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Abstract

As AI reaches wider adoption, designing sys-

tems that are explainable and interpretable be-

comes a critical necessity. In particular, when

it comes to dialogue systems, their reasoning

must be transparent and must comply with hu-

man intuitions in order for them to be inte-

grated seamlessly into day-to-day collabora-

tive human-machine activities. Here, we de-

scribe our ongoing work on a (general pur-

pose) dialogue system equipped with a spatial

specialist with explanatory capabilities. We ap-

plied this system to a particular task of char-

acterizing spatial configurations of blocks in a

simple physical Blocks World (BW) domain

using natural locative expressions, as well as

generating justifications for the proposed spa-

tial descriptions by indicating the factors that

the system used to arrive at a particular conclu-

sion.

1 Introduction

While black box models like GPT-3 (Brown et al.,

2020) demonstrate impressive performance on a va-

riety of isolated benchmarks, they are still subject

to significant drawbacks (Marcus, 2018). In partic-

ular, as AI systems reach wider adoption, explain-

ability and interpretability become critical features.

It is our belief that, instead of focusing exclusively

on bigger datasets and models, or cross-modal

learning, a somewhat different approach is required,

viz., replacement of “tabula rasa” black boxes with

architectures that utilize structured representations

based around general reasoning, while in a form

still amenable to deep learning techniques.

Below, we describe our ongoing work on a sys-

tem composed of a general-purpose dialogue man-

ager and a spatial specialist module, capable of

generating spatial descriptions of configurations in

the physical Blocks World domain and supplying

justifications of its spatial descriptions. The domain

contains several uniquely named blocks placed on

a table, where a user can ask questions about rel-

ative block locations (e.g., “Is the A block to the

right of the B block?”) and request clarifications

on why particular relations hold. Models for spa-

tial prepositions used by the spatial specialist are

probabilistic predicates computed hierarchically, in

a tree-like fashion, as a combination of more primi-

tive relations. These primitive relations in the tree

hierarchy can be retrieved to provide an explana-

tion for system’s outputs. For example, assume that

when asked about the location of the block A, the

system generates a response of the form “the block

A is next to the block B”. If queried as to why the

system arrived at that particular judgment, the spa-

tial specialist retrieves the underlying component

relations from which “next to” is composed (prox-

imity and similar elevation) and returns the relevant

relations to the dialogue manager that generates a

human-readable response.

2 Related Work

Recent years have seen a push towards explainable

AI (Otte, 2013; Samek and Müller, 2019). While

classical symbolic AI systems are typically both

explainable and interpretable by design, with re-

gard to explainability in a pure neural network set-

ting, many recent efforts have been concentrated

around modular neural network architectures (An-

dreas et al., 2016; Hu et al., 2018; Gupta et al.,

2019) and architectures that directly generate the

explanations for their own operation (Andreas et al.,

2017). The former is concerned, in general, with

building a network out of specified blocks (mod-

ules) trained to perform particular operation (e.g.,

finding, filtering, counting, etc.) on the input or

process a certain aspect of the task (e.g., recogniz-

ing a category vs. recognizing a property such as

color, etc.) Explanations of the model’s outputs
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then are derived from clear-cut understanding of

the purpose of each module and their interconnec-

tions. The latter uses various additional blocks to

generate explanations, e.g., in the form of plain

English text, based directly on the model’s inner

state.

Our approach to spatial preposition modeling is

inspired by the criteria that have been discussed in

linguistically oriented studies (Garrod et al., 1999;

Herskovits, 1985; Tyler and Evans, 2003). Stud-

ies of human judgements of spatial relations show

that overly formal qualitative models with sharp

boundaries generally cannot do justice to the us-

age of locative expressions in natural settings. Our

models are implemented along the same general

lines as those in (Platonov and Schubert, 2018) and

(Richard-Bollans et al., 2020b,a). These studies

model prepositions as constructed from more ba-

sic physico-geometrical primitives. Modern neural

work on spatial relation-learning in the BW domain

is exemplified by (Bisk et al., 2018).

3 Blocks World System and Eta Dialogue

Manager

Fig. 1a, 1b depict our physical blocks world (con-

sisting of a square table with several cubical blocks,

two Kinect sensors and a display) and the system’s

software architecture. The blocks are color-coded

as green, red, or blue, and marked with corporate

logos which serve as unique identifiers. The system

uses audio-visual I/O: the block tracking module

periodically updates the block positioning informa-

tion by reading from the Kinect cameras and an

interactive avatar, David, is used for communica-

tion. The block arrangement is modeled as a 3D

scene in Blender, which acts as system’s “mental

image” of the state of the world, and all the spatial

predicates are computed based on this 3D scene.

The Eta dialogue manager (DM) is responsible

for semantic parsing and dialogue control. Eta is

designed to follow a modifiable dialogue schema,

the contents of which are formulas in episodic logic

(Schubert and Hwang, 2000) with open variables

describing successive steps (events) expected in the

course of the interaction. These are either realized

directly as instantiated actions, or expanded into

sub-schemas. 1

In order to instantiate schema steps and inter-

pret user inputs, the DM uses hierarchical pattern

1Intended actions obviated by earlier events may be
deleted.

(a) Blocks world setup

(b) Dialogue pipeline

Figure 1: System overview.

transduction, similarly to the mechanism used by

the LISSA system (Razavi et al., 2017) to extract

context-independent gist clauses given the prior ut-

terance. Transduction hierarchies specify patterns

at their nodes to be matched to input, with terminal

nodes providing result templates, or specifying a

subschema. The pattern templates look for particu-

lar words or word features (including “wildcards”

matching any word sequence of some length). Eta

uses gist clause extraction for tidying-up the user’s

utterance, and then derives an unscoped logical

form (ULF) (Kim and Schubert, 2019) (a prelim-

inary form of the episodic logic syntax of the di-

alogue schema) from the tidied-up input. ULF

differs from similar semantic representations, e.g.,

AMR, in that it is close to the surface form of En-

glish, type-consistent, and covers a rich set of phe-

nomena. To derive ULFs, we introduced semantic

composition into the transduction trees. The re-

sulting parser is quite efficient and accurate for the

domain at hand. The input is recursively broken

into constituents, such as a VP segment, until a lex-

ical subroutine supplies ULFs for individual words,

which are propagated back up and composed into

larger expressions by the “calling” node. The effi-

ciency and accuracy of the approach lies in the fact
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preposition. The mechanism for factor retrieval is

as follows. If the combination rule for the current

node is a product, then if the node value is greater

than 0.5, return all the child nodes; otherwise, re-

turn the child node with the smallest value. If the

combination rule for the children is a weighted lin-

ear combination of factor values, then if the current

node value is greater than 0.5, return the highest

contributing factor node or nodes (total contribu-

tion includes their value and weight); otherwise,

return the value of the node with the largest weight.

Finally, if the combination rule is the max opera-

tion, then if the current node value is greater than

0.5, return the child node with maximum value;

otherwise return all the child nodes.

As an example of the operation of the expla-

nation procedure, consider the simplified factor

network for to the right of in Fig. 3.

Figure 3: An example of an explanation procedure.

The numbers in the nodes are the respective val-

ues of the factors that the node computes. As-

sume that the system is being asked whether A

is to the right of B. Assume further that the final

output value is right of = 0.72, which corresponds

to “yes”. Now, if the user inquires why the sys-

tem arrived at that conclusion, the following pro-

cess unfolds. The node for the final score for to

the right of takes the maximum over three values:

deictic right of deic, intrinsic right of intr and ex-

trinsic right of extr. Since the maximum is taken,

one of those nodes must be equal to the final value.

Hence, the explanatory routine returns the corre-

sponding node and its value (right of intr, 0.72).

The corresponding interpretation will be (after the

dialogue manager generates a response) “A is to

the right of B because A is located on the right side

of B, according to B’s orientation”. If asked further

as to why the intrinsic relation holds, the system

will analyze the intrinsic score’s contributing fac-

tors, namely Fdir (directional factor that defines the

“right-side” region for an object) and Fdd (distance

decay, measuring how far apart the objects are).

Since the combination rule used is multiplication

and the value of the current node (intrinsic right) is

0.72 (i.e., relation holds), it follows that both fac-

tors must hold as well. The system will return the

list of the nodes and their values, i.e., [(Fdir, 0.9),

(Fdd, 0.8)] as a result. The straightforward interpre-

tation of the latter would be “A is on the right side

of B, because it is located in the general rightward

direction w.r.t. to B and it is close enough”. This

process can continue until leaf nodes are reached,

which do not admit further decomposition and are

treated as primitives. Alternatively, let Fdd = 0.4

(A is too far from B). This low value will propagate

downstream and affect the right of intr and the final

right of scores. The system then will supply a neg-

ative answer to the original question. If queried, it

will return the list of all senses [(right ofdeic, 0.48),

...] which has a straightforward interpretation of “A

is not to the right of B because none of the senses

apply”. If queried why, say, the intrinsic sense

does not apply, the system returns the lowest-value

node contributing to the intrinsic sense node, i.e.,

[(Fdd, 0.4)], which translates into “A is too far from

B to be on its right side”.

6 Conclusion

We described our work in progress concerning a

dialogue system incorporating a spatial specialist

with spatial semantic models that are based on clear

and intuitively-grounded criteria, capable of gener-

ating justifications of spatial judgements produced

by the system. The spatial subsystem incorporates

hierarchical representations of spatial prepositions,

constructed using so-called factors - intermediate

simpler relations correlating with the occurrences

of the prepositions. The explanation system scans

the tree of these factors and retrieves the most rel-

evant ones for the given situation. The configura-

tion is inherently interpretable due to factors corre-

sponding to intuitive criteria that seem to underlie

the natural usage of prepositions.
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