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Abstract—While advances in multi-agent learning have enabled
the training of increasingly complex agents, most existing tech-
niques produce a final policy that is not designed to adapt to a
new partner’s strategy. However, we would like our AI agents
to adjust their actions based on the strategies of those around
them. In this work, we study the problem of adaptive multi-
agent imitation learning, where we have access to joint trajectory
demonstrations at training time, and we must interact with and
adapt to new partners at test time. This setting is challenging
because we must infer a new partner’s strategy and adapt our
policy to that strategy, all without knowledge of the environment
reward or dynamics. We formalize this problem of adaptive
multi-agent imitation learning, and propose a novel model to
address the difficulties of scalability and data scarcity. Our key
insight is that variations across partners in multi-agent games are
often highly structured, and can be represented via a low-rank
subspace. Leveraging tools from tensor decomposition, our model
learns a low-rank subspace over ego and partner agent strategies,
then infers and adapts to a new partner strategy by interpolating
in the subspace. We experiments with a mix of collaborative
tasks, including bandits, particle, and Hanabi environments.
Additionally, we test our adaptive policies against real human
partners in a user study on the Overcooked game. Our model
adapts better to new partners compared to baselines, and robustly
handles diverse settings ranging from discrete/continuous actions
and static/online evaluation with AI/human partners.

Index Terms—multi-agent, imitation learning, adaptive, low-
rank, user study, collaboration

I. INTRODUCTION

Many important robotics applications naturally involve mul-
tiple agents, from assistive robotics to self-driving cars. New
techniques in deep multi-agent reinforcement learning have
led to breakthrough performance in many multi-agent tasks,
such as Go [49], Hanabi [21], and poker [5]. Although
these methods have shown impressive results, many of their
formulations lack a key factor that is central to multi-agent
interactions — the ability to adapt quickly to another agent.

For example, in cooperative games such as Hanabi [3|
21, 132]), much of the focus has been on training a single
set of partners to achieve a high score with each other. As
a result, these methods produce agents that are skilled not
at playing Hanabi in general, but at playing Hanabi with
their training partners. Even in competitive or mixed settings,
most current frameworks do not act with the opponent in
mind [5 44]. For example, state-of-the-art poker agents “play
a fixed strategy that does not adapt to the observed tendencies
of the opponents” [S]]. Recent works on the game of Diplomacy
consider the “exploitability” of their own agent (e.g. if adaptive

opponents can take advantage of their agent), but do not
attempt to adapt to or exploit their opponents’ behavioral
patterns in return [235]].

Rather, success in a multi-agent task should be measured
in terms of the ability to perform well at the task with a new
partner. Indeed, a skillful musician can adjust to the playing
style of new partners (Figure|I]), and a skillful poker player can
exploit the bluffing patterns of new opponents. Similarly, we
should train agents that are able to adapt their actions based
on the tendencies of new partners.

In this work, we explore the paradigm of adaptive multi-
agent imitation learning (adaptive MAIL). Our goal is to learn
a policy that can adapt to new partners, by training only
on a dataset of demonstrations without any other restrictive
assumptions such as access to environment reward or dynam-
ics. Concretely, we are provided with expert demonstrations
on how to coordinate with various partners sampled from
some fixed partner distribution. Then, given the actions of
new partners, we would like to adapt our actions to best
complement their behavior.

Adaptive MAIL is a flexible framework, but there are two
core challenges with learning models for adaptive MAIL: 1)
multi-agent evaluation and 2) data scarcity.

1) Evaluation: Unlike the single-agent case where we can
accurately estimate the performance of the learned policy,
the learned policy performance for the multi-agent setting
depends highly on the partner’s strategy and the potential non-
stationarity of that policy.

To look at trade-offs of evaluation cost and effectiveness,
we experiment with three evaluation methods in our paper:
offline, static and online evaluation. Offline evaluation simply
measures the log-likelihood of a held out expert dataset as
a proxy for reward, and can be evaluated without access to
the environment even at test time. Another direct approach,
which we refer to as static evaluation, is to behavioral-clone
(BC) a test dataset of trajectories, and evaluate our ego agent
against these BC agents. The downside of static evaluation is
that BC agents have rigid behavior and work poorly if out of
distribution. This is exacerbated in multi-agent games, where
other agents can quickly push the joint state out of distribution.

A more costly evaluation choice is online evaluation by
pairing our adaptive policy against non-stationary partners,
such as human partners. Online evaluation is more meaningful
but also more tedious. A highlight of our work is a streamlined
evaluation process that enables deep RL policies to interact and
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Fig. 1. We consider the setting of adapting to a new partner in a multi-agent task. During training, the ego-agent (pianist in white) learns from demonstrations
from pairs of cellists and pianists playing music in coordination. We denote each cellist/pianist pair with a different shade of purple/red, with the cellists
representing the partners, and the pianists representing the experts. At test time, the ego-agent must coordinate with the cellist y in blue. To coordinate well,
the pianist in white can first build a mental model from the training data of how to coordinate with partners of various strategy (loud/soft, fast/slow). Then,
he can infer the strategy of the new partner in blue, and correctly accompany her playing style.

adapt to users in an online fashion. Our policies finetune their
behavior after each episode of interaction with the user.

2) Data Scarcity: Another challenge with adaptive multi-
agent imitation learning is data scarcity. To learn an adaptive
policy, we need training data consisting of a diverse set of
coordination behavior, which is often hard to come by in
practice. For example, the Overcooked dataset [7] only has
around 15 joint trajectories per game layout. A limited dataset,
combined with the lack of access to environment dynamics for
simulation, means that our algorithms must learn an adaptable
latent space using only a handful of demonstrations.

To this end, our paper proposes a novel approach of synthe-
sizing a low-rank space of policies via tensor decomposition.
Learning a low-rank policy space enables us to scale to
high dimensional environments, while avoiding the inherent
difficulties of learning a non-linear latent space on limited
data. Inspired by works that model the value function of rein-
forcement learning tasks with low-rank decomposition [23}55]]
and works that model human preferences in recommendation
systems also with low-rank decomposition [29, |47, |56], we
hypothesize that policies of either AI or human partners
can admit a low-rank structure as well. We use techniques
from tensor decomposition, in particular Tensor Trains, to
model this low-rank representation in a scalable way. This
formulation then allows us to adapt quickly to a new partner
by interpolating in the low-rank subspace.

A. Contributions

The contributions of our paper are three-fold. First, our pa-
per examines the various components (e.g. training objective,
evaluation metric, user study integration) of the framework of
adaptive multi-agent imitation learning. Second, we propose a

model with a structured low-rank prior aimed to address the
challenges of data scarcity for the adaptive MAIL framework.
Finally, we run a wide range of experiments touching on all
three methods of offline/static/online evaluation. Our experi-
ments suggest that our model based on tensor decomposition
can adapt better than baseline methods such as meta-learning,
multi-task learning, or non-linear latent modelling approaches.

In particular, we experiment with our model across various
settings with both AI/human partner distributions and up to 60
dimensional state spaces with both continuous/discrete actions.
We study a collaborative contextual multi-armed bandit task,
a continuous-action particle environment, and the card game
Hanabi. For these environments, we generate partners by train-
ing Al agents with different random seeds. We then do a more
comprehensive evaluation on the task of Overcooked [7, 52],
which consists of human-human gameplay on 5 different
layouts of the game. We deploy our adaptive policy learned
from these human-human demonstrations in a user study with
crowd-sourced workers on Prolific, and our study suggests that
our models is robust to non-stationary human partners as well.

II. RELATED WORK

MARL. Many advancement have been made in multi-agent
RL in training a group of agents to succeed at a task together,
typically via centralized learning [20, 40]. In multi-agent
imitation learning, techniques have been proposed based on
adversarial training [50, |57]] or structure learning in the setting
of unassigned roles [37]. In these works, the focus is on
training policies for one full set of agents in the environment,
whereas our goal is to train a policy to adapt to new partners.
Non-stationarity. Adaptive imitation learning fits under the
general framework of non-stationarity in the other agent’s



behavior [30]]. There are many types of non-stationarity, with
one line of work focusing on learning procedures that can take
advantage of the other agent’s learning process [19, 58] or
latent strategy dynamics [53) 154)]. The non-stationarity in our
problem arises from the introduction of new partners, and from
the strategy drift of our partners over time. This is related to
context-detection [14} 31] techniques that identify the partner
behavior as switching between one of a finite number of
stationary strategies. In contrast, our approach can fit a policy
for a new partner with a continuous latent space over strategies.
Also related are convention modeling approaches [48] which
target adaptation to new partners but do not learn a high-level
relationship between the strategies of different partners.
Partner Modeling. Many works on partner modeling have
been successful with predicting a human partner’s intentions
for robotics [2, [16} 133} 134], motion planning [42], games [41],
driving [46], and more [10} 135} 138]]. These works generally re-
quire a strong model of the environment so that after inferring
the partner intent, they are able to incorporate the intent into a
planner for the ego agent. Our framework differs significantly
in that we train only on trajectory datasets, without access to
environment reward, dynamics, or a planner. This makes our
setting challenging, but more applicable to general tasks for
which we do not have knowledge of the environment.
Imitation Learning. Since we are working with multiple
partners, we can draw similarities to hierarchical/conditional
imitation learning methods that context switch between a set
of low-level policies [12, [36]]. From this perspective, our
approach is related to learning a continuous range of low-
level policies, and choosing between them based on inference
over the partner strategy. The framework of meta-imitation
learning [18] is also relevant, where they learn to solve a
new RL task with just a single expert demonstration. The
main differences are that their test environment has no non-
stationarity, and that their demonstrations are directly over
the experts, whereas our goal is to predict expert actions
from demonstrations of the partner. Lastly, beyond static
demonstrations, there are also human-in-the-loop methods [13]]
that use interactive supervision.

Sequence Prediction. Multi-agent trajectory prediction [1}
20, |45]] and multivariate time-series prediction [9] are closely
related to the framework of predicting the expert actions given
the partner actions. Whereas some works [[L] aim to predict the
actions of every agent given the past actions of every agent,
our setting aims to predict the expert actions given access to
only the partner actions.

III. PROBLEM STATEMENT

We consider a two-player Markov Game with states S, and
actions A = A x A. Agents take actions independently of
each other, i.e. 7(als) = 7°(a|s)n'(als). Without loss of
generality, the ego agent policy (that we control) is 7° and
the partner policy is 7',

One standard framework in multi-agent imitation learning is
to train a single pair of policies (7", 7!) to mimic trajectories
from a pair of experts [S0]. This framework, however, does

Fig. 2. Partner strategies ¢ are
sampled from an underlying dis-
tribution ®punr. The strategy of
a partner affects its actions aP
taken at a state s. We model
the experts as having inferred the
partner strategy, so their action
a® at state s also depends on ¢.

not consider generalization to new partners. We are interested
in the adaptive setting — can we train an agent to play well
against a new partner, whose actions come from a different
policy than that of a partner from the training set?

We assign each partner an ID y and strategy ¢ as a
sample drawn from some fixed distribution ®p,,. We assume
that the agents generating the training dataset are stationary,
having converged to the stochastic policy m4(als, ). Since
we are in the imitation learning setting, for each partner y
we have joint trajectories DY = {(s;,a¢,a?)}¥_,, where a®’s
are expert action, and aP’s are partner actions. We assume
that the expert has inferred the partner’s strategy ¢ through
prior repeated interactions, and acts based on a stochastic
policy Texperc(a@|s, ¢). Hence, even though the agents take
simultaneous actions, we model a dependency from ¢ to a®.

At training time, we have access to batches of joint trajecto-
ries DY', ... DY corresponding to supervision for the train-
ing partners with underlying strategies ¢1, ..., ¢pm ~ Pppr. At
test time, we interact with a new partner yo and adapt our ego
agent to best coordinate with the new partner.

A. Evaluation Metrics

As alluded to earlier, there are many evaluation metrics we
can consider when interacting with the test partner.

1) Offline Evaluation: One option is a purely offline eval-
uation without the environment, in which case we require
joint trajectories in the test set for evaluation. We split the
joint trajectories from the test set DyO into partial trajectories
con51st1ng of the partner actions D" and the expert actions
DY Under this setup, adapting to a new partner y, with
strategy ¢o corresponds to generating a good ego-agent policy
given observations of the partner’s actions D”. We write
our objective as minimizing the KL-divergence between the
(unknown) expert policy and the generated ego-agent policy,
denoted as 7(als, D”").

inf ) KL(mexpen(alsi, d0) || w(alsi, D™))

s;€DY0

= Sup Z ]ET"wacrl(”"S7 ,$0) [log ﬂ—( |8’L7 )]
s;,€DY0
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As the entropy of the expert policy is a constant, this
objective corresponds to maximizing the log-likelihood of the
actions of the expert policy. Although we don’t have access
to the expert policy, we estimate the objective by treating the
expert trajectories D" as samples from the expert policy.



2) Static Evaluation: If we have access to the environment
dynamics and rewards at test time, we can pair our ego agent
with new partner agents and measure the environment reward.
Either the partner agent policies are provided at test time, or
we behavioral-clone their policies from a test dataset.

In both offline and static evaluation, the partner agent is
stationary, governed by some fixed strategy. Based on the
formulation in Figure [2] we can then write our desired policy
as a mixture of how an expert would react to each partner
type, weighted by the probability of each partner type given
observations D"°.

77(04|57Dy0) :/¢Wexperl(a|57by07¢)p(¢|57Dyo)d¢
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3) Online Evaluation: Lastly, we can relax our assumptions
and measure the environment reward attained when pitting
our adaptive ego agent against non-stationary partners at test
time. The test partner policies may drift over time, and may
not correspond to a fixed strategy ¢. This requires us to
continuously finetune our ego agent policy as new interaction
data is collected. Notably, for this online evaluation method,
we can pair our adaptive policy against crowd-sourced human
players, whose behavior will be naturally influenced by the
actions that our ego agent makes.

The highlight of the adaptive multi-agent imitation learning
framework is that training only requires a static dataset of
joint trajectories from diverse partner/expert pairs, making it
generalizable to many tasks in the real world. As we have
seen, the general aim is to learn a conditional expert policy
Texpert (]S, ¢) over a latent space of strategies ¢, and to infer ¢
using observations of a new partner’s actions at test time. By
continuously updating ¢ based on newly collected trajectories,
the ego agent can adapt even to non-stationary partners, all
without training on the environment rewards or dynamics.

IV. LEARNING A LOW RANK POLICY SPACE

Learning a conditional expert policy Texpert(als, ¢) along
with a model p(¢>|Dy0) for inferring partner strategy is chal-
lenging. In addition, learning a non-linear latent space over
strategies can struggle with overfitting when data is limited.

Instead we propose to learn a low-rank latent space that is
both scalable to high dimensional environments and suitable
for low data settings. Our method aims to impose a more
structured prior on the latent space that may reduce the
expressiveness of the model, but in return greatly cut back
on the model’s reliance on large amounts of data.

Given the scalability and data-efficiency benefits of impos-
ing a low-rank prior, the main question is then — how restrictive
is a low-rank prior on the model’s ability to learn a good latent
space over strategies for adaptive MAIL? Based on existing
evidence in the literature, we argue that multi-agent tasks have
two significant sources of structure, which suggest that the
space of reasonable policies may indeed lie on a very low-
dimensional subspace.

o Task constraints — the reward and dynamics of the
Markov Game can be viewed as imposing soft con-
straints, ruling out actions that are clearly suboptimal.
These soft constraints, in the form of Q-functions of
the environment, can filter out the majority of possible
policies, in particular those that often take low-value
actions. Recent work has shown that the Q-functions of
RL environments have surprisingly low rank [23} 53]

« Partner Similarities — the partners from the distribution
®pr may only take on a small subspace of possible
strategies, both when considering human or Al partners.
For example, exploiting common similarities between hu-
mans is what drives the success of collaborative filtering
methods [29, 47, |56]. Beyond human partners, it has
also been observed that neural network agents trained
via stochastic gradient descent span a surprisingly low-
dimensional subspace [27, [39]].

In summary, the underlying Markov Game already rules out
a large swath of undesirable policies, and the partner sampling
distribution further restricts the space of possible partners.
With this in mind, we explore the use of a low rank model to
capture the existing structure in the latent space of strategies.

Our proposed model makes use of low-rank tensor decom-
position. In particular, we have three dimensions of interest in
this low-rank structure: strategy ¢, states s, and actions a. Un-
like its matrix counterpart, the low-rank tensor decomposition
does not have a unique formulation. Popular methodologies
include the CANDECOMP/PARAFAC decomposition [6} 28],
the Tucker decomposition [S1]] and the Tensor Train decom-
position [11]. In this work, we focus on the Tensor Train
decomposition due to its scalability properties [4, 43| 56].

A. Tensor Train Decomposition

The Tensor Train decomposition is a compact and scalable
representation of high-dimensional functions. A Tensor Train
of rank r can represent an n-dimensional function (each
dimension taking on I values) with O(nIr?) parameters,
whereas a naive representation requires O(I™) parameters.
Apart from scaling better than other low-rank tensor decompo-
sition alternatives, the Tensor Train also comes equipped with
rank-reducing approximation algorithms [11} 43]].

The discrete form of a Tensor Train represents a high-
dimensional function g : I; x ... x I, — R* by keeping n
“cores” (i.e. 3-dimensional tensors) of shape A; = r;_1 X I; X
r;. The values [rg,...,r,] are the rank of the tensor, where
each r; is an integer, with o = 1 and r,, = k. For convenience,
we will refer to a Tensor Train with y = ... = r,_1 = 7T
simply as having rank r. The values I, ..., I, are the modes
of the Tensor Train, indicating the number of values the input
to each dimension can take on. To evaluate a tensor train on
an input x...z,, we simply index into the cores at each
dimension (resulting in a series of matrices), and perform a
series of matrix multiplication.

,Tn) = A1l x1,0] XL

g(x1,... X Apli, @n,



Fig. 3. A functional Tensor Train over
a partner strategy core and a state core.
Given an observation s from a partner
with ID vy, the functional Tensor Train
evaluates a matrix-valued function at

freret,

%)

Ve N each core. The output of the first core
corresponds to the partner strategy ¢ =

T g1(y). Then the Tensor Train performs

X : S .

matrix multiplication on the resulting

sequence of matrices, and the resulting

g ) 95(5) Y, vector is the action logits for the policy.

1 2

The intermediate matrices have shape 1 x r and r x k at
the endpoints, and r X 7 in between, so the series of matrix
multiplications will produce an output value in R* as desired.

We would like to directly use the Tensor Train g as our
policy network, by having two cores: a partner-strategy core
and a state core. Then we set the output dimension %k to be
equal to the size of the action space |A|. But, we face two
issues. First, the mode of the state core (e.g. the total number
of states in the state space) may be too large. Second, we only
observe the partner identities y, and not the partner strategies
¢, so we need to interpret tensor core for the partner strategies
differently. We address these issues next.

B. Functional Tensor Train

Although the Tensor Train format scales favorable with
respect to the dimensionality, the modes of each dimension
IL,...,I, can still be too large (and infinite for continuous
inputs) for some practical applications. For example, one of
our dimensions of interest is the state s of a Markov Game,
which would correspond to a mode equal to the rotal number
of possible states. For most environments, storing a Tensor
Train in this format is unmanageable.

An appealing solution is that of the functional Tensor
Train [4] 24]. The key insight is that, instead of representing
cores with tensors of size r;_1 X I; Xr;, we can generalize them
to matrix-valued functions g; : I; — R"-1*" Indexing into
a core to retrieve an r;_1 X r; matrix now becomes evaluating
the matrix-valued function in each dimension:

g(x1,. o 2n) = g1(z1) X o X gn(zy)

Previous works limit themselves to piece-wise polynomials
in these matrix-valued functions [24], in order to support
operations such as integration and cross-approximation. In
this work, we instead propose to parameterize each matrix-
valued function with a neural network, forgoing support for
these operations in order to maximizing flexibility. Using the
functional variant of Tensor Trains, we can handle dimensions
with extremely large modes or even continuous inputs.

C. Adaptive Policies

We next describe how to use the functional Tensor Train to
fit policies of different partners strategies. We want to represent
the latent space over partner strategies using the first core of
our functional Tensor Train. However, for any given partner,

we only observe its identity y and not its strategy ¢. Therefore,
we let the partner strategy core of our Tensor Train take in
the (one-hot vector) identity y as input, and instead interpret
the 1 x r matrix-valued output as the partner strategy ¢.

In Figure we depict the full setup, with two matrix-
valued functions over partner identity and state. Multiplying
the matrix outputs gives us a real-valued vector of size |A| to
be used as the action logits for our policy.

The structure of the Tensor Train makes it suitable for
adapting to new partners at test time. Given a new partner with
identity yo, we fine-tune only the partner-strategy core of the
Tensor Train, keeping the parameters of the state core fixed.
We can interpret this process as inferring the latent strategy
of the new partner, where fine-tuning the partner-strategy core
amounts to maximum-likelihood estimation g;(yo) = @}LE
of the strategy of yo. In essence, the learning phase during
training is fitting a low-rank subspace over policies for dif-
ferent partners, and the adaptation phase at test time is doing
inference over the partner strategy and interpolating the output
actions in that subspace.

V. EXPERIMENTS

We run a variety of experiments to evaluate our approach
for adapting to new partners in multi-agent games, span-
ning discrete/continuous actions, full/partial observability, and
Al/human partners. For the first set of experiments, we gener-
ate partner distributions by training Al partners with different
random seeds. We study a collaborative multi-armed bandit
task, a particle environment with continuous actions, and
the game of Hanabi using 4 players. For the second set of
experiments, we explore the distribution over human partners
instead. We focus on the game of Overcooked [7, I52] by
training and performing static evaluation on human-human
demonstrations collected from [7]]. Then, we follow it up with
online evaluation against real human partners, by deploying
our adaptive agents in a user study to play Overcooked with
crowd-sourced humans. Our experiments show the applicabil-
ity of our framework to a broad range of different settings. We
describe the tasks in detail in their corresponding sections.

We compare our approach (Irp: low-rank partners) with four
baselines: a meta-learning (maml) [17], a multi-task learning
(mt) [8], and a modular policy (mod) [15 48] approach,
and a non-linear latent space approach (It). The meta-learning
approach optimizes for performance after one gradient descent
step on a new sampled task, and can work well when the
number of training tasks is large. The multi-task approach aims
to share representations across policies for different partners,
by appending the partner ID to the state observations and
predicting with a single neural network. The modular policy
approach aims to separate task representations from partner
representations with modular policy networks, in order to
transfer the task representation to a new partner. Finally, the
non-linear latent space method concatenates learned partner
embeddings with the state observation, and maps this joint
input directly to the action space. We implement these methods
with the Garage toolkit [22]].



A. Collaborative Bandits

In our collaborative bandit environment, two players simul-
taneously pick an action, scoring a point if and only if they
chose the same action and the score for that action is 1. We
design our bandit environment to have 1000 states, with an
action space of 10. At each state, roughly 30% of the actions
give a score of 1, and the rest give a score of 0. In other words,
the coordination challenge is in breaking the tie between the
equally optimal joint actions.

We generate partners by training Al agents using different
seeds. The Al agents are trained to output, at a given state,
any one of the actions with a score of 1. We train a set of
16 training partners and 4 testing partners using the same RL
algorithm but each with a different seed. The random seed
affects the sampled states of the environment, the network
initialization for each agent, and the stochasticity in the
optimization process.

First, we can analytically verify that these partner policies
generated by self-play with different seeds are indeed low-
rank. We tabularize the policy distribution of all the partners
as a tensor T of size [1000,10,16] (states, actions, #partners),
and fit a low-rank Tensor Train to T (Table [[). The analysis
suggests that the tabularized policy tensor has a low rank (of
4), which is in line with phenomena observed by [27, [39].

TABLE I
FITTING TENSOR TRAINS WITH VARIOUS RANKS TO PARTNER POLICIES
TRAINED WITH DIFFERENT RANDOM SEEDS ON THE BANDIT ENV. THE
MODEL FITS THE DATA WELL FROM A RANK OF 4 ONWARDS.

rank | 1 2 3 4 5 6 7
log-loss ‘ 38.36 3828 37.90 22.09 22.03

2211 2221

In Figure ] we plot the performance of different techniques
for adapting to a new partner. The loss is the negative log-
likelihood of the held-out expert actions for the test partners,
which for the bandit task is equivalent to the partner actions.
We see that our low-rank partner approach adapts best to new
partners at test time from this partner distribution arising from
self-play. This suggests that our low-rank partner approach is
indeed capturing the low-rank subspace of the data-generating
process, as revealed by Table |Il and correctly inferring the
strategy of the new partner. The underlying Tensor Train is
able to leverage the correlation between actions at different
states (due to the low-rank structure), and adapt quickly instead
of learning the action distributions at each state separately.

B. Particle Environment

To test our model on continuous actions, we consider a
2D collaborative particle environment where the two players
have to move a particle from a start location x, ys to a target
location ¢, y; (Figure [5). Each player takes a 2D continuous
action representing the velocity of the particle. The task is
collaborative — at each timestep the particle moves according
to the sum of the actions (i.e. velocities) given by the two
players, with reward being the negative distance to the target.

Irp (ours) —o— mt mod maml 1t
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Fig. 4. Collaborative bandit task. The partner policies are generated by self-
play with different random seeds. We use 16 training and 4 testing partners.
We set the rank of the Tensor Train to 4. We compute the loss of adapting to
each new testing partner, and plot the average loss over all the testing partners.

Fig. 5. We visualize the 2-player
collaborative particle environment. The
two players work together to move a
Player 1 particle on a 2D plane from from posi-
tion x5, ys to x¢, y¢. The players input
2D action vectors simultaneously, and
the position of the particle moves ac-
Player 2 cording to the sum of the action vectors

of the two players at each timestep.

We follow a similar setup as earlier, training policies to play
against 16 train partners obtained via self-play, and adapt to 4
test partners, without any access to environment reward. As an
upper bound, the self-play agents are able to achieve a reward
of 313+7 when playing with themselves. In Table [l we report
the environment reward attained by the adaptive agents before
and after adapting to a new partner using a trajectory of 200
timesteps. We see that the low-rank partner approach achieves
the best reward of the 5 compared methods.

TABLE II
REWARD IN PARTICLE ENV BEFORE/AFTER ADAPTING TO TEST PARTNERS.

| Irp mt mod maml It
before | 2974+4 2744+4 290+5 2724+11 28944
after 303+4 300+4 30044 275+ 7 294+ 4
C. Hanabi

The Hanabi environment differs from the other environ-
ments in that it has partial observability, and it involves more
than two agents. Nonetheless, the framework of adaptive multi-
agent imitation learning can be applied to these settings as
well. In particular, we can handle the ego-agent as usual, and
treat the other n — 1 agents as one joint partner agent. Of
course, more careful handling of the interaction between the
n — 1 players is possible, which we leave for future work.

In Hanabi [3]], a group of agents (4 in our case) work
together to play cards from their hands in a specific order,
almost akin to multi-agent Solitaire. The catch is that players
can see everyone else’s cards except their own. Since their is
no communication, the players must develop conventions with
each other, hence adapting to a new conventions is critical to
success with a new partner.
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Fig. 6. Results from the game of Hanabi with 4 players, where our ego
agent is adapting to a new set of other 3 partners each time. Hanabi is a
collaborative turn-based game with partial observability, as every player can
only see other player’s cards but not their own. In our experiments, our low-
rank model showed better adaptation performance after 1000 timesteps of
demonstrations from a new partner.

We study a small version of the game with 1 color, 5 ranks,
4 players, and hand sizes of 2. As before, we generate training
and testing partner/expert pairs using self-play with different
random seeds. In Figure [6] we plot the loss (negative log-
likelihood) of the policies as they adapt to a new partner, with
the x-axis denoting the size of the demonstration used for
adaptation. Of the compared methods, our low-rank approach
exhibits the best adaptation performance after 1000 samples.

D. Overcooked

Next, we study the task of Overcooked, a two-player game
with the goal of working together to cook and serve food to
customers. Players each control a separate avatar in 2D layouts
(Figure [7), where ingredients and kitchenware are scattered
in different locations. Players cannot occupy the same cell,
and must interact with the kitchen objects in a certain order
to score points (place an onion in the stove, wait, put the
cooked onion on a plate, and serve the plate). Of the 5 layouts,
Cramped Room is the simplest. Asymmetric Advantages and
Forced Coordination split the partners into two islands. Lastly,
Coordination Ring and Counter Circuit have narrow passages
that prevent the partners from passing each other.

We test our method on a dataset of human-human demon-
strations [7]], consisting of data for each of the 5 layouts shown
in Figure [/] with around 8 training and 8 testing pairs of
humans per layout (39 training pairs and 37 testing pairs in
total). The roles of the players are not symmetric; for each
demonstration pair we treat player 0 as the expert and player
1 as the partner. The state is a feature vector of size 62, and
there are 6 available actions for each player.

In Figure[7, we show the results of offline evaluation on each
of the five layouts from the dataset. Similar to before, we plot
the negative log-likelihood loss over the held-out expert data in
the test dataset. The demonstration for each human-human pair
in the dataset contains about 1000 timesteps on average, which
means the total available sample size is limited. Nevertheless,
we can see our low-rank partner approach performs well, by
inferring the strategy of the partner and predicting the expert
actions that can complement this partner.

TABLE 111
REWARD IN OVERCOOKED BEFORE/AFTER ADAPTING TO TEST PARTNERS,
AVERAGED OVER THE 5 LAYOUTS SHOWN IN FIGURE[7]

| Irp mt mod  maml It
before | 21 +£2 23+2 172 T7+1 2142
after 24 +2 21+ 2 19+2 941 2242

Next, we look into static evaluation in Table where
we examine the environment rewards attained by the policies
when playing with new static partners (averaged over all 5 lay-
outs). However, we are given only a dataset of demonstrations,
and not the partner policies themselves. As a workaround, we
first run Behavioral Cloning over the demonstration dataset
to obtain a set of BC partner policies, which we then use to
evaluate with our adaptive policies. The rewards attained using
this approach are generally poorer because the BC partner
policies struggle at novel states, which occur often for adaptive
MAIL. Still, the results from static evaluation align closely
with the same trends we observe from offline evaluation, with
the low-rank policy exhibiting good adaptation performance.

VI. USER STUDY: ONLINE ADAPTATION TO HUMANS

To see if our method translates well to collaboration with
humans, we conduct a study with real humans via a web ver-
sion of Overcooked. Unlike previous experiments that evaluate
against offline datasets or static partners, the user study pairs
our adaptive policies against (non-stationary) humans.

Besides the modeling considerations associated with non-
stationarity partners, the main challenge of conducting our user
study arises from the software infrastructure. Since we need
to finetune our models in an online manner (using a deep RL
library), we cannot simply push a trained model to the client-
side for evaluation. Instead, we integrate the deep RL library
with a Flask server that communicates with the web clients of
our user participants. We take the web client from [7]], which
processes the user’s keyboard inputs, and modify it so that the
client continuously polls the Flask server for actions from our
Al agent models in real time. The Flask server can handle
multiple clients at the same time, keeping track of separate
finetuned models for each client.

A. Participants and Procedures

We recruited 40 workers from the crowd-sourcing platform
Prolific and 10 local participants, for a total of 50 users (48%
Female, median age: 28). The participants were paid at the
standard minimum wage rate, and participants from Prolific
were prescreened to be from United States and Canada to limit
the network latency of playing the online Overcooked game
in real time. After providing informed consent, our users were
provided text instructions along with a video demonstration
of how to play the game. They were then asked to answer a
3-question quiz to check that they understand the rules of the
game. Our study is approved by IRB-49406, but we omit the
link to the approval since it violates anonymity.
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Fig. 7. Overcooked: we use the human-human dataset from [7]. For each of
the 5 layouts in the dataset, we compute the loss of adapting to each new
testing partner, and plot the average loss over all the testing partners. For each
new partner we have around 1k samples of their actions.

We use the Counter Circuit layout and the adaptive Al
policies for Overcooked trained from the previous section.
Each participant plays against all 5 of the adaptive policies
shown in Figure @ in a randomized order, repeated twice for
a total of 10 games (40 seconds per game). In each game,
the human participant controls Player 2, and the AI agent
controls Player 1. The Al agents adapt their policies based only
on the human’s actions (without access to true or estimated
environment rewards).

- Independent Variables: We vary the policy used to control

the Al agent. We choose from one of Irp, mt, mod, maml, It
in a random order for each user.
- Dependent Measures: We measure the score (environment
reward) attained by the human-Al pair. We report the score
from the first interaction (before adapt) and from the second
interaction (after adapt) for each policy.

304 before adapt I after adapt
= 204
ja
@
5
= 10
0
Irp (ours) mt mod maml It

Fig. 8. User study: of the 5 policy types, Irp reaches the highest reward after
adapting to human partners.

- Hypothesis: Based on the results from offline/static experi-
ments, we hypothesize that Irp policy best adapts to the human
partners, as measured by after adapt score.

- Results: In Figure [§] we plot the results of our online user
study. Only the Irp and It policies attain a reward of 20 after
adaptation, with the Irp indeed giving the highest after adapt
score of 26 £ 2 (statistically significant compared to all the
baselines, p < 0.05). This aligns with the trends we observe
from the static/offline evaluation of the Overcooked game, in
which the Irp also adapted well to new partners.

VII. CONCLUSION

Summary. We study the problem of adapting to new partners
in multi-agent tasks, under the imitation learning setting of
predicting the expert’s actions from the partner’s actions. We
formalize the problem setting, learning objective, and the
different evaluation metrics for this framework of adaptive
multi-agent imitation learning. To address the challenges with
learning from limited data, we then propose a low-rank tensor
decomposition approach using Tensor Trains. Using a low-
rank prior, our model infers the strategy of a new partner
and predicts the corresponding expert actions based on the
estimated strategy. We describe how to scale up Tensor Trains
by parameterizing their functional variant with neural net-
works, and demonstrate their ability to adapt to new partners
on a variety of environments spanning offline, static, and
online evaluation. We test on a collaborative bandit task,
a continuous-action particle task, the Hanabi game with 4-
players, and finally the game of Overcooked in a user study.
Our work promotes the novel framework of adaptive multi-
agent imitation learning, and establishes a promising approach
for this framework through incorporating low-rank structure.
Limitations and Future Work. On the modeling side, our
current low-rank approach requires choosing a rank as a
hyperparameter. For future work, we plan to look into rank
selection approaches that try to minimize the rank while
staying within an error threshold. On the framework side,
future work can explore more sophisticated objectives for n-
player games, that go beyond treating the other n— 1 agents as
one single partner. Lastly, incorporating environment rewards
and dynamics would widen the application of adaptive multi-
agent learning to more settings.
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