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Abstract. Transfer learning through the use of pre-trained models has
become a growing trend for the machine learning community. Conse-
quently, numerous pre-trained models are released online to facilitate fur-
ther research. However, it raises extensive concerns on whether these pre-
trained models would leak privacy-sensitive information of their training
data. Thus, in this work, we aim to answer the following questions: “Can
we e↵ectively recover private information from these pre-trained models?
What are the su�cient conditions to retrieve such sensitive information?”
We first explore di↵erent statistical information which can discriminate
the private training distribution from other distributions. Based on our
observations, we propose a novel private data reconstruction framework,
SecretGen, to e↵ectively recover private information. Compared with
previous methods which can recover private data with the ground truth
label of the targeted recovery instance, SecretGen does not require such
prior knowledge, making it more practical. We conduct extensive exper-
iments on di↵erent datasets under diverse scenarios to compare Secret-
Gen with other baselines and provide a systematic benchmark to better
understand the impact of di↵erent auxiliary information and optimiza-
tion operations. We show that without prior knowledge about true class
prediction, SecretGen is able to recover private data with similar per-
formance compared with the ones that leverage such prior knowledge.
If the prior knowledge is given, SecretGen will significantly outperform
baseline methods. We also propose several quantitative metrics to fur-
ther quantify the privacy vulnerability of pre-trained models, which will
help the model selection for privacy-sensitive applications. Our code is
available at: https://github.com/AI-secure/SecretGen.
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1 Introduction

As machine learning has achieved great successes in di↵erent domains, such
as robotics [24], audio recognition [7], and face recognition [15], how to train
the learning models e�ciently given the available large-scale dataset becomes
a timely problem. Transfer learning, which focuses on transferring knowledge
across domains, is a promising learning paradigm [2]. In particular, many pre-
trained models are available currently, such as TensorFlow Hubs [1] and Py-
Torch Hubs [22], which can be flexibly used for fine-tuning later for di↵erent
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downstream tasks. As a result, the training paradigm with transfer learning has
enabled e�cient usage of the large-scale dataset without requiring training every
model from scratch.

However, such an e�cient transfer learning paradigm also leads to additional
privacy concerns. For instance, if the training data of the pre-trained models con-
tain privacy-sensitive information, an adversary who downloads the pre-trained
models could potentially perform di↵erent privacy attacks to infer the private
information. In particular, membership inference attacks [18,19] have been stud-
ied to infer whether a private instance is in the training set, and model inversion
attacks have been studied to reconstruct the private training instances under cer-
tain assumptions [28,11,10,26], which raises more privacy and safety concerns.

To better understand the privacy vulnerabilities of such pre-trained models,
a comprehensive analysis of di↵erent types of privacy attacks, especially the se-
vere model inversion attacks, is required. Currently, there are several limitations
of existing privacy model inversion attacks. First, the current state-of-the-art
model inversion attack (i.e., GMI) [28] requires the ground truth label of the
reconstructed instances, which is less practical. Furthermore, it is a known chal-
lenging problem to label the generated instances based on GANs [12]. Second,
many existing model inversion attacks require whitebox access to the target
pre-trained model, making it less practical in real-world applications. Thus, in
this paper, we mainly aim to ask: Can we reconstruct private sensitive training
instances without requiring such information?

To answer it, we propose a general private data recovery framework Secret-
Gen, which consists of a generation backbone, a pseudo label predictor, and a
latent vector selector. We first use a pseudo label predictor to generate a pseudo
label for each private instance. Specifically, we randomly sample latent vectors
and feed them into the generation backbone to get recovered instances. To stabi-
lize prediction quality, we apply di↵erent transformations (e.g.cutouts) to such
instances before feeding them into the targeted model to get the final predicted
pseudo labels. We then propose a latent vector selector via a proposed selec-
tion algorithm to further optimize and constrain the recovery space. Finally, we
perform joint optimization to train the end-to-end framework as shown in Fig. 1.

We conduct comprehensive experiments to evaluate the proposed SecretGen
compared with multiple baselines. We show that SecretGen significantly out-
performs baselines given the same ground truth label. Even without such infor-
mation, SecretGen still achieves comparable performance compared to baselines
which leverage the ground truth label information. In addition, to evaluate the
performance of recovered data on downstream tasks, we propose di↵erent evalu-
ation protocols considering di↵erent usage of the recovered private data, and we
show that our observations are consistent for di↵erent protocols. We also evalu-
ate the robustness of SecretGen against the purification defense [27]. Finally, we
perform di↵erent ablation studies to show the e↵ectiveness of our design choices.
We make the following contributions:
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– We propose a general private data recovery attack (i.e., model inversion)
given a pre-trained model, SecretGen, without requiring the ground truth
label as prior knowledge under both whitebox and blackbox settings.

– We propose a novel label predictor for the reconstructed instances consider-
ing di↵erent data transformations and latent vector selection, which can be
flexibly used in other frameworks.

– We propose di↵erent evaluation protocols and metrics for evaluating the
pre-trained models against general model inversion attacks.

– We conduct extensive experiments on di↵erent models, including the vision
transformer and multiple datasets, to provide a benchmark on model in-
version attacks. We show that SecretGen significantly outperforms baselines
under di↵erent settings.

2 Related Work

Revealing privacy-sensitive information from a trained model has aroused exten-
sive research interest. Membership inference attacks and model inversion attacks
are two major categories of such attacks. Inmembership inference attacks [18,19],
the adversary aims to decide whether a sample is a member of the training set,
while in model inversion attacks [28,11,10,26], the adversary attempts to recon-
struct the training set under certain assumptions.

[11] was the first to propose model inversion attacks aiming at recovering
private training data. The authors demonstrated that personal genetic mark-
ers could be e↵ectively recovered given the output of the model and auxiliary
knowledge. [10] extended model inversion to more complex models, including
shallow neural networks for face recognition. The recovered data with their pro-
posed method are identified as the original person at a much higher rate than
random guessing. However, the reconstructed images are blurry and not visu-
ally recognizable to humans. [26] proposed a training-based attack by training
an auto-encoder on public data. The attack can be performed with blackbox
accesses to the target model and partial (truncated) model predictions.

More recently, [28] proposed generative model inversion attack (GMI). The
authors distill public knowledge by training a conditional GAN on public data
and then solve an optimization problem to maximize the probability of the re-
covered image for the ground truth class label. GMI significantly outperforms
previous methods in re-identification rate of the recovered data, as well as guar-
anteeing the recovered data are visually plausible. However, they still require
the ground truth label for the target image and whitebox access to the victim
model, which is often not accessible to the adversary. Another recent work distri-
butional model inversion attack (DMI) [3] recovers the private data distribution
for each target class by constructing representative samples. However, DMI does
not support recovering every private instance given its non-sensitive version (i.e.
instance-level model inversion), which is the adversary’s goal in our setting.
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3 Methodology
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Fig. 1. Overview of the proposed SecretGen. The blue modules represent the pro-
posed algorithms. The Target Model could allow either whitebox or blackbox access.

3.1 Problem Formulation

We focus on recovering the privacy-sensitive training data based on the trained
classification models. Throughout the paper, we will refer to the model that is
subjective to attacks as the target model F , which is trained on private training
data Dtrain

pri , aiming to perform evaluation on private test data Dtest
pri . The target

model returns a prediction vector F (x) given an input instance x. The prediction
vector represents a probability distribution over C classes, where C denotes the
number of classes of the whole private dataset Dpri = Dtrain

pri [Dtest
pri .

The adversary’s goal is to recover the private training data Dtrain
pri given

the trained target model F and certain prior information, e.g., partially cor-
rupted images from Dtrain

pri . In particular, such corrupted images only contain
non-sensitive background information (pixels) xns with the sensitive region xs

cropped out. These corrupted images are usually easy to obtain, given that such
corruption is often applied to protect the privacy of individuals in practice [28].
Specifically, in our evaluation, we consider cropping the whole face using two
face datasets, leaving only the non-sensitive background regions (Section 4).

Regarding the adversary’s ability, we consider (1) whitebox access to the
target model, where all parameters and intermediate computations of the target
model are visible to the adversary, and (2) blackbox access to the target model,
where the adversary can only obtain the final prediction from the target model
F . Additionally, we assume that the adversary also has access to some public
data Dpub from the similar distribution for general training purpose.
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3.2 Method Overview

An overview of SecretGen is illustrated in Fig. 1, where SecretGen takes non-
sensitive information xns as input and returns the recovered images that contain
privacy-sensitive training information (e.g., human faces). SecretGen is com-
posed of three components: generation backbone, pseudo label predictor, and la-
tent vector selector, which are jointly optimized under a unified framework. The
generation backbone leverages a conditional GAN trained on public data as
a backbone to generate realistic images based on the prior information (e.g.,
cropped images), and the generation process is controlled by the latent vector
z sent to the GAN’s generator G. The pseudo label predictor predicts the
most possible pseudo label for each recovered private image based on the dis-
tributional statistics of recovered images. The latent vector selector selects
the optimal latent vector ẑ which is the most likely to contain privacy-sensitive
information based on the proposed selection algorithm. Finally, we perform joint
optimization on the selected ẑ, taking the pseudo label provided by the pseudo
label predictor as the prediction target, to reconstruct image G(ẑ⇤, xns). In the
next following sections, we will describe each component in detail.

3.3 Generation Backbone of SecretGen

To recover the privacy-sensitive training data, we train a generation backbone
for conditional image recovery on public data Dpub. In particular, we will start
from certain prior knowledge, such as the corrupted private data containing
only the nonsensitive information xns. We then perform the same corruption
operation corr onDpub to construct the training set for the generation backbone:
Dpub corr = {corr(x)|x 2 Dpub}.

Next, we train a conditional GAN which is composed of two networks: gen-
erator G and discriminator D. G is conditioned on xns 2 Dpub corr and z is
the latent vector which is sampled from a prior distribution during training.
Throughout the paper, we use the prior distribution as standard Gaussian dis-
tribution. We leverage the Wasserstein-GAN loss [13] for GAN training:

min
G

max
D

Lwgan = Ex[D(x)]� Ez[D(G(z, xns))] (1)

We also incorporate a diversity loss term Ldiv [25] for training the generator
to prevent mode collapsing by sampling di↵erent latent vectors, say, z1 and z2:

Ldiv = �Ez1,z2


kf(G(z1, xns))� f(G(z2, xns))k

kz1 � z2k

�
(2)

where f is the feature extractor of the target model, which returns the feature
embeddings of the input images in the whitebox setting. In the blackbox setting,
we use a feature extractor trained on public data fpub for this process. The
overall loss term for the generator is as following:

LG = Lwgan + �divLdiv (3)
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After the generation backbone is trained, we freeze the parameters for both
G and D before we enter the next stage. We denote x̂ as the recovered image,
i.e., x̂ = G(z, xns).

3.4 Pseudo Label Predictor

The main challenge in this data reconstruction process is that we have no knowl-
edge about the ground truth label of the private images (related work assumes
that they have access to the ground truth label [28,26,11,10], while we do not).
To tackle this problem, we propose a pseudo label predictor which infers the la-
bel prediction with proposed discrimination metrics. We will first introduce the
design of our discrimination metric, and then we elaborate on how the pseudo
label predictor is optimized.
Discrimination Metric. Given the certain prior knowledge xns, we ran-
domly sample n latent vectors {zi}ni=1 from the prior distribution. We generate n
recovered images using our generation backbone: {x̂i}ni=1, where x̂i = G(zi, xns).
In order to improve the prediction stability, we consider prediction under di↵er-
ent transformations. Concretely, let the list of considered transformation func-
tions be T = {ti}mi=1. On each recovered image x̂i, we performm transformations
independently to obtain m transformed images {x̃j

i}mj=1, where x̃j
i = tj(x̂i). We

additionally define x̃0
i = x̂i. Let Fc(·) denote the model’s prediction confidence

for class label c based on target model F . We define the discrimination metric
M on label c as follows:

M(c;n,m) , 1

n(m+ 1)

nX

i=1

mX

j=0

Fc(x̃
j
i ), 8c 2 [1, C]. (4)

The discrimination metric returns a score indicating how likely it is for a
label c to be the consistent prediction across di↵erent transformations. Based
on existing studies of contrastive learning [4], we will select the class c with the
highest discrimination metric score as the final label prediction.

In particular, we define the list of transformations as a sequence of fix-sized
cutouts. We split an image into fix-sized patches and define tj as the transfor-
mation that cuts out the j-th patch of the given image, as illustrated in Fig. 2.

Intuitively, the discrimination metric M(c;n,m) should preserve the follow-
ing properties. First, M(c;n,m) is likely to have a higher score when c equals
the label associated with the corrupted image xns since the model has learned
some correlation between the non-sensitive background information in xns and
the label of the original image. Such correlation should be stronger if the target
model is more overfitted to private training data. Second, when the recovered
image x̃j

i is close to the training data, Fc(x̃
j
i ) should be consistently higher on the

correct label because training data are often more resistant to transformations
than non-training data [6]. Based on these intuitions, we use the discrimination
metric as the foundation of the pseudo label predictor in SecretGen.



SecretGen: Privacy Recovery on Pre-Trained Models 7

SpliWOriginal
Image

TransformaWions

Fig. 2. Sequential cutout for the recovered
image as transformations. The image is first
split into m fix-sized patches. Operations of
cutting out each patch are viewed as trans-
formations respectively.

Pseudo Label Predictor. Given
the discrimination metric M, we next
describe in detail how we leverage M
to infer the pseudo prediction label
considering di↵erent sampled latent
vectors, which aims to approximate
the ground truth. We first sample a
set of n latent vectors randomly and
compute M for all class labels. The
pseudo label predictor chooses the la-
bel with the maximum discrimination
metric score as the predicted label ĉ:

ĉ = argmax
c2[1,C]

M(c) (5)

We defer the detailed algorithm for label prediction with M to the appendix.
Note that there are various design choices for the discrimination metric M, e.g.,
the average confidence on only the recovered images without including their
transformed versions. It is clear that more advanced M will provide more ac-
curate pseudo label predictors. We will analyze the performance of the pseudo
label predictor given di↵erent designs of M in Section 4.5.

3.5 Latent Vector Selector

In addition to the availability of ground truth labels, another challenge during
private data recovery is that we may not have whitebox access to the target
model. In systems where machine learning is used as a service (MLaaS), the ad-
versary can only query the model and the prediction vector is returned from the
service provider. All internal computations and model parameters are unknown
to the adversary. In previous work [28], the adversary can directly optimize the
latent vector z to maximize the target model’s confidence given a known ground
truth label, which is less practical. Without the whitebox access, performing
back-propagation with the target model is infeasible in our practical case.

To tackle this problem, we design a latent vector selector to first randomly
sample n random latent vectors, and then select the ones which lead to their
recovered data classified as the predicted label from the pseudo label predictor. If
there is no latent vector that leads to the recovered images which can be classified
as the predicted label consistently, the selector returns a randomly sampled
latent vector from the prior distribution. Otherwise, it returns the latent vector
which has the highest confidence of the predicted label. We omit the detailed
algorithm to the appendix.

3.6 SecretGen Optimization

To put every proposed component within SecretGen together, we perform joint
optimization to maximize the consistent label prediction likelihood of recovered
images indicated by the discrimination metric (i.e., identity loss), while keeping
the recovered images realistic (i.e., discriminator loss). In the whitebox setting,
we perform backpropagation on the target model with identity loss Lid. Lid
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encourages the generated images to achieve consistently high label prediction
likelihood given the target model for class label c.

Lid = � log[Fc(G(z, xns))] (6)

We utilize discriminator loss as regularization to penalize unrealistic images.

Ldisc = �D(G(z, xns)) (7)

Then we initialize z with ẑ returned by our latent vector selector and optimize
z with the following objective function:

ẑ⇤whitebox = argmin
z

Ldisc + �idLid (8)

In the blackbox setting, we perform the latent vector selection optimization
only with the discriminator loss since the target model is not locally accessible:

ẑ⇤blackbox = argmin
z

Ldisc (9)

Note that in the blackbox setting where we have the ground truth labels, the
identity loss is still minimized by the latent vector selector through random
sampling based on the prediction vector of the target model, guaranteeing that
the recovered image is close to the density region of the ground truth identity.

3.7 Discussion

Our proposed SecretGen works under a wide range of scenarios regarding di↵er-
ent types of prior knowledge. See Table 1 for the scenarios under which Secret-
Gen and existing methods can be applied. Although EMI theoretically works in
blackbox cases with ground truth labels, its performance and e�ciency dramati-
cally su↵er against deep models. Although SecretGen still requires non-sensitive
private data as prior knowledge, such assumption is realistic as image corrup-
tion is often leveraged for privacy protection by individuals [28]. Furthermore,
if the knowledge of ground truth labels is available, it can be incorporated into
SecretGen conveniently. More details are deferred to the appendix.

In conclusion, SecretGen is more practical without requiring whitebox access
to the target model or the ground truth label. In addition, SecretGen is very
e�cient and applicable to high-dimensional image data considering deep models
as the target model as shown in our evaluation (Section 4).

Table 1. Comparison with existing methods on the information required by the adver-
sary to recover private training data. The symbol 37 means that in theory, the method
can work without the information, but the actual performance on deep models is bad.

Methods Non-sensitive Data? Whitebox Access? Ground Truth Label?

PII [25] 3 7 7

EMI [10] 7 37 3

GMI [28] 37 3 3

SecretGen 3 7 7
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4 Experiments

In this section, we first present the experimental setup. Then, we introduce the
evaluation protocols and report the attack performance respectively. We also
evaluate the robustness of SecretGen against the purification defense [27]. In the
end, we describe some ablation studies to better understand our method.

4.1 Experimental Setup

Datasets. We evaluate SecretGen on two face datasets: (1) CelebA [20] which
contains 202,599 face images of 10,177 identities. We filter out those identities
with 25 or fewer images and randomly select 25,000 images of 1,000 identities as
private data Dpri. We also randomly select 50,000 images of 2,000 identities from
the rest as adversary’s public data Dpub. There exist no overlapped identities
between Dpub and Dpri. (2) FaceScrub [21] which consists of 106,863 face images
of 530 identities. We use the images of 250 identities as Dpri and images of
another 250 identities as Dpub. We further split Dpri into Dtrain

pri and Dtest
pri for

training and testing. All the images are cropped and resized to 64⇥ 64.
Prior Information. We consider two types of prior information that the ad-
versary has access to: corrupted images by center mask and face T mask following
the standard setting in [28]. Center mask blocks the center part of the private
image, but the mouth information may still be exposed. Face T mask completely
hides the identity revealing features of the face image.
Model Architectures. We perform evaluation on target models with various
architectures: (1) VGG16 [23]; (2) ResNet152 [15]; (3) face.evoLVe [5] with an
IR50 backbone; (4) ViT-B 16 [9] We utilize IR152 [5] as the evaluation model
to predict the identity of input images. Both VGG16 and ResNet152 are pre-
trained on ImageNet [8]. face.evoLVe and the evaluation model are pre-trained
on MS-Celeb-1M [14]. ViT-B 16 is pre-trained on ImageNet21k [8]. The architec-
ture of SecretGen generation backbone is adopted from [28].
Baselines. We compare SecretGen with the state-of-the-art model inversion
attack GMI [28]. GMI assumes the adversary has access to the ground truth la-
bels and performs optimization with identity loss and discriminator loss. We also
compare our results with pure image inpainting (PII) [25], which only optimizes
the discriminator loss for generating realistic images. Latent vectors of both GMI
and PII are sampled randomly from Gaussian distribution. We do not compare
with EMI [10], since it has been demonstrated in [28] that the e↵ectiveness of
EMI is quite limited against deep models. We defer additional details regarding
model training and attack to the appendix.

4.2 Evaluation Protocols

We consider two principles for evaluating the privacy attack performance: “how
much privacy sensitive identity information can be recovered” and “how well the
recovered data can perform in downstream tasks”.
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Corresponding to the two principles, we evaluate the privacy attack perfor-
mance by attack accuracy under the following two protocols:

– Protocol 1: Train the evaluation model on the private data, and evaluate on
the recovered data.

– Protocol 2: Train the evaluation model on the recovered data, and evaluate
on the private data.

Protocol 1 was introduced in [28], which evaluates instance-level privacy re-
covery. However, we demonstrate that even if some instances are not recovered
correctly, the recovered data can be used for downstream tasks, e.g., training
another classification model. The adversary can potentially use the trained eval-
uation model for malicious purposes, e.g., performing unauthorized face recogni-
tion on private identities with significantly higher accuracy than the target model
itself. Thus, we propose Protocol 2, which aims to evaluate distribution-level pri-
vacy recovery. In addition, a common goal of the adversary to reconstruct the
private data is to leverage such data for other downstream tasks, and therefore
Protocol 2 explicitly reflects the utility of the recovered data.

For Protocol 1, we train the evaluation model onDtrain
pri and the resulting eval-

uation model achieves 98.0% classification accuracy over the private identities on
Dtest

pri . For Protocol 2, we first perform the attack on all corrupted private images
Dpri—for each corrupted image xns 2 Dpri, we recover an image x̂ = G(ẑ⇤, xns)
via SecretGen, with label ĉ = argmaxc2[1,C] Fc(x̂). We then compose the re-
covered images into a recovered private set Drec, which is separated into Dtrain

rec

and Dvalid
rec by 4:1. We train the evaluation model on Dtrain

rec with Dvalid
rec as the

validation set. We then evaluate the model performance on Dtest
pri .

We also report Peak Signal-to-Noise Ratio (PSNR) [16] between original and
recovered private data, which reflects the pixel-level reconstruction quality of our
attack. Note that the recovered data can still reveal identity information even
if the generated image is not close to the ground truth image pixel-wise. For
example, the recovered images can exhibit variations in pose and light condition
while keeping the identity.

4.3 Attack Performance

Whitebox Attacks. Table 2 compares the performance of SecretGen with
baseline methods on CelebA. See the appendix for results on FaceScrub.

We can see that SecretGen significantly outperforms GMI under both Proto-
col 1 and Protocol 2 if the ground truth label is given. Without such information,
with the proposed pipeline especially the pseudo label predictor, SecretGen still
achieves comparable performance with GMI under Protocol 1. Under Protocol
2, GMI with ground truth label performs better than SecretGen without ground
truth label. The reason is that if the predicted pseudo label is incorrect, our
pseudo label predictor and optimization push the recovery to be closer to the
wrong identity. However, we still outperform PII by a large margin.

We also observe that attack accuracy under Protocol 2 is much higher than
that under Protocol 1. The reason is that Protocol 1 and 2 work at di↵erent
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Table 2.Whitebox attack performance on CelebA. See the Ground Truth Label column
for whether ground truth label is provided for each attack method.

Target Model Methods
Ground Truth

Label
Center Mask Face T Mask

Protocol 1 Protocol 2 PSNR Protocol 1 Protocol 2 PSNR

VGG16

PII 7 0.423 0.561 27.583 0.166 0.363 26.276
GMI 3 0.569 0.955 27.587 0.305 0.928 26.240

SecretGen 7 0.584 0.928 27.955 0.312 0.793 26.632
SecretGen 3 0.639 0.965 28.071 0.377 0.931 26.821

ResNet152

PII 7 0.403 0.719 26.892 0.170 0.555 26.117
GMI 3 0.556 0.965 27.177 0.295 0.946 26.482

SecretGen 7 0.595 0.948 27.506 0.324 0.884 26.821
SecretGen 3 0.618 0.971 27.587 0.349 0.945 26.967

face.evoLVe

PII 7 0.267 0.455 27.317 0.122 0.343 26.356
GMI 3 0.595 0.946 27.444 0.467 0.935 26.563

SecretGen 7 0.551 0.841 27.613 0.274 0.630 26.562
SecretGen 3 0.788 0.963 27.781 0.695 0.954 26.827

ViT

PII 7 0.380 0.389 26.698 0.173 0.306 26.377
GMI 3 0.482 0.893 24.907 0.214 0.715 24.624

SecretGen 7 0.451 0.634 26.811 0.246 0.528 26.471
SecretGen 3 0.551 0.950 26.607 0.326 0.913 26.609

levels: Protocol 1 evaluates how much “detailed” information the recovered im-
ages contain, while Protocol 2 evaluates how much distributional information we
can recover by training another model based on the reconstructed data. Clearly,
Protocol 2 is relatively easier by recovering distributional level information and
thus achieves higher scores. We believe such observations will inspire interesting
future work and narrow down such a gap.
Blackbox Attacks. In the blackbox setting, the adversary is not capable
of performing backpropagation with the target model. We make the following
changes to our attack pipeline: (1) In Section 3.3, when training the generation
backbone, we use a public feature extractor from [5] pre-trained on MS-Celeb-1M
to substitute the target model for extracting the feature embeddings in comput-
ing the diversity loss (Ldiv, Eqn. (2)); (2) In Section 3.6, when performing Se-
cretGen optimization, we remove the identity loss Lid and optimize the selected
latent vector only with discriminator loss Ldisc.

Table 3 compares our results with PII under the blackbox setting on CelebA.
The only di↵erence for PII under blackbox and whitebox scenarios is whether
the target model is accessed when training the generation backbone. We can
see that with the ground truth labels, SecretGen significantly outperforms PII.
Without ground truth labels, which is the most general case, we still outperform
PII by a large margin. As far as we are concerned, we are the first to propose
an e↵ective model inversion attack against deep classification models under the
blackbox case without ground truth label.

We note that GMI (with ground truth label) performs better on face.evoLVe
than SecretGen (without ground truth label), as shown in Table 2 and Table 3.
Under this setting, attack performance is largely dependent on the pseudo label
predictor. We demonstrate that the label prediction accuracy of face.evoLVe
is significantly lower than that of VGG16 and ResNet152 in the appendix. We
believe the reason is that face.evoLVe is less overfitted due to the di↵erence in



12 Z. Yuan et al.

Table 3. Blackbox attack performance on CelebA. We report results for both cases
where the adversary has or does not have ground truth labels. (Note: GMI does not
support blackbox attack, and PII in the blackbox setting does not use the target model.)

Methods Target Model
Ground Truth

Label
Center Mask Face T Mask

Protocol 1 Protocol 2 PSNR Protocol 1 Protocol 2 PSNR

PII Any 7 0.216 0.759 27.319 0.081 0.484 25.705

SecretGen

VGG16
7 0.351 0.915 27.638 0.164 0.837 26.045
3 0.380 0.955 27.737 0.377 0.927 26.821

ResNet152
7 0.334 0.933 27.737 0.152 0.765 26.144
3 0.347 0.959 27.840 0.172 0.886 26.284

face.evoLVe
7 0.447 0.711 27.568 0.156 0.353 25.787
3 0.603 0.894 27.694 0.305 0.586 26.002

ViT
7 0.285 0.709 27.480 0.119 0.685 25.828
3 0.335 0.924 27.665 0.160 0.902 26.123

PII GMITarget
(wb) (bb) (wb, gt)(bb, gt)

Masked PII SecretGen
(wb, gt) (bb)(wb)

Fig. 3. Qualitative results of SecretGen on CelebA. “bb”/“wb” indicates the method
requires blackbox/whitebox access to the model. “gt” indicates the method requires
ground truth labels.

pre-training datasets. (face.evoLVe is pre-trained on MS-Celeb-1M while others
are on ImageNet.)
Qualitative Results. In Fig. 3 we exhibit the images recovered with Secret-
Gen on CelebA to demonstrate that our recovered images are both identity-
revealing and visually plausible. We also show qualitative results of PII and
GMI for comparison. From the figure, we see that although all of the three
methods generate realistic images, PII cannot e↵ectively recover the original
identity of private data, while SecretGen is more e↵ective in identity revealing.
More examples are shown in the appendix.

4.4 Robustness Evaluation

We evaluate the robustness of our proposed method against purification de-
fense [27], which has been shown to e↵ectively defend against model inversion
attacks while inducing negligible utility loss. We use Purifier I in [27] which is
specialized for model inversion attacks. We follow the default architectures and
settings for training the purifier. See Table 4 for quantitative results on CelebA
against VGG16 under the blackbox setting. We also assume the ground truth
label is not provided. We do not evaluate the whitebox setting because the ad-
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Table 4. Robustness evaluation for SecretGen against prediction purification on
CelebA. Target model: VGG16. Blackbox setting.

Methods
Center Mask Face T Mask

Protocol 1 Protocol 2 PSNR Protocol 1 Protocol 2 PSNR

PII 0.216 0.759 27.319 0.081 0.484 25.705
SecretGen 0.351 0.915 27.638 0.164 0.837 26.045

SecretGen (purified) 0.328 0.913 27.590 0.151 0.747 26.007

versary can simply remove the purifier and directly attack the original private
model. It can be seen that attack accuracy slightly decreases after the defense,
but still outperforms the baseline by a large margin. Therefore, our method is
robust against [27].

4.5 Ablation Studies

Discrimination Metrics. As discussed in Section 3.4, there may exist vari-
ous choices for the discrimination metric. One intuitive choice may be derived
by removing the transformations from our current discrimination metric M
(Eqn. (4)), and the simplified discrimination metric is defined as follows:

M0(c;n) , 1

n

nX

i=1

Fc(x̂i), 8c 2 [1, C]. (10)

We perform an end-to-end ablation study on face.evoLVe and CelebA. We
remove the transformations in our pseudo label predictor and substitute M with
M0. Quantitative results on face.evoLVe are shown in Table 5. See the appendix
for results regarding other model architectures. We conclude that incorporating
transformations improves the performance of our framework for most model
architectures that we used for evaluation.

Table 5. Attack accuracy of SecretGen with and without transformations on CelebA.
Evaluated on 3,200 private instances under Protocol 1. Target model: face.evoLVe.

Metric
Center Mask Face T Mask

Attack Acc PSNR Attack Acc PSNR
w/o transformation 0.528 27.505 0.256 26.527
w/ transformation 0.550 27.522 0.273 26.527

To further understand why and how transformations help, we compare the
performance of pseudo label predictor equipped with M and M0. We evaluate
the performance of pseudo label predictor using label prediction accuracy, which
measures the percentage of the predicted labels matching the ground truth labels.
We plot out the label prediction accuracy with M and M0 on 3,200 recovered
images for face.evoLVe with varying n in Fig. 4. We observe that our pseudo
label predictor can predict the pseudo labels more accurately if transformations
are incorporated. See the appendix for results of other model architectures.
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Fig. 4. Label prediction accuracy with
and without transformations on CelebA.
We plot the label prediction accuracy
w.r.t. the number of random latent vec-
tors n. Target model: face.evoLVe.

A
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n n

Fig. 5. Label prediction accuracy with
di↵erent transformations on CelebA. We
plot the label prediction accuracy w.r.t.
the number of randomly sampled latent
vectors n. Target model: face.evoLVe.

Data Transformations. Next, we discuss the performance of various data
transformations on CelebA. We plot out label prediction accuracy w.r.t. n for
various transformations including the proposed sequential cutout, horizontal flip-
ping, gray-scale, and color jittering in Fig. 5. We also plot the results without
transformations. We can see that sequential cutout performs better than other
transformations in terms of label prediction accuracy. Although it is also possi-
ble to adopt other transformations within our pipeline, it is non-trivial to select
the best hyper-parameters for other transformations (e.g., cropping and color
jittering). We leave the analysis of how di↵erent transformations impact attack
performance as future work.
Overfitting Levels. We also evaluate the impact of higher overfitting levels
of the target model on the performance of SecretGen, since the overfitting phe-
nomenon is key to model inversion attacks. Note that results reported in Table 2
and Table 3 are based on standard well-trained models. We demonstrate that
highly overfitted models are more vulnerable to our proposed attack. We describe
the relevant experiment setup and quantitative results in the appendix.

5 Conclusion

In this paper, we propose an e↵ective private data recovery framework Secret-
Gen, which can e↵ectively recover private information under a wide range of
scenarios. To our full knowledge, we are the first to propose an e↵ective model in-
version attack without prior knowledge of ground truth labels, which can achieve
comparable results with previous methods that require ground truth labels. If we
are given such prior knowledge, we significantly outperform previous methods.
Our attack can also be applied under the blackbox setting where the target model
is provided as a service and not locally available. We perform a comprehensive
analysis of the performance of SecretGen and our design choices. We also demon-
strate that our attack is robust against the purification defense. We hope to raise
people’s concerns about possible negative e↵ects of releasing pre-trained models
online. For future work, we are interested in whether we can perform privacy
recovery simply with the target model and develop defenses against our attack.
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