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Abstract

Extensive efforts have been made to understand and improve the fairness of machine learning models
based on different fairness measurement metrics, especially in high-stakes domains such as medical insurance,
education, and hiring decisions. However, there is a lack of certified fairness on the end-to-end performance
of an ML model. In this paper, we first formulate the certified fairness of an ML model trained on a given
data distribution as an optimization problem based on the model performance loss bound on a fairness
constrained distribution, which is within bounded distributional distance with the training distribution. We
then propose a general fairness certification framework and instantiate it for both sensitive shifting and
general shifting scenarios. In particular, we propose to solve the optimization problem by decomposing the
original data distribution into analytical subpopulations and proving the convexity of the sub-problems to
solve them. We evaluate our certified fairness on six real-world datasets and show that our certification
is tight in the sensitive shifting scenario and provides non-trivial certification under general shifting. Our
framework is flexible to integrate additional non-skewness constraints and we show that it provides even
tighter certification under different real-world scenarios. We also compare our certified fairness bound with
adapted existing distributional robustness bounds on Gaussian data and demonstrate that our method is
significantly tighter.

1 Introduction

As machine learning (ML) has become ubiquitous [23, 17,5} [10, [8,[12], fairness of ML have attracted a lot
of attention from different perspectives. For instance, some automated hiring systems are biased towards
males due to gender imbalanced training data [3]. Different approaches have been proposed to improve ML
fairness, such as regularized training [[15, 21, 25, 29], disentanglement [11, 27, [39], duality [43], low-rank
matrix factorization [33], and distribution alignment [4, 28, 52].

In addition to existing approaches that evaluate fairness, it is important and challenging to provide
certification for ML fairness. Recent studies have explored the certified fair representation of ML [38, |4, 35].
However, there lacks certified fairness on the predictions of an end-to-end ML model trained on an arbitrary
data distribution. In addition, current fairness literature mainly focuses on training an ML model on a
potentially (im)balanced distribution and evaluate its performance in a target domain measured by existing
statistical fairness definitions [[16,[19]. Since in practice these selected target domains can encode certain
forms of unfairness of their own (e.g., sampling bias), the evaluation would be more informative if we can
evaluate and certify fairness of an ML model on an objective distribution. Taking these factors into account,
in this work, we aim to provide the first definition of certified fairness given an ML model and a training
distribution by bounding its end-to-end performance on an objective, fairness constrained distribution. In
particular, we define certified fairness as the worst-case upper bound of the ML prediction loss on a fairness
constrained test distribution Q, which is within a bounded distance to the training distribution . We mainly
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focus on the base rate condition as the fairness constraint for Q. We prove that our certified fairness based
on a base rate constrained distribution will imply other other fairness metrics, such as demographic parity
(DP) and equalized odds (EO) (proposition. Moreover, our framework is flexible to integrate other fairness
constraints into Q. We consider two scenarios: (1) sensitive shifting where only the joint distribution of
sensitive attribute and label can be changed when optimizing Q; and (2) general shifting where everything
including the conditioned distribution of non-sensitive attributes can be changed. We then propose an effective
fairness certification framework to compute the certificate.

In our fairness certification framework, we first formulate the problem as constrained optimization, where
the fairness constrained distribution is encoded by base rate constraints. Our key technique is to decompose
both training and the fairness constrained test distributions to several subpopulations based on sensitive
attributes and target labels, which can be used to encode the base rate constraints. With such a decomposition,
in sensitive shifting, we can decompose the distance constraint to subpopulation ratio constraints and prove
the transformed low-dimensional optimization problem is convex and thus efficiently solvable. In general
shifting case, we propose to solve it based on divide and conquer: we first partition the feasible space into
different subpopulations, then optimize the density (ratio) of each subpopulation, apply relaxation on each
subpopulation as a sub-problem, and finally prove the convexity of the sub-problems with respect to other low-
dimensional variables. Our framework is applicable for any black-box ML models and any distributional shifts
bounded by the Hellinger distance, which is a type of f-divergence studied in the literature [46,[13,|7,124,[14].

To demonstrate the effectiveness and tightness of our framework, we evaluate our fairness bounds on
six real-world fairness related datasets [3} 2] [18, [47]. We show that our certificate is tight under different
scenarios. In addition, we verify that our framework is flexible to integrate additional constraints on Q and
evaluate the certified fairness with additional non-skewness constraints, with which our fairness certificate
is tighter. Finally, as the first work on certifying fairness of an end-to-end ML model, we adapt existing
distributional robustness bound [42] for comparison to provide more intuition. Note that directly integrating
the fairness constraint to the existing distributional robustness bound is challenging, which is one of the main
contributions for our framework. We show that with the fairness constraints and our effective solution, our
bound is strictly tighter.

Technical Contributions. In this work, we take the first attempt towards formulating and computing the
certified fairness on an end-to-end ML model, which is trained on a given distribution. We make contributions
on both theoretical and empirical fronts.

1. We formulate the certified fairness of an end-to-end ML model trained on a given distribution P as the
worst-case upper bound of its prediction loss on a fairness constrained distribution @, which is within

bounded distributional distance with P.

2. We propose an effective fairness certification framework that simulates the problem as constrained
optimization and solve it by decomposing the training and fairness constrained test distributions into
subpopulations and proving the convexity of each sub-problem to solve it.

3. We evaluate our certified fairness on six real-world datasets to show its tightness and scalability. We also
show that with additional distribution constraints on Q, our certification would be tighter.

4. We show that our bound is strictly tighter than adapted distributional robustness bound on Gaussian
dataset due to the added fairness constraints and our effective optimization approach.

Related Work Fairness in ML can be generally categorized into individual fairness and group fairness.
Individual fairness guarantees that similar inputs should lead to similar outputs for a model and it is analyzed
with optimization approaches [48,[32] and different types of relaxations [[20]. Group fairness indicates to
measure the independence between the sensitive features and model prediction, the separation which means
that the sensitive features are statistically independent of model prediction given the target label, and the
sufficiency which means that the sensitive features are statistically independent of the target label given the
model prediction [26]. Different approaches are proposed to analyze group fairness via static analysis [45],
interactive computation [40], and probabilistic approaches [1} 9, l6]. In addition, there is a line of work
trying to certify the fair representation [38,4;[35]. Our certified fairness differs from existing work from three



perspectives: 1) we provide fairness certification considering the end-to-end model performance instead of
the representation level, 2) we define and certify fairness based on a fairness constrained distribution which
implies other fairness notions, and 3) our certified fairness can be computed for any black-box models trained
on an arbitrary given data distribution.

2 Certified Fairness Based on Fairness Constrained Distribution

In this section, we first introduce preliminaries, and then propose the definition of certified fairness based on
a bounded fairness constrained distribution, which to the best of our knowledge is the first formal fairness
certification on end-to-end model prediction. We also show that our proposed certified fairness relates to
established fairness definitions in the literature.

Notations. We consider the general classification setting: we denote by X’ and ) = [C] the feature space
and labels, [C] := {1,2,---,C}. hy: X — AVl represents a mapping function parameterized with 6 € ©,
and ¢: APl x Y — R, is a non-negative loss function such as cross-entropy loss. Within feature space X,
we identify a sensitive or protected attribute X, that takes a finite number of values: X, := [9], i.e., for any
XeX X, e[9].

Definition 1 (Base Rate). Given a distribution P supported over X x ), the base rate for sensitive attribute
value s € [S] with respect to label y € [C] is bY,, = Pr(x y)p[Y =y | X, = s].

Given the definition of base rate, we define a fair base rate distribution (in short as fair distribution).

Definition 2 (Fair Base Rate Distribution). A distribution P supported over X x ) is a fair base rate distribution

if and only if for any label y € [C], the base rate b7, is equal across all s € [S], i.e., Vi € [S],Vj € [S],b], = bF,.

Remark. In the literature, the concepts of fairness are usually directly defined at the model prediction level,
where the criterion is whether the model prediction is fair against individual attribute changes [38, 35, 49] or
fair at population level [[53]. In this work, to certify the fairness of model prediction, we define a fairness
constrained distribution on which we will certify the model prediction (e.g., bound the prediction error),
rather than relying on the empirical fairness evaluation. In particular, we first define the fairness constrained
distribution through the lens of base rate parity, i.e., the probability of being any class should be independent
of sensitive attribute values, and then define the certified fairness of a given model based on its performance
on the fairness constrained distribution as we will show next.

The choice of focusing on fair base rate may look restrictive but its definition aligns very well with
the celebrated fairness definition Demographic Parity [50], which promotes that Pr[ho(X) = 1|X; = i] =
Pr[ho(X) = 1|Xs = j]. In this case, the prediction performance of hy on Q with fair base rate will relate
directly to Pr[he(X) = 1|Xs = i]. Secondly, under certain popular data generation process, the base rate
sufficiently encodes the differences in distributions and a fair base rate will imply a homogeneous (therefore
equal or “fair") distribution over X, Y": consider when Pr(X|Y = y, X; = 4) is the same across different group
X;. Then Pr(X,Y|X, = ) is simply a linear combination of basis distributions Pr(X|Y =y, X; = i), and the
difference between different groups’ joint distribution of X, Y is fully characterized by the difference in base
rate Pr(Y = y|X;). This assumption will greatly enable trackable analysis and is not an uncommon modeling
choice in the recent discussion of fairness when distribution shifts [51,[36].

2.1 Certified Fairness

Now we are ready to define the fairness certification based on the optimized fairness constrained distribution.
We define the certification under two data generation scenarios: general shifting and sensitive shifting. In
particular, consider the data generative model Pr(X,, X;,Y) = Pr(Y) Pr(X,|Y) Pr(X,|Y, X;), where X, and
X, represent the non-sensitive and sensitive features, respectively. If all three random variables on the RHS
are allowed to change, we call it general shifting; if both Pr(Y’) and Pr(X,|Y") are allowed to change to ensure
the fair base rate (Def. |2) while Pr(X,|Y, X) is the same across different groups, we call it sensitive shifting.
In Section [3]we will introduce our certification framework for both scenarios.



Problem 1 (Certified Fairness with General Shifting). Given a training distribution P supported on X x ), a
model hg(-)itrained on P, and distribution distance bound p > 0, we call £ € R a fairness certificate with general
shifting, if £ upper bounds

max Ex,yy~all(he(X),Y)] s.t. dist(P,Q) < p, Qisafair distribution,

where dist(+, -) is a predetermined distribution distance metric.

In the above definition, we define the fairness certificate as the upper bound of the model’s loss among all
fair base rate distributions Q within a bounded distance from P. Besides the bounded distance constraint
dist(P, Q) < p, there is no other constraint between P and Q so this satisfies “general shifting”. This bounded
distance constraint, parameterized by a tunable parameter p, ensures that the test distribution should not be
too far away from the training. In practice, the model hy may represent a DNN whose complex analytical
forms would pose challenges for solving Problem |1} As a result, as we will show in Equation we can
query some statistics of hy trained on P as constraints to characterize hg, and thus compute the upper bound
certificate.

The feasible region of optimization problem[1/might be empty if the distance bound p is too small, and thus
we cannot provide fairness certification in this scenario, indicating that there is no nearby fair distribution and
thus the fairness of the model trained on the highly “unfaired" distribution is generally low. In other words, if
the training distribution P is unfair (typical case) and there is no feasible fairness constrained distribution Q
within a small distance to P, fairness cannot be certified.

This definition follows the intuition of typical real-world scenarios: The real-world training dataset is
usually biased due to the limitation in data curation and collection processes, which causes the model to be
unfair. Thus, when the trained models are evaluated on the real-world fairness constrained test distribution or
ideal fair distribution, we hope that the model does not encode the training bias which would lead to low test
performance. That is to say, the model performance on fairness constrained distribution is indeed a witness of
the model’s intrinsic fairness.

We can further constrain that the subpopulation of P and Q parameterized by X and Y does not change,
which results in the following “sensitive shifting” fairness certification.

Problem 2 (Certified Fairness with Sensitive Shifting). Under the same setting as Problem |1, we call { a fairness
certificate against sensitive shifting, if ¢ upper bounds

max Ex,v)~oll(ho(X),Y)]
st dist(P,Q) < p, Psy=Qs,y Vs €[S,y €[C], Qisa fair distribution,

where P, and Q, , are the subpopulations of P and Q on the support {(X,Y) : X € X, X, = s5,Y =y}
respectively, and dist(-, -) is a predetermined distribution distance metric.

The definition adds an additional constraint between P and Q that each subpopulation, partitioned by
the sensitive attribute X, and label Y, does not change. This constraint corresponds to the scenario where
the distribution shifting between training and test distributions only happens on the proportions of different
sensitive attributes and labels, and within each subpopulation the shifting is negligible.

In addition, to model the real-world test distribution, we may further request that the test distribution
Q is not too skewed regarding the sensitive attribute X, by adding constraint (1). We will show that this
constraint can also be integrated into our fairness certification framework flexibly in Section

Vi € [S],Vj €[S P Xs=i]— P Xs =7]| < As. 1
ZG[ ]7 ]e[ ]7 (X,Y§~Q[ 7‘} (X,Y§NQ[ ﬂ > As ()

Connections to Other Fairness Measurements. Though not explicitly stated, our goal of certifying the
performance on a fair distribution Q relates to certifying established fairness definitions in the literature.
Consider the following example: Suppose Problem [2|is feasible and returns a classifier hy that achieves
certified fairness per group and per label class I := Pr(x y)o[ho(X) # Y|Y =y, X, =] < e on Q. We will
then have the following proposition:



Proposition 1. hy achieves e-Demographic Parity (DP) [50] and e-Equalized Odds (EO) [17]:
e e-DP: |Prgo[he(X) =1|Xs =] — Prolhe(X) = 1|1 X = j]| <€, Vi, j.
e eEO: [Profha(X) = 1]Y =y, X, = i] — Pro[he(X) = 1Y =y, X, = j]| < &,¥y,i,j.

The detailed proof is omitted to appendix|D.1!

3 Fairness Certification Framework

We will introduce our fairness certification framework which efficiently computes the fairness certificate
defined in Section [2.1. We first introduce our framework for sensitive shifting (Problem [2) which is less
complex and shows our core methodology, then general shifting case (Problem|[1).

Our framework focuses on using the Hellinger distance to bound the distributional distance in Problems
and [2| The Hellinger distance H(P, Q) is defined in Def. [3] (in Appendix[C.1). The Hellinger distance has
some nice properties, e.g., H(P, Q) € [0,1], and H(P, Q) = 0 if and only if P = Q and the maximum value of
1 is attained when P and Q have disjoint support. The Hellinger distance is a type of f-divergences which are
widely studied in ML distributional robustness literature [46,[13] and in the context of distributionally robust
optimization [7,24,[14]. Also, using Hellinger distance enables our certification framework to generalize to
total variation distance (or statistic distance) 6(P, Q)E directly with the connection, H%(P, Q) < §(P, Q) <
V2H (P, Q) ([441, Equation 1). We leave the extension of our framework to other distance metrics as future
work.

3.1 Core Idea: Subpopulation Decomposition

The core idea in our framework is (finite) subpopulation decomposition. Consider a generic optimization
problem for computing the loss upper bound on a constrained test distribution Q, given training distribution
P and trained model hy(-), we first characterize model hy(-) based on some statistics, e.g., mean and variance
for loss of the model: hy(-) satisfies e;(P, hg) < v;, 1 < j < L. Then we characterize the properties (e.g., fair
base rate) of the test distribution Q: ¢;(Q) < u;, 1 < j < M. As a result, we can upper bound the loss of
hg(-) on Q as the following optimization:

max Ex,v)~olb(he(X),Y)] st. H(P,Q)<p, (P ho) <v;Vje€[L], g;(Q) <u;Vje[M]. 2
Now we decompose the space Z := X x ) to N partitions: Z := 4} Z;, where Z is the support of both P and
Q. Then, we denote P conditioned on Z; by P; and similarly Q@ conditioned on Z; by Q;. As a result, we can

write P = Zie[ N] p;P; and Q = Zie[ N G Q;. Since P is known, p;’s are known. In contrast, both Q; and ¢;’s
are optimizable. Our key observation is that

N
H(P,Q)<p < 1-p"=> Vpigi(1—H(P;,2:)%) <0 ©)
i=1
which leads to the following theorem.

Theorem 1. The following constrained optimization upper bounds Equation (2)):

N
E ~o. [l(he(X),Y 4
omax gq (xv)~e, [U(ho(X), V)] (4a)
N
st 1— p2 - Z \/piQi(]. - p?) <0, (4b)
=1
N
H(Pi, Qi) <p; Vie[N], > q=1, ¢>0 Yie[N], p;>0 Vie[N] (40)
=1
&5 ({Pi}iewn), {piien) ho) < ViV € (L], g5({QiYiervy, {aikierm) < uj Vi € [M], (4d)

ife; (P, hg) < vj implies € ({Pi}ic(ny, {Pitic(n)s ho) < V) forany j € [L], and g;(Q) < u; implies g({ Qi }icns
{aitieiny) < o for any j € [M].

L5(P, Q) =sup e r |P(A) — Q(A)| where F is a o-algebra of subsets of the sample space .



We provide a detailed proof in Appendix[D.2. The constrained optimization breaks down the whole
distribution Q to subpopulations {Q;}Y , by introducing the ratio variables ¢; and distance variables p;.
As a result, we have an equivalent form of bounded distance constraint but defined on subpopulations:
Equation (4b). Although the optimization problem (Equation (4)) may look more complicated then the original
Equation (]gl), this optimization allows us to upper bound each subpopulation loss E x y)~o,[¢(he(X),Y)]
individually and makes the whole optimization tractable.

3.2 Certified Fairness with Sensitive Shifting
For the sensitive shifting case, we instantiate Thm. [1|and obtain the following fairness certificate.

Theorem 2. Given a distance bound p > 0, the following constrained optimization, which is convex, when
feasible, provides a tight fairness certificate for Problem [2}

s C S C
max SN keryEey, st > k=1, > ry=1, k;>0 Vs€l[S], r,>0 Vye|[C],
sy s=1 y=1

s=1y=1

s C
1-— p2 - ZZ ps,yksry S 07

s=1y=1
where E , := Ex yyup, , [l(he(X),Y)] and ps , = Pr(x yyep[Xs = 5, Y = y] are constants.

Proof sketch. We decompose distribution P and Q to P, ,’s and Q;,’s according to their sensitive at-
tribute and label values. In sensitive shifting, Pr(X,|Y,X;) is fixed, i.e., Ps, = Q;,, which means
Ex,yy~a.,[l(ho(X),Y)] = E,, and ps, = H(Psy, Q.y) = 0. We plug these properties into Thm.
Then, denoting ¢s, to Prix y).o[Xs = 5,Y = y|, we can represent the fairness constraint in Def. E] as

Qso,y0 = (2521 qs,yo) (25:1 qso,y) for any sy € [S] and yo € [C]. Next, we parameterize ¢, , with kr,.
Such parameterization simplifies the fairness constraint and allow us to prove the convexity of the resulting
optimization. Since all the constraints are encoded equivalently, the problem formulation provides a tight
certification. Detailed proof in Appendix [D.3. O

As Thm. [2| suggests, we can exploit the expectation information F, , = E(x y)~p, ,[¢(he(X),Y)] and
density information p, , = Pr(x y)~p[Xs = s,Y = y| of each P’s subpopulation to provide a tight fairness
certificate in sensitive shifting. The convex optimization problem with (S + C) variables can be efficiently
solved by existing packages.

3.3 Certified Fairness with General Shifting
For the general shifting case, we leverage Thm. 1| and the parameterization trick ¢; , := k,r, used in Thm.
to reduce Problem 1]to the following constrained optimization.

Lemma 3.1. Given a distance bound p > 0, the following constrained optimization, when feasible, provides a
tight fairness certificate for Problem

s C
k m%Xp ZZksryE(x,Y)Ngsgy[@(hg(X)’y)} o
53Ty, &5Ps,y =1 =1
il c
s.t. Zk& =1, Zry =1, ks >0 Vse [5]7 Ty >0 Vy c [0]7 (6b)
s=1 y=1
S C
ZZ m(l — pjy) >1— /?2 o
s=1y=1
H(Psy, Qs.y) < psy Vs€e[S],y€|C], o

where ps ,, := Pr(x y)ep[Xs = 5,Y = y] is a fixed constant. The P, , and Q,,, are the subpopulations of P
and Q on the support {(X,Y): X € X, X, = s,Y = y} respectively.



Proof sketch. We show that Equation @) ensures a parameterization of ¢, , = Pr(x y)co[Xs = 5,Y = 9]
that satisfies fairness constraints on Q. Then, leveraging Thm.[1|we prove that the constrained optimization
provides a fairness certificate. Since all the constraints are either kept or equivalently encoded, this resulting
certification is tight. Detailed proof in Appendix D.4. O

To solve the constrained optimization, we first leverage Thm. [4]in Appendix|[C.2| [46] to upper bound
the loss of he( ) within each shifted subpopulation Q; ,, i.e., an upper bound of E(x y)~o, , [((he(X),Y)] in
Equation (6a)), and then propose a novel technique to prove the convexity of sub-problems regarding our
transformed dec131on variables, which is one of our main contributions. Here, we construct the sub-problems
by partitioning the feasible region with different density ratios within each subpopulation. Concretely, the
following theorem states our computable certificate for Problem [1} with detailed proof and explanation in

Appendix D.5.

Theorem 3. If for any s € [S] and y € [Y], H(Psy, Qsy) < Vs,y and 0 < supx yyexxy L(ho(X),Y) < M,
given a distance bound p > 0, for any region granularity T' € N, the following expression provides a fairness
certificate for Problem

is—1 ] ° gy —1 3,1 °
l= max C £ , = , Y ,—y}} , where )
{is €[T]:s€[8]}, Ly €T)velCl) (H T T}}Szl {[ T Ty
€ ({les Rl Iy Tl ) —fg{fZZ(k 7y (Buy + Co)s + kary (Buy + Csy)_ +
s=1y=1
iﬁvxsz: — Ts,y \/ng ksTnyy 9y)+_Eﬁms,y(Cs,y)—> (8a)

s.t.

= £
MUJ

ks <1

C

Z 1, Zﬁ >1, (8b)
1 y=1 y=1
C
> A pevkymey = 1-p%, (1-72,)° <oy <1 Vse[S],yelC], (80)

1y=1
where (-); = max{-,0}, (-)- = min{-,0}; Esy = E(x,v)~p, , [l(ho(X),Y)], Viy = Vixy)op, , [((he(X),Y)],

Vi o _1
Psy = Praxyynp[Xs = 8,Y =y, Csy = M — B,y — M-E,,’ and 73,@; =1—- 1+ (M~ FEy)*/Vsy) 5.
Equation (7) only takes C’s value when it is feasible, and each C queried by Equation is a convex optimization.

s=1

w
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Implications. Thm.|3|provides a fairness certificate for Problem |1/ under two assumptions: (1) The loss
function is bounded (by M). This assumption holds for several typical losses such as 0-1 loss and JSD loss.
(2) The distribution shift between training and test distribution within each subpopulation is bounded by 7, ,,
where 7, ,, is determined by the model’s statistics on P. In practice, this additional distance bound assumption
generally holds, since 7, , > p for common choices of p.

In Thm. [3} we exploit three types of statistics of hy(-) on P to compute the fairness certificates: the
expectation Fs , = E(x y)~p, ,[¢{(ho(X),Y)], the variance V; , = V(x y).p, , [¢(ho(X),Y)], and the density
Ps,y = Pr(x y)~p[Xs = 5,Y = y], all of which are at the subpopulation level and a high-confidence estimation
of them based on finite samples are tractable (Section .

Using Thm. |3, after determining the region granularity 7', we can provide a fairness certificate for
Problem [1| by solving 7°¢ convex optimization problems, each of which has SC decision variables. Note
that the computation cost is independent of hg, and therefore we can numerically compute the certificate for
large DNN models used in practice. Specifically, when S = 2 (binary sensitive attribute) or C = 2 (binary
classification) which is common in the fairness evaluation setting, we can construct the region for only one
dimension k; or 1, and use 1 — k1 or 1 —ry for the other dimension. Thus, for the typical setting S = 2,C = 2,
we only need to solve T2 convex optimization problems.



Note that for Problem [2| our certificate in Thm. |2|is tight, whereas for Problem |1} our certificate in
Thm. [3|is not. This is because in Problem (1} extra distribution shift exists within each subpopulation, i.e.,
Pr(X,|Y, Xs) changes from P to Q, and to bound such shift, we need to leverage Thm. 2.2 in [46] which has
no tightness guarantee. Future work providing tighter bounds than [46] can be seamlessly incorporated into
our framework to tighten our fairness certificate for Problem

3.4 Dealing with Finite Sampling Error
In Section [3.2]and Section [3.3] we present Thm. [2]and Thm. 3 that provide computable fairness certificates
for sensitive shifting and general shifting scenarios respectively. In these theorems, we need to know the
quantities related to the training distribution and trained P and model hgy(-):

Bow= B ()Y Vey = V(). Y )]pey = Pr [Xo=sY =yl ©
Section [3.3|further requires C; , and 7, , which are functions of E, ,, and V ,. However, a practical challenge
is that common training distributions do not have an analytical expression that allows us to precisely
compute these quantities. Indeed, we only have access to a finite number of individually drawn samples,
i.e., the training dataset, from P. Thus, we will provide high-confidence bounds for E; ,, V; ,, and p; , in
LemmalE.1 (stated in Appendix [E.1).

For Thm. [2| we can replace E , in the objective by the upper bounds of E; , and replace the concrete
quantities of p; , by interval constraints and the unit constraint ), > ps,y = 1, which again yields a convex
optimization that can be effectively solved. For Thm. 3, we compute the confidence intervals of C, , and p; ,,
then plug in either the lower bounds or the upper bounds to the objective based on the coefficient, and
finally replace the concrete quantities of p; , by interval constraints and the unit constraint > 7, >° ps, = 1.
The resulting optimization is proved to be convex and provides an upper bound for any possible values of
Es 4, V4, and p, , within the confidence intervals. We defer the statement of Thm. and Thm. considering
finite sampling error to Appendix [E.2. To this point, we have presented our framework for computing
high-confidence fairness certificates given access to model %4(-) and a finite number of samples drawn from
P.

4 Experiments

In this section, we evaluate the certified fairness under both sensitive shifting and general shifting scenarios
on six real-world datasets. We observe that under the sensitive shifting, our certified fairness bound is
tight (Section [4.1)); while the bound is less tight under general shifting (Section which depends on the
tightness of generalization within each subpopulation (details in Section 3.3). In addition, we show that our
certification framework can flexibly integrate more constraints on Q, leading to a tighter fairness certification
(Section @). Finally, we compare our certified fairness bound with existing distributional robustness
bound [42] (section [E), since both consider a shifted distribution while our bound is optimized with an
additional fairness constraint which is challenging to be directly integrated to the existing distributional
robustness optimization. We show that with the fairness constraint and our optimization approach, our bound
is much tighter.

Dataset & Model. We validate our certified fairness on six real-world datasets: Adult [3], Compas [2]],
Health [[18], Lawschool [47], Crime [3], and German [3]. Details on the datasets and data processing steps are
provided in Appendix[F.1] Following the standard setup of fairness evaluation in the literature [38,137,130, 411,
we consider the scenario that the sensitive attributes and labels take binary values. The ReLU network
composed of 2 hidden layers of size 20 is used for all datasets.

Fairness Certification. We perform vanilla model training and then leverage our fairness certification
framework to calculate the fairness certificate. Concretely, we input the trained model information on P and
the framework would output the fairness certification for both sensitive shifting and general shifting scenarios
following Thm. [2|and Thm. [3] respectively.
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Figure 1: Certified fairness with sensitive shifting.

4.1 Certified Fairness with Sensitive Shifting

To evaluate how well our certificates capture the fairness risk in practice, we compare our certification
bound with the empirical loss evaluated on randomly generated 30, 000 fairness constrained distributions
Q shifted from P. Under sensitive shifting, since each subpopulation divided by the sensitive attribute and
label does not change (Section[2.1]), we randomly generate distribution Q based on different combinations
of subpopulation proportion ¢, , sastisfying fair base rate, and then sample from each subpopulation of P
individually according to the proportion ¢, ,. The detailed generation steps are provided in Appendix We
report the classification error (Error) and BCE loss as the evaluation metric. Figure[1]illustrates the certified
fairness on Adult, Compas, Health, and Lawschool under sensitive shifting. More results on two relatively
small datasets (Crime, German) are shown in Appendix From the results, we see that our certified fairness
is tight in practice.

4.2 Certified Fairness with General Shifting

In the general shifting scenario, we similarly randomly generate 30, 000 fair distributions Q shifted from P.
Different from sensitive shifting, the distribution conditioned on sensitive attribute X, and label Y can also
change in this scenario. Therefore, we construct another distribution Q' disjoint with P on non-sensitive
attributes and mix P and Q' in each subpopulation individually guided by mixing parameters satisfying fair
base rate constraint. Detailed generation steps are given in Appendix[F.2. Since the fairness certification for
general shifting requires bounded loss, we select classification error (Error) and Jensen-Shannon loss (JSD
Loss) as the evaluation metric. Figure [2|illustrates the certified fairness with classification error metric under
general shifting. Results of JSD loss and more results on two relatively small datasets (Crime, German) are in

Appendix

4.3 Certified Fairness with Additional Non-Skewness Constraints

In Section 2.1} we discussed that to represent different real-world scenarios we can add more constraints such
as Equation ([1) to prevent the skewness of Q, which can be flexibly incorporated into our certificate framework.
Concretely, for sensitive shifting, we only need to add one more box constrainﬂ 05—A;/2 <k, <05+A;/2
where A, is a parameter controlling the skewness of Q, which still guarantees convexity. For general shifting,
we only need to modify the region partition step?, where we split [0.5 — A, /2,0.5+ A, /2] instead of [0, 1]. The
certification results with additional constraints are in Figures and [3(b)} which suggests that if the added
constraints are strict (i.e., smaller A;), the bound is tighter. More constraints w.r.t. labels can also be handled
by our framework and the corresponding results as well as results on more datasets are in Appendix[F.6.

2Note that such modification is only viable when sentive attributes take binary values, which is the typical scenario in the literature

of fairness evaluation [38] (30 [410.
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Figure 3: Certified fairness with additional non-skewness constraints on Adult dataset is shown in (a) (b). A, controls
the skewness of Q (| Pr(x,y)~o[Xs = 0] — Pr(x,v)~o[Xs = 1]| < AJ). In (c), we compare our certified fairness bound
with the distributional robustness bound [42].

4.4 Comparison with Distributional Robustness Bound

To the best of our knowledge, there is no existing work providing certified fairness on the end-to-end model
performance. Thus, we try to compare our bound with the distributional robustness bound since both consider
certain distribution shifts. However, it is challenging to directly integrate the fairness constraints into existing
bounds. Therefore, we compare with the state-of-the-art distributional robustness certification WRM [42],
which solves the similar optimization problem as ours except for the fairness constraint. For fair comparison,
we construct a synthetic dataset following [42], on which there is a one-to-one correspondence between the
Hellinger and Wasserstein distance used by WRM. We randomly select one dimensio as the sensitive attribute.
Since WRM has additional assumptions on smoothness of models and losses, we use JSD loss and a small
ELU network with 2 hidden layers of size 4 and 2 following their setting. More implementation details are
in Appendix Results in Figure suggest that 1) our certified fairness bound is much tighter than
WRM given the additional fairness distribution constraint and our optimization framework; 2) with additional
fairness constraint, our certificate problem could be infeasible under very small distribution distances since
the fairness constrained distribution Q does not exist near the skewed original distribution P; 3) with the
fairness constraint, we provide non-trivial fairness certification even when the distribution shift is large.

5 Conclusion

In this paper, we provide the first fairness certification on end-to-end model performance, based on a fairness
constrained distribution which has bounded distribution distance from the training distribution. We show
that our fairness certification has strong connections with existing fairness notions such as group parity, and
we provide an effective framework to calculate the certification under different scenarios. We provide both
theoretical and empirical analysis of our fairness certification.

Acknowledgements. This work is partially supported by NSF grant No.1910100, NSF CNS N0.2046726, C3
Al, and the Alfred P. Sloan Foundation.
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