive systematic experimental evaluation study,
we made the following observations. First, to our surprise, we
find that the full sized PilotNet can run on a Pico MCU using
a specialized ML framework, namely Tensorflow-lite micro
(TFLM) [14], and standard optimization techniques such as
8-bit quantization. However, the unmodified (except quantiza-
tion) PilotNet model’s latency was more than 3 seconds, which
is not acceptable for real-time control of CPS. Clearly, there
is a strong need to further optimize the network to be able to
run on a tiny MCU.

Second, we apply a state-of-the-art neural architecture
search (NAS) approach [21] to find smaller variants of the
PilotNet by varying the input resolution, depth, width of the
full model. In addition, we also employed depthwise-separable
convolutions [24] in place of the standard 2D convolutions to
further reduce the latency of the models. As a result, we found
many PilotNet variants that meet the real-time constraints of



the system and achieve high accuracy. Interestingly, however,
we observe that less accurate DNN models with lower latency
often performed better in practice than more accurate models
with higher latency. Even when we compare similarly accurate
models, we observe that lower latency models perform better,
even if we set the control frequency of the models to be
identical (all meeting the same deadline). This is because the
model’s latency affects the reaction time of the CPS system it
controls and the quality of the network’s output degrades as
the network’s input becomes stale. This suggests that in a CPS
system, not only a network’s accuracy but also its latency must
be taken into account to predict the model’s true performance.
Therefore, the standard NAS approach that treats latency as a
constraint may not be ideal to find best performing models.
Third, we evaluate a simple joint optimization strategy,
which uses a normalized sum of the DNN model’s latency and
accuracy to compare a model’s predicted performance in a real
CPS system. In both simulation and in real-world experiments,
we find the joint optimization strategy is effective in predicting
a network’s real-world performance in controlling the RC car.
In summary, we make the following contributions:

o We present DeepPicarMicro, a MCU-based autonomous
car testbed that employs a CNN-based end-to-end real-
time control loop.

o« We present extensive experimental evaluation results
showing the possibility of using MCU for AI enabled
CPS.

o We propose a simple joint optimization strategy that takes
both accuracy and latency of a model in the network
architecture search process for Al enabled CPS.

The remainder of the paper is organized as follows. Sec-
tion II provides a background on MCUs and TinyML. Sec-
tion III gives an overview of the DeepPicarMicro testbed and
our initial evaluations with it. Section IV describes the first
NAS approach we use for finding a TinyML model that can
run on the DeepPicarMicro. Section V presents extensive CPS
control performance evaluation results on a real-world environ-
ment, in addition to our modified NAS approach. We review
related work in Section VI and conclude in Section VII.

II. BACKGROUND

In this section, we provide background on autonomous
vehicles, MCUs, and TinyML.

A. End-to-End Deep Learning for Autonomous Vehicles

Self-driving cars have been a topic of increasing interest
over the past several years. A standard approach is to split
the task into multiple specialized sub tasks, such as planning
and perception [17]. On the other hand, an end-to-end deep
learning approach uses a single neural network to produce
control outputs directly from the raw sensor input data, which
dramatically simplifies the control pipeline [19]. First intro-
duced in 1989 by Pomerleau [23], many systems have since
employed DNN-based control loops to much success [1], [5],
[7], [15], [16].

In a DNN based end-to-end control loop based system,
training and inference are typically performed separately. In
general, training a neural network model is computationally
expensive, so it is often done on more powerful PC systems
equipped with hardware accelerators (e.g. GPUs). On the other
hand, inference operations require relatively less computing
power and can thus be run on smaller embedded platforms.
However, on such platforms, the model’s inference latency
becomes an important factor as many systems and applications
have real-time constraints. In this paper, we explore the
capability of executing a deep neural network on a small
microcontroller platform in real-time.

B. Microcontroller Units (MCUs)

A microcontroller is a small computer that integrates simple
CPU core, SRAM and flash memory into a single integrated
chip. MCUs are inexpensive and consume very little power,
often in the range of milliamps (mA). As such, they are used
in a wide variety of applications, ranging from toys to cars.
Unlike powerful microprocessors, which typically employ
complex operating systems and other runtime frameworks to
perform sophisticated tasks, MCUs are designed for relatively
simple tasks and often do not employ operating systems.
This allows MCUs to have far more predictable temporal
behaviors than microprocessors, as they do not suffer from
non-determinism typically seen in standard OSes (e.g. virtual
memory, page faults, etc.). On the other hand, MCUs have
very limited computing, memory, and storage capacity, which
pose a challenge for complex applications that require large
amount of resources, such as machine learning algorithms.

C. Tiny Machine Learning (TinyML)

Recently, there are increasing interests and effort to enable
ML applications in MCUs, which is collectively known as
Tiny Machine Learning or TinyML for short [3], [4], [20],
[21]. In TinyML, a major goal is to execute machine learning
algorithms, such as DNN models, locally on an MCU, instead
of relying on communications with larger PC or cloud that
requires high energy consumption and suffers long latency.
Lately, major MCU vendors as well as big tech companies
such as Google have developed machine learning frameworks
specially tailored for MCUs.

In this paper, we primarily use the Tensorflow Lite Micro
(TFLM) deep learning framework, which is optimized for neu-
ral network inference for MCUs [14]. TFLM uses a runtime
interpreter architecture for portability and supports a wide
range of MCUs, including the MCU we used in this study.
TFLM supports 8-bit quantified models, which are converted
to C char arrays to be directly compiled for the target MCU.
To efficiently utilize the limited memory in a MCU, TFLM
uses a single pool of statically allocated memory called an
“arena” that holds intermediate buffers and computations [2].
The size of the arena it can allocate determines the maximum
activation size of the neural network model it can support. In
this paper, we utilize the TFLM framework to execute a CNN
model that controls a small-scale RC car autonomously.



III. DEEPPICARMICRO

DeepPicarMicro is a small self-driving RC car that em-
ploys an end-to-end deep learning approach utilizing a deep
convolutional neural network (CNN) to directly control the
motors from the raw camera input data. Such an end-to-
end learning approach has been demonstrated in many prior
works, including NVIDIA’s real self-driving car DAVE-2 [7]
as well as in our prior work DeepPicar [5]. Our main difference
compared to all other prior works is that we realized this CNN
based end-to-end control system on a tiny MCU.

A. Hardware Platform and Track

Fig. 1: DeepPicarMicro platform.

multiples of four, so we modify all CNN models we find to fit
this constraint before loading them onto the DeepPicarMicro.

Fig. 2: Real-world track used to collect training data and
evaluate the control performance of the DeepPicarMicro.

For the environment, we construct a simple track, shown in
Figure 2, that we use for all of our real-world evaluations in
this paper.

B. The PilotNet Architecture

For the neural network architecture, we begin by imple-
menting NVIDIA’s PilotNet CNN in TensorFlow using the
Keras API. After we train a model, we then use the Tensorflow
Lite Micro (TFLM) framework to load and execute the model
on the DeepPicarMicro. Additionally, we use integer 8-bit
quantization-aware training as the TFLM framework only
supports quantized models at the time of writing.

Component

DeepPicar

DeepPicarMicro

Compute platform

Raspberry Pi 3/4

Raspberry Pi Pico

Car platform

New Bright 1:24
scale RC car

New Bright 1:24
scale RC car

Camera

Playstation Eye

Arducam Mini 2MP Plus

Motor control

Pololu DRV8835

L293D

Power source

External battery pack

External battery pack

TABLE II: Hardware components used in DeepPicar vs Deep-
PicarMicro

Figure 1 shows the DeepPicarMicro, which is comprised
of the following components: a Raspberry Pi Pico MCU,
a L293D motor driver, an Arducam Mini 2MP Plus, an
external battery pack, and a 1:24 scale RC car. Table II shows
a comparison of the hardware used in the DeepPicar and
DeepPicarMicro platforms. The camera used on the DeepPi-
carMicro is able to capture images at a frequency of 7.5Hz
(~133 ms per image), so we use this as our control frequency.
In other words, our control loop has a deadline of 133ms per
iteration. Note that the deadline for control systems is often
derived from the system’s dynamics, though in our case it is
determined by hardware limitations. In addition, the camera
can only capture images where both the width and height are

Layer | Input size | Output size | Weights | MACs
Convl | 66x200x3 31x98x24 1.8K 5.5M
Conv2 | 31x98x24 14x47x36 21.6K 14.2M
Conv3 | 14x47x36 5x22x48 43.2K 4.8M
Conv4 | 5x22x48 3x20x64 27.7K 1.7M
Conv5 | 3x20x64 1x18x64 36.9K 663.6K
FC1 1152 100 115.3K | 115.2K
FC2 100 50 5.1K SK
FC3 50 10 510 500
FC4 10 1 11 51
Total 252.2K | 26.9M

TABLE III: PilotNet [7] architecture

C. Data Collection, Pre-processing and Training

We manually collect a dataset of 10,000 frame and steering
angle pairs around the track, which we will henceforth refer
to as the DeepPicarMicro dataset'. We categorize all steering
angles to one of three output classes (left, center, and right) to
match the discrete control output space of the DeepPicarMicro.
We use 7,500 pairs for training and the remaining 2,500 pairs

'We used the DeepPicar platform for data collection as the current iteration
of the DeepPicarMicro does not have capability to store the collected data.



for validation. To improve the consistency of the training
process we also employ the following techniques:

o When generating the train and validation sets, we use a
constant seed such that the output sets are the same every
time they are generated.

o We stratify the train and validation sets so that they are
both equally proportionate to the output class distribution
of the overall dataset.

o In our dataset, the majority of the samples are of the
car going straight. As such, we perform class balancing
so that all three output classes have an equal effect in
the changes made to the model’s final weight values.
Specifically, we assign higher weight values to the left
and right output classes and a lower weight to the straight
output class.

In terms of hardware, the cameras used for the DeepPicar
and DeepPicarMicro differ in their image capture properties
(e.g. zoom, etc.). As a result, the two cameras will capture
different images for the same scene. To account for this during
training, we perform an additional translation scheme when
pre-processing the input frames. To be more specific, for each
image captured on the DeepPicar, we flip the image and crop
it such that the final image closely resembles one captured
from the DeepPicarMicro’s camera.

D. Platform Resource Constraints

To evaluate the performance of the PilotNet model, we
initially test three important metrics: memory usage, accuracy,
and inference latency. We begin with the memory utilization
of the network to determine whether PilotNet with 8-bit
quantization can fit on the Pico MCU. We perform a theoretical
analysis of PilotNet’s per-layer memory usage by calculating
the total input and output activation buffer sizes.
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Fig. 3: SRAM requirement for each PilotNet layer.

Figure 3 shows the results of this analysis. Importantly, we
find that the largest layer only requires 110KB which easily
fits inside the 264KB SRAM available on the Pico MCU.
Furthermore, because the TFLM Arena only needs to be as big
as the largest layer [2], we find that the full PilotNet model
can successfully be run on the Pico. We also find that the
initial layers of the network require far more memory than

the remainder of the network, which is consistent with prior
studies [20].

E. Quantization, Accuracy and Latency

To test the model’s accuracy, we re-feed all 2,500 samples
from the validation set to the model. We again categorize
the model’s predictions to be a left, center, or right output.
We then compare the predictions for all images to their
respective ground truth outputs and measure the number of
samples where the two matched (i.e. the model’s prediction
was “correct”). Using this method, we test the accuracy for
the full PilotNet model, both with and without quantization
enabled. Without quantization, PilotNet achieves an accuracy
of 87.6%, whereas it has an accuracy of 86.9% with 8-
bit quantization. From this, we find that PilotNet can be
quantized and run on the DeepPicarMicro while still achieving
comparable accuracy to original 32-bit floating point model.
However, we find that the performance is highly undesirable
as it takes over 3 seconds to process each frame.

F. Depth-wise Separable Convolutional Layer

Based on PilotNet’s temporal performance, there is little
chance it would achieve good control performance. Even
though it can run on the Pico with high accuracy, it would still
face significant issues in reacting to external stimuli before the
system fails (e.g. the car crashes). To address this, we first try
to replace the standard 2D convolutional layers (i.e. Conv2D)
with well-known Depthwise Separable layers [13], [24] to
reduce the total multiply-accumulate (MAC) operations. As
adopted in many recent TinyML architectures, depthwise sep-
arable layers significantly reduce network MACs by separating
Conv2D layers into two different operations: (1) a depthwise
convolution, and (2) a pointwise convolution. This reduces the
computational cost of a convolution from

C % Op % Oy % Og x K2 (D)

to
Cx0p %0y % K2+ CxO0p %0y %0y 2)

where C' denotes input channels, O denotes output dimensions,
and K denotes the kernel size. For PilotNet, we replace all
five Conv2D layers with equivalent depthwise separable layers
and train a new model on the DeepPicarMicro dataset. We
henceforth refer to both PilotNet models as either the Conv2D
model or Depthwise model, based on the type of convolution
they employ. We then perform the same accuracy and inference
latency measurement tests for the Depthwise model.

Conv2D | Depthwise
Weights 252.2K 133.7
MACs 26.9M 2.1IM
Val. Loss 0.027 0.032
Accuracy (%) 86.9 85.7
Latency (ms) 3025 525

TABLE IV: Comparison of PilotNet models with Conv2D and
depthwise separable layers.



Table IV shows the model characteristics for the Conv2D
and Depthwise models. Notably, the Depthwise model has
~12.7X fewer MACs and ~5.8X faster inference latency
compared to the original Conv2D model. At the same time,
both models have comparable accuracy, with the Depthwise
model’s accuracy only being ~1% smaller.

However, we still find the Depthwise model’s performance
to be unsatisfactory. Even with fewer MAGs, it still takes the
Depthwise model >500 ms to process a single frame, which is
greater than the target 133 ms control period. Due to this, we
next explore the potential for reducing PilotNet’s size without
overly sacrificing accuracy. For this, we perform a Neural
Architecture Search (NAS).

IV. NEURAL ARCHITECTURE SEARCH

In this section, we describe the NAS approach we perform
on the PilotNet architecture. For the NAS, our goal is to find
the model with the highest accuracy while also satisfying the
different physical and temporal constraints required by the
DeepPicarMicro. In particular, we hold that the model must be
small enough to fit in the Pico MCU’s SRAM and Flash and
that its inference latency be <133 ms, the DeepPicarMicro’s
control period. Importantly, due to the performance gains seen
in Table IV, we perform our NAS on the PilotNet model with
depthwise separable layers.

A. Latency Prediction

While we can calculate the SRAM and Flash usage for a
given model layout, the same can not be said for its inference
latency. That is, without profiling a model to measure its
latency, we can not directly determine if it meets the 133 ms
constraint. However, prior studies have shown that a model’s
MAC operations corresponds to its inference latency [3]. To
find this relationship for the Pico MCU, we run 50 CNN
models with MAC operations ranging from ~54.4K to ~2.1M,
and measure their respective inference latencies.
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Fig. 4: Number of MAC operations vs. inference latency on
the Raspberry Pi Pico. We use Linear Regression to find the
dotted line of best fit (R?=0.9996).

Latency = 0.000236 « M AC's + 22.189388. 3)

Figure 4 shows the inference latencies for each model
on the Pico MCU. Using these data points, we use Linear
Regression to derive Equation 3, which can be used to predict
a model’s latency. For example, with this equation an inference
latency of 133 ms on the Pico MCU roughly correlates to
~470,000 MACs. Note that this function would not work for
models with Conv2D layers because they have have different
numbers of operations per convolution overhead [3].

B. Search Space

Now that we can estimate a model’s inference latency, we
perform the NAS on PilotNet. We employ a NAS method-
ology largely influenced by the state-of-the-art MCUNet ap-
proach [21]. That is, we vary PilotNet’s architectural properties
that affect the total number of MAC operations. We refer to
these properties as reduction parameters. However, compared
to the MCUNet NAS, we substantially limit the number of
network layouts we search to reduce the total execution time
of the NAS. Using PilotNet with depthwise separable layers
as a backbone, we define a search space with the following
two reduction parameters:

o Width multiplier for all layers, ranging from [0.2, 0.4, 0.7,
0.8, 0.9, 1.0].

o Network Depth, ranging from a minimum of three layers
to maximum of nine layers. We always keep the input
convolutional and output fully-connected layers, but vary
all unique combinations of the seven middle layers with
at least one additional convolutional layer. In total, we
evaluate 120 different network layouts in this parameter.

In addition, we configure all network layouts to have an
input resolution size of 68x68x1. We choose this resolution
as it is the smallest that can (1) be used for the full unaltered
PilotNet, and (2) be captured by the DeepPicarMicro’s camera,
as discussed in Section III. Using this search space, we then
perform a two-step NAS. First, we construct a model for every
network layout in the search space and calculate its number of
MAC operations. If the model has <470,000 MACs then we
keep that model, otherwise we discard it. In total, we search
720 different network layouts in the first step, and keep 349 of
them. In the second step, we train all remaining models on the
DeepPicarMicro dataset. For each model, we attempt to train it
up to five times to account for random weight initialization. To
optimize this process, we define two validation loss thresholds:
a target threshold and a fail threshold. At the end of each
training iteration, we perform two checks on the model’s
current validation loss. If the validation loss is less than the
target threshold, or greater than the fail threshold, then we
do not perform any additional training iterations and keep the
current model. Likewise, if the model is trained five times
without passing either check, then we stop and move on to the
next model. In our NAS, we use a target threshold of 0.0350,
which roughly correlates to 80% accuracy, and a fail threshold
of 0.0450. In the end, we found substantial variance in the
validation losses of the 349 models we train, from 0.0287 to
0.0836. In terms of accuracy, this resulted in a range of 62.6%
to 86.6% accuracy.



Model # | Layers | Width | Weights | MACs | Latency (ms) | Val. Loss | Accuracy (%) | Score | Laps w/o Crash
1 4 0.2 3.0K 64.8K 37 0.031 84.9 0.04 7
2 7 0.2 26.8K 151.3K 58 0.031 85.0 0.27 9
3 8 0.7 8.8K 267.6K 85 0.032 85.2 0.50 7
4 3 0.7 5.9K 214.5K 73 0.042 82.1 0.56 7
5 6 0.2 1.0K 70.5K 39 0.060 75.3 0.58 0
6 5 0.9 13.3K 358.0K 107 0.033 83.8 0.75 4
7 7 0.8 82.7K 371.4K 110 0.032 85.1 0.84 5
8 4 0.4 1.6K 128.1K 52 0.073 67.7 0.92 0
9 7 0.8 9.0K 315.8K 97 0.050 78.2 0.96 0
10 5 0.8 5.9K 312.8K 96 0.052 76.5 0.98 2
11 3 0.2 1.6K 63.5K 37 0.084 65.6 1.00 0
12 5 0.4 4.6K 276.4K 87 0.057 75.0 1.03 1
13 6 0.9 53.8K 421.3K 122 0.044 80.4 1.16 2
14 6 0.7 7.0K 265.5K 85 0.072 69.8 1.23 0
15 3 0.4 23.8K 374.2K 111 0.066 72.8 1.56 0
16 6 0.9 10.7K 378.2K 111 0.083 62.7 1.71 0

TABLE V: Model statistics and performance for each real-world test case, in order of increasing heuristic score. All models
have the same input resolution of 68x68x1, and the latency values are calculated using Equation 3.

C. Performance Prediction

In the process of searching for an optimal TinyML model,
most state-of-the-art NAS approaches will optimize their
search on a performance based metric, such as accuracy.
However, in the context of CPS, it has been shown that
inference latency can also have a notable impact on control
performance [22], [29]. Based on these findings, we propose
a joint optimization strategy to better predict the control
performance of the CNN models we found. In our strategy,
we assign a heuristic score to each model that is calculated as
follows:

Score = norm(ValLoss) + norm(Latency)

4)

In this function, we normalize the validation loss and
inference latency values for all of the models to be between
0 and 1. For each model, we then sum the two normalized
values together to get a heuristic score between 0 and 2. With
this strategy, the intuition is that models with relatively smaller
validation losses and inference latencies often perform better.
Therefore, the smaller a model’s heuristic score is, the better
it should perform. Note that we use estimated latencies based
on Equation 3 when generating the heuristic scores.

Now that we have CNN models that can effectively run on
the DeepPicarMicro in real-time, we next test their control
performance in a real-world environment, as well as the
effectiveness of our joint optimization strategy.

V. EVALUATION

In this section, we evaluate the control performance of the
CNN models from NAS both in a real track and in a simulated
track.

A. Performance in Real Track

To begin, we perform a more in-depth evaluation of the
models found in Section IV. As it would be time consuming
and inefficient to test all 349 models, we select a sample subset
of 16 models with differing validation losses and inference
latencies. Using Equation 4, we calculate the heuristic scores

for each model. We next evaluate the real-world control per-
formance of each model. For this, we use the DeepPicarMicro
testbed on our handmade track from Figure 2. For each CNN
model, we attempt to run it on the DeepPicarMicro for ten
individual laps and measure the total number of laps the car
is able to finish without crashing.

Table V shows the statistics, heuristic scores, and laps
completed for each tested model. As expected that some CNN
models performed very well (green colored) and completed
the majority of laps without crashing while some models
perform poorly (red colored). An important observation is
that a model’s accuracy alone was not a sufficient indicator
to predict the system’s true performance in the track. For
example, the best model (#2) we tested completed 9 laps
without a single crash, but another similarly accurate—in
terms of validation loss and accuracy—model (#7) was only
able to complete 5 labs without crash. Note also that models
#6 and #7 achieve good accuracy yet perform worse than
significantly less accurate model #4. When we consider latency
into account, however, it is clear that these highly accurate
models did not work well as their latencies are significantly
higher than others. As such, we find that our heuristic score
that considers both accuracy and latency into account gener-
ally performed well in predicting each model’s true relative
performance. That being said, our joint optimization strategy
is not perfect and can incorrectly predict the performance of
some models. For example, the model #5 in the table, which
has a relatively good score of 0.58, performed very poorly in
the real world and couldn’t complete any laps around the track.
Unlike other models with low (good) scores, all of which had
accuracy of >80%, model #5 had a relatively low accuracy
of ~75%. This indicates that accuracy is too low, even with
a fast inference time, it can lead to undesirable results.

B. Performance in Udacity Simulator

In order to better evaluate and understand the relationship
between both model accuracy and latency with respect to
control performance, we conduct a systematic simulation study
using the Udacity self-driving car simulator [26].



We run the simulator on a desktop computer that is equipped
with a Nvidia GTX 1060 GPU and is running Ubuntu 20.04
for its OS. Using the simulator, we evaluated various models
that could meet the resource and latency constraints of the
DeepPicarMicro (i.e., Raspberry Pi Pico MCU’s constraints).
For this, we perform the same general workflow to find and
train CNN models as we did for the DeepPicarMicro. We
first manually collect training data by driving the simulated
car around the first default track available in the simulator.
Figure 5 shows an overview of the track we use for our
simulation environments.

Fig. 5: Udacity simulator’s first default track.

In this case, we collect a dataset of 14,468 samples. We then
perform the same NAS approach as in Section IV, and obtain
models with varying validation losses. In total, we train 84
models with validation losses ranging from 0.0259 to 0.0651.

We next evaluate the impacts that both validation loss and
inference latency have on control performance. To accomplish
this, we select a subset of six models with varying validation
losses. For each model, we then add synthetic delays in the
range of [0, 20, ..., 100] ms after each model inference to sim-
ulate longer model latencies and, by proxy, control actuations.
Note that the actual inference times of the models on the PC
were relatively negligible (~100-200us). For each validation
loss and inference latency combination, we adopt a similar
methodology as in real-world experiments. This time, however,
we measure how many seconds the car can drive before it
crashes, more commonly known as the car’s Time to Crash
(TtC). Due to the increased size of the simulated track, we
measure average TtC to better analyze control performance.
For each test case, we measure the car’s TtC value across five
different runs, with each run having a maximum length of five
minutes (300 seconds). Finally, we calculate the average TtC
for each test case. This gives us a total of 30 data points.

Table VI shows the results from the simulator tests. As ex-
pected, we find that both validation loss and inference latency
play a vital role in the simulated car’s control performance.
For instance, the model with the lowest validation loss (highest
accuracy) fails to stay on track if the inference latency is
over 80 ms. As validation loss increases, this reduction in
control performance (lower TtC) becomes even more apparent.

Validation Loss

0.026 | 0.030 | 0.035 | 0.040 | 0.045
0 300 300 92 81 29
20 300 300 84 79 30
300 81 78 27

300 79 76 28
80 93 59 55 60 29
100 43 56 39 45 28

Latency (ms)
N
S
(%]
S

TABLE VI: Average TtC (seconds) performance for each test
case on the Udacity simulator.

Validation Loss

0.026 | 0.030 | 0.035 | 0.040 | 0.045

2 [ 0 [Wo0om[on2| 028 | 046 | 0.64
E 720 ] 020 | 032 | 048 | 066 | 0.84
Z | 40 | 040 | 052 | 0.68 | 0.86 | 1.04
S [ 60 | 060 | 072 | 088 | 1.06 | 124
S [78 | 080 | 092 | 1.08 | 126 | 144
100 | 1.00 | 1.12 | 128 | 146 | 1.64

TABLE VII: Heuristic scores (between 0 to 2) for each test
case on the Udacity simulator.

Likewise, models with validation losses >0.035 also fail to
remain on track, and crash before the allotted five minutes.

To validate our joint optimization strategy, we calculate the
heuristic scores for each of the simulator test cases. In this
case, we normalize the validation losses for all 84 models
found in our NAS of the simulator dataset, as well as the
synthetic delays that we added in our testing.

Table VII shows the heuristic scores for the 30 test cases.
Similar to the real-world experiments, we find that the func-
tion does a relatively good job of predicting relative control
performance. That being said, the function does not directly
correlate to the control performance for the test cases, meaning
that there is indeed room for improvement in our strategy. We
leave this for future work.

VI. RELATED WORK

There are several RC-car based autonomous car testbeds.
MIT’s RaceCar [25] and the F1Tenth car [16] are both based
on a Traxxas 1/10 scale RC car. Similar to the DeepPicar, the
DonkeyCar also employs an end-to-end CNN-based control
loop that runs on an embedded Raspberry Pi platform [15].
The development of small-scale autonomous vehicle testbeds
has also been seen in industry. For example, Amazon devel-
oped its own autonomous 1/18th scale RC car platform called
DeepRacer [1]. However, all of these platforms employ micro-
processor class computing platforms for their computational
needs. In this paper, we instead introduce and evaluate of an
MCU-based autonomous vehicle testbed.

In terms of the PilotNet architecture we use in this pa-
per [7], there has been work to improve its performance for
autonomous vehicles [6]. This includes a new architecture that
utilizes a combination of residual layers, convolutional layers,
and fully connected layers. Recent experiments also explored
many avenues to improve performance, including data collec-
tion, pre-processing, and the use of a real-world representative
simulator.In our case, we use the original PilotNet architecture



due to its popularity and simplicity, but plan to evaluate the
newer iterations of PilotNet in future work.

With the goal of executing complex DNN-based algo-
rithms on MCUs and other Edge devices, there has been a
plethora of work in the TinyML sector [3], [4], [8]-[12],
[20], [21], [28]. Due to the relative infancy of the field,
though, some works have focused on developing standards
that can be used for benchmarking future works. For example,
the TinyMLPerf benchmark suite was introduced in order to
better enable TinyML-focused research [4]. In addition, many
machine learning frameworks have been developed that target
MCUs. Apart from TFLM [14], there are other frameworks
like CMSIS-NN [18], and uTensor [27]. In academia, the
MCUNet framework has found much success in optimizing
neural network discovery and inferencing on MCUs [21],
achieving SOTA performance on image classification tasks by
proposing an intelligent NAS approach and a highly optimized
custom ML runtime. They have since extended this work
to the MCUNetV2 framework, which instead prioritizes and
optimizes peak memory usage for CNN models, thus allowing
even bigger models to be deployed on MCUs [20]. In our
work, we adopted best-practices in TinyML research and
applied them to CNN based end-to-end control of MCU-based
autonomous CPS.

VII. CONCLUSION

We presented DeepPicarMicro, an autonomous RC car
platform, which employs a deep-learning based end-to-end
control on a tiny MCU. We applied several DNN optimization
techniques to execute the well-known PilotNet CNN archi-
tecture, which was used to drive NVIDIA’s real self-driving
car, on the platform’s MCU. We also applied a state-of-the-
art network architecture search (NAS) approach to find further
optimized networks that can effectively control the car in real-
time on the MCU. From an extensive systematic experimental
and simulation study, we observed an interesting relationship
between the accuracy, latency, and control performance of a
system. Based on the insights, we proposed a joint optimiza-
tion strategy that takes both accuracy and latency of a model
in the network architecture search process for Al enabled CPS.

For future work, we plan to evaluate more complex state-
of-the-art CNN architectures on various MCUs. We also plan
to investigate more fine-grained methods for estimating real-
world control performance of Al enabled CPS systems and
develop effective optimization strategies for MCUs.
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