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Abstract

As AI-based decision-making becomes increas-

ingly impactful on human society, the study of the

influence of fairness-aware policies on the popu-

lation becomes important. In this work, we pro-

pose a framework for sequential decision-making

aimed at dynamically influencing long-term so-

cietal fairness, illustrated via the problem of se-

lecting applicants from a pool consisting of two

groups, one of which is under-represented. We

consider a dynamic model for the composition of

the applicant pool, where the admission of more

applicants from a particular group positively rein-

forces more such candidates to participate in the

selection process. Under such a model, we show

the efficacy of the proposed Fair-Greedy selection

policy which systematically trades greedy score

maximization against fairness objectives. In addi-

tion to experimenting on synthetic data, we adapt

static real-world datasets on law school candidates

and credit lending to simulate the dynamics of the

composition of the applicant pool.

1. Introduction

In this paper, we seek to develop a framework for sequential

decision making aimed at influencing long-term societal

fairness. Machine learning models are being increasingly

applied in making critical decisions that affect humans, such

as recidivism prediction (Dressel & Farid, 2018), mortgage

lending (Berkovec et al., 2018), and recommendation sys-

tems (Yao & Huang, 2017). While the algorithms offer

increased efficiency, speed, and scalability, they could in-

troduce bias leading to the decisions being unfair towards

certain groups of the population. There is a rich and rapidly

growing literature on ªfairº strategies that mitigate bias in

algorithmic decision making, including label or data pre-

processing and cost reweighting based on groups (Kamiran
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& Calders, 2012), addition of constraints that satisfy fairness

criteria (Zafar et al., 2017), and learning representations that

obfuscate group information (Zemel et al., 2013).

Modeling the long-term impacts of dynamic decision-

making have been traditionally investigated using reinforce-

ment learning frameworks via Markov Decision Processes

(MDPs) and introducing fairness constraints in the reward

functions (Wen et al., 2021; Ghalme et al., 2021; Jabbari

et al., 2017; Chen et al., 2020; Patil et al., 2020; Joseph et al.,

2018; Heidari & Krause, 2018; Gillen et al., 2018). The im-

portance of introducing dynamics into notions of fairness is

highlighted by (Liu et al., 2018), showing that static fairness

criteria may lead to undesired long-term effects on minority

groups. Prior works on the long-term effects of fairness

such as (Zhang et al., 2019; 2020; Williams & Kolter, 2019;

Mouzannar et al., 2019) have focused, either explicitly or

implicitly, on the impact of decisions on the qualifications

or score distributions of the different groups. We adopt

an outlook complementary to the preceding body of work,

seeking to influence the participation of under-represented

groups in the selection process. Rather than studying the

impact of fair policies, we provide a generic framework for

achieving long-term fairness dynamically.

Our framework is motivated by real-world examples such as

the following. Consider a company receiving applications

every month, which wants to hire in an unbiased manner

(e.g., by ultimately selecting equal numbers of male and

female applicants). With the total intake fixed based on a

budget, the company selects a certain proportion of candi-

dates from each group. The hiring decisions affect the sub-

sequent pool of applicants: admitting more candidates from

a particular group might encourage more such candidates to

apply, or successful candidates from a group might inspire

other such candidates, providing positive feedback into the

decision-making loop. Such a strategy could not only en-

hance diversity and equity, but also enable the company to

learn more about a minority group so as to eventually have a

richer pool of well-qualified applicants. Another motivating

example is college admissions, where the goal may be to

admit students with the best academic records, while ac-

counting for socio-economic background and reducing bias

based on sensitive attributes such as race or gender. Could

one, for example, reverse the trend in the decrease in the

proportion of women in STEM as documented in (Broad &
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McGee, 2014)? It reported that 18% of bachelor’s degrees

in computer science were awarded to women in 2010, down

from 37% in 1985. We suggest here a structured frame-

work for fair selection aimed at combating such systemic

imbalances by encouraging a larger number of people from

minority groups to participate in the selection process.

Contributions Based on a simple model for evolution

of the composition of the applicant pool, we develop a

framework for fair selection by formulating the problem

as a Markov Decision Process (MDP) with two objectives

± maximizing the utility by admitting candidates with the

highest scores, and minimizing the disparity between the

proportions of selected candidates from each group. We

present two policies for fair selection: an optimal policy

based on value iteration that maximizes the utility accumu-

lated over multiple rounds, and a computationally simpler

Fair-Greedy (FG) policy. We characterize the structure of

the FG policy, show convergence and also prove that the

applicant pool proportion approaches the target proportion

that is desired by the system under identical score distribu-

tions across the groups. When the score distributions are

distinct, we provide experimental evidence of convergence

of the applicant pool proportion. We illustrate the efficacy

of our approach with experiments with synthetic data, as

well as with dynamic data created from the static datasets.

2. MDP formulation and Fair-Greedy Policy

Given that there are two groups u and v within the pop-

ulation, based on a binary valued sensitive attribute, we

denote the total number of applicants in round t by Nt, out

of which Nu
t belong to group u and Nv

t = Nt−Nu
t belong

to group v, based on a binary valued sensitive attribute. We

wish to admit a fixed proportion ā of the total applicants,

leading to At = āNt number of total applicants accepted

in round t. We denote by Au
t and Av

t = At −Au
t the num-

ber of applicants selected in round t from groups u and v
respectively.

Score distributions The qualification of an applicant is

measured by the score, assumed to be an increasing function

of the proficiency of a candidate. Let Pu and Pv denote the

score distributions of the two groups. Thus the scores for

groups u and v are {Xu
i
}
N

u

t

i=1 and {Xv
i
}
N

v

t

i=1, generated from

Pu and Pv respectively. We denote the ordered scores by

{Xu

(i)}
N

u

t

i=1 and {Xv

(i)}
N

v

t

i=1, where Xu

(i) and Xv

(i) denote the

ith largest scores out of Nu
t and Nv

t respectively.

Fairness-aware utility The goal is to optimize the utility,

which comprises of two parts: a greedy term (to be max-

imized) which is the expected sum of scores of selected

candidates, and a fair term (to be minimized) measuring

disparity between groups based on a target proportion.

MDP formulation We define the MDP state st ∈ [0, 1]
as the proportion of applicants from group u out of the

total, and the action at ∈ [0, 1] as the proportion of selected

candidates from group u out of the total selected candidates:

st =
Nu

t

Nt

, at =
Au

t

At

.

We denote by s̄ ∈ (0, 1) the long-term target of the propor-

tion of group u among the selected applicants. For example,

if group u is under-represented in the applicant pool, we

may set s̄ as the proportion of group u in society at large.

Instead, if our long-term goal is to admit equal number from

both groups, we set s̄ = 0.5. Note that formulating the

states and actions as proportions of group u is sufficient

since the proportion of applicants and admitted candidates

from group v is naturally 1−st and 1−at respectively. The

overall utility or reward is:

R(st, at) = RG(st, at)− λLF (at), (1)

where the greedy reward term is the expected sum of ordered

scores of admitted candidates, given by:

RG(st, at) =
1

At

E

[ A
u

t
∑

i=1

Xu

(i) +

A
v

t
∑

i=1

Xv

(i)

]

=
1

At

E

[ atAt
∑

i=1

Xu

(i) +

(1−at)At
∑

i=1

Xv

(i)

]

,

and the fairness loss term is

LF (at) = (at − s̄)2. (2)

In (1), λ ≥ 0 is a parameter used to control the weight given

to the fairness objective relative to the greedy objective. The

greedy objective promotes the admission of good candidates,

while the fairness objective promotes fairness in selection

proportion. Note that the fairness objective is balanced:

it pushes the selection proportion towards s̄ regardless of

whether group u is under-represented or over-represented

among the selected applicants.

Applicant pool evolution We model the positive rein-

forcement provided by our decision making as a set of tran-

sition probabilities P(st+1|st, at). We consider a model

where the total number of applicants Nt to the system at

round t can be any sequence of numbers and the number

of applicants from group u to the system is sampled from

a Poisson distribution based on the mean parameter and

overall number of applicants (which is variable) as

Nu

t ∼ Pois(θtNt), (3)

where Pois(·) is the Poisson distribution with mean θtNt.

Thus, θt is the mean proportion of group u in the applicant

pool in round t. We consider the following simple model

for positive reinforcement:

θt+1 = [θt + η(at − st)]C , (4)
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where η is a step-size parameter and [·]C is the projection

on the convex set C = [0, 1]. Thus the update is such that

when the admission rate at of the group u is higher than

the application rate st, more applicants from the group are

encouraged in future rounds, and vice versa. The state then

evolves as
st+1 =

Nu
t+1

Nt+1
.

The model for positive reinforcement is relevant to many

real-world selection systems and is inspired by the social

behavior that the successful admission of candidates from a

particular group encourages more such candidates to apply

to the institution. For instance, a large number of female col-

lege graduates in society serve as role-models, encouraging

the future generations of women to go to college. However,

if a particular program is known for admitting women at a

rate smaller than the application rate, lesser women might

consider the institution as worth applying to.

Optimal policy The optimal policy π∗(s) for the preced-

ing MDP can be found through dynamic programming, by

constructing value functions (Bertsekas, 2007) and itera-

tively solving the Bellman equation. It is also known that

the value iteration algorithm converges as long as the reward

is bounded in magnitude (Bertsekas, 2007). However, ana-

lyzing the equilibrium state of the MDP under this optimal

policy is intractable. We observe through simulations that

the structure of the optimal policy π∗(s) is similar to that of

the simpler Fair-Greedy policy proposed next, and that the

applicant pool evolution converges to an equilibrium point.

Fair-Greedy policy Finding an optimal policy is compu-

tationally expensive as the state space grows larger. We

therefore propose a simple, yet effective, Fair-Greedy (FG)

policy that optimizes the instantaneous overall utility in (1):

π∗
FG(s) = argmax

a
R(s, a). (5)

We provide insight into this policy by considering its perfor-

mance for a large applicant pool (Nt large) with identical

score distributions across the two groups. In this regime, we

first prove that the greedy reward term is optimized when the

admission proportion is the same as the applicant proportion.

We then derive some key properties of the FG policy, and

provide theoretical guarantees for the convergence of the

applicant pool to the target proportion. We observe through

simulations that when score distributions are non-identical,

the applicant pool converges to an equilibrium point un-

der the FG policy. Please refer to Appendix A for detailed

proofs.

Theorem 2.1. If the score distributions Pu and Pv of the

two groups are identical, under the regime of large Nt, the

greedy reward RG(st, at) is optimized by the action:

a∗G = argmax
at

RG(st, at) = st. (6)

Theorem 2.2. For identical score distributions across the

groups, the Fair-Greedy policy satisfies the following: (a)

st < π∗
FG

(st) < s̄, if st < s̄; (b) s̄ < π∗
FG

(st) <
st, if st > s̄; (c) π∗

FG
(st) = s̄, if st = s̄. Furthermore,

if the step-size ηt decays with time and satisfies the condi-

tions (i)
∑

t
ηt = ∞ and (ii)

∑

t
η2t < ∞, the applicant

pool proportion converges to the target proportion s̄. This

implies that the admission or action at equilibrium also ap-

proaches the societal or target proportion, in the asymptotic

regime that the total applicants in every round are large.

3. Experimental evaluation

FG policy on synthetic data: We begin by evaluating our

framework with synthetic Gaussian datasets. In the first

experiment, we set the target proportion s̄ = 0.4 and the

selection rate ā = 0.3 (i.e., we aim to select 30% of the can-

didates who have applied). We assume identical Gaussian

score distributions for the groups with means µu = µv = 5
and variances σ2

u = σ2
v = 1. The step-size is fixed as

η = 0.05. Figure 1(a) shows the convergence of the appli-

cant pool to the target proportion of 40% as guaranteed by

our analysis. The framework is capable of handling an inver-

sion in the majority and minority proportions as supported

by the evolutions shown from two distinct initial applicant

mean proportion parameters θ0 = 0.1 and θ0 = 0.9. We

report on the dynamics for the proportion of applicants and

admitted candidates for individual sample paths in which

the number of applicants is randomly drawn as in (3). We

do not smooth over multiple sample paths in such figures

because our objective is to highlight the convergence of the

mean parameter θt over each sample path. Note that tuning

of the hyperparameter λ is not required when score distribu-

tions are identical (here we set λ = 2). As long as λ > 0,

the applicant pool converges to the target proportion, with

only the rate of convergence increasing with λ, as we depict

in Figure 1(b). Next, we focus on a setting where the under-

privileged class u has larger variance, but slightly smaller

mean (σ2
u = 1.5, µu = 4.9). We set s̄ = 0.4, and consider a

more selective process, with ā = 0.1. From Figure 1(c), we

note that the applicant mean and also the group admission

converges to a proportion larger than s̄. This is due to the

fact that as the admission rate gets selective, the greedy part

of the reward is optimized by an action that admits more

from the group with longer tail (larger variance). This is also

evident in Figure 1(d), where we observe that for smaller

values of λ, i.e., when more weight is assigned to the greedy

reward, the mean parameter θt converges to larger values.

However with enough weight being given to fairness, the

applicant pool still converges to the desired ratio.

FG policy on real-world datasets: We simulate the dy-

namics by considering the following: (i) the law school

(LS) (Wightman, 1998) bar exam dataset found at (git,

2018), applying our framework for selecting candidates who
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A. Proofs

We restate and prove the theorems on the optimality of greedy reward and the convergence of the applicant pool under

identical score distributions in this section.

Theorem A.1. If the score distributions Pu and Pv of the two groups are identical, the greedy reward RG(st, at) is

optimized by the action:

a∗G = argmax
at

RG(st, at) = st. (7)

Proof. Recall that the greedy reward is given by:

RG(st, at) =
1

At

E

[ A
u

t
∑

i=1

Xu

(i) +

A
v

t
∑

i=1

Xv

(i)

]

(8)

Since we assume the space of actions as at ∈ [0, 1], the number of admitted candidates from each group, more formally, are

Au
t = ⌊atAt⌋ and Av

t = ⌊(1− at)At⌋. For simplicity of presentation, we omit the ‘floor’ without loss of generality of our

results since we are interested in the regime that Nt is large. Therefore, we write:

RG(st, at) = atE

[
∑atAt

i=1 Xu

(i)

atAt

]

+ (1− at)E

[
∑(1−at)At

i=1 Xv

(i)

(1− at)At

]

By the law of large numbers, the collection of score variables {Xu
i
}
N

u

t

i=1 and {Xv
i
}
N

v

t

i=1 converge to their respective distri-

butions Pu and Pv as Nt increases. Choosing the top Au
t = atAt candidates out of Nu

t (similarly top Av
t out of Nv

t ) is

equivalent to setting a threshold tu (similarly, tv) and admitting all candidates with scores above the threshold. This holds

for generic score distributions and they need not necessarily be identical across the groups. Thus for large Nt, the average

score of the admitted candidates from each group approaches its expected value as:

lim
Nt−→∞

∑atAt

i=1 Xu

(i)

atAt

= E[Xu|Xu ≥ tu] (9)

lim
Nt−→∞

∑(1−at)At

i=1 Xv

(i)

(1− at)At

= E[Xv|Xv ≥ tv] (10)

Rewriting the greedy reward in terms of the above conditional expectations leads to the following equation:

RG(st, at) = at

∫∞

tu
uPu(u)du

∫∞

tu
Pu(u)du

+ (1− at)

∫∞

tv
vPv(v)dv

∫∞

tv
Pv(v)dv

(11)

with the additional constraint being that the thresholds tu and tv are such that the total number of admitted candidates is

equal to At = āNt. Note that tu and tv depend on the current state st and action at.

Since the acceptance is decided by a group-wise threshold, the fraction of applicants from a group who are admitted is

precisely determined by the area under its score distribution beyond the threshold. Formalizing the above, for large Nt, we

have:
∫ ∞

tu

Pu(u)du = 1− Fu(tu) =
atAt

stNt

∫ ∞

tv

Pv(v)dv = 1− Fv(tv) =
(1− at)At

(1− st)Nt

.

and the constraint on the total number of candidates admitted can now be expressed through the following equivalent

statements:

atAt + (1− at)At = āNt

stNt(1− Fu(tu)) + (1− st)Nt(1− Fv(tv)) = āNt,
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and finally, we have:

stNt

∫ ∞

tu

Pu(u)du+ (1− st)Nt

∫ ∞

tv

Pv(v)dv = āNt. (12)

Let us now consider the maximization of the greedy reward. Given state st, and generic distributions Pu and Pv , we need to

set the thresholds tu and tv for the respective groups such that the sum of scores of all admitted candidates is maximized.

We show by contradiction that to maximize the greedy reward, we require tu = tv .

Assume a pair of thresholds (tu, tv) that result in the maximization of the greedy reward, and tu < tv. Let us denote

the expected sum of scores of the admitted candidates by S(tu, tv), which is the optimum. One can construct thresholds

t′u = tu + ϵ1 and t′v = tv − ϵ2 (where ϵ1, ϵ2 > 0, infinitesimally small for large Nt), such that we admit one more candidate

from group v (as a result of the decreased threshold) and one less from group u (as a result of the increased threshold) as

compared to the case with thresholds (tu, tv). As long as t′v > t′u, we have S(t′u, t
′
v) > S(tu, tv), which contradicts the

assumption that (tu, tv) maximize the greedy reward. Similarly, if we begin with a pair of optimal (tu, tv) such that tu > tv ,

we can construct thresholds t′u = tu − ϵ3 and t′v = tv + ϵ4, so that we admit one more candidate from group u and one less

from group v. As long as t′u > t′v , we arrive at the contradiction S(t′u, t
′
v) > S(tu, tv). Thus the greedy reward is optimized

when thresholds across the groups are equal, irrespective of the nature of Pu and Pv .

Thus, for arbitrary score distributions, the action that maximizes the greedy reward is such that:

tu = tv

=⇒ F−1
u

(

1−
atAt

stNt

)

= F−1
v

(

1−
(1− at)At

(1− st)Nt

)

(13)

If Pu and Pv are identical, the arguments of the inverse CDFs in (13) need to be equal. Thus the optimal action should be

such that:

1−
atAt

stNt

= 1−
(1− at)At

(1− st)Nt

=⇒ at = st.

Thus, the greedy reward is maximized by choosing the admission proportion of group u to be same as the applicant

proportion of group u:

a∗G = st.

Employing theorem A.1, we arrive at the the following theorem which informs us about the convergence of the applicant

pool and characterizes the FG policy.

Theorem A.2. For identical score distributions across the groups, the Fair-Greedy policy satisfies the following properties:

st < π∗
FG(st) < s̄, if st < s̄

s̄ < π∗
FG(st) < st, if st > s̄

π∗
FG(st) = s̄, if st = s̄

Furthermore, if the step-size ηt decays with time and satisfies the conditions (i)
∑

t
ηt = ∞ and (ii)

∑

t
η2t < ∞, the

applicant pool proportion converges to the target proportion s̄. This implies that the admission or action at equilibrium also

approaches the societal or target proportion, in the asymptotic regime that the total applicants in every round are large.

Proof. Under the FG policy, at = π∗
FG

(st). The applicant pool update for the mean parameter is:

θt+1 = [θt + η(π∗
FG(st)− st)]C . (14)

The fairness loss in (2) is minimized when the admission proportion is same as the target, formalized as:

a∗F = argmin
at

LF (at) = s̄
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The overall reward R(st, at) is a sum of the greedy reward and fairness loss (scaled by λ). The fairness loss is convex

(hence −LF (at) is concave) in at. It can be seen that the greedy reward monotonically decreases in either directions around

at = st, and in addition it possesses continuity in at. When at state st, suppose the optimal action a∗ of the FG policy

is such that a∗ < st, when st < s̄. Then by continuity and since the greedy reward is maximized at st, ∃ some a′ > st,
such that RG(st, a

′) ≥ RG(st, a
∗), and moreover has a smaller fairness loss, i.e., LF (a

′) < LF (a
∗), which violates the

optimality of a∗. Thus the optimal action for the FG policy must be a∗ > st, if st < s̄. Similar arguments hold if st > s̄,

and here we can show that the optimal action must be such that a∗ < st. Hence, it follows that the optimal action for overall

utility lies between the optimal actions for greedy and fairness terms:

st < π∗
FG(st) < s̄, if st < s̄ (15)

s̄ < π∗
FG(st) < st, if st > s̄ (16)

π∗
FG(st) = s̄, if st = s̄ (17)

Now we show the convergence of the applicant pool to its equilibrium. Let us consider a step-size that decays with time such

that
∑

t
ηt = ∞ and

∑

t
η2t < ∞. Consider the case when st < s̄, where we have: st < π∗

FG
(st) < s̄. From (14), we can

see that the mean proportion parameter θt+1 increases. Similarly, when st > s̄, it follows that s̄ < π∗
FG

(st) < st, and the

mean proportion parameter decreases. Note that the target proportion is a fixed point of the FG policy, i.e., π∗
FG

(s̄) = s̄. Due

to the above characterization of π∗
FG

(st) and the model for the update of the applicant pool, the mean parameter θt grows or

reduces in the direction of s̄. Hence, as the step-size is decaying, one can show that the mean parameter θt converges to s̄
(see Lemma A.3 for details). Moreover, the variance of the number of group u applicants is var(Nu

t ) = θtNt due to the

Poisson distribution. Thus, the state st = Nu
t /Nt has variance O(1/Nt). Consequently, in the asymptotic regime that Nt is

large, using Chebyshev’s inequality one can show that st also converges to θt in probability. This implies that the applicant

proportion approaches s̄, which completes the proof.

Lemma A.3. If the step-size ηt decays with time and satisfies the conditions (i)
∑

t
ηt = ∞ and (ii)

∑

t
η2t < ∞, the mean

of the applicant pool proportion for group u converges to the target proportion s̄ under the FG policy, when the score

distributions across the groups are identical.

Proof. We wish to show that θt → s̄ as t → ∞. Let dt =
1
2 (θt − s̄)2. Fix an ϵ > 0. We need to show that there exists some

t0(ϵ) such that when t ≥ t0(ϵ),

dt+1 ≤ dt − γt, if dt ≥ ϵ (18)

dt+1 < cϵ, if dt < ϵ (19)

where c is a positive constant. Moreover γt > 0 and
∑

t
γt = ∞. If the above hold, then eventually for some t = t1(ϵ) ≥

t0(ϵ), one has dt < ϵ. But due to (18) and (19) dt < cϵ for all t > t1(ϵ). Since ϵ is arbitrary, θt → s̄ as t → ∞.

We first show that (19) holds.

dt+1 =
1

2
(θt+1 − s̄)2

=
1

2
([θt − ηt(st − at)]C − s̄)2

≤
1

2
(θt − ηt(st − at)− s̄)2

= dt + ηt(s̄− θt)(st − at) +
1

2
η2t (st − at)

2

≤ dt + ηt(s̄− θt)(st − at) +
1

2
η2t

≤ dt +
ηt
2
((s̄− θt)

2 + 1) +
1

2
η2t

Since ηt is arbitrarily small, if dt < ϵ, we have:

dt+1 < cϵ. (20)

When dt ≥ ϵ, we want to first show that

(s̄− θt)(θt − at) ≤ −δ(ϵ) (21)








