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Abstract—We present achievable error exponents for the

AWGN channel with one bit noiseless feedback and an almost-

sure power constraint. As in Forney’s decision feedback approach

for discrete memoryless channels, the backward channel is used

to request retransmissions from the transmitter whenever an

erasure is declared at the decoder. Our erasure/re-transmission-

request scheme introduces a novel erasure decoding rule built on

top of a lattice-based code inspired by De Buda. Numerically, our

scheme is seen to outperform the sphere packing bound (valid

for block codes) at lower rates and higher SNRs.

Index Terms—Error exponents, AWGN, lattice, Forney, vari-

able length coding

I. INTRODUCTION

Forney [1] introduced decision feedback coding, where
the sequences sent over the channel can be either decoded
(correctly or incorrectly), or declared an erasure. The latter
signals that the decoder is not confident enough to make a
hard decision on the transmitted message. An erasure triggers
a retransmission request, which is carried from the receiver to
the transmitter over a noiseless feedback link. This approach
nonetheless allows for considerable improvement of the error
probability with respect to simple point-to-point feedback-free
transmissions. Moreover, the use of feedback is very limited
and the effective transmission rate is not affected. Forney’s
work focused on discrete memoryless channels, but his ideas
can be extended to channels with continuous alphabets and
different erasure criteria.

Wyner [2] applied a Forney-like scheme to the continuous
time AWGN channel with average power P and noise variance
�2. The capacity of this channel is well known to be unaffected
by feedback and is given by C = 1

2 log2
�
1 + P

�2

�
. Wyner’s

scheme is built on an orthogonal code, whose reliability
function in the absence of feedback, denoted as Eo(R), is
known exactly and given by:

Eo(R) =

8
<

:
C/2�R, 0  R  C/4⇣p

C �
p
R
⌘2

, C/4  R  C
. (1)

Wyner’s approach is presented as a repeat-request coding
strategy which includes the definition of an erasure decoding
rule for an orthogonal code over the AWGN channel. Hence,
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Forney’s principles can be directly applied and a higher
reliability attained, noting that (1) is boosted to (2):

EWyn(R) =
⇣p

C �
p
R
⌘2

+ C �R = 2
p
C
⇣p

C �
p
R
⌘
.

(2)
Observe that (2) leads to larger gains for rates near C. More-
over, the transmission rate is not affected as the retransmission
probability tends to zero as the block length tends to 1.

If the feedback channel is able to convey more information
without error, i.e. complete output feedback is available at the
encoder, then much higher error exponents can be achieved.
For example, Schalkwijk-Kailath (SK) [3] proposed a linear
block coding scheme whose error probability has a double
exponential decay as a function of the block length N .
Later, Gallager and Nakiboǧlu [4] demonstrated that a nested
exponential decay can be achieved and that the number of
nested terms grows linearly with the block length. A more
restricted setting is addressed in [5], where achievable error
exponents for the AWGN are studied under block coding
and the presence of a noiseless but rate-limited feedback
link. Forward codewords are subject to a different –more
flexible– expected block power constraint, which allows for
high amplitude transmissions. It was demonstrated that when
the feedback rate is smaller than that of the forward channel,
only an exponential decay in the error probability can be
attained, in contrast to larger feedback rates where higher order
exponential decays can be achieved. The benefits of noiseless
feedback under block coding for AWGN channels at zero-rate
are part of the line of work of Burnashev and Yamamoto, [6].

For variable length coding (VLC) settings, the availability of
complete noiseless feedback was studied under a peak power
constraint by Schalkwijk-Barron in [7] based on Viterbi’s
sequential decision feedback. The same reliability was later
shown to be asymptotically attained using a simpler block-
wise variable length coding by Yamamoto-Itoh [8]. Noisy
feedback under VLC has been studied in [9], [10].

Error exponents of AWGN channels based on lattice codes
have been previously analyzed under block coding in the
absence of feedback in [11]. It was shown that Erez-Zamir’s
lattice encoding scheme is not only able to achieve capacity
[12] but also, for rates sufficiently close to capacity, to attain
error exponents similar to those under randomly generated
codes (in contrast to the initial conjecture that only Poltyrev’s
error exponent could be achieved, see [13]). Their approach
is based on transforming the AWGN channel model into a



Modulo-Lattice Additive Noise (MLAN) channel.
This work considers the case of a single bit of noiseless

feedback, similar to that introduced by Forney and used by
Wyner in [2] for AWGN channels. Though we also focus
on AWGN channels, we introduce a novel erasure decoding
technique that exploits the structure of a lattice-based code.
We show that it is possible to attain higher error exponents in
the low-rate regime if this rule is used instead of an orthogonal
code, especially at higher SNR.

In the following, we utilize capital letters to denote random
variables and small letters for their realizations. Bold letters
indicate N -dimensional vectors.

II. PROBLEM STATEMENT

We consider an AWGN channel with a single bit of noiseless
feedback. As in Forney’s decision feedback scheme (or equiva-
lently in Wyner’s repeat-request coding strategy) the feedback
channel is only used to tell the encoder that a retransmission of
the last transmitted message is necessary. Such retransmission
requests arise when the received sequence cannot be reliably
decoded into a unique message but declared as an erasure (e.g.
when a received sequence lies close to a decision boundary or
is equidistant between different codewords). Hence, a message
is transmitted repeatedly until it is received unerased before
the transmitter moves to a new message. Next, we present a
formal statement of the problem.

Consider a communication system in which a terminal (the
transmitter) sends messages selected uniformly from the set
M = {1, 2, ...,M} to another terminal (the receiver) over
the forward direction. Let X ,Y be the set of all reals. Let
(X , Q(y|x),Y) denote a one-way AWGN channel character-
ized by law Q(y|x) in the forward direction with correspond-
ing input and output alphabets X and Y . Let QN denote N
uses of channel with law Q(y|x). A (X , Q(y|x),Y) channel
is said to be memoryless if QN

�
yN |xN

�
=
QN

k=1 Q(yk|xk).
At the k-th channel use, the forward direction is characterized
by independent and identically distributed (iid) AWGN with
zero mean and variance �2; which is described by the model:

Yk = Xk + Zk, Zk iid ⇠ N (0,�2), k = 1, 2, ...

Channel inputs are subject to an almost sure power con-
straint for a block of length N :

Pr

 
NX

k=1

X2
ik  NP

!
= 1

where P corresponds to the average power of the transmitter.
Moreover, we let the number of transmissions required to
decode each message vary, so define a code for this channel
in the variable length coding (VLC) setting as:

Definition 1. A variable length code with a single bit of
noiseless feedback, denoted by CFB,AS

vl

�
M,P,�2

�
, and used

for the transmission of messages uniformly selected from
the set M = {1, 2, ...,M} over a one-way AWGN channel
(X , Q(y|x),Y), subject to an almost sure power constraint,
comprises:

1) A set of forward encoding functions: defined for k =
1, 2, ... as: fk : M ! X , leading to channel inputs
Xk = fk (W ) and subject to an almost sure power con-
straint, where W 2 M corresponds to the equiprobable
message. We use the notation x(w) to denote the length
N codeword linked to message W = w.

2) A set of decoding functions �k : Yk ! M which yield
the best estimate of the sent message W , denoted as cW .

3) A non-negative random variable �, a stopping time of
the filtration Gk = �{Y1, ..., Yk}, that indicates the time
slot in which the receiver declares the estimate cW . Here
�{·} denotes a �-field.

Moreover, we define the average communication rate as
R̄ = logM

E[�] , and denote the maximum probability of error
attained by a CFB,AS

vl

�
M,P,�2

�
code at rate R̄ as:

PFB,AS
error

�
R̄
�
:= max

w2M
Pr
�
�(y�) 6= w | W = w sent

�

Definition 2. An achievable error exponent on the probability
of error of a one-way AWGN channel with a single bit of
noiseless feedback, and operating at rate R̄ is defined as:

EFB(R̄) := lim inf
E[�]!1

� 1

E[�]
logPFB,AS

error
�
R̄
�
,

where the subscript FB indicates the availability of feedback.

Next, we present our main result statement followed by its
corresponding proof.

III. MAIN RESULT

We consider a repeat-request strategy like that proposed
by Wyner [2] for the AWGN channel, using a single bit of
noiseless feedback for retransmission request signaling only.
Our scheme differs from Wyner’s in that we use a lattice code
instead of an orthogonal code. One contribution is thus to
propose a novel erasure decoding rule tailored to the structure
of lattices. Without loss of generality, assuming that �2 = 1,
our main result is reflected in the following:

Theorem 1. An achievable error exponent for the AWGN one-
way channel, subject to an almost sure power constraint and
using variable length coding is:

EFB,Lat(R̄) � 4(C⇤�R) + 1� 2 · 2(C⇤�R), (3)

where C⇤ = log2
p
P .

The term C⇤ = log2
p
P , represents a rate slightly smaller

than the channel capacity C = log2
p
1 + P , and follows the

notation introduced by De Buda’s initial work [14] on the use
of lattices for the AWGN channel. This scheme is thus valid
only for a subset of the rates below capacity. Note that if
P � 1, then C⇤ ! C.

A. Proof of Theorem 1

The result shown in (3) can be achieved by applying a
repeat-request strategy over a lattice based code for the AWGN
channel and the erasure decoding rule we describe in this



section. Let us first recall that the volume of a hypersphere
of radius ⇢ is given by:

JN (⇢) =

�
⇡⇢2
�N/2

�
�
N
2 + 1

� (4)

where �(n) = (n � 1)! is the Gamma function. De Buda
showed in his seminal work on lattices [14] that for any rate
R < 1

2 log2
�

P
�2

�
, there exists a lattice code with arbitrarily

small maximum error probability.
Following De Buda’s notation in [14], let r be an N -

dimensional radius vector (each of its components are denoted
by xi), and r indicate its magnitude, then ||r2|| =

PN
i=1 x

2
i =

r2. We can express the noise distribution ZN as:

ZN (r) =
1

(2⇡)N/2
exp

✓
�r2

2

◆

Note that the distribution depends on a scalar value r. Since
for a normal distribution we have Q(x) =

R1
x Z1(r)dr, note

that the probability that the sum of N squared noise samples
exceeds �2 is given by the N -variate chi-square distribution
Q(�2|N). Hence we have that:

Q(�2|N) =

Z 1

�
ZN (r)dJN (r)

Let ⇤ denote a lattice defined in RN as the set ⇤ = {� =
Gx : x 2 ZN}, where G is an N ⇥N real-valued generating
matrix, so the lattice is generated by all integer linear combi-
nations of the basis vectors. Then, consider all points � 2 ⇤
contained within bounding region BN , defined as the N -
dimensional ball of radius

p
NP corresponding to the volume

that contains the codewords. Moreover, ⇤ has a fundamental
Voronoi region of volume det⇤ = det{s1, s2, ..., sN} 6= 01.
As in [14], the number of messages to be transmitted at a
rate R (given by M = 2NR) is determined by the ratio of
the volumes of the hypersphere that defines the codebook
with a radius of

p
NP and a hypersphere of radius a. The

latter has the same volume as that of the fundamental Voronoi
region, hence JN (a) = det⇤, and thus a receives the name
of effective radius, reff = a, see Figure 1. Then, from (4) we
have that 2NR = JN (

p
NP )/JN (a). Hence, we can find the

radius a that allows a communication rate R as:

a =
p
NP/2R (5)

Formally, let C be the codebook formed by the points of lattice
⇤ inside a hypersphere of radius

p
NP . Then, each x 2 C

is associated with a decoding region for message w 2 M,
defined as:

Ar(x(w)) := {y : ||y � x|| < r}, (6)

where r is the radius of a hypersphere and chosen as r =
↵a. Here, ↵ 2 (0, 1) is a design parameter which will be
selected later and relates to erasures, and a determined by the
communication rate as in (5). The scheme operates as follows:

1{s1, s2, ..., sN} are N linearly independent basis vectors that generate
lattice ⇤.

A message W = w selected uniformly from |M| is encoded
into codeword x(w) and sent over the forward channel. Upon
receiving this sequence, the decoder utilizes the following:

Decoding rule: The decoder declares that the message cW =
wx associated to lattice point x was sent, if the length N
received sequence y satisfies y 2 Ar(x), otherwise, an erasure
is declared.

Assume that message W = w is sent, which leads to
codeword x(w). Define the following two events as in [1]:

1) Event E1: Corresponds to the case where the received
signal falls outside the decoding region corresponding
to the codeword sent (the circle of radius r denoted by
Ar(x(w)) in Figure 1).

2) Event E : Corresponds to the case in which the received
sequence lies within a decoding region associated to a
message different to the one sent, i.e. lies in Ar(x(w0))
for w0 6= w. This event is usually called the undetected
error event.

Fig. 1. Portion of a lattice based code C for N = 2. Decoding regions
for messages w,w0 and w00 are shown as the radius-r circles, whereas
hexagons depict Voronoi regions. The effective radius reff is the radius of the
hypersphere of the same volume as the lattice’s fundamental Voronoi region.

Error probability: Next, assume that message W = w
is sent, then, following the decoding rule above, the error
probality can be upper bounded as:

PError = Pr
⇣
cW 6= w, “Not Erasure”|W = w

⌘

= Pr
⇣
cW 6= w|W = w, “Not Erasure”

⌘

· Pr (“Not Erasure”|W = w)

= Pr
⇣
cW 6= w|W = w, “Not Erasure”

⌘

· (1� Pr (“Erasure”|W = w))| {z }
1

 Pr
⇣
cW 6= w|W = w, “Not Erasure”

⌘
(7)



From (7), it is clear that the probability of error is upper
bounded by Pr(E), since a decoding error occurs whenever the
received sequence lies in the hyperspherical region Ar(x(w0))
corresponding to a different codeword w0 than the one sent w.
This is the probability of undetected error, which can be upper
bounded as that of having the received sequence outside the
hypersphere of radius (dmin � r), where dmin is the minimum
distance between two lattice points in C, see Figure 1. Then:

Pr(E) 
Z 1

dmin�r
ZN (✓)dJN (✓) = Q

�
(dmin � r)2|N

�
(8)

Next, since a sequence of lattices is said to be asymptotically
good for packing if it achieves Minkowski-Hlawka’s lower
bound on the packing density ⇢⇤(pack) [15]: ⇢⇤(pack) =
rpack
reff

� 1
2 , where rpack is the packing radius, corresponding to

the radius of the largest hypersphere contained in the Voronoi
region of ⇤ as in Figure 1, Then, we have that rpack � 1

2reff.
Therefore:

dmin � 2rpack � reff = a

Next, we return to (8) and let dmin � r = re. Note from the
above bound and our choice of r = ↵a, that:

re � a (1� ↵) (9)

Hence, Pr (E)  Q
�
r2e |N

�
. To evaluate this expression, we

proceed as in [14], where the following approximation valid
for N > 100 is used [16, Sec. 26.4.13, page 941]:

Q
�
�2|N

�
⇡ Q(x1), x1 =

p
2�2 �

p
2N � 1.

Thus, we finally have:

Pr (E)  Q
⇣p

2r2e �
p
2N � 1

⌘

 1
2
exp

"
�
�p

2r2e �
p
2N � 1

�2

2

#

(a)

 1
2
exp


�
⇣
[a(1� ↵)]�

p
N � 1/2

⌘2�

=
1
2
exp

"
�
 
a2(1� ↵)2 +N � 1

2
� 2a(1� ↵)

r
N � 1

2

!#

where (a) results from (9). Next, using a =
p
NP
2R as in (5):

2Pr (E) 

exp

2

4�

0

@ (1� ↵)2NP
22R

+N � 1
2
�

2N(1� ↵)
q

P � P
2N

2R

1

A

3

5

= exp

2

64�N

0

B@(1� ↵)222(C⇤�R) + 1� 1
2N|{z}
!0

�2
(1� ↵)

2R

vuutP � P
2N|{z}
!0

1

CA

3

75

= exp


�N

✓
(1� ↵)24(C⇤�R) + 1� 2(1� ↵)2

log2

p
P

2R

◆�

= exp
h
�N

⇣
(1� ↵)24(C⇤�R) + 1� 2(1� ↵)2(C⇤�R)

⌘i
,

= exp


�N

⇣
(1� ↵)2(C⇤�R) � 1

⌘2�
, (10)

where as in [14], C⇤ = log2
p
P represents a rate slightly

smaller than the channel capacity, which is given by C =
log2

p
1 + P (since we assumed �2 = 1).

Erasure probability: We evaluate this probability since it
determines when retransmission requests occur. An “Erasure”
event results from a sequence y being received in the space
surrounding the decoding hyperspheres (of radius r) defined by
(6) for each lattice point in C. Let Br(C) :=

S
x2C Ar(x) de-

scribe the set formed by the union of hyperspherical decoding
regions associated to each x 2 C. Note that a retransmission
must be triggered whenever an erasure is detected and reported
via the feedback link. The decoder declares that an erasure
occurred whenever the received sequence is an element of the
set Bc

r(C) (upperscript indicates the complement over RN ):

Bc
r(C) := {Rn \

[

x2C
Ar(x)}

Let the erasure probability be denoted by Ps, then:

Ps = Pr (y 2 Bc
r(C)) = Pr (E1)� Pr (E)  Pr (E1) . (11)

Note that since the probability of event E1 is much larger than
that of event E , the above inequality is a tight bound. We can
further upper bound the term Pr (E1) as follows:

Pr (E1) =

Z 1

r
ZN (t)dJN (t) = Q

�
r2|N

�
(12)

Thus, we have that (12) becomes:

Q
�
r2|N

� .
= Q

⇣p
2r2 �

p
2N � 1

⌘

 1

2
exp

2

64�

⇣p
2r2 �

p
2N � 1

⌘2

2

3

75

=
1

2
exp

⇣
�
⇣
r2 +N � 1/2�

p
2r2(2N � 1)

⌘⌘

Next, from (5) and choosing r = ↵a, we obtain an upper
bound for the erasure probability Ps  Pr(E1):

Pr(E1) 
1
2
exp

✓
�(↵2a2 +N � 1

2
�
p

4N↵2a2 � 2↵2a2)

◆

=
1
2
exp

"
�
 
↵2NP

4R
+N � 1

2
�
r

4N↵2
NP
4R

� 2↵2
NP
4R

!#

=
1
2
exp

2

64�N

0

B@↵2 P
4R

+ 1� 1
2N|{z}
!0

�2↵

vuut
P
4R

� P
N4R| {z }
!0

1

CA

3

75

=
1
2
exp


�N

✓
↵2 P

4R
+ 1� 2↵

p
P

2R

◆�

=
1
2
exp

h
�N

⇣
↵22(2 log2

p
P�log2 22R)

+1� 2↵2(log2
p
P�log2 2R)

⌘i



Fig. 2. Reliability of the AWGN channel as a function of rate for SNRs 10 and 20 dB. Our result, shown in magenta, is plotted only for 0  R  C⇤.

=
1
2
exp

h
�N

⇣
↵24(C⇤�R) + 1� 2↵2(C⇤�R)

⌘i

= (1/2) exp


�N

⇣
↵2(C⇤�R) � 1

⌘2�

Note that the bound above goes to zero as N increases.
Expected transmission time: The expected transmission

time � is equal to the expected number of channel uses
a message requires to be decoded (nor erased). Noting that
the probability of retransmission is determined by the erasure
probability, and since the occurrence of an erasure is indepen-
dent for each block of length N , we have:

E[�] = N +NPs +NP2
s + · · ·

= N
1X

i=0

Pi
s = N

1

1� Ps
⇡ N, (13)

since Ps ! 0 as N ! 1, see (11). This result indicates that
on average, a single codeword of length N will be transmitted.
Observe as well that the average rate R̄ ! R as N ! 1,
and thus, the effective transmission rate is not affected by the
repeat-request strategy. Next, we obtain the achievable error
exponent based on this result which proves Theorem 1.

An achievable error exponent: An achievable error expo-
nent results from utilizing (13) and the upper bound on the
error probability (10):

EFB,Lat(R̄) = lim
E[�]!1

�1

E[�]
logPerror

�
R̄
�

� lim
E[�]!1

�1

E[�]
log Pr(E)

= (1� ↵)24(C⇤�R) + 1� 2(1� ↵)2(C⇤�R) (14)

Observe that the largest error exponent above can be obtained
by picking ↵ = � > 0, where � is a sufficiently small positive
number:

EFB,Lat(R̄) � (1� �)24(C⇤�R) + 1� 2(1� �)2(C⇤�R)

The choice of ↵ = � implies that the upper bound on the

erasure probability is:

Ps 
1

2
exp

h
�N

⇣
�24(C⇤�R) + 1� 2�22(C⇤�R)

⌘i

The error exponent of Theorem (1) results from (14) and
taking � ! 0.

IV. NUMERICAL SIMULATION

Figure 2 shows a numerical simulation of our error exponent
Theorem 1, along with the random coding lower bound
ERC(R) and the sphere packing bound ESP(R) for block codes
(recall that our schemes are for variable length codes). These
are plotted using solid lines in magenta, blue and brown,
respectively. The plots show two different SNR regimes, 10
and 20 dB, and both plots have rates and error exponents
normalized by the channel capacity C.

In general, our scheme performs well for low rates and
high SNR. Observe that it outperforms the random coding
lower bound for lower rates for both SNRs we evaluated.
In contrast, the sphere packing bound is not beaten at 10dB
but only for a larger SNR. Note that at 20dB, the error
exponent gains we obtain are significant at lower rates, where
even the sphere packing bound is outperformed. However,
recall that our scheme cannot operate at rates larger than
C⇤ < C, and thus has an error exponent of zero for all rates
in C⇤  R  C. Nonetheless, note as well that as the SNR
increases, C⇤ approaches C. Thus, one rule of thumb might be
that for low rate, high SNR transmission (perhaps for low-rate
control signaling, or whenever you have a strong channel but
care more about reducing errors than rate) this type of single-
bit retransmission strategy coupled with the new erasure-based
lattice decoding strategy might be attractive.

V. CONCLUSIONS

We have proposed a coding scheme that builds on top of De
Buda’s original setting for rates below C⇤ = log2

p
P using

a lattice based code. This incorporates a simple geometric
argument to define an erasure rule that exploits the natural



structure of a lattice and facilitates the retransmission of
messages that the decoder finds ambiguous. We acknowledge
the effect of missing the +1 term from the capacity expression
of the Gaussian channel C = log2

p
1 + P , but emphasize that

this loss is negligible at higher SNR (for which this scheme is
attractive in the first place). The error exponents attained by
our scheme in the high rate regime are not higher than those
attained using other approaches, such as Wyner’s or a simple
open loop random code. However, at lower rates, our scheme
exhibits much larger error exponents, especially at high SNR.
Under VLC and decision feedback, the retransmissions carried
over the channel in this scheme do not require high power –
the AS power constraint is suffices, and there is no asymptotic
rate penalty.
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