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Abstract

We provide universally-optimal distributed graph algorithms for (1+ε)-approximate shortest path problems
including shortest-path-tree and transshipment.

The universal optimality of our algorithms guarantees that, on any n-node network G, our algorithm
completes in T · n

o(1) rounds whenever a T -round algorithm exists for G. This includes D · n
o(1)-round

algorithms for any planar or excluded-minor network. Our algorithms never require more than (
√
n+D) ·no(1)

rounds, resulting in the first sub-linear-round distributed algorithm for transshipment.

The key technical contribution leading to these results is the first efficient n
o(1)-competitive linear `1-

oblivious routing operator that does not require the use of `1-embeddings. Our construction is simple, solely
based on low-diameter decompositions, and—in contrast to all known constructions—directly produces an
oblivious flow instead of just an approximation of the optimal flow cost. This also has the benefit of simplifying
the interaction with Sherman’s multiplicative weight framework [SODA’17] in the distributed setting and its
subsequent rounding procedures.
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1 Introduction

Computing single-source shortest paths (SSSP) is one of the most fundamental and well-studied problems in
combinatorial optimization. Likewise, the distributed version of the SSSP problem has received wide-reaching
attention in the distributed community [Nan14, EN16, HKN16, BKKL17, Elk17, FN18, GL18a, HL18, EN19,
LPSP19, CM20]. For (1+ε)-approximate SSSP, this effort culminated in a distributed algorithm that is guaranteed
to complete in Θ̃(

√
n + D) rounds1 [BKKL17] on every n-node network with hop-diameter D in the standard

message-passing model (CONGEST).
This Θ̃(

√
n+D)-round algorithm is existentially-optimal, in the sense that there exists a family of pathological

networks where one cannot do better [SHK+12]. However, the barrier that precludes fast algorithms in these
pathological networks does not apply to most networks of interest, and faster algorithms often exist in non-
worst-case networks such as planar graphs [GH16]. This motivates a much stronger notion of optimality—called
universal optimality—which requires a single (i.e., uniform) algorithm to be as fast as possible on every network
G, i.e., (approximately) as fast as the running time of any other algorithm on G. In particular, for any (unknown)
network G the universally-optimal algorithm must be competitive with whichever algorithm happens to be the
fastest for G, including any algorithm explicitly designed to be fast on G (but potentially very slow on any
other network). More formally, let TA(G) be the running time on the network G of the longest-running (i.e.,
worst-case) problem-specific input to an algorithm A. An algorithm A is (no(1)-) universally optimal if TA(G) is
no(1)-competitive with TB(G) for every other correct algorithm B, i.e., if TA(G) ≤ no(1) · TB(G) [HWZ21].

This beyond-worst-network guarantee is therefore in some sense the strongest form in which an algorithm
can adjust (on the fly) to the network topology it is run on. The concept of universal optimality was already
(informally) proposed in 1998 by Garay, Kutten and Peleg [GKP98] but only over the last six years work
towards universally-optimal distributed algorithms has found traction, in the form of the low-congestion shortcut
framework [GH16, HIZ16a, HIZ16b, HLZ18, KKOI21, GH21, HWZ21]. This framework can be used to design
universally-optimal distributed algorithms for problems that can be solved very fast using a communication
primitive called part-wise aggregation. For example, such universally-optimal algorithms exist for (exact)
minimum spanning tree (MST) and (1+ε)-minimum cut. The shortcut framework also implies fast algorithm with
concrete guarantees for special graph classes, including any excluded-minor graph family. We refer to Section 2 and
[HWZ21] for more details on universal optimality and the shortcut framework but remark that SSSP algorithms
have been notoriously hard to achieve within the shortcut framework. The only non-trivial SSSP algorithm [HL18]
within the framework has a bad super-constant approximation factor of at least polylog n (or even no(1)). An
improvement using [BKKL17] towards better approximations was proposed and stated as the main open problem
in the abstract and conclusion of [HL18], however this suggested approach turned out to be (provably) impossible
(see below).

Our results. In this paper, we resolve the open question of [HL18] by giving a universally-optimal distributed
algorithms for (1 + ε)-approximate single-source shortest path (SSSP) whenever there exists a no(1)-round
algorithm. The running time of our algorithm is no(1)-competitive with the fastest possible correct algorithm
and thus leads to ultra-fast sub-polynomial-round distributed algorithms on networks of interest. For example,
our SSSP algorithm provably completes in D · no(1) rounds on any minor-free network.

We also give the first universally-optimal distributed algorithms for (1 + ε)-approximate transshipment.
Transshipment is a well-studied generalization of the shortest path problem also known as uncapacitated min-cost
flow, earth mover’s distance, or Wasserstein metric. No sub-linear-round algorithm was known for O(1)- or (1+ε)-
approximate transshipment in the distributed setting (CONGEST). Therefore even our worst-case running time
of (
√
n +D) · no(1) rounds for (1 + ε)-approximate distributed transshipment improves over the state-of-the-art

1We use ∼, as in Õ, to hide poly(logn) factors, where n is the number of nodes in the network.
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Õ(n)-round CONGEST algorithm [BKKL17] for this problem.
Challenges. All approaches to the distributed (1+ε)-approximate SSSP problem that appear in the literature

can be categorized as follows: (1) Either they select Θ̃(
√
n) nodes (e.g., via random sampling), construct a

backbone graph on the selected nodes in Θ̃(
√
n) rounds, and finally solve some variant of the shortest path

problem on the selected nodes. (2) Or they simulate all-to-all communications on a large number of nodes.
Algorithms using hop-sets and similar ideas like [Nan14, EN16, HKN16, Elk17, EN19, LPSP19, CM20] are

of the first type. The algorithm of [BKKL17] actually fall into both categories simultaneously: [BKKL17]
explicitly uses the Θ̃(

√
n) reduction to a backbone graph from [Nan14] and then simulates a fast BROADCAST

CONGESTED CLIQUE algorithm on the Θ̃(
√
n) backbone nodes, which can be easily achieved in CONGEST

with a slow-down of Θ̃(
√
n) (via flooding). The algorithms from [GL18b] are the cleanest example of the last

category. They simulate almost any near-linear time PRAM algorithm (for SSSP, transshipment, or almost any
other problem) by implementing all-to-all communications between a linear number of nodes (in this case serving
any communication which does not involve any node too often). This is possible in graphs with good expansion
with a slowdown linear in the mixing time of the graph but impossible to do in sub-linear time in general graphs.

Once one looks at these algorithms in this way it is clear that these approaches fundamentally cannot ever lead
to a o(

√
n) runtime, even when run on a simple network where one would/should expect õ(

√
n)-round algorithms

to exist.
Our paper uses a different approach to SSSP, which requires us to solve the more-general transshipment

problem. On a high level, transshipment asks us to find the minimum cost flow which satisfies a given
demand d ∈ R

V without any capacity constraints on edges. For example, the s-t shortest path corresponds
to transshipment with the demand d(v) = (1[v = s] − 1[v = t]). We solve the transshipment problem using
Sherman’s framework [She17b] which yielded great success in the sequential and parallel settings [Li20, ASZ20].
In particular, we show that Sherman’s framework for `1 can be implemented in CONGEST within the shortcut
framework. The main technical barrier preventing Sherman’s framework from being utilized in the distributed
setting was the construction of a crucial object called (linear) `1-oblivious routing (cost approximator). Concretely,
the `1-oblivious routing is a linear operator R (i.e., a matrix) that takes the demand d ∈ R

V as input, and outputs
a vector Rd such that ‖Rd‖1 is a good approximation to the (cost of the) optimal solution. All known approaches
of constructing this matrix relied on first embedding the graph in `1 space and then routing the demand over
this space. Unfortunately, while such approaches are well-suited for shared-memory settings, the approach is
fundamentally broken in the distributed world where arbitrary data shuffling cannot be done efficiently. In more
detail, all known oblivious routing algorithms route the demand of a vertex v to an intermediary vertex that
depends on the `1-embedding coordinate of v; this seems infeasible to do at scale in a message-passing context.

Technical contribution. Our main technical contribution is a new construction of no(1)-approximate
`1-oblivious routings that is graph-based and can be efficiently implemented in the distributed setting. The
construction is simple and relies on routing the demand along several low-diameter decompositions (LDDs) in a
bottom-up way.

Our construction is particularly appealing in that it produces a flow vector that routes (i.e., satisfies) the given
demand and whose cost is no(1)-competitive with the optimal flow that satisfies the demand. This is in contrast to
previous “oblivious routings” which routed the demand over the fictional `1 space in a way that cannot be easily
pulled back to a near-optimal flow in the underlying graph. In other words, previous constructions would be more
aptly named cost approximators, rather than oblivious routings, since they do not produce a flow in the graph.
This can be compared to (1+ ε)-approximate maximum flow computation, where many fast algorithms construct
a congestion approximator which approximates the solution [She13, Pen16]; it is known that fast construction of
an oblivious routing with the same property (i.e., a flow with near-optimal congestion satisfying the demand) is
a significantly harder task.

To simplify the presentation of distributed algorithms in the shortcut framework, we introduce a new interface
to this framework called the Distributed Minor-Aggregation model. On one hand, the interface restricts the
operations the nodes can perform in that they can only compute aggregates of adjacent nodes. On the other
hand, the Distributed Minor-Aggregation model provides powerful high-level primitives like graph contractions
which allow for succinct descriptions of otherwise complicated distributed algorithms. Our Minor-Aggregation
model interface is our best attempt at making the most recent advancements in theoretical distributed computing
and universal optimality [HWZ21, GHZ21] easily accessible. The idea is that any fast algorithm in the Minor-
Aggregation model for a vast class of problems can be converted in a black-box way to a universally-optimal
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distributed algorithm in the standard CONGEST model. This gives rise to the following informal, but helpful,
claim about (non-local) distributed algorithms: An algorithm can be efficiently distributed if it can be written
as only computing aggregates over a minor of the original network. Our model connects nicely with similar
intuitions or (implicit) models that have appeared in the distributed literature (e.g., [GKK+15, FGL+20]). The
following informal theorem shows how to convert running times from the Minor-Aggregation model to the standard
CONGEST model.

Theorem 1.1. (Informal, Minor-Aggregation model simulation) Any Minor-Aggregation algorithm on
G that terminates in τ rounds for SSSP, transshipment, MST, etc., can be converted into a τ · no(1)-competitive
universally-optimal algorithm in the CONGEST model on G. The algorithm is guaranteed to complete in D·τ ·no(1)

CONGEST rounds when G is a planar, genus-bounded, treewidth-bounded, excluded-minor graph, or an n−o(1)-
expander.

Formal statements of our results. With the required preliminaries in place, we can now formally state
our results. The following theorems concern (1 + ε)-approximate distributed SSSP and transshipment in the
Minor-Aggregation model.

Theorem 1.2. (Distributed SSSP). Given an undirected and weighted graph G with edge weights in [1, nO(1)],
there exists a distributed algorithm that computes (1 + ε)-approximate SSSP in ε−2 · exp(O(log n · log log n)3/4)
Minor-Aggregation rounds.

Theorem 1.3. (Distributed transshipment). Let G be a weighted graph with weights in [1, nO(1)] and let
ε > 0 be a parameter. There exists an algorithm that computes (1 + ε)-approximate transshipment on G in
ε−2 · exp(O(log n · log log n)3/4) Minor-Aggregation rounds.

Combining the Minor-Aggregation model result with the simulation of Theorem 1.1, we immediately obtain
the following set of results:

Corollary 1.1. (SSSP and transshipment in CONGEST) Let G be a weighted graph with weights in
[1, nO(1)]. We can solve both the

(
1 + 1

no(1)

)
-approximate SSSP and

(
1 + 1

no(1)

)
-approximate transshipment in

OPT(G) · no(1) CONGEST rounds, where OPTG is the runtime of the fastest possible correct algorithm that
works on G. Moveover, this algorithm is guaranteed to complete in D · no(1) CONGEST rounds if G is a planar,
genus-bounded, treewidth-bounded, minor-free graph, or an n−o(1)-expander.

The above set of results all rely on the distributed evaluation of `1-oblivious routing, which we state below
for reference.

Theorem 1.4. (Distributed oblivious routing evaluation). Let G = (V,E) be a weighted graph with weights in
[1, nO(1)]. There exists an exp(O(log n · log log n)3/4)-approximate `1-oblivious routing R such that we can perform
the following computations in exp(O(log n · log log n)3/4) rounds of Minor-Aggregation. Given any distributedly

stored node vector d ∈ R
V and edge vector c ∈ R

V , we can evaluate and distributedly store Rd ∈ R
~E and RT c ∈ R

V .

1.1 Related Work Techniques from continuous optimization have brought breakthroughs for many problems
in combinatorial optimization. Sherman [She13] obtained an approximate max-flow algorithm in undirected
graphs with time complexity O(m1+o(1)ε−2) by constructing an no(1)-congestion approximator [Mad10] in nearly
linear time. Peng [Pen16] improved the run-time to O(mpolylog(n)) by solving the approximate max-flow
and constructing the cut-based hierarchical tree decompositions [RST14] recursively, and using ultra-sparsifiers
[KMP10, ST14] to reduce the graph size. Sherman [She17b] designed a generalized preconditioner and applied
that to produce an approximation algorithm for uncapacitated min-cost flow on undirected graphs with time
complexity O(m1+o(1)ε−2). Kelner et al. [KLOS14] solved the approximate maximum concurrent multicommodity
flow problem with k commodities in time O(m1+o(1)k2ε−2) by an O(mo(1))-competitive oblivious routing scheme.
Sherman [She17a] improved this time complexity to O(mkε−1) via the proposed area-convex regularization. In
the distributed settings, Ghaffari et al. [GKK+15] proposed an (1 + o(1))-approximate algorithm that takes
(
√
n + D)no(1) rounds for max-flow in undirected weighted networks, where D is the hop-diameter of the

communication network.
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For the directed min-cost flow problem, Daitch and Spielman [DS08] provided an algorithm that runs in time

Õ(m3/2 log2 U) by solving the linear equations efficiently; this time complexity was improved to Õ(m
√
n log2 U)

by Lee and Sidford [LS14] by virtue of the new algorithm for solving linear programs. In terms of transshipment
which is a generalization of the min-cost flow problem, Sherman [She17b] proposed an (1 + ε)-approximate
algorithm with time complexity m1+o(1)ε−2 for uncapacitated and undirected min-cost flow problem using a
generalized preconditioner obtained by `1 embedding and a hierarchical routing scheme in `1; Li [Li20] proposed a
parallel algorithm with mpolylog(n)ε−2 work and polylog(n)ε−2 time for the transshipment problem in [She17b]
by utilizing the multiplicative weight update method to solve linear programs. A crucial ingredient tying together
these approaches is a property of transshipment that solvers that return an approximate dual solution can be
boosted to an (1 + ε)-approximate solver [Zuz21].

In the CONGEST model, substantial progress has been made on the SSSP problem in the past decade. For
undirected graphs, Lenzen and Patt-Shamir [LPS13] proposed an O(ε−1 log ε−1)-approximation algorithm that

runs in Õ(n1/2+ε + D) rounds for the weighted SSSP problem. This approximation factor was improved by

[Nan14], in which Nanongkai presented an Õ(
√
nD1/4 + D)-round (1 + o(1))-approximation algorithm. Elkin

and Neiman [EN16] gave an (1 + ε)-approximation algorithm that runs in (
√
n+D)2Õ(

√
logn) rounds using their

hopsets. Henzinger et al. [HKN16] proposed a deterministic (1 + o(1))-approximation algorithm that takes
n1/2+o(1) + D1+o(1) rounds. Haeupler and Li [HL18] proposed the first approximation algorithm for SSSP that

adjusts to the topology of the communication network, and gave a Õ(ShortcutQuality(G)no(1))-round algorithm
with an approximation factor of no(1), where ShortcutQuality(G) is the quality of the best shortcut that can be
constructed efficiently for the given topology. Ghaffari and Li [GL18b] designed distributed algorithms that run

in τmix · 2O(
√
logn) rounds for (1 + ε)-approximate SSSP and transshipment, where τmix is the mixing time of

the graph. More generally, [GL18b] proved that each parallel algorithm with efficient work that takes τ rounds

can be simulated on any (expander) graph in τmix · 2O(
√
logn) · τ rounds in the CONGEST model. Besides

these approximate algorithms, Elkin [Elk17] devised an exact SSSP algorithm for undirected graph that requires
O((n log n)5/6) rounds when D = O(

√
n log n), and O((n log n)2/3D1/3) rounds for larger D.

For the directed SSSP problem, Ghaffari and Li [GL18a] presented an Õ(n3/4D1/4)-round algorithm, and

an improved algorithm for large values of D with round complexity Õ(n3/4+o(1) + min{n3/4D1/6, D6/7} + D).

Forster and Nanongkai [FN18] gave two randomized algorithms that take Õ(
√
nD) and Õ(

√
nD1/4 + n3/5 +D)

rounds respectively, and obtained an (1+ε)-approximation algorithm with Õ((
√
nD1/4+D)ε−1) rounds. Chechik

and Mukhtar [CM20] proposed a randomized algorithm that takes Õ(
√
nD1/4 +D) rounds. Cao et al. [CFR21]

provided an (1 + ε)-approximation algorithm with round complexity Õ((
√
n +D + n2/5+o(1)D2/5)ε−2). Censor-

Hillel et al. [CHLP21] gave an exact SSSP algorithm with (n7/6/m1/2 + n2/m) · τmix · 2O(
√
logn) rounds in the

CONGEST model.
Besides CONGEST model, SSSP problem was also studied in the Congested Clique model [Nan14, HKN16,

CHDKL20], Broadcast CONGEST model [BKKL17], Broadcast Congested Clique model [BKKL17], and Hybrid
model [AHK+20, FHS20, KS20, CHLP21].

In addition, the all-pairs shortest paths (APSP) problem was also studied in various distributed mod-
els [HW12, CHKK+15, HP16, LG16, Elk17, HNS17, ARKP18, CHLT18, PR18, AR19, BN19, AHK+20, AR20,
CHDKL20, DP20, KS20, CHLP21, DFKL21].

2 Preliminaries

Graph Notation Let G = (V,E) be a simple undirected graph. We denote with n := |V | the number of
nodes, with m := |E| the number of edges, and with D the hop-diameter of G. It is often convenient to direct
E consistently. For simplicity and without loss of generality, we assume that the vertices V = {v1, . . . , vn} are

numbered from 1 to n, and we define ~E = {(vi, vj) | (vi, vj) ∈ E, i < j}. We identify E and ~E by the obvious

bijection. We denote with B ∈ {−1, 0, 1}V×~E the node-edge incidence matrix of G, which for any e = (s, t) ∈ ~E
assigns Bs,e = 1, Bt,e = −1, and Bu,e = 0 for all other u ∈ V . In this paper, we typically assume the graph
is weighted and the weights are polynomially bounded. For this, a weight or length function w assigns each
edge e ∈ E a weight we ∈ [1, nO(1)]. The weight function can also be interpreted as a diagonal weight matrix

W ∈ [0, nO(1)]E×E which assigns We,e = we ≥ 1 for any e ∈ ~E (and 0 on all off-diagonal entries).
Flows and Transshipment A demand is a d ∈ R

V . We say a demand is proper if 1T d = 0. A flow is a
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vector f ∈ R
~E . A flow f routes demand d if Bf = d. It is easy to see only proper demands are routed by flows.

The cost W (f) of a flow f is ‖Wf‖1. For a weighted graph G and a given proper demand d the transshipment
problem asks to find a flow f∗

d of minimum cost among flows that route d. When the underlying graph is clear
from the context, we let ‖d‖OPT := W (f∗

d ) denote the cost of the optimal flow for routing demand d. For any
α ≥ 1, we say a flow f is α-approximate if W (f) ≤ α · ‖d‖OPT (such a flow does not necessarily need to route d).
The transshipment problem naturally admits the following convex-programming formulation:

min ‖Wf‖1 : Bf = d,(2.1)

and its dual:

max d>φ :
∥∥W−1B>φ

∥∥
∞ ≤ 1.(2.2)

The entries in the vector φ ∈ R
V are generally referred to as vertex potentials.

Distributed Algorithm (i.e., CONGEST Model). The distributed algorithms designed in this paper
are message-passing algorithms following the standard CONGEST [Pel00] model of distributed computing. A
network is given as an undirected graph G = (V,E) in which nodes are individual computational units (i.e.,
have private memory and do their own computations). Communication between the nodes occurs in synchronous
rounds. In each round, each pair of nodes adjacent in G exchanges an O(log n)-bit message. Nodes perform
arbitrary computation between rounds. Initially, nodes only know their unique O(log n)-bit ID and the IDs of
adjacent nodes as well as the weights of incident edges, for problems like SSSP with weights as input.

Asymptotic Notation. We use Õ to hide polylogarithmic factors in n, i.e., Õ(1) = polylog n and
Õ(f(n,D)) = O(f(n,D) · polylog n). We use the term with high probability to denote success probabilities
of at least 1− n−C where C > 0 is a constant that can be chosen arbitrarily large.

2.1 Low-Congestion Shortcut Framework and Part-wise Aggregation Our universally-optimal dis-
tributed algorithms build on the low-congestion shortcut framework [GH16, HIZ16a, HIZ16b, KKOI21, HWZ21]
which identifies the part-wise aggregation task as the crucial communication task in many optimization problems.
The framework also introduced shortcuts as a near-optimal way of solving this communication problem. We
summarize the facts needed in this paper and refer for more details to [HWZ21].

Aggregations. Let
⊕

be some function that combines two O(log n)-bit messages into one (e.g., sum or max).

We call such an
⊕

an aggregation operator. Given messages x1, x2, . . . , xk, their aggregate
⊕k

i=1 xi is the resulting
message after iteratively taking two arbitrary messages m′,m′′, deleting them, and inserting m′ ⊕m′′ into the
sequence until a single message remains (e.g., the sum-aggregation of x1, . . . , xk is x1 + . . . + xk). Throughout
this paper,

⊕
will be commutative and associative, making the value

⊕
i∈I xi unique and well-defined even

if the order under which the messages are aggregated changes. However, it is often useful to consider more
general aggregations, allowing us to use any mergeable O(log n)-bit sketches [ACH+13] as an aggregation operator
(examples of such operators include approximate heavy hitters, quantile estimation, frequency estimations,
random sampling, etc.).

Part-wise aggregation (PA). The PA task is a central task used to solve many distributed operations
problems. A formal definition follows.

Definition 2.1. (Part-wise aggregation (PA) task) Suppose that the nodes V of a graph G = (V,E) are
subdivided into a set of connected and node-disjoint parts P1, . . . , Pk. Initially, each node v chooses a private
O(log n)-bit input xv and the task is to compute, for each part Pi, the aggregate over all private inputs belonging
to that part, i.e.,

⊕
v∈Pi

xv (all nodes learn the same value).

Low-congestion shortcuts near-optimally solve the PA task. Specifically, [GH16, HWZ21] define a function
ShortcutQuality(·) which assigns any undirected and unweighted graph G a positive integer ShortcutQuality(G)
which characterizes (both as an upper and lower bound) the distributed complexity of solving PA. The lower bound
is based on the network coding gaps of [HWZ20, HWZ21], while the upper bound is based on the very recent
hop-constrained oblivious routings and efficient hop-constrained expander decompositions [GHZ21, GHR21].

Theorem 2.1. Suppose A is a distributed CONGEST algorithm solving the part-wise aggregation task. For
any G, the running time of A on G is at least Ω̃(ShortcutQuality(G)) rounds [HWZ21]. Moreover, there is a
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randomized CONGEST algorithm that solves any PA instance in poly(ShortcutQuality(G))·no(1) rounds [GHR21].
Specifically, if ShortcutQuality(G) ≤ no(1), then we can solve PA in no(1) rounds.

We remark that on some special graph classes like excluded-minor graphs there exist algorithms that lose only
Õ(1) factors on the upper bound and can be made deterministic. [HIZ16a, GH21]

What makes part-wise aggregation and shortcuts so powerful is that they relate to many important (non-
local) algorithmic problems, including, min-cut, MST, connectivity, etc. In particular, ShortcutQuality(G) is a
lower bound on many important optimization problems, including all shortest-path problems considered in this
paper.

Theorem 2.2. ([HWZ21]) Suppose A is a (correct) distributed algorithm for SSSP or transshipment (or MST,
min-cut, max-flow, etc.) with a sub-polynomial approximation ratio. For any G, the running time of A on G is
at least Ω̃(ShortcutQuality(G)) rounds.

On the other hand, many problems can be solved with a small number of part-wise aggregations, giving
universally-optimal algorithms with matching Θ̃(ShortcutQuality(G)) lower and upper bounds on the round
complexity (when ShortcutQuality(G) ≤ no(1)). The contribution of this paper is to show that this is true for
approximate shortest-path problems.

We note that current solution to PA in poly(ShortcutQuality(G)) · no(1) only allows for no(1)-competitive
universal optimality when there exists a no(1)-round solution. This is typically sufficient as many networks for
interest have ShortcutQuality(G) ≤ no(1). Moreover, a future results might improve the PA upper bound to
Õ(ShortcutQuality(G)), in which case we would always get polylog-competitive universally-optimal algorithms.

Furthermore, on many special graph classes not only does the low-congestion shortcut framework guarantee
that any universally-optimal algorithm is competitive with the fastest correct one, it also provides concrete upper
bounds on this runtime. For example, when run on a planar graph, we know that ShortcutQuality(G) = Õ(D)
and we know how to solve the PA problem in Õ(D) rounds, giving us a useful guarantee on the runtime on
any algorithm that uses PA as a subroutine or any universally-optimal algorithm (e.g., the one presented in this
paper). We provide a compiled list of concrete shortcut qualities and PA runtimes for specific graph classes.

Theorem 2.3. (Shortcut quality on special graphs) Let G be a (undirected and unweighted) graph and
let D := HopDiameter(G). The following bounds hold:

• For all graphs G we have ShortcutQuality(G) ≤ Õ(
√
n+D). PA can be solved in deterministic Õ(

√
n+D)

rounds. [GH16]

• When G is planar, then ShortcutQuality(G) ≤ Õ(D). PA can be solved in deterministic Õ(D)
rounds. [GH16]

• When G has excluded minor, then ShortcutQuality(G) ≤ Õ(D) (the hidden constants depend on the excluded
minor). The PA problem can be solved in deterministic Õ(D) rounds. This generalizes the result for planar
graphs. The same result holds even when G excludes Õ(1)-dense minors. [GH21]

• When G has treewidth at most k, then ShortcutQuality(G) ≤ Õ(kD). PA can be solved in randomized
Õ(kD). [HIZ16b, HHW18]

• When G has genus at most g ≥ 1, then ShortcutQuality(G) ≤ Õ(
√
gD). PA can be solved in randomized

Õ(
√
gD) rounds. [HIZ16b]

• When G is an n−o(1)-expander, then ShortcutQuality(G) ≤ no(1). PA can be solved in randomized no(1)

rounds. [GL18b]

• When G has hop-diameter D, then ShortcutQuality(G) ≤ Õ(n(D−2)/(2D−2) +D). For 3 ≤ D = O(1), PA
can be solved in randomized Õ(n(D−2)/(2D−2)) rounds. [KP21, KKOI21]

3 Graph-Based `1-Oblivious Routing via LDDs

In this section, we present our graph-based no(1)-approximate `1-oblivious routing R. We first define them
in Section 3.1. Section 3.2 then presents an existential, model-oblivious, construction of R and proves its
approximation guarantees. Section 3.4 presents a linear-algebraic interpretation of the constructed oblivious
routing R.
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3.1 Definition For any k and α > 1, Sherman [She17b] defined an α-approximate (linear) `1-preconditioner
for a weighted graph G as a k × n matrix P , such that, for any proper demand d it holds that

‖d‖OPT ≤ ‖Pd‖1 ≤ α ‖d‖OPT .

Any such α-preconditioner which can be computed in τ rounds can be used to give a Õ(ε−2α2τ) algorithm for
transshipment [She17a]. We are constructing a strictly stronger object that is required to output a flow that
routes any demand with α-approximate cost.

Definition 3.1. For a graph G = (V,E), a matrix R ∈ R
~E×V is a (linear) oblivious routing if for any proper

demand d ∈ R
V the flow Rd routes d, i.e., BRd = d for all d ∈ R

V with
∑

v∈V dv = 0.

Definition 3.2. A routing R for a graph G = (V,E) with weight matrix W is an α-approximate (linear)
`1-oblivious routing if for any proper demand d the cost of the flow fR,d = Rd is at most α ‖d‖OPT, i.e.,
W (fR,d) = ‖WRd‖1 ≤ α ‖d‖OPT.

Corollary 3.1. If R is an α-approximate `1-oblivious routing for a graph G with weight matrix W then P = WR
is an α-approximate (linear) `1-preconditioner for G.

Proof.
‖d‖OPT = min

f :Bf=d
‖Wf‖1 ≤ ‖WfR,d‖1 = ‖WRd‖1 ≤ α ‖d‖OPT .

We remark that Li [Li20], like Sherman [She17a], constructs a sparse α-approximate (linear) `1-preconditioner
P but at times calls such a matrix P an `1-oblivious routing even though Pd only produces a vector with the
right norm and not a flow/routing. To our knowledge, this paper gives the first matrix R that can be evaluated
in almost linear time and is an α-approximate `1-oblivious routing with sub-polynomial α.

3.2 Construction The main graph-theoretic tool we use to construct our `1-oblivious routing is the well-
studied low-diameter decomposition or LDD [Awe85, AP90, Bar96]. Informally, an LDD decomposes a graph into
disjoint node partitions such that each pair of close nodes has a large probability of ending up in the same part.
A formal definition follows.

Definition 3.3. (Low-diameter decomposition) For a weighted graph G = (V,E), a low-diameter decom-
position (LDD) P of radius ρ and quality α ≥ 1 is a probability distribution over node disjoint partitions of V
into (connected) components S1 ⊆ V, . . . , Sk ⊆ V along with centers c1 ∈ S1, . . . , ck ∈ Sk such that:

1. For each i, the center ci is within distance ρ of every other node in the induced subgraph G[Si], w.h.p.

2. For every two vertices x, y ∈ V , if d is the distance between them in the original graph, then the probability
that they do not belong to the same part Si ⊇ {u, v} is at most α · dρ .

Our `1-oblivious routing algorithm based on LDDs is given in Algorithm 3.1.

Algorithm 3.1. `1-oblivious routing

1. Let α := exp(O(
√
log n · log log n)) (representing the LDD quality).

2. Let ρ := exp(O(log n · log log n)3/4) (representing the LDD radius).

3. Let d0 ∈ R
V by any demand vector.

4. For i = 1, 2, . . . , imax := O(log n)1/4 repeat the following:

(a) Sample g := O(log n) · ρα LDDs Pi
1,Pi

2, . . . ,Pi
g with radius ρi and quality α.

(b) A node v sends 1
gdi−1(v) to the center of its component in each Pi

j along any path of length at most

ρi, for each j ∈ {1, . . . , g}. This constructs the next-step demand di.
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5. Compute an arbitrary spanning tree T of G and choose an arbitrary root r. Each node v sends its remaining
flow dimax

(v) to r along T .

Choosing the constants. Each hidden constant in the O-notation of Algorithm 3.1 can be replaced by a
universal constant. Specifically, the O-constant in the definition of α is inherited from prior work [HL18] and
explained in Lemma 5.1. Constants in the definition of ρ and imax are arbitrary as long as ρimax ≥ nC+1, where
nC is the largest edge weight in the graph, with C = O(1) as we assumed they are polynomially bounded. The
constant in the definition of g makes the algorithm succeed with high probability, hence making it a sufficiently
large constant drives the success probability to at least 1− n−C′

for any chosen C ′ = O(1).

Theorem 3.1. With high probability, Algorithm 3.1 produces an exp(O(log n · log log n)3/4)-approximate `1-
oblivious routing.

Remark. If one would use (optimal) LDDs of quality O(log n), the construction described would yield an
exp(O(

√
log n · log log n))-approximate `1-oblivious routing.

A guided tour of the analysis. We define a pair-demand ds,t ∈ R
V as ds,t(x) := 1[x = s]− 1[x = t], i.e.,

requesting a unit flow from s to t. Due to linearity of our routing, it is sufficient to prove that the routing offers a
good approximation only with respect to all pair demands ds,t in order to prove it does the same for all (non-pair)
demands. Therefore, the assumption that d is a pair-demand is without loss of generality. This greatly simplifies
the analysis.

We analyze how the optimal solution changes when routed along a single LDD P (of quality approximately

2
√
logn). Since d = ds,t the optimal solution ‖d‖OPT is initially equal to the distance between between s and

t, namely ‖d‖OPT = ` := distG(s, t). After routing along a single LDD with radius ρ and routing each d(x) to
the center of the component of x, we pay a cost of at most 2ρ to route the demand and obtain a new (residual)
demand d′ ∈ R

V (which is supported at centers of components of P). Note that if s and t are in the same
component of P, then d′ = ~0; if they are in different components we have ‖d′‖OPT ≤ ‖d‖OPT + 2ρ since s
and t are both moved by distance at most ρ. However, in expectation, the increase is E[‖d′‖OPT − ‖d‖OPT] ≤
Pr[s, t in different components] ·O(ρ) = 2

√
logn · `ρ ·O(ρ) ≤ 2

√
logn · ‖d‖OPT. In other words, the optimal solution

increases in expectation by a manageable 2
√
logn factor. A naive way to use this result would be to a single

hierarchy of LDD decompositions (i.e., find an LDD of radius ρ = 2(logn)3/4 , contract, and repeat). We showed

this loses a 2
√
logn multiplicative factor in the value of the optimal solution in each level and, if done for (log n)1/4

levels, ultimately loses a 2(logn)3/4 = no(1) factor. This constructs an no(1)-approximate routing for any demand
in expectation. It essentially corresponds to a low-quality tree embedding—an analogous (but better!) routing
with a O(log n)-approximation guarantee in expectation would be to simply sample an FRT tree [FRT04].

This, however, completely ignores the issue of concentration—we require our single constructed routing to be
good with respect to all demands, and not just a single demand in expectation. This can typically be done by
repeating the same process a sufficient number of times and taking the average until it works with high probability.
For example, would need to repeat the above LDD-hierarchy routing at least poly(n) times until the averaged-out
process succeeds for each demand. We address this by achieving concentration for each level of the LDD hierarchy.
Most of the conceptual heavy-lifting comes from proving that Algorithm 3.1 works for all demands with high
probability, since we have showed that designing a demand that only works in expectation is straightforward.

To this end, our idea is to gradually increase the LDD radii as ρ := 2(logn)3/4 , ρ2, ρ3, . . . , ρimax = poly(n) and
showing concentration in-between each step. As we shown before, the optimal solution in expectation increases
in each step by a manageable 2

√
logn factor, hence the total blow-up after imax ≤ (log n)1/4 step is still no(1),

while the LDDs start consuming the entire graph, implying we are done (it is not hard to see why). To maintain

concentration, in each step we sample Õ(ρ) ≈ 2(logn)3/4 LDDs to guarantee the optimal solution does not blow
up by more than a no(1) factor in each step. The crux of the analysis is in showing this averaging will keep the
optimal solution small in every step and with respect to every demand.

It is fairly straightforward to show concentration when i = 1: the optimal solution is good in expectation
and increases by at most an additive ρ factor, hence repeating it for Õ(ρ) steps guarantees the result with high
probability—this is a standard Chernoff bound result, we need to take the average over Õ(M/µ) independent
random variables that have expectation µ and take up values in the range [0,M ] with probability 1. The issue,
however, arises when i > 1: the optimal solution can grow by a factor of ρi � ‖d‖OPT. Naively, this tells us we

Copyright © 2022
Copyright for this paper is retained by authors2557

D
o

w
n
lo

ad
ed

 1
0
/0

4
/2

2
 t

o
 1

9
5
.1

7
6
.1

1
3
.1

4
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



need to repeat the process for ρi/ ‖d‖OPT times, a value which can be often as large as ρi. The trick, however, is to
“artificially” increase the value of the optimal solution after routing it along an LDD of large radius. Specifically,
after routing the demand along an LDD of radius ρ, we will increase the value of the optimal solution by an additive
ρ. This does not influence the newly-increased optimal solution significantly—the expectation even remains the
same up to constant factors. Notably, this increase helps to prove the newly-increased solution concentrates:
in step i, the optimal solution increases by an additive ρi factor, but is of size at least ρi−1 after the previous
step, hence repeating it Õ(ρi/ρi−1) = no(1) times is sufficient to prove concentration (i.e., the newly-increased
optimal solution does not blow up with respect to all demands). In the following formal proof, we simplify much
of this conceptually complicated reasoning by introducing a potential φi := ‖di‖OPT + ‖di‖ · ρi which intuitively
corresponds to the newly-increased optimal solution.

3.3 Proving the approximation guarantees of Algorithm 3.1 This section is dedicated to proving
Theorem 3.1. The main technical insight that greatly simplifies the analysis is the following definition of a
potential, which accounts for both the value of the optimal solution and the remaining `1 mass into account. Note
that the subscript i corresponds to the ith step of Algorithm 3.1.

Definition 3.4. (Potential) Φi := ‖di‖OPT + ‖di‖1 · ρi.
Our ultimate goal is to prove the potential increases only by a no(1) factor over all imax many steps; this can be

shown to directly imply Theorem 3.1. We prove this in several steps. First, we show that in each step i the potential
increases only by a multiplicative O(α) = no(1), but only in expectation and when the demand di−1 is fixed to be
a pair-demand di−1 = ds,t. A pair-demand ds,t ∈ R

V is a demand of the form ds,t(x) := 1[x = s]−1[x = t], i.e.,
routing a unit flow from s to t. Second, we show the same claim with high probability instead of in expectation.
Third, we show the claim for all demands (not only pair-demands) with high probability. Together, they imply
the result.

We start by showing the result in expectation and for pair-demands.

Lemma 3.1. (Expectation analysis) For any 1 ≤ i ≤ imax and any two nodes s, t ∈ V the following holds.
Fix di−1 to be a pair-demand ds,t (with potential Φi−1 = dG(s, t) + 2ρi−1) and run the ith step of Algorithm 3.1.
This induces a new random variable Φi. We always have that E[max{Φi,Φi−1}] ≤ 6α · Φi−1 over the random
choices of the ith step.

Proof. Suppose that the (weighted) distance in G between s and t is `. Since we fixed di−1 = ds,t, then
Φi−1 = `+ 2ρi−1 ≥ `.

We first analyze a single randomly sampled LDD with potential Φsingle
i . We define a random variable

M single
i := max{Φsingle

i ,Φi−1} which tracks the (single) potential without ever decreasing it.

If both endpoints s, t are in the same component, this demand cancels out and Φsingle
i = 0, which in turn gives

us M single
i = Φi−1. On the other hand, if they end up in separate components (which happens with probability

at most min{1, α · `
ρi }), we route them to separate component centers (that are at most ρi away), which gives the

following bound on the potential

Φsingle
i = ‖di‖OPT + ‖di‖1 · ρi ≤ (`+ 2ρi) + 2 · ρi = `+ 4 · ρi.

Note that the expectation does not change whether we take a single LDD or an average over g LDDs, hence we
can drop the superscript on Φi

single,M single
i and just write Φi and Mi. In expectation, we get:

E[Mi] ≤ Φi−1 +min

{
α · `

ρi
, 1

}
· (`+ 4ρi).

We now consider two cases. First, if ` ≤ ρi, we get

E[Mi] ≤ Φi−1 + α · `
ρi
· 5ρi = Φi−1 + 5α · ` ≤ Φi−1 + 5α · Φi−1 ≤ 6α · Φi−1.

Otherwise, if ` > ρi, we get

E[Mi] ≤ Φi−1 + `+ 4ρi ≤ Φi−1 + 5` ≤ 6Φi−1.

Therefore, it always holds that E[Φi] ≤ E[Mi] ≤ 6α · Φi−1.
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Next, in Lemma 3.3, we show that the potential does not blow up significantly with high probability, instead
of just being bounded in expectation. For this we use the following standard Chernoff bound:

Lemma 3.2. (Chernoff Bound) Let S =
∑

i Xi be a sum of non-negative independent random variables upper
bounded by Z, i.e., 0 ≤ Xi ≤ Z with probability 1. For any t ≥ 2E[S] it holds that Pr[S ≥ t] ≤ exp(− 1

3 · t/Z).

Lemma 3.3. (Concentration analysis) For any 1 ≤ i ≤ imax and any two nodes s, t ∈ V the following holds.
Fix di−1 to be a pair-demand ds,t (with potential Φi−1 = dG(s, t) + 2ρi−1) and run the ith step of Algorithm 3.1.
This induces a new random variable Φi. With high probability, Φi ≤ 13α · Φi−1 over the random choices of the
ith step.

Proof. We first analyze a single randomly sampled LDD with potential Φsingle
i . We define a random variable

M single
i := max{Φsingle

i ,Φi−1} which tracks the (single) potential without decreasing it.

Let ∆single
i := M single

i −Φi−1 = max{0,Φsingle
i −Φi−1} be the random variable denoting the change in potential

between steps i− 1→ i after sampling a single LDD (or 0 if the change is negative).
Naturally, the final difference in potentials is Φi − Φi−1 obtained by taking the average of g IID samples

∆i,1,∆i,2, . . . ,∆i,g ∼ ∆single
i , i.e., Φi − Φi−1 ≤ 1

g

∑g
j=1 ∆i,j .

We show that ∆single
i ≤ O(ρi) with probability 1. As before, di−1 is some pair-demand ds,t for some endpoints

s, t at distance ` apart. In a (single) randomly sampled LDD, if both endpoints s, t are in the same component,

then the demand cancels out (i.e., Φsingle
i = 0), giving us ∆single

i = 0. On the other hand, if they end up in
separate components, we route them to separate component centers (that are at most ρi away), making

Φsingle
i = ‖di‖OPT + ‖di‖1 · ρi ≤ (`+ 2ρi) + 2 · ρi

= (`+ 2ρi−1) + 4ρi − 2ρi−1 ≤ Φi−1 + 4ρi.

In other words, ∆single
i ≤ 4ρi with probability 1, as required.

Using the Chernoff bound (Lemma 3.2) and applying Lemma 3.1, we have that

Pr




g∑

j=1

1

g
∆i,j ≥ 12α · Φi−1


 ≤ exp(−1

3
· 12α · Φi−1/Z),

where Z = 4ρi/g, since 1
g∆i,j ∼ 1

g∆
single
i ∈ [0, 1

g4ρ
i] = [0, Z] with probability 1. Using this and the fact that

Φi−1 ≥ ρi−1 we have that

Pr[Φi − Φi−1 ≥ 12α · Φi−1] ≤ Pr




g∑

j=1

1

g
∆i,j ≥ 12α · Φi−1




≤ exp

(
−1

3
· 12αΦi−1

g

4ρi

)

≤ exp

(
−4αρi−1 · g

ρi

)

= exp

(
−αg

ρ

)

= exp(−O(log n)) = n−O(1).

Therefore, Φi ≤ Φi−1 + 12α · Φi−1 = 13α · Φi−1 with high probability.

Combining the expectation and concentration analysis, we obtain that the potential does not blow up
significantly over a single step.

Lemma 3.4. (Single-step analysis) For any 1 ≤ i ≤ imax and any demand d ∈ R
V with

∑
v∈V dv = 0 the

following holds. Fix di−1 := d (with a fixed potential Φi−1) and run the ith step of Algorithm 3.1. This induces a
new random variable Φi. With high probability, Φi ≤ 13α · Φi−1 over the random choices of the ith step.
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Proof. We first note that the routing defined via Algorithm 3.1 is linear, i.e., there exists a linear operator L = Li

(L depends on i, but we drop the subscript for ease of notation) such that di = Ldi−1.
Using Lemma 3.3, the claim of this lemma holds for all pair-demands ds,t w.h.p. In other words,

‖Lds,t‖OPT + ‖Lds,t‖1 · ρi ≤ 13α · [‖ds,t‖OPT + ‖ds,t‖1 · ρi−1].

Since there are only |V |2 many pair-demands, it also holds for all demand-pairs w.h.p. We now show that it holds
for an arbitrary demand di−1.

Consider the optimal flow f ∈ R
~E that routes di−1 (for an edge e ∈ E, the sign of f(e) denotes the direction

of the flow along e). Any flow satisfying di−1 can be decomposed into a positive combination of J paths {pj}Jj=1

where (1) each path pj is unit in the sense that pj(e) ∈ {0, 1,−1} for all e ∈ E (the sign depends on the
arbitrary orientation of e), and (2) each path pj starts at a node s where di−1(s) > 0 and ends in a node t where

di−1(t) < 0. Therefore, we have that f =
∑J

j=1 βjpj where βj > 0 and pj ∈ R
~E is a unit path. Since pj is a

unit path, we have that it is a feasible transshipment solution for some pair-demand qj (namely, the pair-demand
qj := ds,t where s and t are the endpoints of pj), hence ‖qj‖OPT ≤ W (pj). Due to the flow decomposition,

‖di−1‖OPT = W (f) =
∑J

j=1 βjW (pj) ≥
∑J

j=1 βj ‖qj‖OPT. Furthermore, due to the restriction on the endpoints

of the paths we also have that ‖di−1‖1 =
∑J

j=1 βj ‖qj‖1.
Using this decomposition into paths, we have that

Φi−1 = ‖di−1‖OPT + ‖di−1‖1 · ρi−1

≥
J∑

j=1

(
βj ‖qj‖OPT + βjρ

i−1 ‖qj‖1
)

≥ 1

13α
·

J∑

j=1

(
βj ‖Lqj‖OPT + βjρ

i ‖Lqj‖1
)

≥ 1

13α
·




∥∥∥∥∥∥
L

J∑

j=1

βjqj

∥∥∥∥∥∥
OPT

+ ρi

∥∥∥∥∥∥
L

J∑

j=1

βjqj

∥∥∥∥∥∥
1


(3.3)

=
1

13α
·
[
‖di‖OPT + ρi ‖di‖1

]
=

1

13α
· Φi.

Note that in (3.3) we used ‖a+ b‖ ≤ ‖a‖+ ‖b‖ for ‖·‖OPT and ‖·‖1. Rewriting, we have that Φi ≤ 13α · Φi−1 as
required, if one assumes the claim for all pair demand, with high probability.

Finally, with all intermediate steps in place, we prove the main result of this section.

Proof. [Proof of Theorem 3.1] Fix a demand d0 := d and the value of the optimal solution OPT := ‖d‖OPT. Using
Lemma 3.4, we have that w.h.p.

Φ0 = O(OPT),

Φi ≤ (13α)i ·OPT.

In the ith step, for i ∈ {1, . . . , imax}, let fi denote the flow which is constructed via Algorithm 3.1. The total
movement W (fi) can be bounded in the following way:

W (fi) ≤ ρi||di−1||1 ≤ ρ · Φi−1 ≤ ρ · (13α)i−1 ·O(OPT) ≤ exp
(
O(log n · log log n)3/4

)
·OPT.

Summing up over all steps i ∈ {1, . . . , imax}, the total movement of f =
∑imax

i=1 fi is at most

W (f) ≤ imax · exp
(
O(log n · log log n)3/4

)
·OPT = exp

(
O(log n · log log n)3/4

)
·OPT.

We now analyze the final aggregation along an arbitrary spanning tree T towards an arbitrarily chosen root r.
The total movement of the final aggregation is nC+1 ·‖dimax

‖1, where nC is the largest edge weight (by assumption,
C > 0 is a constant).
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Lemma 3.4 implies that ρimax · ‖dimax
‖1 ≤ Φimax

≤ (13α)imax · O(OPT). Remembering that ρimax ≥ nC+1,
we have that the final aggregation contributes nC+1 · ‖dimax

‖1 ≤ exp
(
O(log n · log log n)3/4

)
· OPT to the cost.

Adding all contributions together, we conclude that the `1-oblivious routing yields an exp
(
O(log n · log log n)3/4

)

approximation.

3.4 Linear-algebraic interpretation of the routing In this section, we develop an algebraic interpretation
of the routing matrix R constructed by Algorithm 3.1 via simpler (LDD-induced) routing matrices.

Suppose that G = (V,E) is an undirected graph. Edges are oriented arbitrarily by specifying a linear operator

(i.e., matrix) B ∈ R
V×~E which maps a flow f ∈ R

~E to the demand d = Bf that f routes (defined in Section 2).

On the other hand, an oblivious routing is a linear operator (i.e., matrix) R ∈ R
~E×V that maps a demand d ∈ R

V

to a flow f = Rd ∈ R
~E .

Given an LDD P, we define the oblivious routing with respect to P as follows. Let the components (partitions)
of P be S1 ⊆ V, . . . , Sk ⊆ V with corresponding centers {ci ∈ Si}i, and let {Ti}i be the shortest path trees of Si

rooted at ci (with all edges oriented from the root outwards). We define R(P) ∈ R
~E×V to be the routing matrix

that routes the demand along Ti towards the root. More precisely, R(P) · d is the flow that, for each node s ∈ Si,
routes d(s) amount of flow via the leaf-to-root path of Ti (note that the output of R(P) · d needs to match the
orientation determined by the matrix B, hence some components might need to have their sign flipped).

With respect to Algorithm 3.1, let R denote the oblivious routing performed by the entire procedure, and Ri

be the routing that is performed in the ith step, i.e., Ri is performed on di−1 in order to produce the next-step
demand di. We specifically define Rimax+1 to be routing in the final aggregation step, i.e., routing along the
spanning tree T in Step 5 of the algorithm.

By definition of Ri, the flow routed in the ith step is Ridi−1. This routes the demand BRidi−1, hence the
residual demand that needs to be routed is di = di−1 − BRidi−1 = (I − BRi)di−1. On the other hand, the
routing Ri is constructed by averaging out the routings with respect to g LDDs Pi

1, . . . ,Pi
g. In other words,

Ri =
1
gR(Pi

1) +
1
gR(Pi

2) + . . .+ 1
gR(Pi

g).

Lemma 3.5. It holds that

R =

imax+1∑

i=1

Ri · (I −BRi−1) · (I −BRi−2) · . . . · (I −BR1),

where

Ri =
1

g
R(Pi

1) +
1

g
R(Pi

2) + . . .+
1

g
R(Pi

g).

Proof. We already argued the second identity.
Fix some demand d0 ← d. Let f be the total flow that is routed over all steps when routing d, and fi be

the flow that is routed during the ith step of Algorithm 3.1. Specially, let fimax
be the flow routed in the final

aggregation step (Step 5). By definition, we have that f =
∑imax+1

i=1 fi. Furthermore, by definition of Ri we have
that fi = Ridi−1. Finally, as argued before, we have that di = (I − BRi)di−1. Combining all of these, we have
that

Rd = f =

imax+1∑

i=1

fi =

imax+1∑

i=1

Ridi−1

=

imax+1∑

i=1

Ri(I −BRi−1)di−2

=

imax+1∑

i=1

Ri(I −BRi−1) . . . (I −BR1)d0.

In other words, R =
∑imax+1

i=1 Ri(I −BRi−1) . . . (I −BR1), as required.
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4 The Distributed Minor-Aggregation Model

We contribute to the low-congestion shortcut framework by giving a simple yet powerful interface called the
Distributed Minor-Aggregation model which makes the recent advances in theoretical distributed computing such
as universal optimality [HWZ21] and oblivious shortcut constructions [HWZ21, GHZ21] more accessible. The
Distributed Minor-Aggregation Model offers a high-level interface which can be used to succinctly describe many
interesting distributed algorithms. In spite of this expressiveness, any algorithm in the Minor-Aggregation model
can be efficiently simulated in the standard CONGEST model. To demonstrate this, we describe a simple
universally-optimal algorithm for the minimum spanning tree (MST) in Section 4.

Definition 4.1. (Distributed Minor-Aggregation Model) We are given an undirected graph G = (V,E).
Both nodes and edges are individual computational units (i.e., have their own processor and private memory).
All computational units wake up at the same time and start communicating in synchronous rounds. Arbitrary
local computation is allowed between (each step of) each round. Initially, nodes only know their unique Õ(1)-bit
ID and edges know the IDs of their endpoint nodes. Each round of communication consists of the following three
steps (in that order).

• Contraction step. Each edge e chooses a value ce = {⊥,>}. This defines a new minor network
G′ = (V ′, E′) constructed as G′ = G/{e : ce = >}, i.e., we contract all edges with ce = >. Vertices
V ′ of G′ are called supernodes, and we identify supernodes with the subset of nodes V it consists of, i.e., if
s ∈ V ′ then s ⊆ V .

• Consensus step. Each individual node v ∈ V chooses a Õ(1)-bit value xv. For each supernode s ∈ V ′ we
define ys :=

⊕
v∈s xv, where

⊕
is some pre-defined aggregation operator. All nodes v ∈ s learn ys.

• Aggregation step. Each edge e ∈ E′ connecting supernodes a ∈ V ′ and b ∈ V ′ learns ya and yb, and
chooses two Õ(1)-bit values ze,a, ze,b (i.e., one value for each endpoint). Finally, (every node of) each
supernode s ∈ V ′ learns the aggregate of its incident edges in E′, i.e.,

⊗
e∈incidentEdges(s) ze,s where

⊗
is

some pre-defined aggregation operator. All nodes v ∈ s learn the same aggregate value (this might be relevant
if the aggregate is non-unique).

Distributing the input and output. Distributed Minor-Aggregation model is simply a communication
models upon which one can run various algorithms. The goal is typically to consider a problem like transshipment,
SSSP or MST, and design a Minor-Aggregation algorithm that provably terminates with a correct answer in the
smallest possible number of rounds. At start, each node/edge receives problem-specific input. This input is
distributed among the network in the following way. Such problems are performed on a weighted graph, hence
the weight are distributed in a way that each edge e initially knows its weight w(e). Note: the weight does not
influence the communication (i.e., always takes 1 round regardless of the weights). Furthermore, for transshipment,
each node v additionally knows its demand value d(v). For SSSP, all nodes and edges additionally know the ID of
the source node. Similarly, upon termination, the output is also required to be stored distributedly. For example,
for the minimum spanning tree (MST) problem, at termination, each edge should know whether it is a part of
the MST or not. For SSSP, upon termination, each node should know its distance to the source and each edge
whether it is a part of the SSSP tree. For transshipment, upon termination, each edge e should know its part of
the flow f(e) and each node v should know its potential φ(v).

Polylogarithmic factors. We note that the above definition extensively uses the Õ-notation, thereby
ignoring polylogarithmic factors (unlike CONGEST which only ignores constant factors). This is due to the
fact that the goal of the Minor-Aggregation model is to illuminate the influence of polynomial factors on the
runtime of distributed algorithms, while at the same time keeping the framework as simple as possible. Ignoring
poly(log n) factors is the standard in the literature for distributed global problems like MST or SSSP as the
current state-of-the-art is also mostly focused on optimizing polynomial factors and the algorithmic descriptions
of global distributed problems get significantly more complicated when one starts optimizing logarithmic factors.

Simulation in CONGEST. While this is not obvious, an algorithm in the Minor-Aggregation model can
be efficiently simulated in the standard CONGEST model if one can efficiently solve the part-wise aggregation
(PA) problem. Combining this with the very recent work [GHR21] which solves PA in ShortcutQuality(G) · no(1)

rounds (see Theorem 2.1), any τ -round Minor-Aggregation algorithm can be compiled into a τ · poly(Shortcut-
Quality(G)) · no(1)-round CONGEST algorithm. Moreover, on many graph classes this result can be improved
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down to τ · Õ(ShortcutQuality(G)) (see Theorem 2.3) and potential future improvements in hop-constrained
oblivious routing constructions might make lead to unconditional τ · Õ(ShortcutQuality(G)) simulations (which
would be near-optimal). The proof of the following simulation theorem is deferred to Appendix A. It implies
many useful concrete bounds for specific graph classes (see Theorem 2.3 for a list).

Theorem 4.1. Any τ -round Minor-Aggregation algorithm on G can be simulated in the (randomized) CONGEST
model on G in τ · poly(ShortcutQuality(G)) · no(1) rounds. More generally, if one can solve PA in τPA rounds,
any τ -round Minor-Aggregation algorithm can be simulated in Õ(τ · τPA) (randomized) CONGEST rounds.

Operating on minors. A particularly appealing feature of the Minor-Aggregation model is that any
algorithm can be run on a minor of the original communication network in a black-box way. The framework
allows the algorithm to be completely unchanged when ran on a minor of a graph rather than on the original
graph. Several aspects of the Minor-Aggregation model make operating on minors possible. For instance, in a
notable difference with CONGEST, nodes in the Minor-Aggregation model do not know a list of their neighbors2.
The following corollary is immediate from the definition.

Corollary 4.1. Let G = (V,E) be an undirected graph, and let F ⊆ E be a subset of edges. Any τ -round
Minor-Aggregation algorithm on a minor G′ = G/F of G can be simulated via a τ -round Minor-Aggregation
algorithm on G. Initially, each edge e ∈ E needs to know whether e ∈ F or not. Upon termination, each node v
in G learns all the information that the G′-supernode v was contained in learned.

An example: MST. The following example illustrates the expressive power and efficiency of the Minor-
Aggregation model framework. We describe an O(log n)-round Minor-Aggregation algorithm for MST. Combining
with the simulation Theorem 4.1 and lower bound Theorem 2.2, this implies a Õ(1)-competitive universally-
optimal distributed algorithm for MST in CONGEST. We note that, on a weighted planar graph, this algorithm
provably completes in HopDiameter(G) ·no(1) CONGEST rounds; similar results exist for many other graphs, see
Theorem 2.3.

Example. [MST] The minimum spanning tree of a weighted graph G can be computed via a O(log n)-round
Minor-Aggregation algorithm on G.

Proof. We can directly implement Boruvka’s algorithm [NMN01]. In each round, every node v finds the minimum
weight mv of an edge incident to it. This is clearly doable in the the Minor-Aggregation model: no contractions
and no consensus are necessary; each edge simply reports its weight to both of its endpoints and the aggregation
operator

⊗
is simply the min operation.

We say that an edge e = {u, v} is marked if its weight is equal to mu or to mv. Each edge can identify
whether it is marked in a single aggregation step (by choosing ys := ms for each node s). Finally, we add all
marked edges to the MST and contract them. We repeat the algorithm on the contracted graph (Corollary 4.1).
After O(log n) iterations, the graph shrinks to a single node and each edge knows whether it is in the MST or
not.

We obtain a Õ(HopDiameter(G))-round CONGEST algorithm for weighted planar graphs by combining the
above O(log n)-round Minor-Aggregation algorithm with the CONGEST simulation Theorem 4.1, which stipulates
that algorithms on planar (or more generally, minor-free) networks can be simulated with a Õ(HopDiameter(G))
overhead.

5 Distributed Computation of the `1-Oblivious Routing

In this section, we show how to distributedly implement Algorithm 3.1 using no(1) Minor-Aggregation rounds. To
this end, we first build a few necessary building blocks in which will simplify the distributed implementation of
our algorithms in the remaining sections. We then proceed to prove Theorem 1.4 in Section 5.2.

2Moreover, it is not hard to see that a model which allows contractions and gives nodes a list of their neighbors cannot be simulated
in CONGEST with o(n) round blowup.
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5.1 Preliminary: distributed storage and basic linear algebra operations It is often easier to describe
algorithms a purely linear-algebraic setting without going into the low-level details of how and where to store
individual values required to specify distributed algorithms. In order to streamline the description of (linear-
algebraic) distributed algorithms we first define the notion of distributed storage for the Minor-Aggregation as
follows.

1. We distributedly store a node vector x ∈ R
V by storing the value xv in the node v ∈ V . Similarly,

given an edge vector x ∈ R
~E we store the value xe in the edge e (we remind the readers that edges are

computational units in the Minor-Aggregation model).

2. We distributedly store a spanning subgraph H ⊆ G (where G is the communication network) by storing
distributedly storing the indicator edge vector xe = 1[e ∈ E(H)].

3. As explained in Section 4, the input to transhipment, namely the weights (edge vector) and the demand d
(node vector), are distributedly stored. Each node v knows its part of the demand d(v). Upon output, we
require the flow f (edge vector) and potential φ (node vector) to be distributedly stored. The specification
is analogous for SSSP: on input, we distributedly store the edge weights and require that all nodes know
the ID of the source s. Upon output, we require the SSSP tree (spanning subgraph) and distances (node
vector) to be distributedly stored.

Furthermore, we verify that the following linear-algebraic graph operations can be evaluated quickly. In the
following suppose a, b are two distributedly stored node or edge vectors.

1. Vector addition and component-wise transforms. Without any extra communication we can compute
and distributedly store (1) the sum vector a+ b, or (2) the vector (f(ai))i, i.e., the vector a with f : R→ R

applied component-wise.

2. Dot products and `p norms. With a single Minor-Aggregation round we can compute and broadcast to
all nodes the value of (1) the dot product aT b, or (2) `p-norm of a vector, i.e., (

∑
i |ai|p)1/p. We show why

for the case of dot products. Suppose a, b are node vectors. Each node v evaluates av · bv and stores it as its
private input xv. We contract all edges of the graph and apply the consensus step with the plus-operator,
which broadcasts the dot product

∑
v∈V av · bv = aT b to all nodes. For the case of edge vectors, we contract

all edges, and perform an aggregation step with the +-operator where each edge e = {a, b} computes ae · be
and sets ze,a = ae · be, ze,b = 0. This informs all nodes about aT b. Computing `p norms is analogous.

3. Multiplication with B and BT . With a single Minor-Aggregation round we can compute and

distributedly store B · a and BT · b, where a ∈ R
~E is an edge vector and b ∈ R

V is a node vector. To
compute B ·a, we leave all edges uncontracted and perform an aggregation step with the +-operator, where
each edge e = {u, v} with orientation ~e = (u, v) sets ze,u = +au and ze,v = −av. Upon completion of the
step, a node w ∈ V learns (B · a)w, as required for distributed storage. To compute BT · b, we perform a
consensus step without any contracted edges with each node v setting yv = xv = bv as its private input.
Each edge ~e = (u, v) learns bu and bv and computes (BT b)e = bu − bv, as required.

4. Multiplication with W . With a single Minor-Aggregation round we can compute and distributedly store

W · a, where a ∈ R
~E is an edge vector. Since for each edge e = (u, v), ae and we are stored at both vertex

u and v, every node u ∈ V learns W · a for all the edges incident to u.

5.2 Distributed evaluation of R and RT In this section we show the following result.

Theorem 5.1. (Distributed oblivious routing evaluation). Let G = (V,E) be a weighted graph with weights in
[1, nO(1)]. There exists an exp(O(log n · log log n)3/4)-approximate `1-oblivious routing R such that we can perform
the following computations in exp(O(log n · log log n)3/4) rounds of Minor-Aggregation. Given any distributedly

stored node vector d ∈ R
V and edge vector c ∈ R

V , we can evaluate and distributedly store Rd ∈ R
~E and RT c ∈ R

V .

The rest of the section is dedicated to proving Theorem 1.4. Inspecting Algorithm 3.1, we require distributed
implementations of a few subroutines. First, we require a way to efficiently sample from the LDD distribution.
To this end, we leverage the following theorem from prior work [HL18].
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Lemma 5.1. [LDD sampling [HL18]] Suppose G is a weighted graph G with weights in [1, nO(1)]. For any
ρ ≥ 1, there exists a distributed algorithm which samples an LDD from a distribution of radius ρ and quality
exp(O(

√
log n · log log n)) in exp(O(

√
log n · log log n)) rounds of Minor-Aggregation.

Upon termination, each node v knows the center node ci of its LDD component Si, and v’s parent edge in the
shortest path tree of G[Si] that is centered at ci.

Proof. Deferred to Appendix A.

In order to compute the flows obtained by routing the demand di−1 using the shortest path trees in each
LDD component, we need to be able to quickly compute subtree sums of rooted trees. This is furnished by the
following result from [DG19, Theorem 5.1, full version].

Lemma 5.2. (Subtree sum [DG19]) Let G = (V,E) be a graph and let F ⊆ G be a collection of node-disjoint
rooted trees (i.e., a rooted forest) that are subgraphs of G. Initially, F is stored distributedly (each edge know
whether e ∈ F and its orientation). Furthermore, each node v has a O(log n)-bit private input xv. There exists a
Õ(1)-round Minor-Aggregation algorithm such that, upon termination, each node v learns both the sum of private
values of all of its descendents and the sum of private values of all of its ancestors.

Lemma 5.3. Suppose an LDD P over a weighted graph G is distributedly stored (in the sense of Lemma 5.1).

There exists a Õ(1)-round Minor-Aggregation algorithm that, given distributedly stored d ∈ R
V and c ∈ R

~E,

evaluates and distributedly stores R(P) · d ∈ R
~E and R(P)T · c ∈ R

V .

Proof. We consider the shortest path trees T1, . . . , Tk for each component of the LDD. To compute R(P) · d,
we need to output (R(P) · d)e = 0 for all non-tree edges. For each tree-edge edge e = {v, u} ∈ E(Ti) where
u is closer to the root of Ti, we output (R(P) · d)e to be the total sum of demands d(w) over all w that are

descendents of v. This number needs to possibly be negated if ~E contains the edge in the opposite orientation
(i.e., if (u, v) ∈ ~E). The correctness of this procedure is immediate. We can directly implement this in Õ(1)
rounds of Minor-Aggregation via Lemma 5.2.

Similarly, to compute R(P)T · c, each node v ∈ V (Ti) needs to compute the sum of c(e) over all edges e (with
some elements possibly negated) on the root-to-v path (in Ti). Again, we can directly implement this in Õ(1)
rounds of Minor-Aggregation via Lemma 5.2.

Finally, we are ready to prove the main theorem of this section.

Proof. [Proof of Theorem 1.4] The exp(O(log n · log log n)3/4)-approximation guarantee of the `1-oblivious routing
constructed by Algorithm 3.1 is ensured by Theorem 3.1.

We examine Algorithm 3.1 and show we can implement each ingredient required for the procedure. Firstly,
we sample and distributedly store all LDDs Pi

j for 1 ≤ i ≤ imax, 1 ≤ j ≤ g. This is provided by Lemma 5.1

in g · imax · exp(
√
log n · log log n) = exp(O(log n · log log n)3/4) rounds of Minor-Aggregation. Furthermore, we

compute and store an arbitrary spanning tree T of G. A simple choice is to use the MST, whose construction can
be computed in Õ(1) rounds of Minor-Aggregation, as stipulated by Section 4.

LetRi =
1
gR(Pi

1)+
1
gR(Pi

2)+. . .+ 1
gR(Pi

g) (Lemma 3.5). We note we can evaluate (and distributedly store)Ri·d
(which we call multiplication from right) and RT

i · c (called multiplication from left) in exp(O(log n · log log n)3/4)
rounds for any distributedly stored vectors c, d. We simply evaluate each term in the sum (when multiplied from
both left and right), and add them together. This contributes Õ(1) · g rounds of communication by utilizing
Lemma 5.3 and basic operations of Section 5.1. Furthermore, we can evaluate and distributedly store (I−BRi) ·d
and (I − BRi) · d for any vector d ∈ R

V in Õ(g) rounds using the basic operations of Section 5.1. Specially, we
define Rimax+1 to be the routing with respect to a spanning tree T . Since routing along T can be seen as routing
along a simple LDD, multiplication of Rimax+1 from left and right in Õ(1) rounds is furnished by Lemma 5.3.

Finally, we remember from Lemma 3.5 that R =
∑imax+1

i=1 Ri · (I −BRi−1) · (I −BRi−2) · . . . · (I −BR1). We

already showed that we can multiply each factor from both left and right in Õ(g) steps, hence we can compute
Rd and RT c in imax

2 · Õ(g) = exp(O(log n · log log n)3/4), as required.
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6 Distributed (1 + ε)-Transshipment

In this section, we present our distributed algorithm for approximating the transshipment problem. The result is
shown in Theorem 1.3, and for the sake of completeness, we restate it below.

Theorem 6.1. (Distributed transshipment). Let G be a weighted graph with weights in [1, nO(1)] and let
ε > 0 be a parameter. There exists an algorithm that computes (1 + ε)-approximate transshipment on G in
ε−2 · exp(O(log n · log log n)3/4) Minor-Aggregation rounds.

We follow Sherman’s framework [She17b] via the multiplicative weights update (MWU) paradigm [AHK12]
based on the construction of efficient `1-oblivious routing presented in the last section, and then give the
round complexity of the implementation in the CONGEST model. Instead of exactly performing Sherman’s
method [She17b], our algorithm does not apply Bourgain’s `1-embedding [Bou85] when constructing the `1-
oblivious routing operator.

Given an `1-oblivious routing, we solve transshipment by utilizing its boosting property: the `1-oblivious
routing yields an no(1)-approximate solution for transshipment, which we can then boosting to an (1 + ε)-
approximate one using multiplicative weights (or gradient descent). This boosting property was implicitly used in
many papers [She17b, BKKL17, Li20, ASZ20], and was explicitly isolated in a recent writeup [Zuz21] that shows
any black-box dual approximate solution can be boosted to an (1 + ε)-approximate one. The following lemma
gives an end-to-end interface to boosting: given an `1-oblivious routing, we can construct (1 + ε)-approximate
solutions to transshipment.

Lemma 6.1. Let R be an α-approximate `1-oblivious routing with respect to a transshipment instance on a
weighted graph G. Suppose we can compute matrix-vector products with R and RT in M Minor-Aggregation

rounds. Then we can compute and distributedly store a flow f ∈ R
~E and a vector of potentials φ in Õ(α2ε−2M)

rounds such that

1. ‖Wf‖1 ≤ (1 + ε)d>φ ≤ (1 + ε) ‖d‖OPT;

2. ‖Bf − d‖OPT ≤ ε ‖d‖OPT;

3.
∥∥W−1BTφ

∥∥
∞ ≤ 1.

Before proving Lemma 6.1, we give the following lemma which returns the rough flow f and potential φ
affected by the input parameter t. The algorithm we simulate is summarized in Algorithm 6.1. In Algorithm 6.1,
MWU is used to determine if one region is approximately feasible. It returns a flow f or a potential φ that satisfy
the two conditions in the following lemma.

Lemma 6.2. (Lemma C.2 in [Li20]) Consider a transshipment instance with demand vector d and a parameter
t ≥ ‖d‖OPT /2. Let R be an α-approximate `1-oblivious routing operator. Suppose we can compute matrix-vector

products with R and RT in M Minor-Aggregation rounds. Then there is an Õ(α2ε−2M)-round Minor-Aggregation
algorithm outputs either

1. an acyclic flow f satisfying ‖Wf‖1 ≤ t and ‖WRBf −WRd‖1 < εt, or

2. a potential φ with d>φ = t.

Proof. We can show an algorithm for the above lemma applying the MWU method [AHK12] for (approximately)
checking the feasibility of the following region

(6.4)

{
y ∈ R

~E

∣∣∣∣
∥∥y>WRBW−1

∥∥
∞ +

1

t
y>WRd ≤ −ε and ‖y‖∞ ≤ 1

}
.

Observe that this problem is tightly connected to the dual convex-programming formulation of the transshipment
problem. Building upon the presentation of Li [Li20], we give a self-contained procedure summarized in
Algorithm 6.1 for checking the feasibility of the region. The correctness of Algorithm 6.1 is proved in [Li20].
Furthermore, one can easily check that all the operations required to implement Algorithm 6.1 in the Minor-
Aggregation model are either matrix-vector multiplications or basic operations presented in Section 5.1.
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Algorithm 6.1. MWU for transshipment using `1-oblivious routing

1. Set δ ← ε/(2α).

2. Set p+0 (e)← 1/(2m) and p−0 (e) = 1/(2m) for all e ∈ E.

3. Set φ+
0 (e) = 1 and φ−

0 (e) = 1 for all e ∈ E.

4. Define χe := (1u − 1v), where e = (u, v) ∈ E, and 1u, 1v are indicator vectors.

5. For t = 1, 2, . . . , T where T = O(α2ε−2 logm):

(a) If
∥∥WRB

∑
e∈E w−1

e (p+t−1(e)χe − p−t−1(e)χe) +
1
tWRd

∥∥
1
≥ ε

i. Set y(t)← −sign
(
WRB

∑
e∈E w−1

e (p+t−1(e)χe − p−t−1(e)χe) +
1
tWRd

)

(b) Otherwise, set f ← −t∑e w
−1
e (p+e χe − p−e χe) and output f .

(c) For each e ∈ E:

i. Set φ+
t (e)← 1

2φ
+
t−1(e) · exp (δ · (y>t WRBw−1

e χe +
1
t y

>
t WRd)).

ii. Set φ−
t (e)← 1

2φ
−
t−1(e) · exp (δ · (−y>t WRBw−1

e χe +
1
t y

>
t WRd)).

(d) For each e ∈ E, set p+t (e)← φ+
t (e)/

∑
e∈E φ+

t (e), p
−
t (e)← φ−

t (e)/
∑

e∈E φ−
t (e).

6. Set x← 1
T ·

∑
i∈[T ] yt.

7. Set φ to be the vector −(x>WR)> scaled up so that φ>d = t.

8. Output φ.

Now we prove Lemma 6.1 based on Lemma 6.2 by doing a careful binary search on the value of t.

Proof. [Proof of Lemma 6.1] We first describe our algorithm. Begin with t = poly(n), which is an upper bound
on ‖d‖OPT. As long as Algorithm 6.1 with parameter t returns a flow f , we decrease the value of t by setting
t← 1+ε

2 t and invoke Algorithm 6.1 with this new value of t. At some point Algorithm 6.1 must return a potential
φ for which ‖d‖OPT ≥ d>φ = t. This means that ‖d‖OPT ∈ (t, 2t) and we can run binary search in this interval to
compute two values t`, tr such that (1) tr− t` ≤ ε ‖d‖OPT and (2) ‖d‖OPT ∈ (t`, tr). Finally, we run Algorithm 6.1
with parameter t = t`/(1 + ε) to obtain potentials φ and then run Algorithm 6.1 with parameter t = tr to obtain
a flow f . The algorithm returns the flow-potential pair (f, φ). The property (3) in Lemma 6.1 can be found in
Claim C.3 of [Li20].

We next give the round complexity. By Lemma 6.2, for each demand vector d and a parameter t, Algorithm 6.1
takes Õ(α2ε−2M) Minor-Aggregation rounds. By the above analysis, the binary search of t takes O(log (n/ε))
times. Since each matrix-vector multiplication takes M Minor-Aggregation rounds, we conclude that the round
complexity of Lemma 6.1 is Õ(α2ε−2M).

Finally, combining Sherman’s transshipment framework with our distributed graph-based `1-oblivious routing,
we can approximate transshipment. To make sure that the demand is satisfied exactly, we select a carefully-chosen
approximation factor within the framework, followed by routing the residual demand via the `1-oblivious routing.

Proof. [Proof of Theorem 1.3] Our algorithm first computes an `1-oblivious routing operator R with approximation
factor α = exp(O(log n log log n)3/4), and then computes an (1 + ε/(2α))-approximate transshipment solution f
and φ based on R. To make sure that demand is satisfied, we use the `1-oblivious routing operator R to route
the residual demand d−Bf to obtain f ′.

We show that flow vector f + f ′ and potential vector φ satisfying the requirement. Since Bf ′ = d− Bf , we
have B(f + f ′) = Bf + d−Bf = d. In addition, we have

‖W (f + f ′)‖1 ≤‖Wf‖1 + ‖Wf ′‖1
≤
(
1 +

ε

2α

)
‖d‖OPT + α‖d−Bf‖OPT

≤
(
1 +

ε

2α

)
‖d‖OPT + α · ε

2α
‖d‖OPT

<(1 + ε)‖d‖OPT.

The round complexity is obtained by our parameter setting, Theorem 1.4, and Lemma 6.1.
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7 Distributed (1 + ε)-SSSP

In this section, we present our distributed algorithm to construct a single source shortest path (SSSP) tree and
prove the following result.

Theorem 7.1. (Distributed SSSP). Given an undirected and weighted graph G with edge weights in [1, nO(1)],
there exists a distributed algorithm that computes (1 + ε)-approximate SSSP in ε−2 · exp(O(log n · log log n)3/4)
Minor-Aggregation rounds.

Our algorithm is obtained by a distributed implementation of a simplified version of the SSSP algorithm
presented in [Li20] and mainly included in this paper for completeness.

We first review the SSSP algorithm of [Li20] in Section 7.1, and then give its distributed implementation in
Section 7.2.

7.1 SSSP Algorithm In [Li20], Li presented an algorithm to construct an approximate SSSP tree given an
algorithm that approximate the transshipment problem. We start by defining the notion of expected single source
shortest path (ESSSP) tree.

Definition 7.1. (Definition D.1 in [Li20]) Given a graph G = (V,E), a source s ∈ V and a demand vector
d ∈ R

V with dv ≥ 0 for each v 6= s, an α-approximate expected SSSP (ESSSP) tree is a tree T such that

E

[
∑

v:dv>0

dv · distT (s, v)
]
≤ α

∑

v:dv>0

dv · distG(s, v),

where distT (s, v) and distG(s, v) denote the distances between s and v in tree T and graph G respectively.

In [Li20], Li gave an algorithm to compute an ESSSP tree with respect to a given graph, a source, and a
demand vector. The algorithm is summarized in Algorithm 7.1. On a high level, the ESSSP algorithm first
obtains a flow vector, that is an approximate transshipment solution for the given graph and demand vector, and
then samples an outgoing edge (with respect to the flow vector) for each vertex with probability proportional
to the outgoing flow value. If the flow vector is acyclic, then the sampled edges form a ESSSP tree. But if the
flow vector contains some directed cycles, then the sampled edges form some connected components such that
each connected component contains exactly one directed cycle. For this case, the algorithm iteratively contracts
connected components of the sampled graph in the input graph, and recurses on the new graph until the result
is a directed tree. In the end, the algorithm uses sampled edges in all the recursions to construct an ESSSP tree.
The correctness of Algorithm 7.1 is proved in Claim D.8 of [Li20].

Lemma 7.1. (Correctness of ESSSP, Claim D.8, [Li20]) Given a graph G = (V,E), a source s ∈ V , a
demand vector d ∈ R

V with dv ≥ 0 for each v 6= s, and a parameter ε, Algorithm 7.1 computes an (1 + ε)-
approximate ESSSP tree T . Furthermore, the recursion depth of the algorithm is O(log n).

Algorithm 7.1. ESSSP(G = (V,E,w), s, d, ε) (Algorithm 4 of [Li20], restated)

1. Set ε′ = cε/ log n for some constant c, and compute the flow f and the potential φ of an (1+ε′)-approximate
transshipment on G with demand vector d.

2. Each vertex u ∈ V \ {s} samples an edge (u, v) such that f(u, v) > 0 with probability
f(u, v)/

∑
f(u,v)>0 f(u, v). LetH be the directed graph consisting of the sampled edges and directed self-loop

(s, s).

3. For each connected component C of H (ignoring edge directions when computing connected components):

(a) Let w(C) be the total weights of the edges in the (unique) cycle in C.

(b) Let TC be the graph formed by contracting the (unique) cycle in C into a supervertex xC .

(c) Let vC be a supervertex for C with demand d′vC
←∑

v∈V (C) dv.

4. For each edge (u, v) ∈ E:
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(a) Let C and C ′ be the connected components of H containing u and v respectively.

(b) If C 6= C ′:

i. e′ ← (u, v).

ii. w′(u, v)← w(u, v) + distTC
(u, xC) + distTC′

(v, xC′) + w(C) + w(C ′).

5. Let s′ ← vCs
, where Cs is the component in H containing s.

6. Denote graph G′ = (V ′, E′, w′) with V ′ = {vC} and E′ = {e′}, where C is the component in H.

7. T ′ ← ESSSP(G′, s′, d′, (1 + ε)/(1 + 3ε′)− 1).

8. Initialize T ← ∅.

9. For each edge (u, v) ∈ T ′:

(a) T ← T ∪ (u, v).

10. For each connected component C of H:

(a) Remove an arbitrary edge from the (unique) cycle in C and merge the resulting tree with T .

11. Output T .

Converting ESSSP to an SSSP tree. The SSSP construction algorithm is summarized in Algorithm 7.2
(SSSP), which is simplified version of Algorithm 6 from [Li20]. On a high level, the algorithm tries to finds
an (1 + ε)-ESSSP tree T ∗, which can be shown to provide a (1 + ε)-approximate path to at least half of the
nodes (appropriately weighted). We can identify which half of the nodes the path induces via the transshipment
potentials φ. When a good path to a node v is found, we can remove v from the target set of nodes V ′ (which
initially starts with V ′ ← V ) and start a new iteration with a smaller V ′.

This procedure intuitively produces O(log n) trees such that for each node v at least one tree offers an (1+ε)-
optimal s-to-v path. There is a simple “trick” to obtain a single tree that is good with respect to all nodes
(described in [HL18], Algorithm ExpectedSPDistance and proven in Lemma 14): each node keeps track of its
parent pointer p(v). If a new tree T ∗ offers a better path to v than previously known, we reassign p(v) to point
to the parent of v in T ∗.

Algorithm 7.2 (SSSP) is a simplified version [Li20, Algorithm 6], due to the fact that we do not require an
`1-embedding to solve a transshipment instance. The correctness of Lemma 7.2 follows from Claim E.1 and Claim
E.2 in [Li20].

Lemma 7.2. (Correctness of SSSP, Claim E.1 and Claim E.2, [Li20]) Given a graph G = (V,E), a
source s ∈ V , and a parameter ε, Algorithm 7.2 computes an (1+ ε)-approximate SSSP tree T . Furthermore, the
number of iterations of the while loop is O(log n) with high probability.

Algorithm 7.2. (h) 1. Initialize V ′ ← V \ {s}, potential vector φ ← ~0, and parent pointers p : V → V
initially p(v)← v.

2. While V ′ 6= ∅:

(a) Let d←∑
v∈V ′(1v − 1s).

(b) Obtain a (1 + ε
10 )-apx flow-potential pair (f∗, φ∗) for transshipment.

(c) Obtain T ∗ ← ESSSP(G, s, d,Θ(ε/ log n)).

(d) Root T ∗ at s and compute distances distT∗(s, v) for all v.

(e) Let T = (V, {(v, p(v))}v) be the tree defined by parent pointers p.

(f) Compute the distances distT (s, v) for all v (with weights w).

(g) For each vertex v ∈ V :

i. If distT∗(s, v) ≤ distT (s, v):
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A. set p(v)← parent of v in T ∗.

ii. φ(v)← max{φ∗(v), φ(v)} where φ∗ is translated so that φ∗(s) = 0.

iii. If distT (s, v) ≤ (1 + ε)φ(v):

A. V ′ ← V ′ \ {v}.
3. Output tree T = (V, {(v, p(v))}v) defined by parent pointers p.

7.2 Distributed implementation of SSSP We give our distributed implementation of Algorithm 7.2 (SSSP),
and prove Theorem 1.2. We start with some useful subroutines that follow from prior work [DG19]. The following
lemma roots (i.e., orients the edges) given an unrooted forest and roots for each connected component.

Lemma 7.3. (Rooting a tree, [DG19]) Let G be a graph, and G′ ⊆ G be a distributedly stored undirected
forest and suppose that in each connected component all nodes agree on a (so-called) root node. There is a Õ(1)-
round Minor-Aggregation algorithm to root the each tree in G′ at its root (i.e., each edge computes its direction
towards its component’s root), and to compute the distances between any vertex and its root in G′.

Proof. Note that we can assume without loss of generality that G′ is a tree (i.e., there is a single connected
component) since we can independently run algorithms on different connected components. Connected
components can be easily identified via a single round by contracting all edges and using min-aggregation.

To root a single tree we utilize Theorem 5.3 in the full version of [DG19] (which can be reinterpreted as
constructing a heavy-light decomposition in Õ(1) rounds of Minor-Aggregation). We only use the fact that, upon
exit, each edge learns the orientations towards the root. Computing the distance to the root is performed via
Lemma 5.2.

We give a distributed algorithm to find all the directed cycles in a directed minor of the communication
network if every vertex in the minor has one outgoing edge. The algorithm is summarized in Algorithm 7.3.

The algorithm iteratively samples vertices with constant probability, and contracts other vertices to the
sampled vertices until a cycle can be easily identified. Then the algorithm backtracks the identified cycle through
the contraction process.

Algorithm 7.3. FindCycles(G′ = (V,E)) where G′ is a directed graph where each node has one outgoing edge

1. Find all the connected components of G′ (ignoring edge directions only in this step).

2. For each connected component C of G′, if C contains a self-loop, then return the self-loop, otherwise

(a) Let i be 0 and C0 be C. Every vertex in Ci samples itself with probability 1/10.

(b) Repeat until there is a sampled vertex v in Ci such that the walk from v along outgoing edges finds a
cycle before visits another sampled vertex.

i. For each directed edge e = (u, v) of Ci such that u is sampled and v is not sampled, set ce = ⊥.
Set ce = > for all the other edges.

ii. Set Ci+1 = Ci/{e : ce = >}, and i = i+ 1.

iii. Every vertex in Ci samples itself with probability 1/10.

(c) Let v be an arbitrary vertex whose walk finds a cycle along outgoing edges, and Ei be the edges of the
cycle obtained from the walk from v.

(d) For j = i− 1 down to 0

i. Let Ej be Ej+1’s corresponding edges in Cj , and Vj be the endpoints of Ej in Cj .

ii. For each vertex of Cj+1 which corresponds to an induced subgraph of Cj that contains two vertices
u, v of Vj , add the edges on the directed path between u and v in Cj to Ej .

(e) Return E0.

Lemma 7.4. (Finding cycles) Let G be a graph, and G′ ⊆ G be a distributedly stored directed subgraph (each
edge knows whether e ∈ E(G′) and its direction) such that every vertex of G′ has one outgoing edge (the outgoing
edge can be a self-loop). There is an Õ(1) round Minor-Aggregation algorithm to find all the directed cycles in G′

(i.e., every vertex learns the incident edges belonging to a cycle of G′).
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Proof. We first show that Algorithm 7.3 finds all the directed cycles in G′. Since every vertex has one outgoing
edge, every connected component of G′ identified in Step 1 contains exactly one cycle. For each connected
component C of G′, Ci is a contracted graph of Ci−1, and thus for each i, Ci is a directed minor of G′ such that
each vertex has one outgoing edge, and Ci only contains a cycle. Note that Ej forms a cycle of Cj by induction.
The algorithm outputs the directed cycle for each connected component found in Step 1.

Now we show that Algorithm 7.3 can be implemented in Õ(1) Minor-Aggregation rounds. Finding all the
connected components of G′ and identifying the connected components with a self-loop can be done in a single
round by contracting all edges and doing a min-aggregation to find the minimum ID in the component. By the
Chernoff bound, for any Ci, each directed path of length O(log n) contains a sampled vertex with probability
1−O(1/n10). By the union bound, with probability at least 1−O(1/n), for each Ci, each walk on Ci either finds
a cycle or hits a sampled vertex after O(log n) steps of the walk. Note that if two walks visit the same vertex,
then their following walks are the same. Hence, if a vertex is visited by different walks, we only keep the walk
initiated by the vertex with the smallest ID. Thus, one can determine if there is a walk from a sampled vertex
finding a cycle before hitting another sampled vertex in O(log n) Minor-Aggregation rounds, and return such a
sampled vertex if exists.

By Corollary 4.1, the vertex sampling and the minor construction can be implemented in O(1) rounds, and
thus Step 2(a) can be implemented in O(1) rounds. Step 2(b) can be implemented in Õ(1) rounds using the
observation that every iteration of Step 2(b) reduces the number of vertices in the connected component by a
constant factor with constant probability. Step 2(c) also can be implemented in O(log n) rounds by walking for
O(log n) steps along the outgoing edges from a given vertex.

Note that for any j ≥ 1, a vertex of Cj belongs to Vj if and only if the corresponding induced subgraph of
Cj−1 contains two vertices of Vj−1. For each induced subgraph of Cj−1 that corresponds to a vertex of Cj , it
takes O(1) rounds to identify the vertices in Vj−1, and another O(1) rounds to identify the path connecting the
two vertices in Vj−1 by Lemma 5.2. Hence Step 2(d) can be simulated in O(log n) rounds.

Now we are ready to show that Algorithm 7.1 can be implemented in an efficient distributed manner.
Roughly speaking, besides obtaining the solution to the transshipment problem, each step of Algorithm 7.1
can be implemented in polylogarithmic number of rounds. Together with the round complexity of approximating
transshipment (Theorem 1.3) and the fact that Algorithm 7.1 has a recursion depth O(log n) (Lemma 7.1), we
obtain the following lemma.

Lemma 7.5. (Round complexity of ESSSP) Suppose G = (V,E,w) is a weighted graph, s ∈ V is a
distinguished node, d ∈ R

V is a demand vector satisfying ds ≥ 0 and dv ≤ 0, and ε > 0 is a parameter.
There exists a distributed implementation of Algorithm 7.1 which outputs an (1 + ε)-approximate ESSSP in
ε−2 · exp(O(log n · log log n)3/4) rounds of Minor-Aggregations.

Proof. Let G0 = (V0, E0) be the initial input graph of Algorithm 7.1, and Gi = (Vi, Ei) be the input graph of i-th
recursion for i > 0. Note that G0 is the same as G, and each Gi is a minor of G0. Hence, all the Gi are minors of
G. Throughout our implementation, for each Gi, we maintain a rooted forest Fi on G such that for each vertex
u of Gi, there is a tree of Fi corresponding to a spanning tree of u’s corresponding induced subgraph in G. Since
each vertex of G0 is a vertex of G, F0 only contains isolated vertices.

We analyze the round complexity to implement Algorithm 7.1 (ESSSP) with respect to input graph Gi. By
Theorem 1.4, Corollary 4.1 and Lemma 6.1, Line 1 can be implemented in ε−2 exp(O(log n · log log n)3/4) rounds.

Now we show that Line 2 can be implemented in O(1) rounds for each Gi. First, for each vertex u′ in G,
letting u denote the vertex of Gi whose corresponding induced subgraph in G consisting u′, we compute

fi(u
′)

def
=

∑

v∈Vi:f(u,v)>0 and (u, v) corresponds to an edge of G incident to u′

f(u, v)

in O(1) rounds. Second, we compute

gi(u
′)

def
=

∑

v′∈V :v′ is a descendant of u′ in Fi

fi(v
′)

in O(1) rounds by Lemma 5.2. Third, each vertex u′ of G samples a child v′ in Fi with probability proportional
to gi(v

′)/gi(u
′), and no edge with probability fi(u

′)/gi(u
′) in O(1) rounds. Forth, for each tree of Fi, we identify
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the vertex where the walk from the root along edges sampled in third step stops. For each tree T in Fi, each
vertex u′ in T is sampled with probability fi(u

′)/
∑

v′∈T fi(v
′). And this step can be simulated in O(1) rounds

by Lemma 5.2. At the end, in O(1) rounds, each vertex u′ of G identified in the last step samples an edge
(u, v) with probability proportional to f(u, v) among all the edges with positive flow value and corresponding to
edges incident to u′. Since each vertex u of Gi, edge (u, v) with positive flow value is sampled with probability
proportional to f(u, v). Hence, Line 2 of Algorithm 7.1 can be implemented in O(1) rounds.

Let Hi be the graph constructed in Line 2 of i-th recursion for i > 0. The connected components of Hi can
be identified in a single round by contracting all edges and doing a min-aggregation, and the directed cycles of Hi

can be found in Õ(1) rounds by Corollary 4.1 and Lemma 7.4. Line 3 to 12 be implemented in O(1) rounds by
Corollary 4.1 and Lemma 5.2. The construction of Gi+1 can be done in O(1) rounds by Corollary 4.1. The edges
of Fi+1 can obtained by removing an arbitrary edge for each cycle in Hi, and taking the union with Fi, which
can be simulated in O(1) rounds. By Corollary 4.1 and Lemma 7.3, the edge directions of Fi+1 can be obtained
in Õ(1) rounds. Line 15 to 19 can also be implemented in O(1) rounds.

Hence, besides the recursion, Algorithm 7.1 on each input graph Gi takes ε−2 exp(O(log n · log log n)3/4)
rounds. Since the recursion depth of Algorithm 7.1 is O(log n) by Lemma 7.1, Algorithm 7.1 can be implemented
in ε−2 exp(O(log n · log log n)3/4) Minor-Aggregation rounds.

Now we give the distributed implementation of Algorithm 7.2 (SSSP) and prove the main result of this section.

Theorem 7.2. (Distributed SSSP). Given an undirected and weighted graph G with edge weights in [1, nO(1)],
there exists a distributed algorithm that computes (1 + ε)-approximate SSSP in ε−2 · exp(O(log n · log log n)3/4)
Minor-Aggregation rounds.

Proof. By Lemma 7.2, Algorithm 7.2 outputs an SSSP with appropriate guarantees. In this proof, we show that
Algorithm 7.2 can be simulated in ε−2 · exp(O(log n · log log n)3/4) Minor-Aggregation rounds.

Note that the while loop on lines 2–14 executes O(log n) w.h.p. (Lemma 7.2), hence it is sufficient to bound
the complexity of a single iteration of the loop. Line 4 can be implemented in ε−2 · exp(O(log n · log log n)3/4)
rounds via Theorem 1.3. Line 5 has the same round complexity via Lemma 7.5. Lines 6–8 are implemented in Õ(1)
rounds via Corollary 4.1 and Lemma 7.3. Other operations are trivially implementable in the Minor-Aggregation
model.
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A Deferred proofs

Theorem A.1. Any τ -round Minor-Aggregation algorithm on G can be simulated in the (randomized) CONGEST
model on G in τ · poly(ShortcutQuality(G)) · no(1) rounds. More generally, if one can solve PA in τPA rounds,
any τ -round Minor-Aggregation algorithm can be simulated in Õ(τ · τPA) (randomized) CONGEST rounds.

Proof. The computation of an edge e = {u, v} in the Minor-Aggregation model is simulated by both of its
endpoints (they will always agree on the state of the edge). Naturally, the computation of a node in Minor-
Aggregation model is simulated by the node itself in CONGEST. It is sufficient to show that we can simulate a
single round of the Minor-Aggregation model in Õ(τPA) rounds of the CONGEST model.

Leader election in each supernode. We directly follow the argument laid out in [GH16]. Initially, each
node starts as its own cluster. In subsequent iterations, we grow the clusters until the set of clusters matches
the set of supernodes (i.e., there are no outgoing contracted edges from each cluster). Every node in each cluster
C ⊆ V maintains the minimum ID of the node in C, a node which we call the “leader” of C.

We merge clusters together over contracted edges (i.e., e ∈ E with ce = >). We do this by restricting the
merges to be star shaped in the following way. The leader of each cluster C throws a fair random coin and labels
itself “heads” or “tails”. This information is then propagated (via solving a PA task) to all nodes in C in Õ(τPA)
rounds—following Definition 2.1, the leader sets its private input to be 1 or 0 (corresponding to heads/tails), the
aggregate operation is max, each node uses the leader’s ID as their part ID.

Each tails cluster C chooses an arbitrary edge connecting it to a heads cluster: (1) each node sends its leader
ID to all neighbors, (2) each node sets its private input to be an arbitrary incident edge satisfying the condition
(or ⊥ if none), (3) solving a PA task inside each cluster we choose an arbitrary (e.g., one with minimal ID) such
edge and inform each node in C about the leader ID of the chosen heads cluster. Each node inside a tails cluster
which has found a neighboring tails cluster takes over the part ID of the heads cluster.

Consider a cluster C that has an incident contracted edge e (whose endpoints are in clusters C and D). With
probability at least 1/4, if C is tails and D is heads, the cluster C will dissapear (be merged into D). Therefore,
using a standard argument, after O(log n) iterations, the clusters will exactly match the supernodes with high
probability.

Contraction + Consensus step. First, we elect a leader in each supernode. In other words, each node v in
a supernode s ∈ V ′ agrees on some unique ID of that supernode. Then solving the distributed PA task with the
leader’s ID as the part ID, we can directly inform each node v ∈ s of the aggregate

⊕
v∈s xv in τPA CONGEST

rounds (Definition 2.1).
Aggregation step. Suppose that, after performing the consensus step, each node v ∈ s is informed about

ys and v’s supernode ID which we denote as ID(s). Each node v ∈ s sends ID(s) and ys to all v’s neighbors.
Consider an edge {a, b} = e ∈ E and suppose they are in supernodes a ∈ sa, b ∈ sb. Both endpoints can (equally)
simulate the computation on edge e: assuming sa 6= sb, e corresponds to an edge e ∈ E′, in which case a and b
compute ze,sa and ze,sb . Now, each node v ∈ s can compute the aggregate

⊗
e ze,s over all edges e incident to v.

Solving the distributed PA task, for each supernode s we can compute the final aggregate
⊕

e∈incidentEdges(s) ze,s
and inform all v ∈ s of this value.

Lemma 5.1. [LDD sampling [HL18]] Suppose G is a weighted graph G with weights in [1, nO(1)]. For any
ρ ≥ 1, there exists a distributed algorithm which samples an LDD from a distribution of radius ρ and quality
exp(O(

√
log n · log log n)) in exp(O(

√
log n · log log n)) rounds of Minor-Aggregation.

Upon termination, each node v knows the center node ci of its LDD component Si, and v’s parent edge in the
shortest path tree of G[Si] that is centered at ci.

Proof. The algorithm is presented in [HL18], in Section 2, Algorithm LDDSubroutine and Algorithm Expected-
SPForest. In order to avoid recreating large parts of [HL18], we will assume and reuse the notation of that paper
in this proof.

First, we observe that LDDSubroutine can be implemented in the Minor-Aggregation model. LDDSubroutine
consists of (1) contracting 0-weighted nodes, and (2) performing multiple steps of ball-growing, where in each
step each supernode becomes active if an neighboring supernode was active in the previous step. Contractions
can be clearly performed via Corollary 4.1. Ball-growing can also be simulated in the Minor-Aggregation model:
each edge between supernode where one side is active and the other one is not will inform the inactive side to
become active. Second, we also observe that ExpectedSPForest can be implemented using Minor-Aggregations in
a trivial way since it simply calls LDDSubroutine multiple times.
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By reinterpreting Lemma 13, the result guarantees an LDD of quality 1
βn

O(log logn)/ log(1/β), and it runs in

Õ( 1β ) Minor-Aggregation rounds. Choosing β = exp(−O(
√
log n · log log n)), we obtain the stated result.

Specifically, we run the Algorithm ExpectedSPForest while ρ(t) = (O(logn)
β )t is bounded by our desired radius

ρtarget. In each step we find an LDD of radius O(logn)
β and quality O(log n); contract the components, increase

non-contracted edges by O(logn)
β (so that the distance nodes in different components never decreases), and repeat

the process on the contracted graph (one can operate on the contracted graph Corollary 4.1). The returned
decomposition is the one obtained in the final step of the process. This makes the radius property trivial since the
final radius is at most ρ(t) ≤ ρ, where t ≤ √log n is the number of iterations performed. The quality property is
proven as follows. Let Gi be the contracted graph in step i. Consider some nodes x, y. They are separated in the
final components if they are separated at every step along the way. In the penultimate step t − 1, the expected
distance between them is E[dGt−1(x, y)] ≤ O(log n)t−1dG(x, y) (Lemma 12). Therefore, the probability of them

being cut in the final step is at most E[
dGt−1

(x,y)

ρ(t) ·O(log n)] ≤ E[dGt−1
(x,y)]

ρ(t) ·O(log n) ≤ dG(x,y)·O(logn)t−1

ρ(t) ·O(log n) =
dG(x,y)

ρ(t) · O(log n)t ≤ dG(x,y)
ρ · O(logn)

β · O(log n)t ≤ dG(x,y)
ρ · exp(O(

√
log n · log log n)). Therefore, by definition of

quality, it is at most exp(O(
√
log n · log log n)).
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