2209.11669v1 [cs.DS] 23 Sep 2022

arxiv

Improved Distributed Network Decomposition,
Hitting Sets, and Spanners, via Derandomization

Mohsen Ghaffari Christoph Grunau Bernhard Haeupler
MIT ETH Zurich ETH Zurich and CMU
ghaffari@mit.edu cgrunau@inf.ethz.ch bernhard.haeupler@inf.ethz.ch
Saeed Ilchi Véclav Rozhon
ETH Zurich ETH Zurich
saeed.ilchi@inf.ethz.ch rozhonv@inf.ethz.ch
Abstract

This paper presents significantly improved deterministic algorithms for some of the key problems in
the area of distributed graph algorithms, including network decomposition, hitting sets, and spanners.
As the main ingredient in these results, we develop novel randomized distributed algorithms that we
can analyze using only pairwise independence, and we can thus derandomize efficiently. As our most
prominent end-result, we obtain a deterministic construction for O(logn)-color O(logn - logloglog n)-
strong diameter network decomposition in 5(10g3 n) rounds. This is the first construction that achieves
almost logn in both parameters, and it improves on a recent line of exciting progress on deterministic
distributed network decompositions [Rozhoni, Ghaffari STOC’20; Ghaffari, Grunau, Rozhon SODA’21;
Chang, Ghaffari PODC’21; Elkin, Haeupler, Rozhon, Grunau FOCS’22].

Contents

1

Introduction 1
1.1 Network Decomposition 1
1.2 Hitting Set L e 3
Preliminaries 5
Improved Network Decomposition, Outline 5
Low-Degree Clustering 7
4.1 Computing Delays e 10
4.2 Algorithm A; ; via Local Derandomization 16
From Low-Degree Clusters to Isolated Clusters 18
Clustering More Nodes 21
Hitting Set 23
7.1 Problem Definition 23
7.2 Tterative Sampling e 24
7.3 Implementation L e 26
Applications of Hitting Set 28
8.1 Spanners. e e e 29

8.2 Approximate Distance Oracles 30

1 Introduction

This paper is centered on the area of distributed graph algorithms and provides new methods and tools for
developing improved deterministic distributed algorithms.

It has been a central, well-known, and well-studied theme in this area that, for many of the graph
problems of interest, known randomized algorithms outperform their deterministic counterparts. Concretely,
the randomized variants have been much faster and/or achieved better output properties, e.g., approximation
factors. As a prominent example, for several of the key problems of interest—including maximal independent
set, maximal matching, A + 1 vertex coloring—we have known O(logn) round randomized algorithms since
the 1986 work of Luby [Lub86]. In contrast, developing even poly(logn)-time deterministic algorithms
for many of these problems remained open for nearly four decades. See for instance the 2013 book of
Barenboim and Elkin [BE13] which lists numerous such open questions. Only very recently, poly(logn)-
time deterministic algorithms for these problems were developed [RG20, GGR21, CG21, GK21, EHRG22|.
However, currently, these deterministic algorithms are still quite far from their randomized counterparts.

In this paper, we focus on two of the most central tools in developing deterministic algorithms for lo-
cal graph problems, namely network decompositions and hitting sets, and we present significantly improved
deterministic distributed constructions of these tools. From a technical perspective, our novelty is in de-
veloping new randomized algorithms for these tools in such a way that we can analyze the algorithm by
assuming only pairwise independence in the randomness it uses. We then describe how one can leverage this
to derandomize the algorithms, i.e., to transform the randomized algorithm into an efficient deterministic
algorithm. We next review the model and then state our contributions in the context of the recent progress.

Model. We work with the standard distributed message-passing model for graph algorithms [Pel00]. The
network is abstracted as an n-node graph G = (V, E) where each node v € V' corresponds to one processor
in the network. Communications take place in synchronous rounds. Per round, each processor/node can
send an O(logn)-bit message to each of its neighbors in G. This model is called CONGEST. The relaxed
variant of the model where we allow unbounded message sizes is called LOCAL. At the end of the round,
each processor/node performs some computations on the data that it holds, before we proceed to the next
communication round.

A graph problem in this model is captured as follows: Initially, the network topology is not known to the
nodes of the graph, except that each node v € V knows its own unique O(logn)-bit identifier and perhaps
some of the global parameters of the network, e.g., the number n of nodes in the network or a suitably tight
upper bound on it. At the end of the computation, each node should know its own part of the output, e.g.,
in the graph coloring problem, each node should know its own color. When we discuss a particular graph
problem, we will specify what part of the output should be known by each node.

1.1 Network Decomposition

Perhaps the most central object in the study of deterministic distributed algorithms for local graph problems
has been the concept of network decomposition, which was introduced by Awerbuch, Luby, Goldberg, and
Plotkin [AGLP89]. We next define this concept and explain its usefulness. Then, we discuss its existence
and randomized distributed constructions. Afterward, we review the deterministic distributed constructions,
especially the recent breakthroughs, and state our contributions.

Generally, the vertices of any n-node network can be colored using O(logn) colors such that in the sub-
graph induced by each color, each connected component has diameter O(logn). We call this an O(log n)-color
O(log n)-diameter network decomposition (or sometimes O(log n)-color O(log n)-strong-diameter network de-
composition, to contrast it with a weaker variant which we discuss later). This decomposition enables us to
think of the entire graph as a collection of O(log n) node-disjoint graphs, each of which has a small O(logn)-
diameter per component; the latter facilitates distributed coordination and computation in the component.
As a prototypical example, given such a network decomposition, one easily gets an O(log2 n)-round deter-
ministic algorithm for maximal independent set in the LOCAL model: we process the color classes one by one,
and per color, in each O(logn)-diameter component, we add to the output a maximal independent set of the
nodes of the component that do not have a neighbor in the independent sets computed in the previous colors.
Each color is processed in O(logn) rounds, as that is the component diameter, and thus the overall process

takes O(log®n) rounds. See [RG20, GKM17, GHK18] for how network decomposition leads to a general
derandomization method in the LOCAL model, which transforms any poly(log n)-time randomized algorithm
for any locally checkable problem [NS95] (roughly speaking, problems in which any proposed solution can be
checked deterministically in poly(logn)-time, e.g., coloring, maximal independent set, maximal matching)
into a poly(log n)-time deterministic algorithm.

The existence of such a O(logn)-color O(log n)-diameter network decomposition follows by a simple ball-
growing process [AP90]. We build the colors one by one, and each time, we color at least half of the remaining
nodes with the next color. For one color 7, start from an arbitrary node and grow its ball hop by hop, so long
as the size is increasing by at least a 2 factor per hop. This stops in at most O(logn) hops. Once stopped,
color the inside of the ball with the current color ¢, and remove the boundary nodes, deferring them to the
next colors. If we continue doing this from nodes that remain in the graph, in the end, at least half of the
nodes of the graph (which remained after colors 1 to i — 1) are colored in this color 4, each carved ball has
diameter O(logn), and different balls are non-adjacent as we remove their boundaries.

Linial and Saks [Lin92] gave a randomized distributed algorithm that computes almost such a network
decomposition in O(log2 n) rounds of the CONGEST model. The only weakness was in the diameter guaran-
tee: the vertices of each color are partitioned into non-adjacent clusters so that per cluster, every two vertices
of this cluster have a distance of at most O(logn) in the original graph. This is what we call O(logn) weak-
diameter. In contrast, if the distance was measured in the subgraph induced by the nodes of this color, it
is called a strong-diameter. A O(log®n)-round CONGEST -model randomized algorithm for O(log n)-color
O(log n)-strong-diameter network decomposition was provided much later, by Elkin and Neiman [EN16],
building on a parallel algorithm of Miller, Peng, and Xu [MPX13].

In contrast, even after significant recent breakthroughs, deterministic constructions for network decompo-
sition are still far from achieving similar measures, and this suboptimality spreads to essentially all applica-
tions of network decomposition in deterministic algorithms. The original work of Awerbuch et al. [AGLP89]
gave a T-round deterministic LOCAL algorithm for c-color and d-strong-diameter network decomposition
where ¢ = d = T = 20(Vlognloglogn) Al these bounds were improved to ¢ = d = T = 20Wlgn) py
Panconesi and Srinivasan [PS92]. A transformation of Awerbuch et al. [ABCP96] in the LOCAL model can
transform these into a O(logn)-color O(log n)-strong-diameter network decomposition, but the time com-
plexity remains 20(V1°87) and this remained the state of the art for over nearly three decades.

Rozhon and Ghaffari [RG20] gave the first poly(logn) time deterministic network decomposition with
poly(log n) parameters. Concretely, their algorithm computes a O(log n)-color O(log3 n)-weak-diameter net-
work decomposition in O(log8 n) rounds of the CONGEST model. The construction was improved to a
O(log n)-color O(log? n)-weak-diameter network decomposition in O(log® n) rounds of the CONGEST model,
by Grunau, Ghaffari, and Rozhoni [GGR21]. Both of these constructions were limited to only a weak-diameter
guarantee. If one moves to the relaxed LOCAL model with unbounded message sizes, then by combining these
with a known transformation of Awerbuch et al. [ABCP96], one gets O(logn)-color O(log n)-strong-diameter
network decompositions, in a time complexity that is slower by a few logarithmic factors. However, such a
transformation was not known for the CONGEST model, until a recent work of Chang and Ghaffari [CG21].
They gave a CONGEST -model reduction, which can transform the weak-diameter construction algorithm of
Grunau et al. [GGR21] into a strong-diameter one, sacrificing some extra logarithmic factors. Concretely,
they achieved a O(logn)-color O(log® n)-strong-diameter decomposition in O(log™* n) rounds. The time
complexity of decomposition with these parameters was improved very recently by Elkin et al. [EHRG22|,
obtaining a O(log n)-color O(log? n)-strong-diameter decomposition in O(log® n) rounds.

However, all these constructions are still far from building the arguably right object, i.e., an O(logn)-
color O(log n)-strong-diameter decomposition, in the CONGEST model. This was true even if we significantly
relax the time complexity, and as mentioned before, this sub-optimality spreads to all applications.

Our contribution. In this paper, we present a novel deterministic construction of network decomposi-
tion which builds almost the right object, achieving an O(logn)-color O(logn - loglog log n)-strong-diameter
decomposition, in poly(logn) rounds. We note that all previous construction techniques seem to require
diameter at least Q(log® n); see [CG21] for an informal discussion on this. Our algorithm breaks this barrier
and reaches diameter O(logn - logloglogn). The key novelty is in designing a new randomized algorithm
that can be analyzed using only pairwise independence. We can thus derandomize this algorithm efficiently
by using previously known network decompositions in a black-box manner, and in poly(logn) time.

Furthermore, if we want faster algorithms, by a black-box combination of our new construction with
the technically-independent recent work of Faour, Ghaffari, Grunau, Kuhn, and Rozhoni [FGG22| on lo-
cally derandomizing pairwise-analyzed randomized algorithms (roughly speaking, their approach works by a
specialized weighted defective coloring, instead of using network decompositions), our construction becomes
much faster than all the previous constructions, and therefore provides the new state-of-the-art:

Theorem 1.1. There is a deterministic algorithm that, in any n-node network, computes an O(logn)-
color O(log n-loglog log n)-strong-diameter decomposition in O(log® n) rounds' of the CONGEST model. The
algorithm performs O(m) computations in total, where m denotes the number of edges.

1.2 Hitting Set

While network decomposition is a generic tool for derandomization in the LOCAL model, and also a key tool
for derandomization in the CONGEST model with extensive applications, a more basic tool that captures the
usage of randomness in a range of distributed algorithms is hitting set, as we describe next.

The Hitting Set Problem (basic case). Given a collection of “large” sets in a ground set of elements,
randomness gives us a very simple way of selecting a “small” portion of the elements such that we have at
least one member of each set. The most basic variant is this: consider a bipartite graph G = (AUB, E) where
each node on one side A has degree at least k. By using randomness, we can easily define a small subset
B’ C B which, with high probability, has size O(| B|logn/k) and hits/dominates A, that is, each node a € A
has a neighbor in B’. For that, simply include each element of B in B’ with probability p = O(logn/k). This
randomized selection in fact works in zero rounds. Finding such a small subset B’ in a deterministic manner
is a key challenge in designing efficient deterministic distributed algorithms for many problems. For instance,
Ghaffari and Kuhn [GK18] pointed out that this is the only use of randomness in some classic randomized
algorithms for the construction of spanners and approximations of set cover. Indeed, a variant of this hitting
set problem is a key ingredient even in our construction of the network decompositions mentioned above.

The Hitting Set Problem (general case). Generalizing the problem allows us to capture a much wider
range of applications. In some applications, we need to consider different sizes of the sets. Furthermore, we
may not need to hit all sets, but instead, we would like to minimize the number, or the total cost, of those
not hit. Following the bipartite graph terminology mentioned above, suppose each node a € A has a cost c¢q,
and its degree is denoted by d,. Randomized selection with probability p picks a subset B’ C B of size p|B|,
in expectation, where the total cost of A-nodes that do not have a neighbor in B is) 4 ca(1l — p)des(a)
in expectation. As a side comment, we note that in all applications that we are aware of, we may assume
that ¢, € [1,poly(n)]. Because of this, essentially without loss of generality, we can assume that for each
node a € A we have deg(a) < O(+ -logn). This is because the total expected cost of higher degree nodes is
1/poly(n), which is negligible.

As an instructive example application, by defining ¢, := deg(a), we get that the total number of edges
incident on A-nodes that are not hit is at most O(|A|/p), in expectation. This particular guarantee is the
sole application of randomness in some distributed constructions, e.g., the celebrated spanner construction
of Baswana and Sen [BS07].

1
p

Prior deterministic distributed algorithms for hitting set. There are two known distributed con-
structions for hitting set [GK18, BEGT22], as we review next. Both of these algorithms are based on showing
that a small collection of random bits are sufficient for the randomized algorithm and then using the con-
ditional expectation method to derandomize this. However, both algorithms are computationally inefficient
and use superpolynomial-time computations.

Ghaffari and Kuhn [GK18| observed that O(logn)-wise independence is sufficient for the randomized
algorithm in the basic hitting set problem, and thus O(log2 n) bits of randomness are sufficient for the
algorithm. Then, given a network decomposition with ¢ colors and strong diameter d, we can derandomize
these bits one by one in a total of O(cd log? n) rounds, by processing the color classes one by one and fixing

1We use the notation O(f(z)) = O(f(x) - poly log f(z)).

the bits in each color class in O(d) time. However, the resulting algorithm is not computationally efficient:
Each node has to perform n?(°¢™)_time local computations to calculate the conditional probabilities needed
in the method of conditional expectation.

Parter and Yogev [PY18] pointed out that one can replace the O(logn)-wise independence with a pseu-

dorandomness generator for read-once DNFs and this reduces the number of bits to O(log n(log log n)*)-this
was presented in a different context of spanners in the congested clique model of distributed computing. More
recently, Bezdrighin et al. [BEG™22| further reduced that bound to O(log nloglogn), by applying a pseudo-
randomness generator of Gopalan and Yeudayoff [GY20], which is particularly designed for hitting events.
This decreased the round complexity slightly to O(cdlognloglogn). However, the conditional probability
computations still remain quite inefficient: they are n©(°g198m) _time which is still super-polynomial.
Our contribution. Instead of viewing the randomized hitting set algorithm as a one-shot process, we turn
it into a more gradual procedure. Concretely, we show that one can turn the natural randomized algorithm
for the general hitting set problem into a number of randomized algorithms (bounded by O(logn)), in such
a way that pairwise independence is sufficient for analyzing each step. Because of this, we can derandomize
each step separately (using an overall potential function that ensures that the result after derandomizing all
steps has the same guarantees as discussed above for the randomized algorithm). Thanks to this, in contrast
to the prior algorithms [GK18, BEG™22| which required super-polynomial computations, our algorithm uses
only 6(m) computations, summed up over the entire graph, where m denotes the number of edges. Hence,
our distributed algorithm directly provides a near-linear time low-depth deterministic parallel algorithm for
the hitting set problem.

Theorem 1.2 (Informal). There is a deterministic distributed algorithm that in poly(log n) rounds and using

O(m) total computations solves the generalized hitting set problem. That is, in the bipartite formulation
mentioned above, the selected subset B’ has size O(p - |B|) and the total weight of nodes of A not hit by B’

is O(Yqen ca(l —p)iee(®).

We present the formal version of this theorem in Theorem 7.10 for the CONGEST model of distributed
computing, and in Theorem 7.9 for the PRAM model of parallel computation.

Applications of hitting set. This efficiently derandomized hitting set has significant applications for a
number of graph problems of interest. In this paper, as two examples, we discuss spanners and distance
oracles. In the case of spanners, this deterministic hitting set leads to the first deterministic spanner al-
gorithm with the best-known stretch-size trade-off, polylogarithmic round complexity, that has near-linear
time computations. The best previously known deterministic constructions required superpolynomial com-
putations [BEG 22| (and in the [GK18] case, had extra logarithmic factors in size). The formal statements
are as follows, and the proofs are presented in Section 8.1.

Corollary 1.3. (general stretch spanners, unweighted and weighted) There is deterministic dis-
tributed algorithm that, in poly(logn) rounds of the CONGEST model and with total computations O(m), for
any integer k > 1, computes a (2k — 1)-spanner with O(nk + n'*/ logk) and O(nk + n'TV* k) edges for
unweighted and weighted graphs, respectively.

Corollary 1.4. (ultra-sparse spanners) There is deterministic distributed algorithm that, in poly(logn)

rounds of the CONGEST model and with total computations O(m), computes a spanner with size (1+ o(1))n
and with stretch logn - 200°€" ™) in weighted graphs.

By slight generalizations of our hitting set, we also obtain an efficient parallel derandomization of ap-
proximate distance oracles constructions:

Corollary 1.5. (approximate distance oracle) Given an undirected weighted graph G = (V, E), a set of
sources S C V with s = |S|, and stretch and error parameters k and e > 0, there is a deterministic algorithm
that solves the source-restricted distance oracle problem with O.(ms/*) work and O (poly(logn)) depth in
the PRAM model. The data structure has size O(nks'/*) and for each query (u,v), the oracle can return a
value q in O(k) time that satisfies

d(u,v) < ¢ < (2k—1)(1 +¢)d(u,v).

The proof is presented in Section 8.2. The corresponding centralized randomized construction was pre-
sented in the celebrated work of Thorup and Zwick [TZ05]. A centralized derandomization was given by
Roddity, Thorup, and Zwick [RTZ05] but that approach does not appear to be applicable in parallel/dis-
tributed settings of computation.

2 Preliminaries

We use standard graph theoretic notation throughout the paper. All graphs are undirected and unweighted.
For a graph G = (V, E), we use dg or just d to denote the distance metric induced by its edges. For sets of
nodes U, W C V(G), we generalize d by d(U, W) = min,ey wew d(u, w).

Clustering Given a graph G, its cluster C is simply a subset of nodes of V(G). The strong-diameter
diam(C') of a cluster C' is defined as diam(C') = max, vec dgjc)(u,v). We note that there is a related notion
of weak-diameter of a cluster C' which is defined as the smallest D such that Yu,v € C : dg(u,v) < D. That
is, C can even be disconnected, but there has to be a short path between any two nodes if we are allowed to
use all nodes of G, not just nodes of C.

Although a cluster is simply a subset of V(G), during the construction of a clustering, we keep its center
node v € C' and often we work with an arbitrary breadth first search tree of C from v.

The basic object we construct in this paper is separated clusterings, which we formally define next.

Definition 2.1 (s-separated clustering). Given an input graph G, a clustering C is a collection of disjoint
clusters C1, . .., Ct, such that for each i we have C; C V(G). We say that the clustering has (strong-)diameter
D whenever the diameter of each graph G[C;], 1 < i < ¢, is at most D. We say that the clustering is s-
separated if for every 1 < i < j <t we have dg(C;,C;) > s. We sometime refer to this by saying that the
clustering has separation s.

We will also need the following non-standard notion of s-hop degree of a cluster defined as follows.

Definition 2.2 (s-hop degree). Let C be some clustering and C € C be a cluster with a fixed spanning tree
Tc rooted at r € C. The s-hop degree of C' in C is the minimum number d such that for each v € C' and
the unique path P, from u to r in T the following holds: The number of different clusters C’ € C such that
d(P,,C") < s is at most d.

The s-hop degree of a clustering C is the maximum s-hop degree over all clusters C' € C.

3 Improved Network Decomposition, Outline

To prove Theorem 1.1, our core result is captured by the following low-diameter clustering statement, which
clusters at least half of the vertices. Theorem 1.1 follows directly by repeating this clustering for O(logn)
iterations, each time in the graph induced by the nodes that remain unclustered in the previous iterations.

Theorem 3.1. There is a deterministic CONGEST algorithm that runs in 6(log2 n) rounds and computes a
clustering of at least % nodes, with strong diameter O(logn - logloglogn), and separation 2.

There are three ingredients in proving Theorem 3.1, as we discuss next:

(A) Low-Degree Clustering. The most important ingredient, captured by Theorem 4.1 and proven in
Section 4, is a clustering that manages to cluster half of the vertices but in which we have relaxed the
separation/non-adjacency requirement of the clustering. Instead, we want each cluster to have s-hop degree
of at most [100loglog(n)]. See Definition 2.2 for the definition. For this ingredient, we present a randomized
algorithm with pairwise analysis and then we derandomize it.

Theorem 4.1. Let s > 2 be arbitrary. There exists a deterministic CONGEST algorithm running in
O(slog?(n)) rounds which computes a clustering C with

1. strong diameter O(slog(n)),

2. s-hop degree of at most [1001oglog(n)], and

3. the number of clustered nodes is at least n/2.

(B) From Low-Degree to Isolation. The second ingredient, captured by Theorem 5.1 and proven in
Section 5 is able to receive the clustering algorithm of (A) and turn it into a true clustering with separation
s, but at the expense of reducing the number of clustered nodes by an O(loglogn) factor. For this ingredient
as well, we first present a simple randomized algorithm with pairwise analysis, and then we derandomize it.

Theorem 5.1. Assume we are given a clustering C with

1. strong diameter O(slog(n)) and
2. s-hop degree of at most [100loglog(n)].

There exists a deterministic CONGEST algorithm running in 5(slog2(n)) rounds which computes a clustering
Co¥t with

1. strong diameter O(slog(n)),

2. separation of s and

3. the number of clustered nodes is ﬁg‘log(n).
(C) Improving Fraction of Clustering Nodes. The third and last ingredient, captured by Theorem 6.1
and proven in Section 6, receives the clustering algorithm of part (B) with a suitably high separation pa-
rameter (which is at least logarithmically related to the fraction of nodes clustered) and transforms it into a
clustering of at least half of the nodes, at the expense of reducing the separation to simply 2. This ingredient
is a deterministic reduction and needs no derandomization and explains the final logarithm in the guarantees
of Theorem 3.1 (the first two logarithms are coming already from Theorem 4.1).

Theorem 6.1. Let x > 2 be arbitrary. Assume there exists a deterministic CONGEST algorithm A running
in R rounds which computes a clustering C with

1. strong diameter O(zlogn),

2. separation 10 - x and

n

5% nodes.

3. clustering at least

Then, there exists a deterministic CONGEST algorithm A’ running in O(2*(R + xlogn)) rounds which
computes a clustering C' with

1. strong diameter O(zlogn),
2. separation 2 and

3. clustering at least 5 nodes.

Having all three ingredients Theorems 4.1, 5.1, and 6.1, we simply put them all together to prove
Theorem 3.1.

Proof of Theorem 3.1. Let = [log(2000loglogn)]. First, from Theorem 4.1, we get a clustering of n/2
nodes with strong diameter O(logn - logloglogn) and 10z-hop degree at most [100loglog(n)], in 5(10g2 n)
rounds. Feeding this clustering algorithm to Theorem 5.1 produces a clustering algorithm that clusters
m nodes with strong diameter O(logn - logloglogn) and separation 10z, in O(log2 n) rounds.
Hence, this clustering can be put as input for Theorem 6.1, which as a result gives a clustering of at least
n/2 nodes with strong diameter O(logn - logloglogn), and separation 2, in O(log? n) rounds. O

4 Low-Degree Clustering

This section is devoted to proving the following theorem discussed in Section 3.

Theorem 4.1. Let s > 2 be arbitrary. There exists a deterministic CONGEST algorithm running in
O(slog®(n)) rounds which computes a clustering C with

1. strong diameter O(slog(n)),
2. s-hop degree of at most [1001oglog(n)], and

3. the number of clustered nodes is at least n/2.

Intuition Behind the Proof of Theorem 4.1. In this paragraph, we give a brief intuition behind
the proof of Theorem 4.1. Our clustering algorithm can be viewed as derandomization of the randomized
clustering algorithm of Miller, Peng, and Xu [MPX13] (MPX). This is an algorithm that can cluster n/2
nodes with strong diameter O(slogn) such that the s-hop degree of the constructed clustering is in fact 1,
or in other words, the clustering is s-separated.

In the MPX algorithm, we simply run a breadth first search from all nodes of V(G) at once, but every
node starts the search only after a random delay computed as follows. Every node v € V(G) starts with the
delay del(v) = O(slogn). Next, each node starts flipping a coin and each time it comes up heads, it decreases
its delay by 5s. If it comes up tails, it stops the process. That is, the delays come from an exponential
distribution; even more precisely, each node gets a head start coming from an exponential distribution, we
talk about delays and add O(slogn) to make all numbers positive with high probability.

The guarantees of the MPX algorithm stem from the following observation. Let u € V(G) be arbitrary
and let wait(u) be the first time u is reached by above breadth first search with delays. Let frontier®®(u)
be the number of nodes v € V(G) such that del(v) + d(v,u) < wait(u) 4 2s. That is, frontier® (u) contains
nodes who can reach u after at most 2s additional steps after u is reached for the first time. We claim that
with positive constant probability frontier®*(u) = 1, i.e., after the first node reaches wu, it takes at least 2s
additional steps until the next node reaches wu.

To see this, replace each node v € V(G) by a runner on a real line who starts at position d(u, v)+O(slogn)
(and may move toward left, as we soon discuss). Then, the exponential distribution that defines the delays
corresponds to each runner flipping her coin until it comes up tails. For each heads, the runner runs distance
5s to the left. We now let the runners flip the coins one by one. When a runner r; is flipping her coin, we
consider the leftmost runner r} out of the runners 71,...,r;_1 that already flipped their coins. We observe
that if ; at some point reaches a position at most 5s to the right from 7‘3, we also have that r; runs to the
distance 5s to the left of 7“; with positive constant probability.

Derandomization: Let us now explain the intuitive reason why we lose a factor of O(loglogn) in
Theorem 4.1. Our derandomized algorithm simulates the coin flipping procedure step by step, for O(logn)
steps, until every runner finally flips a tail and finishes. In contrast to the previous simple algorithm, we
now have to track our progress after every step. So, our analysis is a derandomization of the following,
different, randomized analysis of the same running process. In this new randomized analysis, in each step ¢
and for each node u, we consider, very informally speaking, the event that the coin of all the runners that are
currently at distance at most 2s from the leading runner comes up tail, where ¢ is a parameter we compute
later. The probability of this event is 27¢. This means that the probability of this bad event happening in
one of the O(logn) steps is at most O(logn)-2~*. Choosing ¢t = O(log log n) makes this probability constant.
Going back to the analysis of MPX, we get that at least half of nodes u have |frontier® (u)| = O(loglogn).

Although this new randomized analysis loses a factor of O(loglogn), we can derandomize it in this
section by setting up suitable potentials and derandomizing the coin flips of each step. To do so, we in fact
simulate one fully-independent coin flip of each node in O(loglogn) steps where in each step we only use
pairwise-independent random bits.

The rest of the section is structured as follows. In Lemma 4.3, we show how computing suitable delays
gives rise to the final clustering. This step is simple and does not rely on derandomization. Theorem 4.5 then
shows how to compute the node delays that simulate the MPX analysis as discussed above. To sample even
one “coin flip” of MPX, we need to invoke O(loglog n) times the local derandomization lemma of [FGGT22].
One call of this lemma corresponds to Theorem 4.16.

Basic Definitions To prove Theorem 4.1, we first need to define the notions of delay, waiting time, and
a frontier:

Definition 4.2 (delay del, waiting time waitqe;(u), and frontier frontier? (u)). A delay function del is a
function assigning each node u € V a delay del(u) € {0,1,...,0(slog(n))}. The waiting time of a node
u € V, with respect to a delay function del, is defined as

waitge (u) = Hél‘r/l (del(v) + d(v,u)) .

The intuition behind waitge(u) is as follows: Assume that each node v starts sending out a token at time
del(v). Then, wait(u) is the time it takes until u receives the first token.

Furthermore, for every parameter D > 0, the frontier of width D of a node u € V, with respect to a
delay function del, is defined as

frontier’y (u) = {v € V': del(v) + d(v,u) < waitger(u) + D}.

Informally, frontier” (u) contains each node v whose token arrives at u at most D time units after u receives
the first token.

Clustering from given delays. The delay of each vertex is computed by a procedure provided in
Algorithm 1. Before discussing that, we first explain how each delay function del, along with a separa-
tion parameter s, give rise to a clustering C4¢': The clustering C4¢! clusters all the nodes that have a small
frontier of width 2s. In particular, each node u € V(G) satisfying |frontier® (u)| < [100loglog(n)] is included
in some cluster of C4°'. More concretely, each clustered node u gets clustered to the cluster corresponding
to the node with the smallest identifier in the set frontier’(u). In other words, u gets clustered with the
cluster of the minimizer of wait(u), where we use the smallest identifier to break ties. In the following text,
we denote this node by ¢,. See Figure 1 for an illustration of this clustering.

Lemma 4.3. Let del be a delay function and CI°! the corresponding clustering, as described above. Then,
the clustering C°' has

1. strong diameter O(slogn),

2. s-hop degree at most [100loglog(n)] and

3. the set of clustered nodes is equal to |{u € V : frontier® (u)| < [100loglog(n)]}|.
Moreover, the clustering C1¢! can be computed in O(slognloglogn) CONGEST rounds.

To prove Lemma 4.3, we first observe that the frontiers have the following property.

Claim 4.4. Let w be any node on a shortest path from w to ¢, and let D > 0. Then, we have (I)
frontier” (w) C frontier” (u), and (II) ¢, = c,.

Proof. First, we prove (I) frontier” (w) C frontier” (u). Consider any v € frontier” (w). We prove that
v € frontier” (u). Since v € frontier” (w), we have

del(v) + d(v,w) < del(ey) + d(cy, w) + D.

Since w lies on a shortest path from ¢, to u, we can add d(w,u) to both sides of the equation to conclude
that
del(v) + d(v,w) + d(w,u) < del(cy) + d(cy,uw) + D = wait(u) + D,

and thus we have
del(v) + d(v,u) < wait(u) + D.

Hence, we have v € frontier” (u) and (I) is proven.

g

Figure 1: The figure shows the run of the clustering algorithm constructing C4¢'. The algorithm can be
seen as starting a breadth first search from a single node o connected to every node u € V(G) with an edge
of length del(u) (the CONGEST implementation of the algorithm does not need to simulate any such node
o). The value wait(u) is the time until the search reaches the node w. The node that reaches u the first
is denote ¢,. Moreover, we cluster only nodes such that the size of their frontier of width 2s is at most
O(loglogn). For example, the node v is not clustered because after it is reached by the first node ¢,, it is
reached by (loglogn) other nodes in the following 2s steps. It can be seen that for any w on the path from
¢y to u, we have frontier%(w) C frontier® (u), hence the constructed clusters are connected.

Next, we prove (II) ¢, = ¢,. In view of the above proof of (I), it suffices to show that ¢, € frontier’ (w).
To prove ¢, € frontier’ (w), we use the fact that ¢, € frontier’(u) and write

del(cy) + d(cy, u) = wait(u) < wait(w) + d(w, u)

Subtracting d(w,u) from both sides of the equation and using that w lies on a shortest path from u to ¢,
gives
del(cy) + d(cy, w) < wait(w).

Thus ¢, € frontier”(w) and we are done. (]

Having Claim 4.4, we now go back to present a proof of Lemma 4.3.

Proof of Lemma 4.5. We start with the first property. Let u be an arbitrary clustered node and recall that
cu 18 its cluster center. As ¢, € frontier®(u), we have d(c,,u) = wait(u). Moreover,

wait(u) = mi‘r/l del(v) + d(v,u) < del(u) + d(u,u) = del(u) = O(slogn).

ve

Hence, we have d(c,,u) = O(slogn). Moreover, Claim 4.4 gives that all nodes on a shortest path from ¢,
to u are also clustered to ¢,, implying that the diameter of the cluster is O(slogn).

Next, we prove the second property. Consider an arbitrary clustered node w. We first show that for an
arbitrary clustered node y with d(w,y) < s, it holds that ¢, € frontier®(w). To see this, we first use the
definition of ¢,, to write

del(cy) + d(cy,y) < del(cw) + d(cw, y)
On one hand, we can use triangle inequality to lower bound the left-hand side by

del(cy) + d(cy,y) > del(cy) + d(cy, w) — d(w,y)

On the other hand, we can use triangle inequality to upper bound the right hand side by
del(cy) + d(cw,y) < del(cy) + d(cw, w) + d(w, y).
Putting the two bounds together, we conclude that
del(cy) + d(cy, w) < del(cy) + d(cy, w) + 2d(w, y) < wait(w) + 2s,

where we used our assumption d(w,y) < 2s. Thus, ¢, € frontier® (w).

Now, let u be an arbitrary clustered node and P, the unique path between u and ¢, in the tree associated
with the cluster. Furthermore, let C' € C4°! be a cluster with d(P,,C) < s. Then there exists w € P, and
y € C with d(w,y) < s and the discussion above implies ¢, € frontier® (w).

We now use Claim 4.4, which implies that frontier®(w) C frontier®(u). Hence, for each cluster C' with
d(P,,C) < s, the corresponding cluster center is contained in frontier®(u). As u is clustered, we know that
|frontier® (u)| < [100loglogn]. Therefore, the s-hop degree of C4! is at most [100loglog(n)].

The third property follows directly from the definition. To finish the proof, we need to show that the
algorithm can be implemented in O(slogn-loglogn) rounds. To see this, note that we can compute for each
node u whether [frontier® (u)| < [100loglog(n)] or not, as follows: We run a variant of breadth first search
that takes into account the delays, where each node v starts sending out a BFS token at time del(v). Recall
that in classical breadth first search, after a node u is reached for the first time by a token (sent from ¢,),
it broadcasts this token to all its neighbors and then it does not redirect any other tokens sent to it. In our
version of the search, each node stops redirecting only after at least [100loglog(n)] tokens arrived (we do
not take into account tokens that have already arrived earlier) or after it counts 2s steps from the arrival
of the first token. It can be seen that this algorithm can be implemented in the desired number of rounds.
Moreover, every node u learns the value of |frontier®®(u)| whenever the value is at most [100loglog(n)] and
otherwise, it learns the value is larger than this threshold. O

In view of Lemma 4.3, to prove the randomized variant of Theorem 4.1 with pairwise analysis, it suffices
to show that Algorithm 1 stated next computes a delay function del such that the expected number of nodes
u with [frontier® (u)| < [100loglog(n)] is at least n/2. We later discuss how this is derandomized.

4.1 Computing Delays

This subsection is dedicated to proving the following theorem that asserts that we can compute a suitable
delay function that can be plugged in Lemma 4.3 that constructs a clustering from it.

Theorem 4.5. Algorithm 1 runs in O(slog?(n)) CONGEST rounds and computes a delay function del that
satisfies

|{u € V: |frontier3s) (u)| < [1001loglog(n)]}| > n/2. (4.1)

el

Intuitive Description of Algorithm 1. The algorithm runs in R = |2log(n)| phases and each phase
consists of k = [100loglogn] iterations. In iteration j of phase 7, algorithm 4; ; is a deterministic algorithm
which computes a good set S; ; C V2l as defined later in Definition 4.13. The algorithm description of A; ;
is deferred to Section 4.2. The high-level intuition is that A; ; derandomizes the randomized process which
obtains S; ; from V;2}¥¢ by including each vertex with probability ﬁ, pairwise independently. Repeating
this pairwise independent sampling process k times then simulates including each vertex from V2tive to
Vactive with positive probability. The derandomization of the pairwise independent process is done efficiently
using a novel local derandomization procedure introduced in [FGG'22] which essentially allows to efficiently
derandomize algorithms that only rely on pairwise analysis.

Throughout the algorithm, each node is assigned a delay. At the beginning, each node u is assigned a
delay of delg(u) = 5sR = O(slogn). In each subsequent phase, for each node u, we have two possibilities: if
u € V2V the delay of node u is decreased by 5s, i.e., del;(u) = del;_1(u) — 5s if u € Vactve; if ¢ ¢ Vactive
then its delay stays the same, i.e., del;(u) = del;_1 (u) if u ¢ V;2°tve,

For every u € V, we define the shorthand wait;(u) = waitqel, (v) and for every D > 0, we define
frontier? (u) = frontier,ili (u).

10

Algorithm 1 Computing Delay Function del

Input: A parameter s, an algorithm 4; ; computing a good set from Definition 4.13 in 5(8 logn) rounds
Output: A delay function del from Definition 4.2 satisfying (4.1)

1: procedure DELAYS

2. ‘/Oactivc —V

3: R« |2log(n)]

4: k « [1001loglog(n)]

5: Vu € V: delp(u) « 5sR

6: for i« 1,2,...,R do

7 Wi,O «— 0

8: for j < 1,2,...,k do

9: Si)j — A@j (deli_l, Wi,j—l) > Si)j - V'ia_cicive
10: Wi,j — Wi,j—l U S@j

11: ‘/l_activc P Wi,k

12: for Vu € V do

13: if u € V>4 then

14: del;(u) + del;—1(u) — 5s
15: else

16: del;(u) « del;—1(u)

17: del < delg

18: return del

Communication Primitives. For the deterministic algorithm A; ; which computes the set .S; ;, it is
important that each node u can efficiently compute the set alive;—1(u) and dead;_;(u) that are defined next.
Let us give a brief intuition behind the definition. In the “runner intuition” from the beginning of the section,
we want to know in every step all runners that are currently at distance at most 2s after the front runner.
For these runners, we want to ensure that not all of them stop running in one step. In the reality of the
distributed CONGEST model, we however cannot compute even the size of frontier® (u).

Fortunately, for our purposes if the number of “runners” that are distance at most 2s from the front
runner is larger than O(loglogn), it roughly speaking suffices to work with the first O(loglogn) runners in
the analysis. This is formalized by the following definition of alive and dead nodes (dead nodes are runners
that stopped flipping coins).

Definition 4.6. [alive;(u)/dead;(u)] For every vertexu € V and i € {0,1,..., R}, let dead;(u) C frontier?®(u)\
Vactive he an arbitrary subset of size min(k, [frontier?® (u) \ V;2t¢|) and alive;(u) C frontier? (u) N V2°4ve be
an arbitrary subset of size min(k — |dead;(u)], [frontier?® (u) N Vactve|),

Note that |alive;(u)| 4 |dead;(u)| < min(k, [frontier? (u)]) and |dead;(u)| < |alive; 1 (u)| + |dead;_1(u)].
For each node v € V, let M;_1(v) = {u € V: v € alive;_1(u)}. Then, we need some simultaneous and
efficient communication, that allows each v € V' to broadcast a message to all nodes in M;_1(v), and for v
to receive an aggregate of messages prepared for v in nodes M;_1(v).

Lemma 4.7. Suppose that we are at the beginning of some phase i € [R]. Given delay function del;_1, and
given the set V.2"¢ there exists a CONGEST algorithm running in 6(slog n) rounds which computes for
each node uw € V' the sets alive;—1(u) and dead;(u). Moreover, let M;_1(v) = {u € V: v € alive;_1(u)}. Then,
there exists an 5(slog n) round CONGEST algorithm that allows each node v to send one O(logn)-bit message

that is delivered to all nodes in M;_1(v). Similarly, there also exists an 5(slog n) round CONGEST algorithm
that given O(logn)-bit messages prepared at nodes in M;_1(v) specific for node v, it allows node v to receive

an aggregation of these messages, e.g., the summation of the values, in 6(slog n) rounds.

Proof of Lemma 4.7. We run a variant of breadth first search (BFS) that takes into account the delays, and
runs in O(slogn) rounds: Each node v starts sending out a BFS token at time del;,_;(v), where the token
also includes the information whether v € V4V or not. During the entire process, each node u forwards

11

per time step at most k£ = [100loglogn]| BFS tokens, breaking ties in favoring of tokens coming from nodes
v ¢ Vactive . That is, all tokens that arrive at the same time step are forwarded in the next time step,
except that the node forwards at most k tokens in this time step, and moreover, the node first includes all
tokens from nodes v ¢ V2!V (up to k) before including tokens from nodes v € V2!, Since per time
step each node forwards at most k tokens, each time step can be implemented in at most k& rounds of the
CONGEST model. Furthermore, node u starts counting time from the moment that it received the very first
token (while forwarding any received tokens, up to k per time step), and after 2s time steps have passed,
node u does not forward any other tokens.

Let us think of one tree for each node v, which is rooted at v and includes all nodes u that have received
the token of node v. Every node u receives the tokens of all nodes in frontier?® | (u), if there are at most k
of them. If there are more than k, node u learns at least k of them, with the following guarantee: The set
of learned tokens includes all tokens from v ¢ V2%V up to k (if there were more).

Hence, given the received tokens, each node u can form dead;_;(u) C frontier? (u) \ V;2tve, which is
subset of size min(k, [frontier? | (u) \ V2°ve]). Furthermore, node u can form alive; ;(u) C frontier?® ; (u) N
vactive which is a subset of size min(k — |dead;_1 (u)|, [frontier?® | (u) N V;2<tive|),

By repeating the same communication, each node v is able to send one message which is delivered to all
nodes M;_1(v) = {u € V: v € alive;_1(u)}, all simultaneously in O(slogn) rounds. Moreover, by repeating
the same communication pattern but in the reverse direction of time, we can do an aggregation along each
tree, again all simultaneously in O(slogn) rounds, allowing each node v to receive an aggregation of the
messages prepared for v in nodes M;_1(v). O

Potential Functions In this paragraph, we define an outer potential ®; for every phase ¢ and an inner
potential ¢; ; for every iteration j within phase i. The inner potential satisfies that if ¢; ;1 < ¢;; in each
iteration j, then ®; < ®;_; + n. The outer potential satisfies that ®9 = 2n and if P < 10nlog(n), then
[{u € V: |frontier® (u)|}| > o,

Definition 4.8 (Outer Potential). For every i € {0,1,..., R}, the outer potential of a node u after phase i
is defined as

dead,; (u)]
10

D;(u)=e

The outer potential after phase ¢ is defined as

(bi — Z (bz(u) 4 2i|‘/iactivc|'
ueV

Here, "after phase 0" should be read as "the beginning of phase 1". Algorithm 1 will make sure that the
outer potential is sufficiently small. A small outer potential after phase i implies on one hand that there
are not too many nodes u for which |dead;(u)| is large and on the other hand ensures that there are not too
many nodes in V24UV je., [Vactve| < 2

The following lemma captures the usefulness of the outer potential.
Lemma 4.9 (Outer Potential Lemma). We have &g < 2n. Moreover, if ®r < 10nlog(n), then [{u €
V. |frontier3s; (u)| < 100loglog(n)}| > o

el

Proof. First, note that ®p > 2F|Vactive| > 10nlog(n)|Va4ve|. As we assume that ®p < 10nlog(n), this

directly implies V3°v® =). In particular, every u € V with |frontier3s;(u)| > 100loglog(n) contributes
|dead g (u)| min(k, |frontier3S) (u)|
Pr(u)=ce g >e o) > 1001og(n)
to the potential. Hence, there can be at most ®r/(100log(n)) < n/10 such nodes and therefore {u €
V: [frontiers, (u)| < 100loglog(n)} > 22 as desired. O

Definition 4.10. [Pessimistic Estimator Probability p; ;(u)] For ¢ € [R] and j € {0,1,...,k}, the pessimistic
estimator probability of a node u after iteration j within phase ¢ is defined as

lalive;_1 (u)|) k=

pi,j(u) = I(alive;—1 (uw) "W, ; = 0) - (1 Lo

12

Here, "after iteration 0", should be read as "the beginning of iteration 1". Let us briefly elaborate
on the definition of p; j(u). Assume that we would compute S; ; by sampling each vertex in VAHe with
probability ﬁ pairwise independently. By a simple pairwise analysis, one can show that this would imply
Pr[S;; Nalive;_1(u) # 0] > w Hence, if we are currently at the beginning of iteration j within
phase ¢ just prior to sampling the set S; ;, then p; ;_1(u) is an upper bound on the probability that no node
in alive;_1(u) is contained in V;**%¥® (which one should think of as a bad event).

Definition 4.11. [Inner Potential]
The inner potential of a node u after iteration j of phase i is defined as

[dead; _1 (w)|+|alive; _q (u)]
i j(u) = pij(u)e B
The inner potential after iteration j of phase 7 is defined as
i k- J i—1 |y active
Gij = ij(u) + Wi 2" + — 2T VR
ucV

Again, assume for a moment that we would compute S; ; by sampling each vertex in V2V with prob-
ability ﬁ pairwise independently. Assume we are at the beginning of iteration j within phase i just prior
to sampling S; ;. Then, using the fact that E[p; ;(u)] < p; j—1(u), one directly gets that E[¢; ;(u)] < ¢ ;(u)
and it also follows that E[¢; ;] < ¢;;—1. Moreover, one can also show that E[®;(u)] < ¢;j—1(u) + 1 and
E[®;] < ¢;,j—1 + n. In more detail, if at least one node in alive;_1(u) is contained in vactive one can show
that this implies dead;(u) = 0 and therefore ®;(u) = 1. On the other hand, in the previous discussion
we mentioned that with probability at most p; j_1(u) no node in alive;_1(u) is included in V"¢ and as
|dead;—1(u)| + |alive;—1 (u)| < |dead;(u)|, we have p; j—1(u)®;(u) < ¢; j—1.

Lemma 4.12 (Inner Potential Lemma). Fori € [R] and j € {0,1,...,k}, Assume that in every iteration j
of phase i, S; ; is computed in such a way that ¢; ; < ¢ij—1. Then, ®; < ®;_1 +n and Pr < 4dnlog(n).

Proof. For each node u € V', we have

. k—0
|dead; _ 1 (w)|+|alive; _q (u)] live; |dead; _ 1 (w)|+|alive; _q (u)] |dead; _ 1 (u)]
¢i,0(u) — pi)o(u)e L 10 ! — (1 — W) e : 10 - S e 101 = (bifl(u).
Therefore,
 k—0 . . , .
bio = Y duolu) + [Wiol2 + =2 VEIY| < 37 @ (u) + 27 V2 = @y,
ueV ueV

Consider an arbitrary u € V. Next, we show that

|dead; (u)] |dead;_q (u)|+|alive; _q (u)]
10k

e = ®;(u) < dip(u) +1 = I(alive;_1(u) NV = e T0% + 1.

It is easy to verify that the inequality is satisfied if alive; 1 (u)NV;24v = (), as |dead;(u)| < |dead;_1 (u)|+
|alive; 1 (u)|. Therefore, it remains to consider the case that there exists at least one node v € alive;_1(u) N
Vactive The existence of such a node v implies

wait; (u) < del;(v) + d(v,u) = del;_1(v) + d(v,u) — 5s < wait;_1(u) + 28 — 5s = wait,;_1(u) — 3s.
For every node w ¢ V2%V we have del;(w) = del;_1 (w) and therefore
del;(w) + d(w,u) = del;—1 (w) + d(w, u) > wait;—1(u) > wait;(u) + 3s > wait, (u) + 2s

and thus w ¢ frontier?®(u). Hence, dead;(u) = () and the inequality is satisfied. Therefore,

Bik= 3 Gunlu) + Wizl 4+ =2 V] < (Z @(u) - 1) VU] = @ .
ueV ueV

13

A simple induction implies ¢; ; < ¢; 0. Therefore,
O < i +n<dio+n=,_1+n.
As &y < 2n according to Lemma 4.9, a simple induction implies
Or < Py+ Rn < (2+ R)n < 4nlogn.

O

Good Set S;;: We are now going to define the good set of nodes S; ;. Note that this is the part of
Algorithm 1 whose definition we postponed.

Definition 4.13 (Good Set S; ;). For a set S; ; C Vi and u € V/, let

live; N Si;
Yw-(u) =1- |alivel-,1(u) N Si1j| + (|a e 1(2U) ’J|).

We refer to the set S; ; as good if

$ij-1(w) i 2! ti
Y; ’ Sl 20 <N i vpetivel,
1;/ i 1— (Jalive; 1 (u)|/(10k)) 1Sl -2 < 1;/¢ a=1(w) + k V™|

Lemma 4.14. If S; ; is a good set, then ¢;; < ¢4 1.

Proof. For each u € V, we have

. . alive; —1 (u k—=(i—1)
Haliver_1(u) (1S5 = Doy 2(u) L(@lives1(w) 0S5 = 0)(alive; 1 (u) O Wi jy = 0) - (1 — sl

1— (Jalive,_1 (w)|/(10k)) 1— ([aliver_y (u)|/(10K))

— Ialives_y (u) A Wi —) (1 — 21 o
= SevemE T Wy = 10k

= pij(u)-
It also holds that I(alive;—1(u) NS;; = 0) <Y; ;(u). Therefore,
|dead; _y (u)|+alive; 3 (w)]

pij—1(u)e 0

1 — (Jalive;—1 (u)|/10k)

Qbi,jfl(u)

Yivj(u)l — (Jalive;—1(u)|/(10k)) -

I(alivei,l(u) n Siyj = 0)

|dead; 1 (u)|+|alive; 1 (u)]
=Dij (u e 10

= ¢ij(u).
Thus, we get

i k_] i— active
g = Z¢w)+ (Wi ;02" + A —2 1|Vif{ °

ueV
bi,j—1(u) i k= J i act
< Y; d S i W, _1])2¢ T Jogi|yactive
u;/ 7] 1 — |ahvel(u)|/10k) + (| 7J| +| 2J 1|) + L | i—1
i1 [
ive 7 J oi— active
<D G () + = VR 4 (W [2 2 v
ueV
= ¢ij-1-

We now combine all the pieces to prove the main theorem of this subsection.

14

Proof of Theorem 4.5 We assume that in iteration j of phase i, A; ; computes a good set S; ;. Therefore,
Lemma 4.14 implies that ¢; ; < ¢; ;1. Accordmg to Lemma 4.12, this implies that ®r < 4nlog(n). There-
fore, Lemma 4.9 implies that [{u € V: [frontier3:,(u)] < [100loglog(n)]}| > n/2, as desired. It remains to
discuss the CONGEST round complexity.

Algorithm 1 has R - k = O(logn) iterations in total. In iteration ¢ of phase j, algorithm A4, ; runs in
5(s logn) CONGEST rounds. Hence, the overall CONGEST complexity of Algorithm 1 is 6(5 log? n).

Global Derandomization Here, we informally sketch a variant of Algorithm 1 which performs a global
derandomization using the method of conditional expectation. A more formal discussion of this approach,
though in a different context, is discussed in Section 7.3 where we derandomize our algorithm for the hitting
set problem in the CONGEST model. See in particular Theorem 7.10.

Definition 4.15 (Good Random Set S; ; (In Expectation)). For a set S; ; C V24V and u € V, let

lalive;_1 (u) NS; ; |)

Y j(u) =1—|alive;_1(u) N S, ;] + (2

We refer to a randomly computed subset S; ; C V28 as good in expectation if

ueV i 1 - |ahvel 1(u)|/(10/€)) N - ueV ! ko

Note that we can recover Definition 4.13 if we drop the expectation. Assume we choose S; ; by including
each node in V2°V® with probability ﬁ, pairwise independently. One can show that the resulting set S; ;
is good in expectation. Moreover, the pairwise distribution over the random set S; ; can be realized with a
random seed length of 6(log n) using the construction of [RTZ05, Lub93] that is described in Section 7.3.
The goal is now to fix the random seed one by one in such a way that the resulting deterministic set .S; ; is
a good set.

For the following discussion, let X = 7 Yid(u>1—(\ali$;il($\)/(10k)) +1S;,;] - 2°. The method of
conditional expectation works by fixing the bits of the random seed one by one, each time fixing the i-th bit
in such a way that

E[X|first 4 bits are fixed to by, ...,b;] < E[X|first i — 1 bits are fixed to bo,...,b;—1].

In particular, this ensures that

i—l

E[X |all bits are fixed] < E[X Z Gij—1(
ueV

|Vact1ve|

and hence the corresponding deterministic set S; ; is indeed a good set. To find such a bit b;, it suffices to
compute two things:

e E[X]|first i bits are fixed to by,...,b;—1,0], and
o E[X|first i bits are fixed to by, ..., b;—1].

It is possible to decompose X into X =3 ., X, such that each node u, when given bo, b1, ..., b;, alive; 1 (u)
and ¢;—1,;(u), can efficiently compute E[X,|bo, b1, ..., b;], without any further communication. This in turn
allows us to compute E[X|bg,b1,...,b;] in O(D) rounds. Hence, given that every node knows alive;_;(u)
and ¢;_1 ;(u), one can find a good set in 5(D logn) CONGEST rounds, where D denotes the diameter of
the network. Hence, computing alive,_1(u) and ¢;—1 ;(u) can be done in O(slogn) rounds at the beginning
of phase i. Moreover, alive;_1(u) and ¢;_1 j(u) can be computed at the beginning of phase ¢ in 5(s logn)
rounds according to Lemma 4.7. Hence, the overall resulting run-time of this variant of Algorithm 1 is
O((D+s)log?(n)) = O(Dlog®n). This is the complexity for the setting where we have a low-diameter global
tree of depth D. One can replace this by a standard application of network decomposition to reduce the
round complexity to poly(logn). In particular, given a c-color d-diameter network decomposition of GO,

15

we can use independent randomness for the nodes of different colors, and for each color, we can perform
the gathering and bit fixing in (s 4 d)poly(logn) rounds. Hence, we can perform the same derandomization
in (s + d)poly(log n) rounds. With the algorithm of [EHRG22] that computes a O(logn)-color poly(logn)-
strong-diameter network decomposition in spoly(logn) rounds [EHRG22], this becomes a complexity of
spoly(logn) rounds overall for the whole derandomization procedure. Please see the proof of Theorem 7.9
where we perform such a global derandomization via network decomposition for the hitting set problem and
provide more of the lower-order details. Instead of diving into those details here, in this section, we focus on
the local derandomization which leads to a faster round complexity, as discussed in the next subsection.

4.2 Algorithm 4, ; via Local Derandomization

This subsection is dedicated to providing the description of A; ;, that is proving Theorem 4.16 stated below.
We note that this is the final missing piece in the proof of Theorem 4.1.

Theorem 4.16. For every iteration j of phase i, there exists a CONGEST algorithm A; ; which computes a
good set S; j C V,2¢te in O(slogn) rounds.

The algorithm A; ; makes use of the local rounding framework of Faour et al. [FGG™ 22| to compute a
good set S§; ;. Their rounding framework works via computing a particular weighted defected coloring of the
vertices, which allows the vertices of the same color to round their values simultaneously, with a limited loss
in some objective functions that can be written as summation of functions each of which depend on only two
nearby nodes. Next, we provide a related definition and then state their black-box local rounding lemma.

Definition 4.17 (long-range d2-Multigraph). A long-range d2-multigraph is a multigraph H = (V, Exr)
that is simulated on top of an underlying communication graph G = (V, E) by a distributed message-passing
algorithm on G. The nodes of H are a subset of the nodes of G, i.e., Vg C V. The edge set Ey consists of
two kinds of edges, physical edges and virtual edges. Physical edges in Eg are edges between direct neighbors
in G. For each physical edge in e € Ey with V(e) = {u, v}, both nodes u and v know about e. Virtual edges
in Ey are edges between two nodes u,v € Vi, and for each such virtual edge, there is a manager node w
which knows about this edge.

We next describe the assumed communication primitives. Let M (v) be the set of nodes w who manage
virtual edges that include v. We assume T-round primitives that provide the following: (1) each node v
can send one O(logn)-bit message that is delivered to all nodes in M (v) in T rounds; (2) given O(logn)-bit
messages prepared at nodes M (v) specific for node v, node v can receive an aggregation of these messages,
e.g., the summation of the values, in T rounds.

Definition 4.18. (Pairwise Utility and Cost Functions) Let H = (V, Ex) be a long-range d2-multigraph
of an underlying communication graph G = (V, E). For any label assignment # : Vg — 3, a pairwise
utility function is defined as), .y, u(u, @) + > g, ule,), where for a vertex u, the function u(u, 7)
is an arbitrary function that depends only on the label of u, and for each edge e = {u,v}, the function
u(e, ¥) is an arbitrary function that depends only on the labels of v and u. These functions can be different
for different vertices u and also for different edges e. A pairwise cost function is defined similarly. For a
probabilistic/fractional assignment of labels to vertices Vi, where vertex v assumes each label in ¥ with a
given probability, the utility and costs are defined as the expected values of the utility and cost functions, if
we randomly draw integral labels for the vertices from their corresponding distributions (and independently,
though of course each term in the summation depends only on the labels of two vertices and thus pairwise
independence suffices).

Lemma 4.19. [Faour et al. [FGG" 22]] Let H = (Vi, Ex) be a long-range d2-multigraph of an underlying
commaunication graph G = (V, E) of mazimum degree A, where the communication primitives have round
complexity T. Assume that H is equipped with pairwise utility and cost functions u(-) and c(-) (with label set
3) and with a fractional label assignment . Further assume that the given rounding instance is polynomially

bounded in a parameter ¢ < n. Then for every constant ¢ > 0 and every e, > max{l/qc,2_cV1°g"},
if u(A) — c(A) > pu(X), there is a deterministic CONGEST algorithm on G to compute an integral label

16

assignment { for which u(€) —c({) > (1 —¢) - (u(A) — ¢(A)) and such that the round complexity of the

algorithm is
2
T.0 (log q <|Ellog(qA)
el logn

+ loglog q) +logq - log™ n> .

Our Local Derandomization. In the following, for each node u € V, we define ¢, = 1—(\a1ifei;i;1(1(¢1;|)/(10k))‘

The labeling space is whether each node in V;2!v¢ is contained in S; ; or not, i.e., each node in V2V takes
simply one of two possible labels ¥ = {0,1} where 1 indicates that the node is in .S; ;. For a given label

assignment ¥ € {0, 1}Viaft1ivc, we define the utility function
i1

u(f) = Z Cy Z Ty + %H/;ic{ivﬁ = Z Z cu | o + 2k |V;aic{ive|7

u€V wealive;_1(u) veV \ueM;(v)

c(¥) = Z Cu Z ToToy + Z 2,

u€V wv’ €alive;—1(u) vEVpctive

and the cost function

If the label assignment is relaxed to be a fractional assignment Z € [0, 1]Viaft1ivc, where intuitively now

%, is the probability of v being contained in S; ;, the same definitions apply for the utility and cost of this
fractional assignment.

Note that the utility function is simply a summation of functions, each of which depends on the label
of one vertex. Hence, it directly fits the rounding framework. To capture the cost function as a summation
of costs over edges, we next define an auxiliary multi-graph H as follows: For each node u € V' and every
v # v € alive;(u), we add an auxiliary edge between v and v’, with a cost function which is equal to ¢,
when both v and v’ are marked, and zero otherwise. Note that H is a long-range d2-Multigraph where the
communication primitives have round complexity O(slogn) as provided by Lemma 4.7.

We next argue that the natural fractional assignment where z, = 4 for each v € V2" satisfies the
conditions of Lemma 4.19. First, note that these fractional assignments are clearly polynomially bounded
in g for ¢ = k = O(loglogn). Next, we discuss that, for the given fractional assignment, utility minus cost
is at least a constant factor of utility.

active
Ve

Claim 4.20. Let Z € [0,1]V"1" with x, = 7= for every v € V;2¢™¢. Then, u(Z) — (&) > u(Z)/2.
Proof. We have

i—1

WD) = e Y m

uwe€V wealive;_1(u)

>2 ZC“ Z TpXy + Z Qii

u€V wv,v’€alive;_1(u) vEVactive

> 2¢(Z).

and therefore indeed u(#) — c(Z) > u(Z)/2. O

Hence, we can apply Lemma 4.19 on these fractional assignments with u = 1/2 and € = 0.1, which runs in
5((10g loglog n)?) iterations of calling the communication primitives, each taking 0 (s log? n) rounds. Hence,
the entire procedure runs in 5(3 log? n) rounds. As a result of applying Lemma 4.19 with these parameters,
which satisfies u(y) — ¢(7) > 0.9(u(Z) — ¢(&)). We can

ive

we get an integral label assignment 7 € {0, 1}Viaf§]

17

then conclude

u(y) — c(¥) = 0.9(u(@) — c())
lalive;—q (w)| 2071 e lalive;—1 (w)| 2072 iive
> (. - i wve| _ » i ive
_09<§c A TV (3 en e |

ueV ueV

>Z |a11vez 1()|

ueV

This integral label assignment directly gives us S; ;. In particular, let S; ; = {v € V2tive: y, = 1}. Note
that

. . . alive;_1(u) N S;; 2i-1 ive i
@)~ o) = 3 e (Jative () 051 - (G0N) 2 e s
ueV

and therefore

Pij—1(u) 9N _u .
2 i ()T alvery (wyaom) + 1Sl 2= 2 e @) o) +

ueV ueV
li 9i—1)
< Y eu 3 e MR E gy
ueV ueV
21 1
< Z lej 1 |Vact1vc|
ueV

which shows that S; ; is indeed a good set according to Definition 4.13. This completes the description of
our locally derandomized construction of good sets S; ;, hence completing the proof of Theorem 4.16.

5 From Low-Degree Clusters to Isolated Clusters
Theorem 5.1. Assume we are given a clustering C with

1. strong diameter O(slog(n)) and
2. s-hop degree of at most [100loglog(n)].

There exists a deterministic CONGEST algorithm running in 6(510g2(n)) rounds which computes a clustering
Cout with

1. strong diameter O(slog(n)),

2. separation of s and

€]

3. the number of clustered nodes is T000Tog og () -

Similar as in Section 4, we could get the same guarantees with a CONGEST algorithm with round com-
plexity O(spoly(logn)) by performing a global derandomization with the help of a previously computed
network decomposition.

Proof of Theorem 5.1. The clustering C°%* is computed in two steps. In the first step, we use the local
rounding procedure to compute a clustering ¢’ which one obtains from C by only keeping some of the
clusters in C (any such cluster is kept in its entirety). Intuitively, the local rounding procedure derandomizes
the random process which would include each cluster C from C in the clustering C’ with probability %,
k = [1001oglogn], pairwise independently. Given the clustering C’, we keep each node u € C’ clustered in
Co“ if and only if the s-hop degree of u in C’" is 1. Note that given C’, the output clustering C*** can be
computed in O(slogn) CONGEST rounds.

18

First, we discuss the first property, i.e., the strong diameter of the output clustering. The fact that the
clustering C has strong diameter O(slog(n)) directly implies that the clustering C’ also has strong diameter
O(slog(n)), simply because each cluster of C’ is exactly one of the clusters of C. We next argue that C°“! also
has strong diameter O(slogn). Let u be a node clustered in ¢’ and P, the unique path from u to its center
in the tree associated with its cluster. Then, it directly follows from the definition that for every w € P,,
the s-hop degree of w in C’ is at most the s-hop degree of u in C’. Therefore u being clustered in C°%* implies
that w is also clustered in C°“*. Hence, we conclude that C°*! indeed has strong diameter O(slogn).

Next, we discuss the second property: The clustering C°“! is s-hop separated. This directly follows from
the fact that by definition every clustered node has a s-hop degree of 1.

Finally, To prove Theorem 5.1, the only remaining thing is to prove the third property, i.e., that we

€] nodes. The rest of this proof is dedicated

compute C’ in such a way that C°“* clusters at least T000Tog Iog(7)

to this property.

For each cluster C' € C, we let center(C') denote the cluster center of C and define Centers = {center(C): C €
C} as the set of cluster centers of C. Moreover, for each u clustered in C, recall that ¢, is the cluster center
of the cluster of u and let P, be the unique u-c, path in the tree associated with this cluster C,. Now, let

Sy ={CeC:d(P,,C) <s}.

Note that the size of S, is equal to the s-hop degree of u, which by assumption is at most k.

The labeling space is for each cluster center whether its cluster is contained in C’ or not, i.e., each node
in Centers takes simply one of two possible labels {0, 1} where 1 indicates that the corresponding cluster is
in C'. For a given label assignment & € {0, 1}9¢"*"s we define

u(f) = Z |C|$center(C)
cec

and

C(f) = Z Z Tey Leenter(C)-

u€V : u is clustered in C Ce€S,\Cy

If the label assignment is relaxed to be a fractional assignment & € [0, 1]°¢™¢" where intuitively now z,
is the probability of v’s cluster being contained in C’, the same definitions apply for the utility and cost of
this fractional assignment. The utility function is simply a summation of functions, each of which depends
on the label of one vertex in Centers. Hence, it directly fits the rounding framework.

To capture the cost function as a summation of costs over edges, we next define an auxiliary multi-graph
H as follows: For each node u clustered in C and every Cy # Cs € S, we add an auxiliary edge between
center(Ch) and center(Cs) with a cost function which is equal to 1 when both C; and Cy are contained
in C’, and zero otherwise. Note that H is a long-range d2-Multigraph, according to Definition 4.17. The
communication primitives can be implemented in O(slogn) rounds according to the lemma below.

Lemma 5.2. Let C be the input clustering of Theorem 5.1. There exists a CONGEST algorithm running in
O(slogn) rounds which computes for each node w € V the sets {center(C): C € S,}. Moreover, for each
v € Centers, let M(v) = {u € V:C, € S,}. Then, there exists an O(slogn) round CONGEST algorithm
that allows each node v to send one O(logn)-bit message that is delivered to all nodes in M (v). Similarly,
there also exists an 5(slog n) round CONGEST algorithm that given O(logn)-bit messages prepared at nodes
in M (v) specific for node v, it allows node v to receive an aggregation of these messages, e.g., the summation
of the values, in 6(slog n) rounds.

Proof of Lemma 5.2. The proof follows roughly along the lines of the proof of Lemma 4.7. First, we run
the following variant of breadth first search: At the beginning, each node clustered in C has a token which
is equal to the identifier of its cluster. Now, in each of the s iterations, each node that has received at
most k = [100loglogn] identifiers in the previous iteration forwards all the identifiers it has received to its
neighbors. If a node has received more than k identifiers, it selects k of them to forward. The first phase
can be implemented in O(ks) CONGEST rounds. It directly follows from the fact that the s-hop degree of C
is at most k that after the first phase each node w learns the identifiers of all cluster centers such that the

19

corresponding cluster C satisfies d(w,C') <s. The next phase propagates this information up in the cluster
tree, from the root toward the leaves, such that each descendant of w—i.e., any node whose cluster path
to the root passes through w—learns about all those cluster centers as well. The second phase consists of
O(slogn) iterations. In each iteration, each clustered node sends all the identifiers it learned about so far
to each of its children in the corresponding cluster tree. It again follows from the fact that the s-hop degree
of C is at most k that each of the O(slogn) iterations in the second phase can be implemented in O(k)
CONGEST rounds. Hence, the overall CONGEST runtime is O(slogn).

For each v € Centers, let M(v) = {u e V: C, € S,}. By repeating the above communication, we have a
5(s log n)-round procedure that delivers one message from each node v to all nodes M (v). By reversing the
same communication in time, we can also provide the opposite direction: if each node in M (v) starts with
a message for v, then in 5(s logn) rounds, we can aggregate these messages and deliver the aggregate to v,
simultaneously for all v. O

Claim 5.3. Let k = [100loglog(n)] and Z € [0,1]9"*" with x,, = 5= for every v € Centers. Note that
this fractional label assignment is polynomially bounded in ¢ = k = O(loglogn). Furthermore, we have

u(7) — (@) > u(7)/2.
Proof. We have
— O C
u(7) = Z |O|Icent€T(C) - Z % - %,
cec

cecC
. LJsul _ e
C(f) = . Z . Z Ly Leenter(C) < . Z ‘ ET < E
u€V : u is clustered in C CeS,\{Cy} u€V : u is clustered in C
Therefore, indeed u(#) — ¢(Z) > u(¥)/2. O

We now invoking the rounding of Lemma 4.19 with parameters p = 0.5, ¢ = 0.5, and ¢ = k = O(loglogn)
on the fractional label assignment of & € [0, 1]“*"**" where z, = 21_k for every v € Centers. The procedure

runs in 6(5 logn) rounds. As output, we get an integral label assignment 7 € {0, 1}¢¢"*¢"s which satisfies

a(§) — <) 2 0.5(a(@) - e(@) > 1.
Let C' = {C € C: Ycenter(cy = 1}. Note that for every u € C,
I(u is clustered in C°“*) > y.. — Z Yey Yeenter(C)-
CceS N\{Cu}
Therefore,
|cout| > Z I(u is clustered in C"")

u€eV : u is clustered in C

> Z Ye,, — Z YeuYcenter(C)
u€V : u is clustered in C CceSN\{Cu}

=u(y) — c(9)

il

— 8k

and therefore C°“* clusters enough vertices to prove Theorem 5.1.

20

6 Clustering More Nodes

In this section, we prove the following result, which says that once we have access to a clustering algorithm
that clusters a nontrivial proportion of nodes with sufficient separation, we can turn it into an algorithm
that clusters a constant proportion of nodes. We are paying for this with a slight decrease in the separation
guarantees.

Theorem 6.1. Let x > 2 be arbitrary. Assume there exists a deterministic CONGEST algorithm A running
in R rounds which computes a clustering C with

1. strong diameter O(zlogn),
2. separation 10 - x and
n

3. clustering at least 55 nodes.

Then, there exists a deterministic CONGEST algorithm A’ running in O(2*(R + xlogn)) rounds which
computes a clustering C' with

1. strong diameter O(zlogn),
2. separation 2 and
3. clustering at least § nodes.

It follows from the analysis of Algorithm 2 and its subroutine Algorithm 3. To understand the pseudocode
of the algorithms, we note that for a set of nodes C' C V(G) and D € Ny, we define

CsP = {veV:d(C,v) <D}.

Moreover, we say that a cluster C' is good in Algorithm 3 if cut(C) < +o00. Otherwise, C' is bad.

Algorithm 2 Making a clustering algorithm cluster half of the nodes

1: procedure CLUSTERHALFNODES(G)
2: Co = @

3 N=[4-27]

4: fori=1,2...,N do

<1
5: Gi=G {V\ (Ucee.. ©) }
7: C; + ExPAND(G;,C)
8: Ci=Ci_1UC;
return Cy

Algorithm 3 Expanding an input clustering

Input: A graph G and its 10z-separated clustering C
Output: An expanded clustering C with small boundary

1: procedure EXPAND(G,C)

2 for C €C do

3: Define cut(C) = min {0 < i < 3z: |[C<!] < 1.5|C=|} and cut(C) = +oc if no such i exists.
4 If cut(C) < +o0, define expand(C) = C°H(C)

5 return C = {expand(C) : C € C, cut(C) < 400}

We start by analyzing Algorithm 3 in the following lemma. Importantly, the fourth condition for C in
the statement below states that the total number of unclustered vertices neighboring one of the clusters in
C is at most half the total number of clustered vertices. This is the reason why we can

21

Lemma 6.2. Let x > 2 be arbitrary and C a clustering with

1. strong diameter O(zlogn),

2. separation 10z and

3. clustering at least 5= nodes.

Then, C constructed in Algorithm 3 is a clustering with
1. strong diameter O(zlogn),

2. separation 4x,

3. clustering at least 0.5 nodes and

<1‘

<1 <
4- ’(UCeé C) ’ <15 ’(UCeé O)
Moreover, the algorithm can be implemented in O(xlogn) CONGEST rounds.
Proof. The first property follows from the fact that for a set S and D € Ng, diam(S<P) < diam(S) + 2D.
Hence, for a good cluster C,
diam(expand(C)) < diam(C) + 2cut(C) = O(zlogn).
To prove the second property, let C; # C2 € C be two arbitrary good clusters. For i € {1,2}, let
u; € expand(C;) be arbitrary. By triangle inequality, we have:
d(ul,uQ) Z d(Ol, 02) — d(Cl,ul) — d(CQ,’U,Q) Z 10x — 2 -3z Z 4x.

To prove the third property, it suffices to show that at most 0.55; of the nodes are contained in bad
clusters. For a bad cluster C, a simple induction implies |C=3%| > 1.5°¢|C| > 2 - 2¥|C|. Therefore,

1 n
<3z
S lsgs Y eyl
CeC,C is a bad cluster CeC,C is a bad cluster

where the last inequality follows from the fact that for two clusters C; # C5 € C, Clg3m N C;Bm = 0.
To prove the fourth property we write

<1
Jeo] |sxies
cec Ccec
— Z |(C§cut(0))§1|
CEC: C is a good cluster
_ Z |O§cut(c)+1|
CEC: C is a good cluster
<15 > |C=eut(O)]

CeC: C is a good cluster

<1
=15 U C
cel

It remains to discuss the CONGEST computation. Since we have for any C7, Cy € C that ClggzﬂCQSSm =0,
each cluster C' € C can compute the values of C5°, C=', ..., C=*" by running one breadth first search from
C4 up to distance of 3z.

O

22

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. We show that the algorithm satisfies the following invariants for ¢ € {0,1,..., N}:

1. C; is 2-separated

2. |V(Ci)| = n - min(0.5, £5=)

3. [V(CE)| < 1.5|V(Cy)]

The base case i = 0 trivially holds. Now, consider an arbitrary ¢ € [N] and assume that the invariant is
satisfied for i — 1. To check the first invariant, let Cy # Cy € C; be arbitrary. If Cy,Cy € C;_1, then it follows
by induction that d(C7,C3) > 2. If C1,Cy € éi, then it follows from Lemma 6.2 that dg, (C1,C2) > 2 which
also directly implies dg(C1,C2) > 2. It remains to consider the case that one cluster, let’s say C1, is in C;—1
and Cs is in C;. We have

Co CV(Gi) =V\V(CEh) CV\CF!

and therefore d(Cy, Cs) > 2, as desired.
Next, we show that the second invariant is preserved. If |V(C;—_1)| > n/2, then there is nothing to show.
Otherwise, we have

VGl 2= V(CEDI 2 n— 15V (Cn) 2 n— 155 = 1.

Therefore, according to LLIlllnd 6.2, C; clusters at least 0. 5("/ 4 = 8_751 vertices, which together with

V(Ci—1)| > n - min(0.5, £) directly implies |V (C;)| > n - min O 5, ===). It remains to verify the third
8 2 Y 8- 2 Yy
property. According to Lemma 6.2, we have

VEEN\VC)] < L[V(C)I.

Therefore,
V(CEN] = V(CED| + IVIEEN\V(CE)] < LIV (Cim)| + 15]V(Ci)| = 15V (Ci)].

This finishes the proof that the invariants are satisfied throughout the algorithm. Hence, Cy is a 2-
separated clustering that clusters at least half of the vertices. Moreover, it directly follows from the strong
diameter guarantee of Lemma 6.2 that C has strong diameter O(zlogn). Finally, as A has a round com-
plexity of O(xlogn), it follows that Cx is computed in O(2%(R + xlogn)) CONGEST rounds. This concludes
the proof of Lemma 4.3. o

7 Hitting Set

In this section, first, we introduce a variant of the hitting set problem. Next, we propose a simple ran-
domized algorithm for this problem using only pairwise independence. In the end, we describe an efficient
distributed /parallel derandomization of our randomized algorithm.

7.1 Problem Definition

Consider a collection § = {S1,..., Sy} of N subsets from the universe {1,...,n} and let w; > 0 be the
weight that is assigned to S;. We say a subset H C [n] hits S; if H N S; # 0. Our goal is to find a small H
with a small cost. Cost of H is total weights of S; that are not hit by H, i.e., Zi:SmH:@ w;. For a random
subset H that includes each element with probability p independently, the expected size of H is E[|H|] = np

and its expected cost is
Zw (1—p)5il Zwe ISlpr _

23

For example, suppose the regular case where |S;| = A. For p = 10log N/A, a random subset hits all sets
with high probability 1 — 1/poly(N) and for p = 1/A, constant fraction of sets are hit. Two important
examples for weights is when w; = 1 and w; = |S;|. In the former, we simply count the number of not
hit sets. The latter indeed appears in our applications for constructing spanners and distance oracles (see
Section 8). There, we get penalized for each not hit set by its size.

In many applications, the expected size and cost of a random subset are enough. The challenge is to find
a subset deterministically. Based on this, we formulate the following problem where we combine our two
objectives in one potential function.

Definition 7.1 (Hitting Set Problem). Given a collection & = {S1,...,Sn} of N subsets from the universe
{1,...,n}, an integer weight w; > 0 for each S;, and a sampling parameter p € (0,1), find a subset H that
minimizes the potential function

filwi-]l[HﬁSiz(Z)]+|H|
T8 np

ol (1) — 2= (71)

So if ®%(H) = O(1), then H has size O(np) and its cost is O(7%). Our goal is to find such a set with
constant potential function deterministically and efficiently. In the rest, we assume that N > n as we can
add dummy sets with zero costs. We also assume that p < 1/2 to ensure that 1 —p = e~ 9@ Note that
the case p > 1/2 is trivial since we tolerate constant deviation from a random subset and for p > 1/2; the
expected size of a random subset is at least n/2. So our hitting can include all the n elements.

Hitting in Ordered Sets. There are applications where H is partially penalized even if we hit S;. The
amount of cost depends on which element of S; is being hit. In Section 8, we encounter a particular instance
of this generalization which is described in the following.

For each S;, there is no weight but there is an order 7;(-) on its elements where 7;(j) denotes the j-th
element of S; for j =1,...,]5;|. Then, H has to pay k — 1 for S; if m;(k) € H and

HnN {Fi(l), . ,7Ti(]€ - 1)} = 0.

If H does not hit S; at all, it has to pay |S;|. Cost of H is the sum of the expenses incurred by each S;. We
call this problem hitting ordered set. With this definition, the expected cost for a random H is

N |Sil

> a-py

i=1 j=1
The hitting ordered set problem is related to the original setting of Definition 7.1 in the following sense.

Lemma 7.2. Given an instance I; of the hitting ordered set problem with N sets S1,...,Sy C [n], we
can construct an instance Iy of the original hitting set problem (see Definition 7.1) with O(N logn) sets in

O(Zij\il |Si]) time such that the following holds: For any H C [n], if ¢1 is the cost of H in Iy and co is the
cost of H in Iy, then ¢1 < co < 3c1.

Proof. To construct Zo, for each S; in 71, we add O(log n) sets to Zo. Suppose 2¢ < |S;| < 2¢F1. For j € [¢],
let S7 = {mi(1),...,m(27)} and let S{™ = S;. This completes the construction of sets of Z,. Weight of S
in T is its size |S7|.

Consider a subset H C [n]| and let k£ be the minimum index that m;(k) € H. Suppose k is |S;| + 1 if there
is no such index. So H has to pay k£ — 1 in Z;. In 7y, it has to pay Ej:|sj\<k |S7| which lies in the range
[(k—1),3(k —1)] and concludes the proof. O

7.2 Iterative Sampling

The goal of this section is to find H with ®% = O(1) for the hitting set problem Definition 7.1. Let
A = max;e[n] [Si]. Our algorithm has T' = [8pA] iterations. We start with a randomized algorithm and

24

then we derandomize it. For t = 1,...,T, let P! be a pairwise-independent distribution over n binary
random variables X{,..., X! € {0,1} with bias ¢ = 4p/T. That is:

Vi e [n],¥b e {0,1}, Pr[X! =10 =q¢"(1—-q)?,
Vi,j € [n],i # 3, Vb0 € {0,1}, Pr[X!=0bX!=0]=¢"" (1 - q)2).

Let the random subset G* be {i € [n] | X} = 1}. We replace G's one by one with an explicit set H*. The
final output of the algorithm is H = UL_, H!. Suppose we are in iteration ¢. Our goal is to find H'. Let

vi=) xi-> Y Xixj (7.2)

JES; JES; kES;i:j<k

If G* does not hit S, then Y}’ = 0. Otherwise, ¥;" <1 (because a < (5) + 1 for all positive integers a). So
1 —Y;! is always greater than or equal to 1[G N S; = (] and is a pessimistic estimator for the event that G*
does not hit S;. We have the following upper bound on E[1 — Y}!].

Lemma 7.3. E[1 — Y] <1 —3|S;|p/T < e~ |5:IP/T,
Proof. Note that:

Si
elv] = 1540~ (15) 2 1S40~ 15:Pe2/2 2 31Sila/4 = 315/ T

where in the last inequality we use ¢ = 4p/T < 1/2A < 1/2|5;]. O

For a subset G C [n], we define the function f(G) as

> isin(iu v —p(1 = Yi) - wie 1SIT=0p/T n Yo Xi+ 231 |H7| +4n(T — t)p/T
78 dnp

(@) =

where X; = 1[i € G] and Y; is defined from X3, ..., X, similar to (7.2).
Lemma 7.4. E[f}(GY)] < 2.

Proof. Note that E[> | X}] = ng = 4np/T and from Lemma 7.3, we have E[1 — Y;}] < e~1%IP/T Plugging
these two bounds completes the proof. O

Lemma 7.5. Fort > 2, we have:

ELf/(G)) < f7HHT.

Proof. Consider a subset S;. If one of H',..., H=2 hits S;, then the contribution of S; to the both sides
of the inequality is zero. Otherwise, if H'~! hits S;, the contribution of S; to E[f!(G")] is zero. Note that
it may contribute a non-zero amount into the RHS since we use pessimistic estimator 1 — Y;. The only

remaining case is when S; is not hit in any of the first ¢ — 1 iterations. Then, the contribution of S; to the

LHS is
E[1 — Y- wie™ 1 SIT=0p/T < e~ 1Sl (T=t+1p/T

where we use Lemma 7.3. On the other hand, the contribution of S; to the RHS is exactly w;e~S:(T—t+1p/T
So the contribution of each S; to the LHS is less than or equal to its contribution to the RHS. Since
E[|G¢|] = ng = 4np/T, the second term that controls the size in f!(-) and f!=1(-) are equal which completes
the proof. O

Theorem 7.6. If f{(H') < E[fY(G")] for allt =1,...,T, then
PL(H=H'U---UH") <2
Proof. From Lemma 7.4 and Lemma 7.5, we get that f7(H”) < 2. Comparing f7(H”) and ®%(H) term

by term, we can easily see that f7(HT) > ®L(H). O

25

If A > 1/p, then the number of iterations can be quite large. However, we are mostly interested in the
regime where the number of iterations is logarithmic. We can achieve this as stated in the following.

Corollary 7.7. Let St = {the first 10log N/p elements of S; | |S;| > 10log N/p} and S~ = S\ ST. Run
the algorithm twice: once for S~ with the same set of weights as before and once on 8T by setting all weights
to N2. Let the output of these two runs be H~ and HT. Then:

O (H=H UHT) <4

Each run takes at most O(log N) iterations. Moreover, all sets in S with size at least 101log N/p are hit by
H.

7.3 Implementation

The remaining piece of Theorem 7.6 is to find H' such that f'(H') < E[f'(G")]. We first start with the
construction of a suitable pairwise distribution.

Construction of Pairwise Independent Distribution. From the algorithm of the previous section, we
need a pairwise distribution P on n binary random variables Xi,...,X,, € {0,1} with bias ¢q. Assume that
q = 27" for some ¢ € N and n is a positive integer of the form n = 2™ — 1 for m € N. We use the pairwise
distribution that is used in [Lub93, BRS89] which has a random seed of length ¢m = O(log1/p - logn). Let
us quickly recall the construction. We first assign an ¢-bit label L; to each X;. Then, we set X; to one if and
only if all the ¢ bits of L; is one. To construct the labels, we decompose the random seed R into ¢ groups
each containing m bits as follows:

R = T8 . .T,Onflr(l) Y rgflrfnill
The j-th group ré ...r) | is for constructing the j-bit of L;s. To define L;(j) (the j-th bit of L;), we use
the bit representation of i. Suppose ¢ = ;n:_ol bi2*. Then:

Lz(]) = bo?‘g b---D bm—lrg;z—l

This completes the construction. In the course of derandomization, we fix the random seed bit by bit.
Suppose we fix the first B bits of R to by, ...,bg—1 € {0,1}. This gives us a new distribution Q. The following
result by Berger, Rompel, and Shor [BRS89] is an important tool to achieve work-efficient derandomization.

Lemma 7.8 (|[BRS89], Section 3.2). For any given subset A C [n], we can compute

D EolXi], Y| Eo[XiX;]

i€A i€EAJEA

with O(|A|) processors and in O(logn) depth in the PRAM model. In particular, we can compute these two
quantities in O(|A|logn) time in the standard model.

Bit Fixing. Suppose we are in iteration ¢ and we want to find H* such that f*(H') < E[f*(G")]. Suppose
Pt is P as described above. If ¢ is not a power of two (which is needed for the pairwise construction), replace
it with a power of two in the range [q,2¢). We can observe that for any H

O (H) > ®(H)/2 (7.3)

So with this replacement, we lose at most a two factor in the final bound for the potential function. Now,
we start to fix the bits of the random seed of P?. Suppose we already fixed the first B bits of the random
seed R by bo,...,bp_1. Let e, = E[f(G**!) | R(0) = b,...,R(B —1) =bp_1,R(B) = x| for = € {0,1}. If
eo < e, then we fix bp to zero. Otherwise, we fix it to one. Suppose all the ¢m bits are fixed and suppose
that the random variable X; is v; € {0, 1} when we set the random seed to by . .. bgy,_1. Then, we set H® to
{i € [n] | v; = 1}. We can easily observe that f'(H') < E[f*(G")].

26

PRAM Model. We have all the ingredients for implementing the algorithm in the PRAM model. This leads
to the following theorem.

Theorem 7.9. There is a_deterministic algorithm that solves the hitting set problem by finding a subset H
with ®%(H) < 4 and with O(Ei]\il |Si]) work and

O([pA] -log1/p-log®n)

depth in the PRAM model. Moreover, there is a deterministic algorithm that finds a subset H with ®'5(H) < 8

and such that H hits all S;s with size greater than 10log N/p. This algorithm runs with 6(211\;1 |Si]) work
and

O(log N -log1/p - log® n)
depth in the PRAM model.

Proof. The first algorithm is based on Theorem 7.6 and the second algorithm is based on Corollary 7.7. In
those two algorithms, the potential function is upper bounded by 2 and 4. Here, we can only guarantee 4
and 8. This is because ¢, the sampling probability of one iteration, may not be a power of two. As discussed
before (see (7.3)), we can handle this issue by paying an extra factor two in the approximation factor. In one
iteration, we have O(log 1/p-logn) bit fixing. For each bit, we need to compute two conditional expectation
which takes O(logn) depth and O(logn - Zi\il |S;]) work using Lemma 7.8. Multiplying the number of
iterations gives us the claimed bounds. O

CONGEST Model. First, let us describe how the hitting set problem is represented in the distributed
model. Consider an (N + n)-node bipartite network G = (AU B, E) where A = [N] and B = [n]. A node
i € A represents set S; and a node j € B represents element j € [n]. There is an edge between i € A and
j € Bif and only of j € S;. We assume that p, n, and 75 (or an upper bound of it) is known to all nodes.

To simulate global decision making, we use 3-separated network decomposition. We need to execute the
following operation fast: For an arbitrary color j, let C1,...,Cy be the set of clusters with color j in the
given 3-separated network decomposition. Suppose that each node v in Cy U --- U Cy knows a value a,. For
each cluster C;, we want to broadcast the value Zve o, @v to all nodes in C;. We denote the round complexity
of executing this operation for all clusters C1,...,Cy by Tx.

Theorem 7.10. Given a Q-color 3-separated network decomposition with aggregation time Tty (as described
above), there is a deterministic algorithm that solves the hitting set problem by finding a subset H with
PL(H) <4 in

O([pA]-Q-log1/p-logn - T{E)

rounds of the CONGEST model. Moreover, there is a deterministic algorithm that finds a subset H with
P (H) < 8 and such that H hits all S;s with size greater than 10log N/p. This algorithm runs in

O(log N - Q -log1/p-logn - TR$)
rounds of the CONGEST model.

Proof. We want to derandomize iteration ¢. In contrast to the PRAM model Theorem 7.9, in the CONGEST model,
we do not have global communication and so we cannot decide which bit should be fixed in a straightforward
way. However, we can simulate such global decision-making with network decomposition paying an extra
factor @) in the round complexity. For each cluster C, we independently draw a sample from the pairwise-
independent distribution P with bias g. Recall that the input graph is a bipartite graph G = (AU B, E).
These samples assign a binary value to each node of B. Observe that the assigned values are also pairwise
independent since the product of pairwise independent distributions is pairwise-independent. Now, to de-
randomize, we go through the colors one by one. Suppose we are working on color j € [Q] with d clusters
C4,...,Cq. Moreover, suppose the first b bits of random seeds of Cy,...,Cy are fixed. We fix the (b+ 1)-th
bit. Let us emphasize that each cluster has its own random seed and different clusters may fix the (b+ 1)-th
bit differently. Consider cluster C; and a node v € A that is either in C; or is in the boundary of C; (i.e.,
v is not in C; but has a neighbor in C;). So this node represents a set S, in the corresponding hitting set

27

problem. We assign two values a® and al to v where a® corresponds to the case when we fix the (b -+ 1)-bit
of the random seed of C; to x. Note that each neighbor of v represents an element of S,,. If v has a neighbor
in the clusters with color {1,...,j — 1} that is already decided to be in H (our final hitting set), then we set
a? to zero. So suppose this is not the case and let d be the number of neighbors of v that are not in C; and
are in a cluster with color in {j + 1,...,Q}. Then, we set a® to

(1+ (g)q2 —dq)- F* . wye~1Sil(T=t)p/T

p
Ts

where F? is
Fy=E1+ > > XuXw — Y X, |first b bits and (b+ 1)-th bit is x]
uweC;NB:uweS, ueC;NB:ueS, ANu<u’ u€C;NB:uES,

where X, represents the indicator random variable of element u. Note that the given network decomposition
is 3-separated and so all the boundaries of Cj, ..., Cy4 are disjoint. So v can compute F? in O(|S,|) according
to Lemma 7.8. Also, note that that this gives us the contribution of .S, to

E[f(-) | first b bits and (b+ 1)-th bit is z]
Next, for each element u € A;, set af. to

E[X, | first b bits and (b + 1)-th bit is]
dnp

In the end, for each cluster C;, we compute two values e¥ for x € {0, 1} which is

x
>, o

veC;U(8(C;)NB)

where 9(C;) denotes the boundary of C;. We broadcast e? to each nodes in C;. This can be done in O(Txg)
rounds for all C;s simultaneously. Next, nodes of C; set the (b+ 1)-bit of the random seed to zero if e? < €?
and set it to one otherwise. This completes the bit fixing.

There are T sampling iterations (if we apply Theorem 7.6, T = [pAl], and if we apply Corollary 7.7,
T = O(logN)), @ colors, and O(log1/p - logn) bits to fix for each color. Multiplying these numbers
gives us the number of bit fixing. Taking into account that fixing each bit takes O(TyFy) rounds of the
CONGEST model concludes the proof. O

Corollary 7.11. There is a deterministic algorithm that solves the hitting set problem by finding a subset
H C [n] with ®5(H) = O(1) in poly(logn) rounds of the CONGEST model and with total computations
O(m).

Proof. There is a work-efficient deterministic algorithm for finding a 3-separated O(logn)-color network

decomposition in polylog(n) rounds and with T = polylog(n)(see Theorem 2.12 of Rozhon and Ghaf-
fari [RG20]). Plugging this bound in Theorem 7.10 concludes the proof. O

8 Applications of Hitting Set

In this section, we discuss two applications of the hitting set problem. One is the distributed construction of
multiplicative spanners and the other is the parallel construction of distance oracles. Let us quickly define
these notions. A subgraph H = (V, E') C G = (V, E) is an a-spanner of G if for all pairs of nodes u,v € V|
we have:

de(u,v) < dg(u,v) < a-dg(u,v).

A distance oracle is a data structure that accepts a pair of nodes (u,v) as a query and returns their distance
in G. In Section 8.2, we discuss source-restricted approximate distance oracle in which s nodes of G are
marked as source and it is guaranteed that u is always a source. The term “approximate” allows the oracle
to return an approximation of dg(u,v) rather than its exact value.

28

8.1 Spanners

Theorem 8.1. There is deterministic algorithm in poly(logn) rounds of the CONGEST model and with total
computations O(m) that finds a (2k — 1)-spanner with O(nk +n'T*logk) and O(nk 4+ n'*t1/*k) edges for
unweighted and weighted graphs, respectively.

Proof. We derandomize Baswana-Sen algorithm [BS07]. Let us quickly recall this algorithm. It consists of
k steps. The input of step 7 is a clustering denoted by C;. Each cluster has a center node known to all of its
members. The input of the first step is the trivial clustering: there are n clusters each containing a single
node. During one step, we sample some of the clusters, and then based on that sampling, some nodes stay in
their clusters, some get unclustered, and some join other clusters. After this, the current step ¢ terminates,
and the new clustering C; 1 is passed to the next step. Here is what we do in step ¢ for ¢ < k—1 (we discuss
the last step, i equals k, later):

1. Each cluster of C; is sampled with probability p = n~/%.

2. A node that is in a sampled cluster, stays put in its own cluster.

3. For a node v in an unsampled cluster, let C4,...,Cy be the set of clusters containing at least one
neighbor of v. Let ¢; = {u; € C;,v} be an edge with the minimum weight between v and one of the
nodes in C;. If there are several edges with the minimum weight, v selects one of them arbitrarily. Let
w; be the weight of e;. Without loss of generality, suppose wi < --- < wy. If all of Cy,...,Cy are
unsampled, v adds all edges ey, ..., eq to the output spanner and gets unclustered. Otherwise, let j be
the minimum index for which Cj is sampled. Then, v adds ey, ...,e; to the output spanner and joins
the sampled cluster C;. Note that all such v runs this step simultaneously.

In the last step, we do the exact same thing except that we sample no cluster (each cluster is sampled with
probability zero rather than n=1/%).

The output of Baswana-Sen is always a (2k — 1)-spanner and only the size of the output depends on the
randomness. From the algorithm description, you can see that the only randomized part of the Baswana-
Sen algorithm is the sampling of clusters. Our goal is to find the set of sampled clusters of each step
deterministically. If we have the following properties on the set of sampled clusters, then we can guarantee
the claimed bounds on the size of the output spanner (see [BEG' 22|, Lemma 3.3):

(a) For each i, the number of clusters in C; is at most n'~(=1/k,

(b) The number of edges added to the output spanner is bounded as follows: For the unweighted case, the
total number of edges added by nodes with at least y1n'/¥ log k neighboring clusters for a large enough
constant 1 > 0 is at most O(n'*1/¥ /k). For the weighted case, all nodes add at most O(n'*1/¥) edges
to the output.

(¢) A node that is clustered in C;, remains clustered if it has at least y2n'/* log n neighbouring clusters for
a large enough constant vy, > 0.

We can frame these properties as a hitting set problem. To avoid cluttering the notation, we refer to the
universe size in the corresponding hitting set problem of step i by n? and its number of sets by N/. In
step ¢, we have the following hitting set problem: There is an element in the universe for each cluster in
C;. So nf = |C;] < n. For each clustered node v in C;, there is a set S, containing all of its neighboring
clusters. So Nih < n. The parameter p for the hitting set problem is set to the sampling probability of
Baswana-Sen divided by a large enough constant v3 > 0, ie., p = n_l/k/% (note that the last step is
already deterministic and no derandomization is needed there). For unweighted graphs, we set the weight
of S, to its size w, = |S,|. For weighted graphs, we consider the hitting ordered set problem as discussed
in Lemma 7.2. For each clustered node v, we assign the order ,(-) on S,. Suppose that the neighboring
clusters of v are C1,...,Cy and the minimum weight of an edge between C; and v is w;. Then C; comes
before C; in m,(-) if w; < wj or w; = w; and ¢ < j.

With straightforward calculations, we can see that all the three required properties are satisfied if we
solve the presented hitting set problem with Corollary 7.11 (for the hitting ordered set problem, we first use
the reduction Lemma 7.2).

29

We have k < logn steps in total. As described above, each step can be derandomized by solving a hitting
set problem. So the total round complexity is poly(logn) by applying Corollary 7.11. One issue here is
that each element in the defined hitting set problem corresponds to a cluster. This issue can be handled by
contracting each cluster to a node and using the fact that the network decomposition of [RG20] also works
on contracted graphs. This slows down the round complexity only by a factor & = O(logn) as each cluster
has diameter k. O

Theorem 8.2. For any € > 0, there is deterministic distributed algorithm in poly(logn)/e rounds of the
CONGEST model and with total computations O(m) that finds a spanner with size n(1 + €) and with stretch
O(logn - 28" " /&) and O(logn - 4'°8° " J¢) stretch for unweighted and weighted graphs, respectively.

Proof. We derandomize the algorithm of Pettie [Pet10] to get a spanner with O(n) edges and with stretch
O(logn -2'°¢" ™) and O(logn - 4°¢"n) for unweighted and weighted graphs, respectively. Pettie’s algorithm is
combining O(log™ n) application of Baswana-Sen back to back and the hitting set problem we encounter in
Pettie’s algorithm, is exactly the same as the Baswna-Sen. So we do not repeat this here. We refer interested
readers to Theorem 1.5 of [BEGT22] where the full algorithm and a slower derandomized version of it is
discussed. Let us note that the original algorithm of Pettie only works for unweighted graphs, but with a
simple modification which is proposed in [BEG'22], it can work on weighted graphs as well. To reduce the
number of edges from O(n) to n(1+¢), we apply the deterministic reduction of [BEG'22|, Theorem 1.2. O

8.2 Approximate Distance Oracles

This section is devoted to the parallel implementation of the approximate distance oracle by Roditty, Thorup,
and Zwick [RTZ05]. There, given a weighted graph G = (V| E), a stretch parameter k, and a set of s sources
S C V, they deterministically construct a data structure of size O(kns'/*) and in 6(msl/k) time. For a
query (u,v), the data structure can compute a value ¢ such that

d(u,v) < ¢ < (2k —1)d(u,v)

in O(k) time. See Algorithm 4 for their algorithm for constructing the data structure and Algorithm 5 for
how they evaluate a query.

Algorithm 4 Approximate Distance Oracle [RTZ05]

1: procedure DISTORACLE(G, k)
2 AO = S, Ak = @
3 ¢ =10s"*logn.
4: fori=1,....,k—1do
5 For each v € V, find p;(v) € A,_; such that d(p;(v),v) = d(A4i—1,v).
6 For every v € V, compute N;_1(v) which is the set of ¢ closest nodes to v in A;_;.
7 Find a set A; C A;_; such that:
(a) |4 < 51
(b) A; hits N;_1(v) for allv € V.
(€) Xpey Hw € Aim1 — A; | d(w,v) < d(A;,v)} = O(ns'/*).
8: For each v € V, compute pi_1(v).
9: For every v € V, set B(v) = Aj_1.
10: fori=0,....,k—2do
11: For every v € V, set B(v) = B(v) U{w € N;(v) | d(w,v) < d(A;+1,v)}.
12: For each v € V, create a hash table H(v) with an entry (v, d(v,w)) for each w € B(v).

Theorem 8.3. Given an undirected weighted graph G = (V, E), a set of s sources S C V', stretch parameter
k, and error e > 0, there is a deterministic algorithm that solves the source-restricted distance oracle problem
with O (ms'/*) work and O.(poly(logn)) depth in the PRAM model. The data structure has size O(nks'/*)
and for each query (u,v), the oracle can return a value q in O(k) time that satisfies

d(u,v) < ¢ < (2k—1)(1 +¢)d(u,v).

30

Algorithm 5 Evaluating a query [RTZ05]

1: procedure QUERY(u € S,v)
2 w=1u,1=0.
3 while w ¢ B(v) do
4: 1 =1+ 1.
5 (u,v) < (v,u).
6 w < pi(u)
return d(w, u) + d(w,v)

Proof. Tt is enough to provide a parallel algorithm with 5€(poly(10g n)) depth for computing A;, N;(-), and
the hash table. This gives us all the ingredients we need to run the algorithm.

Note that finding a suitable A; in Algorithm 4 is just an instance of hitting ordered set problem and we
can apply Lemma 7.2 and Corollary 7.7. The universe is A;_; and for each v € V|, we want to hit the set
N;_1(v). We also need to determine 7; ,,(-). An element w comes before w’ in this order if d(w, v) < d(w’,v).
If the distances are equal, we break the tie based on the identifier of w and w’. If we set the sampling
probability to p = s~ 1/* /7 for a large enough constant v > 0 (indeed v = 24 is enough), then we can
compute a suitable A; satisfying all the three required properties with 5(m) work and O (poly(logn)) depth
in the PRAM model using Theorem 7.9 and the reduction Lemma 7.2.

In [RTZ05], they compute N;(-) by running ¢ instances of Single Source Shortest Path problem (SSSP).
There is no known parallel algorithm for SSSP with poly-logarithmic depth. However, recently, Rozhoin et
al. [RGH™22| proposed a work-efficient algorithm for computing (1 + ¢)-approximation of SSSP with poly-
logarithmic depth. We can replace the exact computation with an approximation, losing (1 + ¢) in the final
stretch guarantee.

For computing the hash tables, we can apply the construction of Alon and Naor [AN96]. There, they
provide a deterministic hash table of ¢ elements into O(t) space with read access of O(1) time. While they
did not discuss the parallel implementation of their construction, their algorithm can be implemented in
poly(logn) depth in a straightforward way. Their approach is derandomizing a randomized hash function
using the method of conditional expectation on epsilon-biased spaces. They define a potential function (see
section 3.1. of [AN96]) which is a simple aggregation and can be parallelized. We do not discuss the full
details as the implementation is straightforward. O

31

Acknowledgments

M.G., C.G., S.I., and V.R. were supported in part by the European Research Council (ERC) under the Eu-
ropean Unions Horizon 2020 research and innovation program (grant agreement No. 853109) and the Swiss
National Science Foundation (project grant 200021 184735). B.H. was supported in part by NSF grants
CCF-1814603, CCF-1910588, NSF CAREER award CCF-1750808, a Sloan Research Fellowship, funding
from the European Research Council (ERC) under the European Union’s Horizon 2020 research and in-
novation program (grant agreement 949272), and the Swiss National Science Foundation (project grant
200021 184735).

References

[ABCPY6]

[AGLPSY]

[AN9G]

[AP90)

[BE13)

[BEG*22]

[BRS89)

[BSO7]

[CG21]

[EHRG22]

[EN16]

[FGGT22]

[GGR21]

B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Fast network decompositions and covers. J. of
Parallel and Distributed Computing, 39(2):105-114, 1996.

B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. Network decomposition and locality
in distributed computation. In Proc. 30th IEEE Symp. on Foundations of Computer Science
(FOCS), pages 364-369, 1989.

Noga Alon and Moni Naor. Derandomization, witnesses for boolean matrix multiplication and
construction of perfect hash functions. Algorithmica, 16(4):434-449, 1996.

B. Awerbuch and D. Peleg. Sparse partitions. In Proc. 31st IEEE Symp. on Foundations of
Computer Science (FOCS), pages 503-513, 1990.

L. Barenboim and M. Elkin. Distributed Graph Coloring: Fundamentals and Recent Develop-
ments. Morgan & Claypool Publishers, 2013.

Marcel Bezdrighin, Michael Elkin, Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler,
Saeed Ilchi, and Vaclav Rozhon. Deterministic distributed sparse and ultra-sparse spanners and
connectivity certificates. arXiv preprint arXiv:2204.14086, 2022.

Bonnie Berger, John Rompel, and Peter W Shor. Efficient nc algorithms for set cover with
applications to learning and geometry. In Foundations of Computer Science, 1989., 30th Annual
Symposium on, pages 54-59. IEEE, 1989.

Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for com-
puting sparse spanners in weighted graphs. Random Structures & Algorithms, 30(4):532-563,
2007.

Yi-Jun Chang and Mohsen Ghaffari. Strong-diameter network decomposition. In Proceedings of
the 2021 ACM Symposium on Principles of Distributed Computing, pages 273-281, 2021.

Michael Elkin, Bernhard Haeupler, Véaclav Rozhon, and Christoph Grunau. Deterministic low-
diameter decompositions for weighted graphs and distributed and parallel applications. In
Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages to appear,
arXiv:2204.08254, 2022.

M. Elkin and O. Neiman. Distributed strong diameter network decomposition. In Proc. 35th
ACM Symp. on Principles of Distributed Computing (PODC), pages 211-216, 2016.

Salwa Faour, Mohsen Ghaffari, Christoph Grunau, Fabian Kuhn, and Vaclav Rozhon. Local
distributed rounding: Generalized to mis, matching, set cover, and beyond. In Manuscript, page
to appear, 2022.

M. Ghaffari, C. Grunau, and V. Rozhon. Improved deterministic network decomposition. In
Proc. 33rd ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 29042923, 2021.

32

[GHK18]

[GK18]|

[GK21]

[GKM17]

[GY20]

[Lin92]

[Lub86|

[Lub93]

[MPX13]

NS5

[Pel00]
[Pet10]

[PS92]

[PY18]

[RG20]

[RGH*22|

[RTZ05)

[TZ05|

M. Ghaffari, D. Harris, and F. Kuhn. On derandomizing local distributed algorithms. In Pro-
ceedings of the Symposium on Foundations of Computer Science (FOCS), pages 662-673, 2018.

Mohsen Ghaffari and Fabian Kuhn. Derandomizing distributed algorithms with small messages:
Spanners and dominating set. In 32nd International Symposium on Distributed Computing (DISC
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

M. Ghaffari and F. Kuhn. Deterministic distributed vertex coloring: Simpler, faster, and without
network decomposition. In Proc. 62nd IEEE Symp. on Foundations of Computer Science (FOCS),
pages 1009-1020, 2021.

M. Ghaffari, F. Kuhn, and Y. Maus. On the complexity of local distributed graph problems. In
Proc. 49th ACM Symp. on Theory of Computing (STOC), pages 784-797, 2017.

Parikshit Gopalan and Amir Yehudayoff. Concentration for limited independence via inequalities
for the elementary symmetric polynomials. Theory of Computing, 16(1):1-29, 2020.

N. Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193-201,
1992.

M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal
on Computing, 15:1036-1053, 1986.

M. Luby. Removing randomness in parallel computation without a processor penalty. J. of
Computer and System Sciences, 47(2):250-286, 1993.

Gary L Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using random
shifts. In Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms
and architectures, pages 196-203, 2013.

M. Naor and L. Stockmeyer. What can be computed locally? SIAM Journal on Computing,
24(6):1259-1277, 1995.

D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. Distributed
Computing, 22(3):147-166, 2010.

A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring and network decom-
position problems. In Proc. 24th ACM Symp. on Theory of Computing (STOC), pages 581-592,
1992.

Merav Parter and Eylon Yogev. Congested clique algorithms for graph spanners. In 32nd Inter-
national Symposium on Distributed Computing, page 3, 2018.

V. Rozhonn and M. Ghaffari. Polylogarithmic-time deterministic network decomposition and
distributed derandomization. In Proc. 52nd ACM Symp. on Theory of Computing (STOC),
pages 350-363, 2020.

Vaclav Rozhon, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li. Undirected
1 4 e-shortest paths via minor-aggregates: Near-optimal deterministic parallel & distributed
algorithms. arXiv preprint arXiv:2204.05874, 2022.

Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate dis-
tance oracles and spanners. In International Colloquium on Automata, Languages, and Program-
ming, pages 261-272. Springer, 2005.

Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM (JACM),
52(1):1-24, 2005.

33

	1 Introduction
	1.1 Network Decomposition
	1.2 Hitting Set

	2 Preliminaries
	3 Improved Network Decomposition, Outline
	4 Low-Degree Clustering
	4.1 Computing Delays
	4.2 Algorithm Ai,j via Local Derandomization

	5 From Low-Degree Clusters to Isolated Clusters
	6 Clustering More Nodes
	7 Hitting Set
	7.1 Problem Definition
	7.2 Iterative Sampling
	7.3 Implementation

	8 Applications of Hitting Set
	8.1 Spanners
	8.2 Approximate Distance Oracles

