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Abstract

Molecular simulations are a powerful tool in the study of crystallization and polymorphic transitions
yielding detailed information of transformation mechanisms with high spatiotemporal resolution. How-
ever, characterizing various crystalline and amorphous phases as well as sampling nucleation events and
structural transitions remain extremely challenging tasks. The integration of machine learning with
molecular simulations has the potential of unprecedented advancement in the area of crystal nucleation
and growth. In this article, we discuss recent progress in the analysis and sampling of structural trans-
formations aided by machine learning and the resulting potential future directions opening in this area.
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Introduction

The properties of materials depend not only
on their composition but inherently also on the
details of their crystalline or amorphous struc-
ture. In condensed phase systems, different crys-
talline phases composed of the same elements or
molecules, also known as polymorphs, can exhibit
vastly different materials properties. Prominent
examples include the many different polymorphs
of ice (with ice XIX as the most recent experi-
mentally characterized one [1]) or the versatility
of carbon forming diamond, graphite, graphene,
or fullerenes. The stability of different polymorphs
and transformations between polymorphs are of
importance in a wide range of application areas

such as pharmaceuticals (impacting, for exam-
ple, bioavailability), organic electronics (affecting
properties such as charge transport [2]), or met-
als and alloys for high-performance materials in
the energy and transportation sector. Controlling
the formation of specific polymorphs and possibly
stabilizing metastable forms is key in the design
of novel materials with tailor-made properties.
Molecular simulations of nucleation and growth
during crystallization and of polymorphic tran-
sitions can provide a fundamental understanding
of the underlying molecular processes and mecha-
nisms. In recent years, machine learning (ML) has
become a valuable tool in many areas of molecular
simulations [3]. In this article, we focus particu-
larly on how ML approaches can aid in the analysis
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of simulation data as well as the sampling of crys-
tallization processes and polymorphic transitions.
In the next section, we discuss the application
of ML to the analysis of local and global struc-
tural features, the evaluation of transformation
mechanisms, and the identification of suitable
reaction coordinates for crystallization processes.
The section on ML aided sampling of nucleation
and growth illustrates recent ideas on how low-
dimensional representations of transition paths
extracted from ML models can be combined with
enhanced sampling approaches to explore nucle-
ation and polymorphic transitions with molecular
simulations. We close with a brief perspective on
how the rapid developments in the field of ML
may further benefit the analysis and sampling of
crystallization processes.

ML aided analysis of
nucleation and growth

In inferring mechanisms of crystallization from
molecular simulations, a key task is the charac-
terisation of structural environments to be able
to distinguish between liquid, amorphous, and
different crystalline phases. This is typically done
through the use of collective variables (CV) that
are functions of the phase space coordinates.
Traditionally, these CVs are physically motivated
and, for example, based on the symmetry of the
local structure such as Steinhardt bond order
parameters [4], coordination numbers, or tetrahe-
drality. Moreover, the analysis of transformation
mechanisms is often linked to the definition of
a reaction coordinate (RC) that describes the
progress along the structural transition. The RC
is usually given by a linear or nonlinear com-
bination of suitable CVs. Given the complexity
of crystallization processes, the identification
of an appropriate RC can, however, be highly
non-trivial and may require a non-intuitive com-
bination of CVs. In the following, we illustrate
the application of ML approaches in structure
classification and RC determination.

Local and global structure identifi-
cation

Deriving traditional CVs for structure classi-
fication often requires a priori knowledge of the

Fig. 1 Schematic of (a) supervised and (b) unsupervised
learning for crystal structure identification. (c) Illustration
of point cloud which is input to PointNet-based structure
classification [5]. The input features include the x-, y-, and
z-coordinates of the neighbors of the atom to be classified,
and additional features k can be added. For example, k can
be the atomic identity.

structural features that characterize the different
phases to be distinguished. A single CV might not
be sufficient and usually a combination of CVs
is necessary, in particular, when differentiating
between several crystalline structures simultane-
ously. Furthermore, the identification of any new
structure requires the development of new CVs
which can be difficult and time-consuming. As an
alternative, ML-based classification has emerged
as a powerful tool for structure identification.

ML approaches for structure classification can
be categorized into two groups: supervised and
unsupervised learning, as schematically shown in
Fig. 1(a) and (b). In supervised learning, the data
to train the ML model are labeled, that is the
input features have to be provided together with
the information about the corresponding struc-
ture. The ML model then learns the decision
boundaries between the different structures in the
space of input features. Once trained, the input
features computed for any arbitrary structure can
be passed to the ML model to assign a struc-
ture. Unsupervised learning, on the other hand,
does not require any structure assignment to the
data which is particularly useful when analysing
data with unknown or transient structures that
are different from the bulk crystalline phases.
Having, for example, trained an autoencoder, the
ML model can perform a nonlinear dimensional-
ity reduction of the input features and project
the data into a low-dimensional latent space (see



Springer Nature 2021 LATEX template

Article Title 3

Fig. 1(b)) in which the different structures should
be sufficiently separated. The regions in the latent
space that correspond to different structures can
be identified by applying a clustering algorithm.
Any unknown structure can then be projected
into the latent space and will be classified by its
location on the latent space map.

A key component in ML structure identifi-
cation in molecular simulations is the design of
the input features for the ML model. There is
often a trade-off between feature complexity and
model complexity. Input features that are rela-
tively complex and highly tuned functions of a
particular system typically require simpler ML
models than more general input features (e.g.,
direct Cartesian coordinates). Additionally, the
features used for structure classification need to be
rotation-, translation-, and permutation-invariant.
The majority of efforts in ML structure identifi-
cation are based on supervised learning. One of
the first applications to condensed phase systems
is the work by Geiger and Dellago [6] who were
motivated by the failure of traditional CVs to dis-
tinguish between various polymorphs of ice. They
used radial and angular symmetry functions as
input features to a neural network (NN) to classify
the local structural environment of six different
ice polymorphs. One limitation of their approach
is that the input features need to be selected and
tuned specifically for the structures of interest. As
the different phases of ice and water are notori-
ously difficult to classify, this system has inspired
several other ML models. GCIceNet [7] is based
on a graph NN that treats each water molecule
as a node and each hydrogen bond as an edge
in the graph representation. In contrast to the
symmetry functions, no significant feature tuning
is required in this approach. The model success-
fully classified nine different phases of ice/water
and the graph representation was also demon-
strated to work effectively for unsupervised learn-
ing. Another model, called DeepIce [8], focused
specifically on minimal feature engineering. The
input to DeepIce for a given water molecule are
the x-, y-, and z-coordinates of the neighboring
molecules. This input is transformed into fea-
tures through a number of sub-networks operated
on the Cartesian coordinates, spherical coordi-
nates, spherical harmonics and Fourier transforms
of the Cartesian coordinates. DeepIce has, so far,
only been applied to distinguish liquid water and

hexagonal ice. An even more general approach
to derive input features was proposed in connec-
tion with the PointNet architecture [9] which was
originally developed to process and classify point
cloud data. In the context of structure classifica-
tion, the environment around each atom is treated
as a point cloud and only the relative Cartesian
coordinates of the neighboring atoms are needed
as input [5], as shown in Fig. 1(c). PointNet
was applied to a broad range of systems includ-
ing Lennard-Jones particles, water/ice, water at
interfaces, and mesophases.

Unsupervised learning approaches for struc-
ture identification vary in the design of the input
features, the method chosen for dimensionality
reduction, and the approach to cluster the data in
the latent space. As in supervised learning, input
features ranging from rather structure specific to
fairly general have been used, including Steinhardt
bond order parameters [10], a (possibly) large
number of distances, angles, spherical harmonics
etc. [11, 12], a graph representation (GCIceNet,
discussed above) [7], a graphlet decomposition of
the input [13, 14], and a point cloud represen-
tation [15]. Autoencoders are a popular choice
for nonlinear dimensionality reductions and have
been employed in combination with several of the
input features [7, 10, 13, 15]. Other approaches
for dimensionality reduction that have been pro-
posed in this context are, for example, uniform
manifold approximation and projection for dimen-
sion reduction (UMAP) [11, 12, 16] and diffusion
maps [14]. Clustering in the latent space is usually
performed with standard methods such as Gaus-
sian mixture models or hierarchical density-based
spatial clustering of applications with noise (HDB-
SCAN) [17]. More recent work focused on building
a data-centric crystal classifier (DC3) [18]. DC3
utilizes radial symmetry functions in combina-
tion with Steinhardt bond order parameters but
instead of tuning the parameters of these features,
each type of feature was calculated for a wide
range of parameters, leading to hundreds of fea-
tures per atom. The NN automatically determined
the features most relevant to accurately classify-
ing the local atomic environments. Their approach
performed competitively against more traditional
and specialized methods. The model was also
designed to identify amorphous versus crystalline
structure as well as to recognize a crystal struc-
ture that has not been previously identified. It,
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therefore, performs a hybrid of supervised and
unsupervised learning.

Since the early work of Geiger and Dellago [6],
the field of ML-based structure identification has
evolved significantly. Many different ML methods
are now available for structural classification.
The emerging unsupervised approaches have the
potential to discover novel (and transient) struc-
tures that could help in our understanding of
crystallization processes. The diversity of training
data and systems used in ML-based structural
classification methods make it difficult to directly
compare them. Furthermore, such comparison
becomes even harder because the methods were
motivated by different purposes such as achiev-
ing high accuracy, understanding input features
critical for classification, and achieving high com-
putational speeds. Moving forward, developing a
broad dataset that can be used as a community
standard against which to benchmark the algo-
rithms can help in the development of faster and
accurate classification methods.

Analysis of crystallization mecha-
nisms

In molecular simulations, crystallization mech-
anisms are often deciphered by studying the emer-
gence of crystalline structures from the metastable
liquid. A recent example where ML-based struc-
ture classification was crucial in analyzing sim-
ulation data is the crystallization of the binary
colloidal AB13 crystal [19]. The clear distinction
between the different, somewhat exotic, crystalline
phases facilitated the observation of the growing
nucleus, thus providing insight into the nucleation
mechanism.

A more general approach to describe the
progress of a crystallization or transformation
process is the committor pB . For a transition
between two (meta)stable states A and B of
a system (for example, between the liquid and
solid state or between two crystalline phases), the
committor measures the probability that a given
configuration commits to state B before going
back to A. Consequently, the committor increases
monotonously from 0 to 1 along the transforma-
tion and can be considered as an ideal RC. It
is, however, rather costly to compute and the
committor itself does not provide any physical

insight. But it can be used to evaluate the qual-
ity of a proposed RC: any CV or combination of
CVs that constitute a good RC have to show a
strong correlation with the committor. In fact, the
combination of CVs that best correlates with the
committor can be considered as an optimal repre-
sentation of the RC, as illustrated in Fig. 2 for a
simple 2-dimensional potential energy surface. For
configurations at a single value of the trial RC x
in Fig. 2(b), a wide range of pB values is observed,
indicating that x does not capture the progress of
the transition between the two metastable states
and is therefore not a good RC. In Fig. 2(c), x+y
correlates well with pB , making it a much bet-
ter approximation of the RC. This combination of
CVs is often non-trivial and non-intuitive to iden-
tify. An ML model that is trained to predict the
committor can thus be beneficial to identify the
best combination of CVs corresponding to the RC
along which the mechanism and kinetics can be
evaluated.

In their pioneering work, Ma and Dinner [20]
used genetic NNs (GNNs) to predict the commit-
tor and identify the RC. The number of input
features was limited to two or three CVs to retain
interpretability. For each set of CVs, an NN was
trained and a genetic algorithm was employed
to efficiently find the CV combination with the
best statistical fit. Similar in spirit, recent stud-
ies utilized simulation data from transition path
sampling (TPS) to train an NN to predict the
committor [21, 22]. Instead of only a few CVs,
a few hundred molecular features were used as
input. A sensitivity analysis of the trained NN
subsequently revealed the input features most
important in predicting the committor and, thus,
the RC. Furthermore, symbolic regression with
this reduced number of input features was used
to generate a human-interpretable model of the
committor that approximates the complicated NN
function. The approach was applied to LiCl ion
pair dissociation in water which revealed that
the optimal RC needs to capture the complex
interplay between solvent and counterion environ-
ments. Another application was to the nucleation
of methane hydrates where a switch in the mecha-
nism with temperature was observed which could
be expressed in a simple mathematical expression
extracted from the trained NN. Frassek et al. [23]
used an extended autoencoder approach (EAE)
to identify the CVs that contribute dominantly
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Fig. 2 (a) Model potential energy surface with two
metastable states. (b) pB when x is the trial RC. (c) pB
when x+y is the trial RC. pB estimates are represented as
semi-transparent blue circles with red outlines in (b) and
(c). Each pB estimate for a given point on the surface in (a)
was calculated by simulating 20 trajectories with Langevin
dynamics starting from that point and monitoring whether
the trajectories reached the left or right metastable state
first.

to the RC. From the latent space of the autoen-
coder, both the input data were reconstructed
and the committor was predicted simultaneously.
The EAE model was applied to analyse TPS data
for methane hydrate nucleation and identified
important methane and water structural motifs
that determined the probability of growing into a
hydrate nucleus.

In the examples discussed, the objective is to
use ML to decipher and identify the combination
of CVs that describe the transition as accu-
rately as possible while retaining interpretability.
This advances nucleation studies in multiple ways:
(i) identification of important CVs yields better
mechanistic insights into nucleation and crystal-
lization, which is also crucial for understanding
polymorphic transitions; (ii) the important CVs
can be used in enhanced sampling methods (e.g.
metadynamics, umbrella sampling, etc.) to accel-
erate the sampling of nucleation processes (see
also the next section); (iii) by focusing on the
important CVs, it could be possible to develop
high-throughput methods to screen through the
effects of solution conditions and additives on
nucleation. The discussed methods, however, still
depend on a predetermined set of CVs and fac-
tors that are not captured by these CVs while
contributing to the nucleation mechanism may be
missed. Furthermore, interpretation of the latent
space is generally not directly possible and can
only be approximated through, for example, a
sensitivity analysis possibly in combination with
symbolic regression as discussed above.

ML aided sampling of
nucleation and growth

Nucleation and growth processes in condensed
phase systems often take place on timescales
that are inaccessible by straightforward molecu-
lar dynamics (MD) simulations. These processes
can be characterized as transitions between
metastable states (for example, the liquid and
solid state or different crystalline phases), that is,
local minima on the free energy landscape, that
are separated by significant energy barriers. The
time spent within each of the metastable states is
much longer than the transition time and this sep-
aration of timescales causes the transitions (and
therefore the transformation processes) to be rare
events on a molecular timescale. Over the years,
a number of enhanced sampling approaches have
been developed that facilitate the exploration
of rare events. Often, these approaches require
a suitable, low-dimensional RC along which the
sampling is being performed. As discussed in the
previous section, ML approaches can be used to
analyze and interpret transformation mechanisms
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and identify low-dimensional descriptors. How-
ever, the data needed for this analysis have to be
sampled to begin with. This constitutes a chicken-
and-egg problem of data-driven approaches to
identify suitable CVs that are then needed in the
enhanced sampling to produce the data. In the
following, we discuss two ideas: the first one is to
construct ML-based CVs using only data from
the metastable states without having to sample
the rare event explicitly; the second is iterative
approaches where the data sampled along a puta-
tive CV are used to further improve the CV that
is then employed in further enhanced sampling.

Collective variables for enhanced
sampling

To sample structural transformations, CVs
that can distinguish between the structural envi-
ronments in the different phases are an obvious
choice. For example, to study the nucleation of a
crystalline phase from a supercooled liquid, the
local environment around each atom or molecule
can be characterized as representing either the
solid or the liquid and all solid particles can
subsequently be clustered. The size of this solid
cluster may then be used as a 1-dimensional RC
in enhanced sampling.

Structure identification based on ML has been
treated mainly as a classification problem (see
previous section). Consequently, the decision func-
tion separating the classes for different structural
environments can be used as CV in enhanced sam-
pling of structural transformations [24, 25]. The
main advantage is that to train the ML struc-
ture classification, data are only needed within
the different metastable states that represent the
different phases which can be sampled efficiently
with standard MD. An important aspect that
needs to be considered if a CV is to be applied
in enhanced sampling is that the CV needs to be
differentiable with respect to atomic positions to
provide the corresponding biasing forces. Since the
forces are required in every simulation step the
computation of the CV and its derivatives should
also be computationally relatively cheap to avoid
a significant increase in the computational cost.
This requires a careful tuning of the complexity
of the ML model as well as the selection of input
features derived from the atomic configurations.

One recent example applied to crystalliza-
tion is the combination of the structure factor
(SF) with an NN and linear discriminant analysis
(LDA) [26]. The peaks of the full three dimen-
sional structure factor globally characterize the
system as being either liquid or solid. However,
the number of peaks is too large to be directly
used as CVs in an enhanced sampling scheme.
Instead, an NN was employed to combine the SF
peaks non-linearly and the LDA was performed in
this reduced space to separate the solid and liquid
phase. The resulting 1-dimensional deep-LDA CV
was then used in on-the-fly probability enhanced
sampling [27] to explore the free energy landscape
of crystallization of sodium chloride and carbon
dioxide [26].

Another example is the local structure classi-
fication where atom-centered symmetry functions
are used as input features for a classification NN
(see the section on local and global structure iden-
tification). In [6], the crystallization of supercooled
water was studied using the largest crystalline
cluster as CV in umbrella sampling. The identifi-
cation of water molecules in a crystalline environ-
ment was performed with a classification NN but
the NN output entered the CV only indirectly, and
no force evaluations with respect to the CV and
thus the NN output were needed.

To study solid-solid transformation mecha-
nisms between two crystalline phases in molybde-
num, the NN classification of the local structure
was directly used to apply a biasing force and drive
the structural transformation with metadynamics
and driven adiabatic free energy dynamics [28, 29].
The output of the classification NN for each atom
was combined into global classifiers that represent
the fraction of each crystalline phase in the entire
system. Within this space of global classifiers a
path CV was defined along which the fraction of
each phase changes, thus driving the transforma-
tion [28, 29]. The nonlinear combination of these
global classifiers into a path CV is much more effi-
cient than using the global classifiers directly as
CVs since the phase fractions are not independent
(as one phase grows another one must shrink). In
this system, the transformation proceeds via local
changes through a disordered/amorphous region
at the phase boundary (Fig. 3(c)). The biasing
forces entering the enhanced sampling are large
for atoms close to the interface and almost zero
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Fig. 3 (a) Schematic representation of a classification
neural network with features Gα in the input layer and
classes yi in the output layer. (b) Schematic representa-
tion of the learnt decision function in the space of input
features; the derivative of the NN output with respect to
the input features is large close to the decision boundary
(red line) and small far away from it. (c) Snapshot of an
interface between a body-centred cubic (left) and topo-
logically closed-packed (right) crystal structure. The color
gradient indicates the magnitude of the biasing force in the
enhanced sampling using a NN-based path CV (see [28, 29]
for details). Biasing forces are large for local environ-
ments that are identified as close to the decision boundary
and small for local environments that resemble the bulk
crystalline phases.

in bulk regions (Fig. 3(c)) which is directly con-
nected with the derivatives of the classification NN
output: forces are small if the local environment
is well within one of the classes and large if the
local environment is close to a decision boundary
(Fig. 3(b)). The enhanced sampling therefore pro-
motes the local structural changes at the interface
that drive the phase transformation.

A slightly different idea of combining a set of
CVs into a 1-dimensional RC is the spectral gap
optimization of order parameters (SGOOP) [30].
Here, the objective is to identify a linear combi-
nation of CVs that best separates the slow visible
and fast hidden dynamics projected along the
resulting 1-dimensional RC. This approach was
recently used to study crystallization in urea [31]
by combining six global descriptors to distinguish
between the liquid and crystalline phases with
SGOOP. Metadynamics was employed to explore
the free energy along the SGOOP RC and sam-
ple the crystallization process. In contrast to
the other approaches discussed in this section,
SGOOP does require sampling of data along the
transition as it evaluates the dynamics rather
than structure classification. Possibly, a combi-
nation of SGOOP with ML approaches could
enable a nonlinear combination of the trial CVs
providing additional flexibility in the description
of complex crystallization processes.

Iterative sampling and collective
variable identification

Several iterative approaches have been intro-
duced in the last few years that combine enhanced
sampling and ML-aided identification of optimal,
low-dimensional RCs. The basic idea that these
approaches have in common is to start with data
from an unbiased simulation or from enhanced
sampling along non-optimal CVs, employ ML to
propose improved CVs, continue the enhanced
sampling with this new set of CVs, and subse-
quently include the new data in the training of
the ML model. As this iterative process continues,
the enhanced sampling should become more and
more efficient and the ML model of the RC more
accurate.

So far, these approaches have been applied
to simple low-dimensional model potential energy
surfaces and conformational changes in small
biomolecules but not yet to crystallization or
polymorphic transitions. However, we include a
brief discussion here as they have the poten-
tial to improve the sampling of complex struc-
tural transformations and nucleation processes
that require less intuitive and more involved
combinations of CVs. Even for seemingly sim-
ple particle systems, the competition between
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different nucleation pathways may require struc-
ture specific CVs that can distinguish between
different polymorphs. One example are charged
colloidal particles that nucleate in two different
crystalline structures with different charge order-
ing [32]. Another example is nucleation in Ni-Al
alloys where, in addition to the size of the solid
cluster, the crystallinity and the chemical short
range order also need to be included in a suit-
able RC [33]. In more complex systems, such as
the nucleation of methane hydrates, a large num-
ber of possible CVs can be proposed that need to
be combined in a meaningful way [23, 34]. Simi-
larly, the definition of suitable RCs for nucleation
and polymorphic transitions in molecular crystals
is non-trivial.

Iterative approaches are also attractive
because they promise an automated way in tack-
ling the rare event sampling problem. Ideally,
starting with only little information about a sys-
tem, the exploration of the transition mechanism
and the optimization of the RC is performed by
the algorithm without much user interference.
The nonlinear dimensionality reduction to iden-
tify the RC is, for example, performed using
autoencoders and then combined with enhanced
sampling [35, 36]. Variational autoencoders have
also been used, aiming to learn the mapping of
molecular simulation data onto the correct proba-
bility distribution in the latent space rather than
the latent space variables themselves [37]. The
RC is then defined as a linear combination of var-
ious CVs along which the probability distribution
projected from the simulation data best matches
the one learnt by the variational autoencoder.
In addition, time-lagged autoencoders have been
proposed [38] where the data at a time t pro-
jected into the latent space are used to predict
data at a time t + ∆t. The learnt latent space
representation (also called predictive information
bottleneck) corresponds to the coordinate that
is maximally predictive of a system’s future evo-
lution based on its current state [39]. Similar to
the variational autoencoders, the latent space can
be associated with an RC along which biasing is
performed in the enhanced sampling [39].

A related idea of iterative sampling was
already introduced in the section on analysis of
crystallization mechanisms where the ML model
is trained to predict the committor providing a

nonlinear combination of possible CVs [21, 22].
The required data are produced with TPS sim-
ulations and the reliable prediction of committor
values for any arbitrary configuration is, in turn,
extremely valuable to accelerate the sampling of
trajectories in the TPS algorithm. Again, as more
data become available the ML model for commit-
tor prediction is further improved and the path
sampling becomes more efficient.

Although these iterative approaches are very
promising, they are not entirely automated and
convergence of the iterative process as well as an
ergodic sampling is not guaranteed. For instance,
it is discussed in [39] that an insufficient choice of
trial CVs to construct the RC might be heuris-
tically spotted by a lack of enhancement in the
sampling as the simulation proceeds but there is
no proof of completeness. The convergence has, so
far, mainly been assessed by an evaluation of the
free energy surface. For the simple model poten-
tials and small biomolecules studied in [35, 37, 39]
10 − 20 iterations were typically performed with
106−107 steps of biased sampling in between. The
number of required iterations as well as sampling
steps will, however, depend on the complexity of
the studied system. Another challenge is the pre-
processing of the simulation data before they can
be used as input to the ML model. If the con-
figurations are directly represented, translational,
rotational, and permutational symmetries have
to be considered and often the representation is
reduced to a set of internal coordinates [35, 36].
Alternatively, a possibly large set of trial CVs is
computed for each configuration and the RC is
determined as either a linear or nonlinear combi-
nation of these trial CVs [21, 22, 37, 39]. It will
be interesting to explore the performance of these
iterative approaches in the sampling of nucle-
ation mechanisms and polymorphic transitions in
complex condensed phase systems.

The adjacent possible for
computational studies of
nucleation

The extensive territory of nucleation and growth
is still vastly uncharted by molecular simula-
tions. Larger and more complex systems have just
become feasible to probe with growing computa-
tional resources and recent years have witnessed
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reports of first extensive sampling of nucleation
in systems such as pure water and gas hydrates.
Still, large free energy barriers associated with the
transformation processes prevent the sampling of
sufficient transition pathways at reasonable com-
putational cost. The interplay of different interac-
tions especially in multicomponent systems, and
the possibility of transient structures governing
nucleation makes the identification of the reaction
pathways rather difficult. The addition of ML to
the arsenal of computational tools has immense
potential to help overcome these challenges and
expanding the adjacent possible[40, 41] of nucle-
ation studies, thereby ushering the field into a new
era of studies.

An immediate application is the analysis
of simulation data with ML-supported struc-
ture classification and committor predictions. The
rapid increase and maturity of ML-based struc-
ture identification in condensed phase systems is
a testament to the promise of these approaches.
As it becomes possible to generate more and more
transition pathways, ML-enabled structure identi-
fication will help to discover transient structures
that potentially drive nucleation. Combined with
emerging ML-methods to identify critical param-
eters that determine the RC, the basic physics of
nucleation in these systems will become clearer.
While growing computational resources and soft-
ware developments address some of the challenges
in obtaining sufficient simulation data for an ML-
based analysis, further developments in the area
of ML-enabled enhanced sampling will also be
necessary. This might also be complemented by
integrating generative ML-models, such as Boltz-
mann generators [42], that can efficiently propose
configurations distributed according to their prob-
ability density in the respective ensemble without
performing expensive MD simulations. In addi-
tion, ML techniques should be explored to address
some existing challenges in simulation studies of
nucleation such as constant chemical potential
simulations, and finite size effects.

The combination of traditional sampling meth-
ods with ML-based analysis and sampling tools
opens a path towards the study of nucleation in
even more exciting and challenging systems such
as molecular organic frameworks (MOFs) and zeo-
lites. Another frontier in nucleation studies is the
ability to explore the effects of solvent conditions
and additives on nucleation. These parameters are

routinely used in experiments to control nucle-
ation and polymorph selection. However, very
little is understood about the underlying physics
from a molecular point of view and, consequently,
the choice of these parameters is largely driven by
experience. ML-enhanced analysis of nucleation
pathways could provide the tools to discover cor-
relations between solution conditions or additives
and the emergence of structural features key to the
nucleation process. This could also enable high-
throughput screening and inverse design of solu-
tion conditions for desired nucleation outcomes.
To study changes in nucleation mechanisms as
solution conditions or additives change, the com-
putational cost to generate the corresponding sim-
ulation data still needs to be significantly reduced
which requires further progress in ML-supported
enhanced sampling. The ultimate goal facilitated
by such progress is the inverse design of nucleation
processes. This involves the design of additives
that not only yield desired polymorph outcomes
but also allow us to control competing nucleation
pathways. Furthermore, if the metastable struc-
tures that emerge along the nucleation pathway
can be controlled it becomes possible to engineer
exciting responsiveness to solution conditions into
the materials. Such control of engineering crys-
tallization kinetics has the potential of unlocking
immense novel properties of materials for a vast
range of applications.
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autoencoders: Deep learning of slow collec-
tive variables for molecular kinetics. J. Chem.
Phys. 148 (24), 241703 (2018) .

[39] Wang, Y., Ribeiro, J. M. L. & Tiwary, P.
Past–future information bottleneck for sam-
pling molecular reaction coordinate simulta-
neously with thermodynamics and kinetics.
Nat. Commun. 10 (1), 3573 (2019) .

[40] Kauffman, S. & Kauffman, M. The Ori-
gins of Order: Self-organization and Selec-
tion in Evolution The Origins of Order:
Self-organization and Selection in Evo-
lution (Oxford University Press, 1993).
URL https://books.google.co.in/books?id=
lZcSpRJz0dgC.

[41] Johnson, S. Where Good Ideas Come From:
The Natural History of Innovation (Penguin
Books Limited, 2010). URL https://books.
google.co.in/books?id=eOfUiUNby3cC.
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