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Abstract— Quantization plays an important role as an inter-
face between analog and digital environments. Since quantiza-
tion is a many to few mapping, it is a non-linear irreversible
process. This made, in addition of the quantization noise signal
dependency, the traditional methods of system identification
no longer applicable. In this work, we propose a method
for parsimonious system identification when only quantized
measurements of the output are observable. More precisely, we
develop an algorithm that aims at identifying a low order system
that is compatible with a priori information on the system
and the collected quantized output information. Moreover,
the proposed approach can be used even if only fragmented
information on the quantized output is available. The proposed
algorithm relies on an ADMM approach to ¢, quasi-norm
optimization. Numerical results highlight the performance of
the proposed approach when compared to the ¢/; minimization
in terms of the sparsity of the induced solution.

I. INTRODUCTION

A. Motivation

In mathematics and signal processing, quantization is
the process of mapping an input signal from an infinite
continuous set to a countable set with a finite number of
elements [1]. Since most of the information mounting sig-
nals, i.e., speech and image, exhibit a continuous and analog
nature while their processing requires a digital environment,
quantization is considered an important mediator between
analog and digital worlds. As a result, traditional system
identification techniques are no more applicable when the
input signal is subject to quantization [2], [3]. In [4]-[6] and
references therein, the authors suggested that the traditional
theory of system identification needs to be extended to
tackle the fact that the measurements are quantized. This
is because the quantization noise can no longer be modeled
as a filtered white (zero mean and independent over time)
noise in addition to being signal dependent. Moreover, from
[7] (section 10.1), the classical identification procedures are
not suitable for robust identification because they identify a
set of parameters of a fixed mathematical structure, where a
fixed system order must be assumed.

Various works —which will be discussed in the next section
in more detail- explored the problem of system identification
given quantized realizations. However, we aim to study the
problem of parsimonious system identification given only
quantized realizations from a multi-threshold sensor.
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B. Related work

The authors in [8] studied the problem of system iden-
tification using uniformally quantized realizations. The pro-
posed formulation is a least square minimization of the dif-
ference equation errors over all time samples with the system
parameters as optimization variables. Despite the prominence
of the proposed method in estimating the unknown informa-
tion in the I/O data, it still suffers the drawback of high com-
putational complexity and noise neglection. The work in [9]
accosted these drawbacks by exploiting statistical properties
instead of deterministic treatment. In particular, an identifica-
tion method for a linear system based on quantized measure-
ments was derived. Using traditional equi-spaced quantizer,
an instrumental level identification approach was proposed
to enhance the estimation accuracy. A variation for the equi-
spaced quantizer was considered in [10], where the authors
showed the out-performance of the adoption of a generalized
noise shaping coder in terms of the estimation accuracy.

Another line of research includes the identification using
a general class of quantized observations that allows the
segmentation of the output range into a collection of subsets
that may have unequal, fixed lengths or even design variables
such as quantization design in communication systems [11].
This serves in favor of understanding the potency of systems
with limited sensor information, which in turns rapports the
gap between resource limitations and identification complex-
ity in sensor and communication networks. In particular, the
work in [12] considered the identification of a gain system
by exploiting the information from multiple threshold sensor
and the convex combination of these thresholds. The results
were extended to the case of a noisy communication channel
through which the sensor output information is transmitted.
The authors prove that their estimator is asymptotically effi-
cient achieving the Cramer-Rao lower bound. Furthermore,
the results were extended to a finite impulse response and
transfer function models for periodic bounded input signals.

C. Contributions

Despite the outstanding performance of the different meth-
ods proposed for system identification with quantized out-
puts, none of them addressed the problem of identifying
the system of least order that is compatible with collected
information. The notions of system complexity and analysis
are closely related to its order, i.e., systems with less order
are easier to analyze and more amenable for controller
design. Moreover, previous work cannot take into account
prior information on the system and cannot use fragmented
measures of the quantized output.
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Fig. 1. System model.

Inspired by the results in [13], [14], in this paper we
propose an algorithm that addresses the shortcomings men-
tioned above. More precisely, we assume that the a priori
information on the system can be described as constraining
the poles of the system to a known compact set. Then, by
exploiting “simple representations” of transfer functions, we
develop an efficient algorithm that aims at finding the lowest
order system that is compatible with fragmented quantized
output measurements. This algorithm is based on an ADMM
approach to the problem of £, quasi-norm optimization.

D. Notation

Throughout the paper, bold face letters denote vectors, R
and C are the sets of real and complex numbers respectively.
For any vector x, x{} is an element-wise power of the
elements of x. We use < and ® for element wise inequality
and multiplication of vectors. The |.| operator stands for the
absolute value. The p-th norm of a vector x € R"™ is defined
such that

Ixll, 2 (O Jaf?) . (1)
=1

It is important to note that when 0 < p < 1, the expression in
(1) is termed as the quasi-norm satisfying the same axioms
of the norm except the triangular inequality making it a non-
convex function. For a complex number xz, we use Z to denote
the complex conjugate of that number. Finally, let the unit
circle be denoted by D.

II. PROBLEM STATEMENT

We consider the system shown in figure 1, where discrete
input samples, u(k), on a finite time horizon of length N €
Z are applied to a Linear Time Invariant (LTI) system G.
The output y(k) is measured by an m-levels sensor with
thresholds vector C = [cy,...,¢,]T € R™. The sensor acts
as a quantizer where the output z(k) € {0,1}"™ is defined
such that z;(k) = Z(y(k) > ¢;) for i € [m] and Z(.) is
an indicator function equal to 1 if the applied argument is
true and O otherwise. Given the realizations z(k), we aim to
reconstruct the least order system that is compatible with the
input output information.

More formally, the problem we aim to address can be
stated as follows

Problem. Given

o Set D that contains the poles of the LTI system G.

o An input sequence u(k), k € {0,1,...,N — 1}, which
is applied to the system G

o Measurements of the binary (quantized) output realiza-
tions z(k) for k € K C{0,1,...,N —1}.

find the most parsimonious system that is compatible with the
a priori assumptions and a posteriori data mentioned above.

Remark 1. The formulation above assumes that the only
a priori information available on the system is that it is
stable. However, any a priori information on the system G
that can be represented as constraints on the position of the
poles (such as settling time) is compatible with the approach
presented in this paper.

Remark 2. The formulation in this paper can also be
extended to the cases where the intermediate signal y(k) is
corrupted by norm bounded noise. For ease of presentation,
this is not addressed in this paper.

A. Parsimonious Identification as a Block Sparsification
Problem

Note that the transfer function of any LTI system with
poles in D can represented as

G(z) = a7 2
(z) =71+ Z m, (2)
q€D

withr € R and a4 € C being the coefficient that is associated
with pole q. If the system has repeated poles, then it can be
approximated by a system of the form above to an arbitrarily
small level of precision.

From the definition of linear systems, the output y(k) can
be decomposed as,

where, y,i(k) is the zero input response, i.e., the response
due to the initial conditions of the system before the input is

applied, while y,5(k) is the zero state response. From [15],
the zero input response can be written as,

Yai(k) = quqk_la Vk € [N —1], 4)

qeD
such that, similar to (2), b, € C is the coefficient that
is associated to pole ¢ and y,;(0) = 0. The zero state

response is obtained by convolving the input sequence with
the system’s impulse response,
k
Yus(k) =Y u(i)h(k — j), )
j=0

where h(k) is the impulse response of the system. By taking
the inverse z-transform of (2), the impulse response can be
easily found to be

N—1
h(k)=6(k)r+ > 6(k—n)> agq""" (6)
n=1 qeD
where d(k) is the dirac delta functional. In other words,
the expression in (6) states that h(0) = r and h(k) =
> 4ep @qq" " for any other k.

The notions of system complexity and order are always
related to the number of poles used to describe the system.
The larger number of poles, the higher order and more
complex the system is. Hence, in this work, and given
only binary realizations of z(k), we aim to reconstruct the
corresponding system with the least number of associated
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poles. First we define the mapping Y : D — C? which maps
every pole ¢ to the corresponding coefficients a, and b, i.e.,
Y(q) = [ag by " Hence, the problem described above can
then be formulated as follows,

mki)n Cardinality{q € D : Y(q) # 0}, (7a)
st y(k) = yu(k) + yas(k), (7b)
ya(k) =) bed" ™, (7¢)

qeD

k

Yus(k) = > u(j)h(k — j), (7d)

=0

’ N-1
h(k) =6(k)r+ > 6(k—n)> aq"",  (Te)
n=1 qeD

zi(k)=Z(y(k) > ¢;), Yie[m], Vke kK, (7
Qg = aq, bq = a/q VQGD (7g)

Constraint (7g) implies that the coefficients that are asso-
ciated with complex conjugate poles have to be complex
conjugate as well and O in (7a) is a vector of zeros in R2.

III. PROPOSED SOLUTION

Ideally, we aim to solve the problem in (7), however, this
could be practically impossible because the unit circle has
infinite number of poles so the computational complexity of
the problem would be very high. Therefore, we implement
an approximation for the above problem. This approximation
is based on gridding the unit circle to a finite number of
poles n. It is important to note that the denser the unit
circle is grided, the more accurate the approximation is to
the original problem. However, this increases the problem’s
computational complexity and hence, a trade-off exists. First,
we define the vector ' = [g1,...¢n), which is composed
of complex conjugates and real poles resulted from the
gridding effect, and the vectors of associated coefficients

a'=[ag,,...a,,] and bT=[b,,,...b,, ]. Second, we define
the scaling factor a € R™ where,
1—|g?

Vi € [n]. (8)

For more information on o and its proper choice, the
interested reader is recommended to visit [14]. Then, a proper
approximation for the original problem in (7) can be defined
such that we solve;

Idllo

o = — il
T = g 2N 2

(9a)

min
a,b,r,d

k
st y(k)=(aob) a™ M +> u(j)hk —j) ©b)

=0
N—-1 !
h(k)=0(k)r+ > d(k—n)(a®a) q!" ", (9c)
n=1
zi(k)=Z(y(k) > ¢;), Vie[m], Vke K, (9d)
aq, = ag,, by, =bg Vi€ [n], (%e)
la| <d, |b|=d, (9f)
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where ||.||, is the £y pseudo-norm which counts the num-
ber of non-zero elements of the applied argument while
d ensures block sparsity of the zero state and zero input
coefficients, i.e., a and b. A proper choice of the vector
a, defined in (8), and the use of (9a) and (9f) allow the
identification of the system with the least number of poles,
i.e., least order system. However, the ¢y pseudo-norm is an
NP hard problem and hence, using notions of sparsity [13],
the objective function is relaxed using the £,(0 < p < 1)
quasi-norm, i.e., ||d||, in (9a) is replaced with ||d||£ defined
as in (1).

For notation simplicity, we define the vector w € R?"+1,
which is the concatenation of the variables a, b and r. Let
the set D C R2"*1 x R™ as the set of doubles (w, d) where
constraints (9b) to (9f) are satisfied. Hence, the problem
in (9), after the objective function relaxation, will have the
compact representation in the form;

: p
min |d,, (10a)

st. w,deD. (10b)

Since we are interested in the recovery of the lowest
order system, we consider the case when 0 < p < 1, ie.,
specifically, p = 0.5, where the objective function (10a) is
a non-convex one. In our solution approach, we consider
an ADMM algorithm which exploits the structure of the
problem to split the optimization over the variables via
iteratively solving fairly simple sub-problems. We first start
with the epi-graph form of (10) by introducing the variable
t € R™, where,

min 1't, (11)
w,d,t
S.t. ti Z |di|p, xS [n],
w,d € D,

where 1 is a vector of all ones. Let the non-convex set X C
R? be the epigraph of the scalar function |d[P, ie., X =
{(d,t) € R? : t > |d|P}. Then, (11) can be cast as

min . Y gx(dit) + 17, (12)
i€[n]
st. w,deD

where gx(.) is the indicator function to the set X, i.e., it
evaluates to zero if its argument belongs to the set X and
is +o0o otherwise. In particular, we introduce the auxiliary
variables s € R2*t! f and z € R". An equivalent ADMM
formulation of (12) can be then given by:

w,tﬂl,gl,f,z i%] gX(diati) + gD(sv f) + 1Tza 13)
st. w=s: Af,
d=1f: X,
t=z: 6.

The dual variables associated with the constraints w = s,
d="fand t =z are A\, A2 and 0, respectively. Hence, the
Lagrangian function corresponding to (13) augmented with a
quadratic penalty on the violation of the equality constraints
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with penalty parameter p > 0, is given by:
‘Cﬂ(d7 t,s,f,w,z, A1, Ag, 0) = ZQX(divti) + g’D(Sv f)+

i€[n]
124+ A (w—s)+Ad—f)+0'(t —2)+
+ld — £]13 + It — 2II3).

Considering the three block variables Q1 = (d, t), Q2 =
(s,f) and Qs (w,z), ADMM [16] consists of the
following iterations, where [ is the iteration number:

Qﬁ”“:argmincp(Ql, M QP AL AD o)y,

P a2
2w — I3

(14)

5)

Qé””—argmmﬁ QIY.Q., QP ALY ,AS 00), (16)

s.f
Qng):argmian(leH, gl+1 Qs A\ ¢ )AL oWy, (17)
)\(z+1)7)\(z)7+ p(w(z+1) . S(l+1)), (18)
)\(l+1) )‘(1) + p(d®+D) — gDy (19)
91“1):051) + (e — gD, (20)

A. (d, t) update

From the expression of the augmented Lagrangian in (14)
and by completing the square, the update of d and t in (15)
can be found by solving the following optimization,

0 _ & 2 _ (z( ﬁ 2
(f ) )z + It — (2 5 Iz
(di,ti> cX Vie [n]

It can be realized that the problem in (21) enjoys a sep-
arable structure and hence is amenable to decentralization.
However, it is a non-convex problem due to the nature of the
set X. In [17], the authors considered a similar problem and
it was shown that the element-wise optimization of (21) boils
down to finding the roots, a;, of the scalar 2v polynomial;

(a2“ —t;a ) (22)

min ||d — h_
dit

(2D
S.t.

— jiay

7

u
a?’ 4 —
v

)

— i

- A0
where Z; = f,i(l) — th2 = (l) and u,v € Z4 such

that p = u/v. They showed that in proposition 1, the entry-
wise solution of (21) is given by (df,t}) = (a} ,a}") for
all i € [n].

B. (s, f) update

By fixing all the remaining variables, the (s, f) update in
(16) can be easily shown to be the solution of the following
optimization problem;

AW
min IIS—(W(”+Ti)||§+llf—(d““)+

(s,f) €D

l
g)H2
p 2 (23)

s

S.t.
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Algorithm 1 ADMM algorithm
1: Initialize: w, z, s, £, A1, A2, 0, p, k=0,v=1, u= 2.

2: repeat
32 for i€ [n] do
4: solve a?' + C (af“ — fia?) —Fa? =0
5: (@, 8 D (ar”ar”)
6 d=d) X g o b A
() = argminlls — (3 + 1 - A3
s,feD
g w(tD — gD _ A
9: Z(H1D) — ¢(+1) 4 e<[;—1
P
10: A%l“) A?) + p(wtHD) — gl+1)y
1: Agl“) =AU 4 pratrn gl
20 o0t = 9l 4 p(erD) — 5+
13: l=1+1

14: until convergence

The problem in (23) is clearly a convex optimization
one that can be solved by various methods including
sub-gradient projection [18], interior point and ellipsoid
methods [19], [20].

C. (w, z) update

From the Lagrangian expression in (14), the w update can
be found by solving;

NG
w1 = argmin |w — (s — ZL))12
w P (24)
NG
_ g M
)
while that of z is given by;
2z —argmin 1Tz—|—0(l)T(t(l+1) —z)+B||t(l+1)—Z||§
0 _
_gn 8771
)
(25)

The steps of the ADMM algorithm described in the previous
sections can then be summarized as in algorithm 1.

IV. NUMERICAL RESULTS

In this section, we test the validity of the algorithm 1 for
solving the problem in (10). For comparison purpose, we use
the solution of (10) with an ¢; relaxation in the objective
function as a baseline. Different algorithms discussed I-B
were not used for comparison as none of them can handle
stability and data fragmentation constraints. We perform two
different experiments: 1) A single system is considered and
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different properties from ¢; and ¢, relaxations are compared.
2) Multiple systems with same original order are generated
and the different statistical properties are studied. In the next
parts, we will use the notions of £, and ¢y 5 interchangeably.

A. Experimental setup

We let the input horizon length N = 40 samples, where
the input samples are drawn independently from a standard
Gaussian distribution. For the sake of simplicity, we assume
that the number of sensor threshold levels, m = 3 and the
unit circle is grided uniformly into n 146 points. As
mentioned before in section III, the more dense the unit
circle is, the better the system is represented but the more
complex it will be. From [21], our choice seems to be a
good approximation. The threshold values are chosen such
that they partition the system output (sensor input) range into
m-equally sized intervals. This is to ensure that no singular
cases dominate the simulations, however, any other choice
for the threshold values is applicable as well. Hence, for
m = 3, we have ¢; = ming{y(k)}+¢€, cs = maxg{y(k)}—¢,
where € is a very small scalar, and c; = ¢; + % All
the other parameters in step 1 of algorithm 1 are initialized
through samples from a Gaussian distribution of zero mean
and 10! standard deviation. The value of p is set to 20. We
define a threshold € as the value below which, a vector entry
is considered zero. The value of the threshold € is chosen
such that it is less than 0.5% of the maximum value of the
optimal vector d, which makes ¢ = 1072 a good choice.

B. Single system experiment

In this subsection, we consider the experiment where
an input is applied to a stable randomly generated system
of order 10. The output of this system is applied to a
3-thresholds sensor with values; —7.9,—1.9 and 3.9. The
values of these thresholds are calculated as discussed in the
previous subsection. Given the binary sensor outputs, the
problem is solved via ¢; and £, relaxations and the detected
system orders and outputs are compared.

Figure 2 plots the original system poles vs those that are
associated with the non zero coefficients in the vectors a
and b from the ¢; and ¢, relaxations’ solutions. From the
figure, it can be concluded that the ¢, detected a system of
order 7 which is less than that of the ¢; of detected order
12. This outlines the out-performance of the ¢, quasi-norm
when compared to the ¢; convex relaxation.

In figure 3, we plot the system output y(k), i.e. sensor
input, vs the considered time horizon. It shows how accurate
the considered relaxations, whether £; or ¢,, can represent
the original output. We define the representation error across
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Fig. 3. System output. The dotted lines indicate the used sensor thresholds.

a time horizon of length N as, (,,x € {{1,(,} where;
N—1

> (i) — ya (i),

i=0

with y(4) is the output from the original system. For the /,,
relaxation, the representation error (¢, was found to be equal
6.85 which is less than that of the ¢; convex relaxation which
had a value (;, = 9.4. It is important to note that we are not
interested in perfectly fitting the original system’s output.
However, we aim to fit the sensor’s binary realizations.
In figure 3, the sensor levels are indicated by the dotted
horizontal lines. It can be clearly realized that at all time
instances, the outputs from the original system, ¢; and ¢,
relaxations all lie in the same range of sensor thresholds
which indicates that the binary senor outputs from both
relaxations are the same as the original ones.

Ca (26)

C. Multiple system experiment

Since the systems that we generate to validate our solution
method are random, the main idea in this part is to study the
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statistical properties of the derived algorithm solution. We
perform an experiment where for a given original order, 50
random systems are generated. For each system, the same
input is applied and the identification problem in (10) is
solved, using the ¢/; norm and /¢y 5 quasi-norm relaxations,
given the quantized realizations from the sensor output.
Figure 4 outlines the different statistical properties from
the /1 and /g5 relaxations. It can be realized that for all
original system orders, the {y 5 relaxation solution enjoys
less mean and median values than its counterpart, i.e., {1 re-
laxation. Moreover, the /g 5 relaxation has a maximum value
for each original order that is less than that of the ¢, expect
for an order of 10 when the maximum values for both are the
same. It can be realized that in either cases, some systems
have a detected order of zero, i.e., the minimum value of
the whisker is zero, which means that the estimation of the
constant r in (2) is enough to describe the I/O relationship.
Finally, some systems are detected with higher order than the
original, this because the ¢ 5 minimization is a non convex
problem and hence algorithm 1 converges to a local mini-
mum. Moreover, it motivates that the unit circle should be
gridded into more points to increase precision, i.e., n > 146
mentioned in IV-A, in expense of computational complexity.

V. CONCLUSION

In this paper we have presented a new approach to the
problem of LTI system identification from quantized outputs.
This approach allows for the use of a priori information on
the system and fragmented measurements of the output. The
algorithm described uses an ADMM approach to the problem
of ¢, quasi-norm minimization. Numerical results presented
show that the algorithm is very effective in obtaining low
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complexity explanations of the data collected. Effort is being
put on the improvement of the numerical performance of the
algorithm and its extension to continuous-time systems.
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