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Abstract

We propose a neuro-inspired approach for en-

gineering robustness into deep neural networks

(DNNs), in which end-to-end cost functions are

supplemented with layer-wise costs promoting

Hebbian (ªfire together,º ªwire togetherº) updates

for highly active neurons, and anti-Hebbian up-

dates for the remaining neurons. Unlike standard

end-to-end training, which does not directly exert

control over the features extracted at intermedi-

ate layers, Hebbian/anti-Hebbian (HaH) learning

is aimed at producing sparse, strong activations

which are more difficult to corrupt. We further

encourage sparsity by introducing competition

between neurons via divisive normalization and

thresholding, together with implicit ℓ2 normaliza-

tion of neuronal weights, instead of batch norm.

Preliminary CIFAR-10 experiments demonstrate

that our neuro-inspired model, trained without

augmentation by noise or adversarial perturba-

tions, is substantially more robust to a range of

corruptions than a baseline end-to-end trained

model. This opens up exciting research frontiers

for training robust DNNs, with layer-wise costs

providing a strategy complementary to that of

data-augmented end-to-end training.

1. Introduction

Since their original breakthrough in image classification

performance, DNNs trained with backpropagation have at-

tained outstanding performance in a wide variety of fields

(Brown et al., 2020; Silver et al., 2018; Akkaya et al., 2019;

Senior et al., 2020). Arguably, a key contributor to this

explosive growth is the evolution of a powerful yet generic

computational infrastructure for training DNNs with a very

large number of parameters with variants of stochastic gradi-
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ent descent on an end-to-end cost function. Yet there remain

fundamental concerns regarding the lack of robustness in

DNNs (e.g, to noise, distribution shifts, and adversarial

perturbations). Within the existing training paradigm, the

main recourses are modification of the end-to-end cost func-

tion and/or augmentation of the input data. For example,

the state of the art defense against adversarial attacks is

adversarial training (see (Madry et al., 2018) and variants

thereof), which augments the input data with adversarial per-

turbations during training, while the cost function in (Zhang

et al., 2019) seeks to trade off clean accuracy and attacked

accuracy.

In this paper, we explore a complementary approach to ro-

bustness based on supplementing the end-to-end cost func-

tion with layer-wise costs aimed at shaping the features

extracted by intermediate layers of the DNN. Specifically,

while standard DNNs produce a large fraction of small acti-

vations at each layer, we seek architectures which produce

a small fraction of strong activations, while continuing to

utilize existing network architectures for feedforward in-

ference and existing software infrastructure for stochastic

gradient training. To this end, we introduce neuro-inspired

mechanisms creating competition between neurons during

both training and inference.

1.1. Approach and Contributions

In order to attain sparse, strong activations at each layer, we

employ the following neuro-inspired strategy for modifying

standard DNN training and architecture:

Hebbian/anti-Hebbian (HaH) Training: We supplement a

standard end-to-end discriminative cost function with layer-

wise costs at each layer which promote neurons producing

large activations and demote neurons producing smaller

activations. The goal is to develop a neuronal basis that

produces a distributed sparse code, without requiring a re-

construction cost as in standard sparse coding (Olshausen &

Field, 1997).

Neuronal Competition via Normalization: We further in-

crease sparsity by introducing Divisive Normalization (DN),

which enables larger activations to suppress smaller acti-

vations. In order to maintain a fair competition among

neurons, we introduce Implicit ℓ2 Normalization of the neu-
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shown in Figure 1.

2.1. Inference in a HaH block

Implicit weight normalization: Representing the convolu-

tion output at a given spatial location from a given filter as a

tensor inner product ⟨·, ·⟩ between the filter weights w and

the input x, the output of the ReLU unit following the filter

is given by

y = ReLU

(

⟨w,x⟩

||w||2

)

(1)

This effectively normalizes the weight tensor of each filter

to unit ℓ2 norm, without actually having to enforce an ℓ2
norm constraint in the cost.

Divisive normalization: If we have N filters in a given

HaH block, let y1(loc), ..., yN (loc) denote the correspond-

ing activations computed as in (Equation 1) for a given

spatial location loc. Let M(loc) = 1
N

∑

N

k=1 yk(loc) de-

note the mean of the activations at a given location, and let

Mmax = maxlocM(loc) denote the maximum of this mean

over all locations. We normalize each activation using these

terms as follows:

zk(loc) =
yk(loc)

σMmax + (1− σ)M(loc)
, k = 1, ..., N (2)

where 0 ≤ σ ≤ 1 is a hyperparameter which can be sep-

arately tuned for each HaH block. Thus, in addition to

creating competition among neurons at a given location

by dividing by M(loc), we also include Mmax in the de-

nominator in order to suppress contributions at locations

for which the input is ªnoiseº rather than a strong enough

ªsignalº well-aligned with one or more of the filters. This

particular implementation of divisive normalization ensures

that the output of a HaH-block is scale-invariant (i.e., we

get the same output if we scale the input to the block by any

positive scalar).

Adaptive Thresholding: Finally, we ensure that each neu-

ron is producing significant outputs by neuron-specific

thresholding after divisive normalization. The output of

the kth neuron at location loc is given by

ok(loc) =

{

zk(loc) if zk(loc) ≥ τk
0, otherwise

(3)

where the threshold τk is neuron and image specific. For

example, we may set τk to the 90th percentile of the statistics

of zk(loc) in order to get an activation rate of 10% for each

neuron for every image. Another simple choice that works

well, but gives higher activation rates, is to set τk to the

mean of zk(loc) for each image.

2.2. HaH Training

For an N -neuron HaH block with activations yk(loc), k =
1, ..., N at location loc, the Hebbian/anti-Hebbian cost seeks

to maximize the average of the top K activations, and to

minimize the average of the remaining N −K activations,

where K is a hyperparameter. Thus, sorting the activations

{yk(loc)} so that y(1)(loc) ≥ y(2)(loc) ≥ ... ≥ y(N)(loc),
the contribution to the HaH cost (to be maximized) is given

by

Lblock(loc) =
1

K

K
∑

k=1

y(k)(loc)−λ
1

N −K

N
∑

k=K+1

y(k)(loc)

(4)

where λ ≥ 0 is a hyperparameter determining how much to

emphasize the anti-Hebbian component of the adaptation.

The overall HaH cost for the block, Lblock, which we wish to

maximize, is simply the mean over all locations and images.

The overall loss function to be minimized is now given by

L = Ldisc −
∑

HaH blocks

αblockLblock (5)

where Ldisc is the standard discriminative loss, and

{αblock ≥ 0} are hyper-parameters determining the rela-

tive weight of the HaH costs across blocks.

3. Experiments

We consider VGG-16 with the first 6 blocks (each block

includes conv, ReLU, batch norm) replaced by HaH blocks

(each block includes conv, ReLU, divisive norm, threshold-

ing). In our training, we use Adam optimizer (Kingma &

Ba, 2014) with an initial learning rate of 10−3, multiplied by

0.1 at epoch 60 and again at epoch 80. We train all models

for 100 epochs on CIFAR-10. We choose τk in Equation 3

to keep 20% of activations. We use [4.5 × 10−3, 2.5 ×
10−3, 1.3× 10−3, 1× 10−3, 8× 10−4, 5× 10−4] for α in

Equation 5. We use 0.1 for λ and set K to 10% of number

of filters in each layer in Equation 4 and set σ = 0.1 in

Equation 2. Details about other hyper-parameters can be

found in our code in supplementary materials.

Sparser activations: To ensure that HaH blocks are op-

erating as intended and achieving the sparse and strong

activations we test the sparsity levels of intermediate repre-

sentations and plot them in Figure 2. Sparsity is computed

by the ratio of ℓ1 norm to ℓ2 norm (also known as Hoyer

term (Hoyer, 2004)) of each spatial location’s representation

across the channel dimension. We then linearly normalize

the values to lie in [0,1]. Lower values represent sparser

representations. The activations in these first 6 blocks are

indeed more sparse for our architecture than for baseline

VGG.

Enhanced robustness to noise: We borrow the concept of

signal-to-noise-ratio (SNR) from wireless communication

to obtain a block-wise measure of robustness. Let fn(x)
denote the input tensor at block n in response to clean im-

age x, and fn(x + w) the input tensor when the image is
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Table 3: Accuracies for ablation study.

Clean
Noisy

(σ = 0.1)

Adv (ℓ∞)

(ϵ = 2/255)

Adv (ℓ2)

(ϵ = 0.25)

All included 87.3% 64.0% 21.5% 27.6%

No HaH loss 89.7% 50.4% 8.8% 11.7%

Batch norm

instead of

divisive norm

90.4% 46.7% 12.3% 17.4%

No

thresholding
89.9% 37.5% 3.7% 2.5%

4. Conclusion

Our preliminary results demonstrate the promise of enhanc-

ing the end-to-end training paradigm in DNNs with layer-

wise costs in order to the features extracted by intermediate

layers. In particular, our neuro-inspired approach to neu-

ronal competition during training and inference demonstra-

bly results in sparser, stronger activations and robustness

against noise, common corruptions and adversarial perturba-

tions than baseline models. Indeed, based our experiments

with the CIFAR10-C (common corruptions) dataset, the

robustness provided by our approach, trained in these pre-

liminary results without any augmentation, appears to be

more general-purpose than that obtained by adversarial train-

ing. We note that recent work on bio-inspired adversarial

defenses appears to yield similar observations (Machiraju

et al., 2022).

We hope that these results motivate a systematic inquiry into

enhancing end-to-end training with layer-wise cost func-

tions for a variety of architectures, training techniques (in-

cluding unsupervised and semi-supervised learning, and

data augmentation) and applications. In particular, for ro-

bust machine learning, a natural next step is to explore

combination of data augmentation strategies (including ad-

versarial training) with HaH architectures.
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