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—— Abstract

Embedding graphs in a geographical or latent space, i.e. inferring locations for vertices in Euclidean
space or on a smooth manifold or submanifold, is a common task in network analysis, statistical
inference, and graph visualization. We consider the classic model of random geometric graphs where
n points are scattered uniformly in a square of area n, and two points have an edge between them
if and only if their Euclidean distance is less than r. The reconstruction problem then consists of
inferring the vertex positions, up to the symmetries of the square, given only the adjacency matrix
of the resulting graph. We give an algorithm that, if r = n® for a > 0, with high probability
reconstructs the vertex positions with a maximum error of O(n?) where 8 = 1/2 — (4/3)a, until
a > 3/8 where 8 = 0 and the error becomes O(y/logn). This improves over earlier results, which
were unable to reconstruct with error less than r. Our method estimates Euclidean distances using a
hybrid of graph distances and short-range estimates based on the number of common neighbors. We
extend our results to the surface of the sphere in R® and to hypercubes in any constant dimension.
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1 Introduction

Graph embedding is the art of assigning a position in some smooth space to each vertex, so
that the graph’s structure corresponds in some way to the metric structure of that space.
If vertices with edges between them are geometrically close, this embedding can help us
predict new or unobserved links, devise efficient routing strategies, and cluster vertices by
similarity — not to mention (if the embedding is in two dimensions) give us a picture of
the graph that we can look at and perhaps interpret. In social networks, this space might
correspond literally to geography, or it might be a “latent space” whose coordinates measure
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ideologies, affinities between individuals, or other continuous demographic variables (e.g. [15]).
In some applications the underlying space is known; in others we wish to infer it, including
the number of dimensions, whether it is flat or hyperbolic, and so on.

The literature on graph embedding is vast, and we apologize to the many authors who we
will fail to cite. However, despite the broad utility of graph embedding in practice (see [27]
for a recent experimental review) many popular heuristics lack rigorous guarantees. Here we
pursue algorithms that reconstruct the position of every vertex with high accuracy, up to a
symmetry of the underlying space.

Many versions of the reconstruction problem, including recognizing whether a graph has
a realization as a geometric graph, are NP-complete [5,8,9] in the worst case. Thus we
turn to distributions of random instances, and design algorithms that succeed with high
probability in the instance. For many inference problems, there is a natural generative model
where a ground truth structure is “planted,” and the instance is then chosen from a simple
distribution conditioned on its planted structure. For community detection a.k.a. the planted
partition problem, for instance, we can consider graphs produced by the stochastic block
model, a generative model where each vertex has a ground-truth label, and each edge (u,v)
exists with a probability that depends on the labels of u and v. Reconstructing these labels
from the adjacency matrix then becomes a well-defined problem in statistical inference, which
may or may not be solvable depending on the parameters of the model (e.g. [1,19,20]). In the
same spirit, a series of papers has asked to what extent we can reconstruct vertex positions
from the adjacency matrix in random geometric graphs, where vertex positions are chosen
independently from a simple distribution.

Random geometric graphs

Let n be an integer and let » > 0 be real. Let V = {v;}?, be a set of n points chosen
uniformly at random in the square [0, \/mz. The random geometric graph G € G(n,r) has
vertex set V and edge set E = {(u,v) : ||lu —v|| < r} where ||u — v|| denotes the Euclidean
distance. (We will often abuse notation by identifying a vertex with its position.)

This is a rescaling of the unit disk model where r = 1. We follow previous authors in
varying the average degree of the graph by varying r rather than varying the density of
points in the plane. Since the square has area n, the density is always 1: that is, the expected
number of points in any measurable subset is equal to its area.

It is also natural to consider a Poisson model, where the points are generated by a
Poisson point process with intensity 1. In that case the number of vertices fluctuates but is
concentrated around n, and the local properties of the two models are asymptotically the
same. The number of points in a region of area A is binomially distributed in the uniform
model, and Poisson distributed with mean A in the Poisson model. In both cases, the
probability that such a region of area is empty is at most e~#; this is exact in the Poisson
model, and is an upper bound on the probability (1 — A/n)" in the uniform model.

Random geometric graphs (RGGs) were first introduced by Gilbert in the early 1960s
to model communications between radio stations [14]. Since then, RGGs have been widely
used as models for wireless communication, in particular for wireless sensor networks. RGGs
have also been extensively studied as mathematical objects, and much is known about their
asymptotic properties [23,26]. One well-known result is that r. = y/logn/m is a sharp
threshold for connectivity for G € G(n,r) in the square in both the uniform and Poisson
models: that is, for any € > 0, with high probability G is connected if » > (1 + ¢)r. and
disconnected if r < (1 — &)re.
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More generally, we can define RGGs on any compact Riemannian submanifold, by
scattering n points uniformly according to the surface area or volume. We then define the
edges as E = {(u,v) : ||lu —v||g < r} where || - ||4 is the geodesic distance, i.e. the arc length
of the shortest geodesic between v and v. On the sphere in particular this includes the cosine
distance, since ||u — v||4 is a monotonic function of the angle between u and v.

The reconstruction problem

Given the adjacency matrix A of a random geometric graph defined on a smooth submanifold
M, we want to find an embedding ¢ : V' — M which is as close as possible to the true positions
of the vertices. As a measure of accuracy, we focus on the max distance max, ||¢(v) — v||
where we identify each vertex v with its true position.

However, if we are only given A, the most we can ask is for ¢ to be accurate up to
M’s symmetries. In the square, for instance, applying a rotation or reflection to the true
positions results in exactly the same adjacency matrix. Thus we define the distortion d*(¢)
as the minimum of the maximum error achieved by composing ¢ with some element of the
symmetry group Sym(M),

d'(¢) =  _min = max||(oog)v) -l 1)
We will sometimes refer to the distortion of a subset of the vertices or of a single vertex.

As in previous work, our strategy is to estimate the distances between pairs of vertices,
and then use geometry to find points with those pairwise distances. We focus on the case
where M = [0, \/5}2 and | - || is the Euclidean distance. However, many of our results apply
more generally, both in higher dimensions and on curved manifolds.

Our contribution

An intuitive way to estimate the Euclidean distance |u — v|| in a random geometric graph
is to relate it to the graph distance dg(u,v), i.e. the number of edges in a topologically
shortest path from u to v. The upper bound ||u — v|| < rdg(u,v) is obvious. Moreover, if
the graph is dense enough, then shortest paths are fairly straight geometrically and most of
their edges have Euclidean length almost r, and this upper bound is not too far from the
truth [4,7,13,21].

As far as we know, the best upper and lower bounds relating Euclidean distances to
graph distances in RGGs are given in [12]. In [11] these bounds were used to reconstruct
with distortion (1 + o(1))r when r is sufficiently large, namely if r = n® for some a > 3/14.

However, since the graph distance d¢ is an integer, the bound ||u —v| < rdg(u,v) cannot
distinguish Euclidean distances that are between two multiples of r. Thus, as discussed
after the statement of Theorem 4 below, the methods of [11] cannot avoid a distortion that
grows as (r). Intuitively, the opposite should hold: as r grows the graph gets denser,
neighborhoods get smoother, and more precise reconstructions should be possible.

We break this Q(r) barrier by using a hybrid distance estimate. First we note that
rdg(u,v) is a rather good estimate of ||u — v|| if ||u — v is just below a multiple of r, and
we improve the bounds of [12] using a greedy routing analysis. We then combine rdg with a
more precise short-range estimate based on the number of neighbors that v and v have in
common. In essence, we use a quantitative version of the popular heuristic that two vertices
are close if they have a large Jaccard coefficient (see e.g. [24] for link prediction, and [2] for a
related approach to small-world graphs).
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Figure 1 Our results (solid) compared to those of [11] (dotted). If r = n®, our reconstruction
has distortion O(n”) where 8 = 1/2 — (4/3)a, except for a > 3/8 where the distortion is O(y/logn).
The algorithm of [11] applies when @ > 3/14 and gives 8 = «, i.e. distortion ©(r). Our results apply
for any constant 0 < o < 1/2 and give lower distortion than [11] when a > 3/14.

As a result, we obtain a distortion d* that decreases with r. Namely, if » = n® for o > 0,
then d* = O(n®) where 8 = 1/2 — (4/3)a, until for a > 3/8 where d* = O(y/Iogn). (Note
that any « > 0 puts us well above the connectivity threshold.) Since it uses graph distances,
the running time of our algorithm is essentially the same as that of All-Pairs Shortest Paths.
To our knowledge, this is the smallest distortion achieved by any known polynomial-time
algorithm. We compare our results with those of [11] in Figure 1.

We show that our results extend to higher dimensions and to some curved manifolds as
well. With small modifications, our algorithm works in the m-dimensional hypercube for
any fixed m (the distortion depends on m, but the running time does not). We also sketch
a proof that it works on the surface of the sphere, using spherical rather than Euclidean
geometry, solving an open problem posed in [11]. Our techniques are designed to be easy
to apply on a variety of curved manifolds and submanifolds, although we leave the fullest
generalizations to future work.

We use N(u) = {w: (u,w) € E} to denote the topological neighborhood of a vertex u,
and B(u,r) to denote the geometrical ball around it. Our results, as well as many of the
cited results, hold with high probability (w.h.p.) in the random instance G € G(n,r), i.e.
with probability tending to 1 as n — oo. When we consider randomized algorithms, the
probability is over both G(n,r) and the randomness of the algorithm.

Other related work

In the statistics community there are a number of consistency results for maximum-likelihood
methods (e.g. [25]) but it is not clear how the accuracy of these methods scales with the
size or density of the graph, or how to find the maximum-likelihood estimator efficiently.
There are also results on the convergence of spectral methods, using relationships between
the graph Laplacian and the Laplace-Beltrami operator on the underlying manifold (e.g. [3]).
This approach yields bounded distortion for random dot-product graphs in certain regimes.

We assume that parameters of the model are known, including the underlying space and
its metric structure (in particular, its curvature and the number of dimensions). Thus we
avoid questions of model selection or hypothesis testing, for which some lovely techniques
have been proposed (e.g. [10,18,22]). We also assume that the parameter r is known, since
this is easy to estimate from the typical degree.
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Organization of the extended abstract

In Section 2 we define the concept of a deep vertex. Intuitively, a vertex is deep if it is more
than 7 from the boundary of the square, so that its ball of potential neighbors is entirely in
the interior. However, since we are only given the adjacency matrix, we base our definition on
the number of vertices two steps away from v in the graph, and show that these topological
and geometric properties are closely related.

Section 3 shows that we can closely approximate Euclidean distances ||ju — v|| given the
adjacency matrix whenever v is deep. We do this in two steps: we give a precise short-range
estimate of ||u — v|| when dg(u,v) <2, and a long-range estimate that uses the existence of
a greedy path. By “hybridizing” these two distance estimates, switching from long to short
range at a carefully chosen intermediate point, we obtain a significantly better estimate of
|lw — v|| than was given in [12]. We believe these distance estimation techniques may be of
interest in themselves.

In Section 4, we use this new estimate of Euclidean distant to reconstruct the vertex
positions up to a symmetry of the square, by starting with a few deep “landmarks” and then
triangulating to the other vertices. This gives smaller distortion than the algorithm in [11],
achieving the scaling shown in Figure 1.

Finally, in Section 5 we extend our method to random geometric graphs in the m-
dimensional hypercube and on the surface of the sphere.

Due to space limitation, in this extended abstract, we limit ourselves to sketching the
proofs and their main ideas, deferring the complete proofs to the full version of the paper,
available on ArXiv: https://arxiv.org/abs/2107.14323

2 Deep vertices

Let G be a random geometric graph defined in the two-dimensional square [0, /n]?. Because
some of our arguments will break down for vertices near the boundary and corners of [0, \/n]?,
it will be useful to have an easy way to tell these vertices apart from the rest. To this end,
we introduce the notion of deep vertices.

» Definition 1. Let r be fixed. We say that a vertex v € V is deep if at least 1172 vertices
have graphical distance 2 or less from v.

Note that being deep is a topological property of the graph, rather than its embedding in
the plane. We need such a definition since our reconstruction algorithm is only given access
to the adjacency matrix. However, in the long version we show that with high probability
all vertices that are deep in this topological sense are at least r from the boundary of the
square. Moreover, with high probability there are many deep vertices.

3 Estimating Euclidean distances: Breaking the Q(r) barrier

3.1 Estimating short-range distances

In this section we show how to estimate the Euclidean distance ||u — v|| between two vertices
that are topologically close, namely when dg(u,v) < 2.

We first assume that dg(u,v) = 1, i.e., that ||u — v|| = 2 where 0 < z < r. Then
{N(v)\ N(u)} consists of the points in the lune L = B(v,r) \ B(u,r) shown in Figure 2. If
v is deep, then B(v,r) and therefore L lies in the interior of the square [0, /n]?. Thus in
expectation |{N(v) \ N(u)}| is the area of L, which we denote F'(x). This suggests inverting
F, estimating x as
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Figure 2 We can estimate the Euclidean distance |ju — v|| = x of two vertices with dg(u,v) < 2
using the area of the lune L = B(u,r) N B(v,r) # 0. Denoting this area F(z), we can estimate x by
appling the inverse F~! to the number of points in N(v) \ N(u).

d(u,v) = F~* (IN(v) \ N(u)]) . (2)

Since F is monotonic and is given explicitly as F(x) = mr? — 272 arccos o+ VA2 — a%, we
can compute this inverse using binary search.

This estimate is w.h.p. an accurate estimate of ||u — v|| for two reasons. First, [{N(v) \
N (u)}| is concentrated around its expectation F(x). In both the uniform and the Poisson
models, with high probability we have

{N@)\ N}~ F(@)| < VF(@)logn.

Second, the derivative of F is large, so the derivative of F~! is small. Specifically, since
F(z) satisfies the differential equation F’(z) = v/4r2 — 22, we have F'(x) > rv/3 = Q(r) for
0 < z < r. Noting also that F(z) = O(zr), we obtain

|:L’J(u,v)|§"F(m)lOgnO< xlogn) . (3)

F'(x) r

If dg(u,v) = 2 in which case r < x < 2r, we switch from the difference in the two
neighborhoods to their intersection N(u) N N(v), namely the points in the lens-shaped region
B(u,r) N B(v,r) in Figure 2 which has area 7r? — F(x). As  — 2r the area of this region
tends to zero, but so does F'(z). Specifically, if © = 2r — ¢ then

7r? — F(z) = O(rY/2%?) and F'(z) = O(r'/21/?),

so (3) becomes

) o ((9)" Vi) o

|x—d(u,v)| =0 < /2 2172

Putting this all together gives the main theorem of the section,

» Theorem 2. Given a G € G(n,r), where r > 100/logn. With probability at least 1 —2/n?
we have, for all vertices v # w such that dg(v,w) <2 and v is deep,

[l[v = wl| = d(v,w)| < 100n(]lv - w])y/logn, ()
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where n : [0,2r] — [0,1] is defined by

V1
2L for0 <w < En
o) = V7 for 8% < g <,

- 1/4 2/3
(L*I) / forr <z <2r— 7(10517})3 ,

™

1/6 2/3
% f0r2r—(]°f+)3§x§2r.

3.2 Estimating long-range distances

Next we show a fairly tight relationship between geometric and topological distance for all

pairs of vertices, including distant ones. This is a slightly sharper version of [12, Thm 1.1].

The main difference is that, where before, a short path between two given vertices is found
by finding vertices close to a straight line between the endpoints, our proof instead analyses
a greedy algorithm generating a path that may deviate further from the straight line.

We start with the following geometrical lemma

» Lemma 3. Let Bi(v,7m1) and By(u,rs) be overlapping balls in R?, and let d = ||Ju — v||.
Consider the lens L = B1 N Bs. Let 6 denote the width of L, i.e., § =11 4+ 19 — d. Then the
area A of L satisfies

A=0 (53/2 mil’l{?"17’l“2}1/2> .

The main result of this section is the following theorem,

» Theorem 4. Let G € G(n,r). There exist absolute constants Cy,Ca,Cs such that, for all
n > 1 and all r > Cy\/logn, with probability at least 1 — Cy/n?, all pairs of vertices u,v
satisfy

L <t < [l ©)

r

where

llu — v logn) . )

o=l = o) = ¢ (1270 282

The lower bound of (6) is trivial. The gist of the upper bound is to show the existence
of a short path u ~ v using a greedy routing algorithm that moves as close as possible, in
Euclidean distance, to v at each step. (Note that this is only for the purpose of analysis,

since our reconstruction algorithm is only given the adjacency matrix!) Start from g = w.

Then for each ¢ > 0, let ;41 be the neighbor of z; that minimizes ||z; — v| as shown in
Fig. 3 (note that x; 1 is unique with probability 1). The algorithm terminates if no neighbor

of x; is closer to v than z; is. If x; = v, we have found our path and the algorithm succeeds.

Otherwise, the algorithm has gotten stuck in a local minimum, and never reaches v.

Then in the full version we prove that the algorithm succeeds with probability 1 —O(n=2).

Moreover, with the help of Lemma 3, we can show that each step gets about r — O(r~1/3)
closer to v. This yields the upper bound of (6), and taking a union bound over all pairs u,v
completes the proof. J

Let us discuss how we will use Theorems 2 and 4 to break the Q(r) barrier in distance

estimation, and thus in reconstruction. Suppose r = n® where 0 < a < 1/2 is a constant.

Then since ||u — v|| = O(n'/?), we have from (7)

nzO(maX (n%*%a,n*%alogn)) , (8)
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Figure 3 The greedy routing analysis of Theorem 4. At each step we go from z; to the neighbor
Ti+1 closest to v. In the analysis, we consider the intersections of z;’s neighborhood with balls
centered at v, with the radii of the latter chosen so that these intersections have area In2, 21n 2,
3In2, and so on. Each of these intersections contains a point with constant probability, so that most
steps make significant progress towards v.

and since % — %oz > f%a we have

k=0(n"), where ﬁ:%fga. (9)

If o > 3/14, then 5 < a and k = o(r). In this case the upper and lower bounds on d¢(u,v)
differ by at most 1, and moreover are equal for most pairs of vertices, making dg(u,v) a
nearly-deterministic function of ||u — v||. Using [z] < = + 1 and multiplying through by r
gives the bounds

da(u,v)r — (r+ k) < ||lu —v|| < dg(u,v)r,

so that dg(u, v)r is an estimate of ||u—v|| with error r+x = (1+0(1))r. Previous work [11,12]
used essentially this bound to reconstruct the graph with a distortion of (1+¢)r for arbitrarily
small constant €. This gives the performance shown by the dotted line in Figure 1.

But in fact dg(u,v)r is a much more accurate estimate of ||u — v|| for certain pairs of
vertices. If ||u — v]| is just below a multiple of 7, then rounding up the left and right sides
of (6) doesn’t change either very much. We state this with in the following corollary,

» Corollary 5. With k = k(||ju — v||) defined as in (7), suppose that for some 0 < 6 < r and
some integer t > 0 we have tr — (k +0) < ||u —v|| < tr — k. Then

de(u,v)r — (k+6) < |lu —v|| < dg(u,v)r. (10)

Thus, if |ju — v|| is in one of these intervals, Theorem 4 lets us estimate ||u — v|| from the
adjacency matrix with error § + x instead of r + k. Below we will combine this with the
more precise estimate of short-range distances from Theorem 2 to achieve this error for all
pairs u, v where v is deep, not just those for which ||u — v is almost a multiple of .

As a result, the error in our distance estimates and the distortion of our reconstruction is
O(r?) where 8 decreases from 1 to 0 as a increases as shown by the solid line in Figure 1.
Specifically, we obtain a nontrivial result for any a > 0 and a more accurate reconstruction
than in [11] in the range « > 3/14 where their theorem applies. At o = 3/8 where § =0
another source of error takes over, leaving us with O(y/logn) distortion.
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Figure 4 For any intermediate point w, the hybrid distance estimate di(u, w) 4+ d2(w,v) is an
upper bound on |Ju — v|| with error bounded by Lemma 8.

3.3 Hybrid distance estimates

In this subsection we combine the long-range estimates of Theorem 4 with the short-range
estimates in Theorem 2, to estimate Euclidean distances with an error of o(n). We start
with the following definition:

» Definition 6. Let V C R? and d : V? — [0,00) and € : R — [0,00) be two functions
satisfying, for all u,v € V, d(u,v) — e(u,v) < ||lu —v|| < d(u,v). Then we say d is an upper
bound on Fuclidean distance with error function €.

The basic tool for combining distance estimates is the following lemma.

» Lemma 7. If di and dy are upper bounds on Euclidean distance with error functions €1, €2
respectively, then min{dy,ds} is an upper bound on Euclidean distance with error min{ey,es}.

The next lemma shows another way to combine two upper bounds on ||u — v||. We choose
a vertex w between u and v and use the triangle inequality, using d; to bound ||u — w|| and
dy to bound ||w — v||. Finally, we minimize over all intermediate vertices w. This hybrid is
especially useful when, as with our long-range and short-range estimates, d; and dy have
different ranges of ||u — v|| in which they achieve small error.

» Lemma 8. Suppose dy and ds are upper bounds on Fuclidean distance with error functions
€1 and g4 respectively. Define the hybrid distance estimate by

~

d(u,v) = rrgn (di(u, w) + da(w,v)) . (11)

Then d is an upper bound on Euclidean distance with error
€(u,v) < min, [el(u,w) + e2(w,v) + |lu —w|| + ||lw —v|| — ||lu—v||].

For an intuition of the proof, see Figure 4. 1
The next lemma uses the fact that if a lens is sufficiently large to contain at least one
point w with high probability, then this gives an upper bound on the minimum in Lemma 8.

» Lemma 9. Let G € G(n,r) and suppose that with high probability di and dy are upper
bounds on Euclidean distance with errors e1(u,v) = e1(||u — v|]) and e2(u, v) = ea([ju — v||).
Define d as in Lemma 8. Then there is a constant C such that, with high probability, d is
also an upper bound on Euclidean distance, with error €(u,v) = &(||lu — v||) where

— o —vl|—x -9 1 12
Bu-vi) < _min omex [a(@+d) +eau-v] -2 - 6) +0@)] (12)

with §(x) = C(logn)?/? (min{z, ||[u — v|| — J;})_l/?’.
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Figure 5 The lens L(z) of Lemma 9. If § is large enough, this lens is nonempty with high
probability, in which case we can use any point w in it as an intermediate point for Lemma 8.

Proof sketch. Fix w,v and consider the lens L(z) = B(u,z + ¢) N B(u,z + ||lu — v|| — x) of
width & as shown in Fig. 5. By Lemma 3, the area of L(z) is proportional to C%/2logn.
Since the probability a region of area A is empty is at most e=4, w.h.p. L(z) contains at
least one vertex w. For C sufficiently large, Lemma 8 then yields (12). |

Now we use the previous lemma to break the Q(r) barrier for the error in estimating Euclidean
distances in G € G(n,r).

Assume v is deep. First define dy = rdg(u,v), i.e., the upper bound of Corollary 5. Now
define d using the precise short-range estimate d from Theorem 2, with a small increment
to make it an upper bound on Euclidean distance with high probability. Specifically, for a
sufficiently large constant Cs, let

o, v) = {d(u,v) + Coy/logn  if dg(u,v) <2, (13)

+00 otherwise .
» Remark 10. Given this choice of d; and ds, the hybrid estimate J(u, v) is the graph distance
from u to v in a weighted graph G, where each edge (w,v) with dg(w,v) < 2 has weight

d(w,v) + Cyy/logn and all other edges have weight r. Thus, for any fixed v, we can compute

~

d(u,v) for all u in with an application of Dijkstra’s algorithm.

Now let us bound the error functions €7 and €5 of di and ds. As discussed above, for
most values of ||u — v|| we have €1 (||lu — v||) = ©(r). However, we will choose the lens in
Lemma 9 so that ||u — w|| is almost a multiple of 7, in which case Corollary 5 shows that
e1(|lu — w]|) is much smaller.

To bound €5, Theorem 2 implies that, for some absolute constant Cy4, w.h.p.

Cyvlogn if |ju —v|| < 2r — Cyr=/3logn,

ea(flu —v) < {+OO (14)

otherwise.

Having gathered these facts, we will apply Lemma 9 to d; and ds with a judicious choice of
lens L(z). First note that, since da(w,v) = 400 if dg(w,v) > 2, we can write

d(u,v) =  min  {di(u,w) + da(w,v)}. (15)

widg (w,v)<2
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» Theorem 11. Let r = n® for a constant 0 < a < 1/2. For all pairs u,v where v is deep,

define d(u,v) as in eq. 15. Then w.h.p., d is an upper bound on the Euclidean distance
|lu — v|| with error

&( ) < c’ o <3/8, (16)
u, v
Viogn 3/8<a<1/2,

~ ~

for some absolute constant C'. That is, d(u,v) — &(u,v) < [Ju — v|| < d(u,v).

Proof sketch. We choose x and the lens L(z) in Lemma 3 such that ||u — w|| is almost an
integer multiple of . We use this choice of z to upper bound (12), bounding the two terms
inside the minimum separately. Using the definition of x in Theorem 4, Corollary 5 tells us
that dp (u,w) has error at most €1 < k + 0. This implies that for all 0 < 67 < §, the first
term of (12) is at most &1 (z + 1) < kK + 6.

To bound the second term of (12) we first prove that w.h.p. dg(w,v) < 2. We then
use (14) to get ea(w, v) < Cyy/logn, which implies ex(||u — v|| — 2 — d2) < Cy/logn. <

4  The Reconstruction Algorithm

In this section we use our distance estimates to reconstruct the positions of the points up to
a symmetry of the square. Our global strategy is similar to [11]: we first fix a small number
of “landmark” vertices v whose positions can be estimated accurately up to a symmetry
of the plane. Then for each vertex u we use the estimated distances c?(u, v) to reconstruct
w’s position by triangulation. In [11], the landmarks are vertices close to the corners of the
square. Here they will instead be a set of three deep vertices that are far from collinear,
forming a triangle which is acute and sufficiently large.

» Definition 12. We say a triple of deep vertices x,vy, z is good if they form an acute triangle
with all three side lengths at least 0.1y/n.

» Remark 13. The bounds of Theorem 4 imply that if x,y, z are deep and have pairwise
graph distances in the interval [0.1y/n/r,0.14/n/r], then they are a good triple; the triangle
is acute since 0.14 < 0.1v/2.

Once we have found a good triple, we perform triangulation using the following lemma.

» Lemma 14. Let x,y, z,u be four points in the plane. Suppose x,y, z form an acute triangle
with minimum side length at least £. Then, if we know the positions of z,y,z with error
at most 1, and we have upper bounds c/l\(u, v) on the Euclidean distances ||u — v|| for all
v € {x,y,z} with error €, and all of these distances are at most D, we can determine the

position of u relative to x,y, z with error at most

D(E+n)

Cs 7 , (17)

for an absolute constant C'.

» Remark 15. In our application, (x,y, 2) is a good triple, so £ = Q(y/n). Since we also have

D < /2n and n = O(€), we can reconstruct u’s position relative to x,y, z with error O(€)
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Proof. First, let us assume fixed positions for z,y, z within 7 of their estimated positions
(which we can always do so that they form an acute triangle). By the triangle inequality, this
changes the distances ||ju — v|| for v € {x,y, 2z} by at most £n. Thus u is in the intersection
U of three annuli,

U= () Bdu,v)+n)\Bv,du,v)—n-—2. (18)
ve{z,y,z}

Any point u’ in U gives an approximation of u’s position with error at most the Euclidean
diameter of U, namely max,, ,ev ||[u — v'||. We will show this diameter is bounded by (17).

We use some basic vector algebra. Let &’ = £+ 2n < 2(€+ 7). For any u,u € U we have,
for all v € {z,y, 2},

—&' < lu—vf| = [lu" —v]| <€

Since the triangle x, y, z is acute, at least one of its sides makes an angle ¢ with the vector
u— u' where 0 < ¢ < /4. Taking this side to be (z,y) we have, without loss of generality,

1
(y—2)- (u—u) =lly =zl lu—-vlcosp > |y — |l lu—- U'II\/;

Next, we rewrite this dot product as follows,
20y —x) - (u—u') = [lo —u|? = [l = | = ly — w|® + [ly — ||
= (llz —ull = llz = u'[)(llz — ull + ]z = u'[})

= (ly = ull = lly = &' D(lly = ull + ly = w'll)
<&(lle —ull + o = v/l + lly =l + lly = w'lD),

where the first line is a classical polarization identity. Putting these together, we have

V2 4v/2Re’
le = w'l| < =&’ (le = ull + flo = /|| + [ly = ull + lly = 'll) < ——,
ly — |l
completing the proof with C5 = 8v/2. |

Finally we state our main theorem.

» Theorem 16. Let r = n® for a constant 0 < « < 1/2. There is an algorithm with
running time O(n?) that w.h.p. reconstructs the vertex positions of a random geometric graph
G € G(n,r), modulo symmetries of the square, with distortion d* an absolute constant times
times € as defined in (16). That is, for some constant C",

- ni=5  ifa < 3/8,
Viegn  if3/8<a<1/2.

Proof sketch. We use the fact, proved in [11], that w.h.p. the true positions of the lowest-

degree vertices are within v/logn of the corners of the square. Call these vertices a, b, ¢, d.

1. Find a good triple z,y, z. One way to do this is to find a vertex = near the center of the
square, for instance one such that dg(x,t) > 0.65\/n/r for all t € {a,b, c,d}. Then find a
y with dg(z,y) € [0.1y/n/r,0.14y/n/r], and then find a z such that dg(z, 2),dc(y, 2) €
[0.1y/n/r,0.14\/n/r]. At each stage of this process, such a vertex exists with high
probability, and all three are deep.
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Figure 6 Our reconstruction is built around a triangle x, y, z of deep vertices. It may be translated,
rotated, or reflected in R? by an isometry, but it can then be shifted to the square [0,+/n]?. Then it
will be a good reconstruction up to a rotation or reflection of the square.

2. Construct a triangle z,y, z € R? which is congruent to the true positions of the vertices
x,y, z within error n = O(&).

~

3. For each v € {z,y, 2}, compute the hybrid distance estimate d(u, v) for all u as follows.

First, for each w such that dg(w, v) < 2, compute |N(w)N N (v)| and thus the short-range
distance estimates d(w, v). Then compute d(u, v) for all u using Dijkstra’s algorithm on
the weighted graph G, described in Remark 10.

4. Use Lemma 14 to reconstruct the position of each vertex u relative to triangle x,y, z with

error O(). This gives us a reconstruction up to an isometry of R? as shown in Figure 6.

5. Finally, rotate and translate this reconstruction to the square [0,/n]2. We choose a
mapping of a, b, ¢, d to the corners of the square arbitrarily, using distance estimates to
deduce which pairs are diagonally opposite, and then translate and rotate them as close
as possible to {0,/n}2. Since our definition of distortion allows rotations and reflections
of the square, this gives a reconstruction with distortion d* = O(€ + /logn) = O(g).

Step 1 can be done by breadth-first search, first from a,b, ¢,d and then from x and y,
and thus takes O(n) time. Steps 2, 3, 4, and 5 require O(n) calculations of finite precision
using standard functions, for which O(logn) bits of accuracy suffices. Thus the running time
is dominated by the three uses of Dijkstra’s algorithm, one for each v € {z,y, 2}, giving a
running time of O(n?). <

» Remark 17. Since the typical degree in the graph is 772 = O(n?®) where a < 1/2, and
since Dijkstra’s algorithm in a graph with n vertices and m edges runs in time O(m+nlogn),
the running time is w.h.p. O(n?® + 1) = o(n?).

» Remark 18. Once we reconstruct the positions of all vertices, we can get a good estimate of
||u—v]|| by direct computation from their approximate coordinates for all pairs u, v, including
those where neither v nor v is deep.

5 Extensions to Other Domains

Our results can be generalized from the square to a number of alternative domains for
random geometric graphs, including higher-dimensional Euclidean spaces and some curved
manifolds. Here we sketch extensions of our algorithm to the m-dimensional hypercube and
to the sphere, solving an open problem posed in [11].
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5.1 Reconstruction in higher-dimensional Euclidean space

The simplest generalization is where the underlying domain is [O,nl/ mm C R™, ie., an
m~dimensional hypercube with volume n. We assume that m is a constant that does not
vary with n. As before, n points are scattered uniformly in the hypercube, pairs u,v are
adjacent if they are within Euclidean distance r, and our goal is to reconstruct the points’
positions based on the adjacency matrix of the graph.

The following lemma generalizes Lemma 3 to R™, giving the m-dimensional volume of a
lens-shaped intersection of two balls.

» Lemma 19. Let Bi(x,r1) and Ba(y,r2) be two overlapping balls in R™ with r1 < ro.
Consider the lens L = B1 N By. Let § be the width of L, i.e., § = min{ry + ro — d, 2r1} where

my1 m=1
d = ||z —y||. Then the volume V of L satisfies V =0 ((5 > ry 2 ), where the constant in

© depends only on m.

Given this relation between the width and volume of the lens, analogously to Section 3,
we can compute both short- and long-range estimates of the distance, and combine them
into a hybrid estimate. The error in the hybrid estimate is given by the following theorem.

» Theorem 20. Let r = n® for a constant 0 < a < 1/m. For all pairs u,v where v is deep,
define d(u,v) be the hybrid estimate of the distance. Then with high probability, d is an upper
bound on the Euclidean distance ||u — v|| with error

1 2m

N nﬁimﬁ»la a < m+1
E(u,v) < Cpy o 2m? ) (19)
Viogn 72”m2 <a<o,

for some dimension-dependent constant C,.

We omit the details of the proof since it closely follows the steps in Section 3.

In order to use the hybrid estimates for reconstruction, we need to find an appropriate
number of deep landmarks. Using linear algebra, it suffices to have m 4 1 landmarks that
form a non-degenerate simplex. As in Theorem 16, we find an approximately equilateral
m-simplex, namely a set of m + 1 points whose graph distances are all roughly the same
constant times the diameter n'/™ /r. We again triangulate the positions of the other points
based on their distance estimates, giving a reconstruction up to an isometry of R™. It is
then easy to compute an isometry that shifts the reconstructed hypercube to [0, nY/™]™ by
identifying low-degree vertices with the 2™ corners.

Putting this all together gives the following reconstruction theorem for random geometric
graphs in [0,n'/™]™. We omit further details of the proof.

» Theorem 21. Let r = n® for a constant 0 < o < 1/m. There is an algorithm with running
time O(n?) that w.h.p. reconstructs the vertex positions of a random geometric graph, modulo
symmetries of the hypercube, with distortion

ﬁ—jm [ m+1
<o A" " for oo < 505,
— m
Viogn for 2 <a < L

for some dimension-dependent constant C,,.
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Figure 7 Using three landmarks x, y, z on the sphere to triangulate to other points in Theorem 22.

5.2 Reconstruction on the sphere

Finally, we argue that our algorithm also works on some curved manifolds and submanifolds
where the geometric graph is defined in terms of geodesic distance. In particular we claim
this for the m-dimensional spherical (hyper)surface S,, of a ball in R™*!. Here we sketch
the proof for the two-dimensional surface of a sphere in R3. Note that the distortion is now
defined by minimizing over the sphere’s continuous symmetry group, i.e., over all rotations
and reflections of the sphere.

In previous work, the authors of [10] gave a procedure to distinguish random geometric
graphs on S™ from Erdds-Rényi random graphs. In addition, [3] gave a spectral method
for reconstructing random graphs generated by a sparsified graphon model on the sphere,
but since this model connects distant pairs of vertices with nonzero probability, it does not
include the geodesic disk model we study here.

To define random geometric graphs on the sphere we scale the sphere so that its surface
area is n, setting its radius to R = /n/(4m). We scatter n points uniformly at random on it,
or generate them with a Poisson point process with intensity 1, so that the expected number
of points in a region is equal to its surface area. We define the graph as (u,v) € E if and
only if ||u — v||y < r where ||u — v||4 is the geodesic distance, i.e., the length of the shorter
arc of a great circle that connects v and v. If we associate each point u with a unit vector
@ € R? that points toward it from the center of the sphere, ||u — v, is R times the angle
between 4 and .

» Theorem 22. Let r = n® for a constant 0 < a < 1/2. There is an algorithm with running
time O(n?) that with high probability reconstructs the vertex positions of a random geometric

graph, modulo a rotation or reflection of the sphere, with distortion an absolute constant
times n2 =3 if o < 3/8 and \/logn if a > 3/8.

The algorithm is similar to that described in Theorem 16. The main difference is that our
initial landmarks consist of three points x,y, z which approximately form a right spherical
triangle, i.e., such that the vectors &, 7, 2 have angles of about 7/2 between them: see Fig 7.

6 Conclusion and Future Work

We have shown how a combination of geometric ideas can be used to reconstruct random
geometric graphs with lower distortion than in previous work [11], achieving a distortion of
o(r) whenever r = n® for a > 3/14. Here we pose several questions for further work.

48:15

ICALP 2022



48:16

Improved Reconstruction of Random Geometric Graphs

First, let us call a reconstruction ¢ consistent if its distances are consistent with the
graph: that is, if (u,v) € E if and only if ||¢p(u) — ¢(v)|| < r. Even if ¢ has small distortion
d*, it might not be consistent: some edges (u,v) € E might have ||¢(u) — ¢(v)| between r
and r + 2d*, and similarly some non-neighboring pairs might have ||¢(u) — ¢(v)|| between
r — 2d* and r. To the best of our knowledge, even finding a single consistent embedding for
random geometric graphs is an open question. It might be possible to refine our embedding
to make it consistent, by using “forces” to move neighbors slightly closer together, and push
non-neighbors farther away.

Second, a natural question is whether we can prove a significant lower bound on the
distortion. An information-theoretic approach to this question would be to show that even the
Bayesian algorithm, which chooses from the uniform measure on all consistent embeddings,
has a typical distortion. We have been unable to prove this. However, here we sketch
an argument that there exist consistent embeddings with a certain distortion by applying
a continuous function f to the square [0,/n]? that “warps” the true embedding. If f’s
derivatives are at most ¢ in absolute value, then for each v, points close to the edge of
v’s neighborhood may move O(dr) closer or farther away. However, a typical v has some
e = O(1/r) for which there are no points whose distance is between r — ¢ and r + ¢, since
the area of the corresponding annulus is O(1). This suggests that if 6 = O(e/r) = O(1/r?),
the warped embedding is still consistent (except for a few vertices where we need to be
more careful). On other other hand, even if f does not change the distance between nearby
vertices very much, it can still move some vertices d+/n from their true positions, giving a
distortion d* = Q(y/n/r?). If r = n® this gives Q(n'/272%),

Even if this lower bound can be made rigorous, and even if it applies to typical consistent
embeddings rather than just a few, there is a large gap between it and our upper bounds.
Thus it is tempting to think that our algorithm can be improved, reducing the distortion
still further. One approach would be to try to extend the geometry of overlapping disks in
Theorem 2 to larger graph distances. Another would be to combine them with the spectral
ideas of e.g. [3].

Finally, we would like to see how far these techniques can be extended to curved manifolds
and submanifolds with boundary. In Theorem 22 we took advantage of the fact that the
2-sphere has a convenient embedding in R®. A more general approach, which we claim
applies to any compact Riemannian submanifold with bounded curvature, would be to work
entirely within the manifold itself, building a sufficiently dense mesh of landmarks and then
triangulating within mesh cells. In particular, in the popular model of hyperbolic embeddings
(e.g. [6,16,17]) where the submanifold is a ball of radius ¢ in a negatively curved space with
radius of curvature R, we believe similar algorithms will work as long as /R = O(1). We
leave this for future work.
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