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Objective: Digital messaging is an established method for promoting physical activity. Systematic
approaches for dose-finding have not been widely used in behavioral intervention development. We
apply system identification tools from control systems engineering to estimate dynamical models and
inform decision rules for digital messaging intervention to promote physical activity. Method:
Insufficiently active emerging and young adults (n = 45) wore an activity monitor that recorded minute-
level step counts and heart rate and received 0-6 digital messages daily on their smartphone for 6
months. Messages were drawn from 3 content libraries (move more, sit less, inspirational quotes).
Location recordings via location services in the user’s smartphone were used to lookup weather indices
at the time and place of message delivery. Following system identification, responses to each message
type were simulated under different conditions. Response features were extracted to summarize dynamic
processes. Results: A generic model based on composite data was conservative and did not capture the
heterogeneous responses evident in person-specific models. No messages were uniformly ineffective but
responses to specific message content in different contexts varied between people. Exterior temperature
at the time of message receipt moderated the size of some message effects. Conclusions: A generic
model of message effects on physical activity can provide the initial evidence for context-sensitive deci-
sion rules in a just-in-time adaptive intervention, but it is likely to be error-prone and inefficient. As
individual data accumulates, person-specific models should be estimated to optimize treatment and
evolve as people are exposed to new environments and accumulate new experiences.
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Physical activity is a widely recommended behavior across the
life span because it reduces risk for chronic diseases and improves
well-being but only one in three adults achieves the recommended

level of physical activity (Bennie et al., 2019). Over 95% of
emerging and young adults have smartphones that afford new pos-
sibilities for promoting physical activity during the transition into
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adulthood (Pew Research Center, 2019). Digital messages via text
messages or notifications have become a popular mode for moti-
vating physical activity (Smith et al., 2020). The timing and fre-
quency of messages varies considerably between interventions,
but dosing parameters have typically been constant for all partici-
pants receiving the intervention. We recently proposed that the
optimal dosing of digital messages for physical activity promotion
may be person-specific (Conroy et al., 2020). In this article, we
apply methods from control systems engineering to address the
challenge of person-specific dose-finding for a digital messaging
intervention.

Physical Activity Promotion

Physical activity has been called the “best buy” in public health
because of its multisystem benefits for health (Powell et al., 2011).
The World Health Organization and the United States Department
of Health and Human Services have issued guidelines for health-
enhancing physical activity (Bull et al., 2020; U.S. Department of
Health and Human Services, 2018). Both guidelines recommend
accumulating at least 150 minutes/week of moderate-intensity or
75 minutes/week of vigorous-intensity physical activity (or an
equivalent combination). Yet most American adults, including
emerging and young adults, fail to achieve this recommended level
of aerobic physical activity (Bennie et al., 2019).

Inactivity during the transition into adulthood is a particular
concern because physical inactivity tracks across the life span.
Although the biggest decreases occur in adolescence and midlife,
emerging and young adulthood represent a time of increased inde-
pendence and identity exploration that can have lasting effects on
physical activity in adulthood (Nelson et al., 2008). Promoting
physical activity during this period, when contextual cues are fre-
quently disrupted, can promote long-term health outcomes. For
example, the CARDIA study found that young adults who engage
in regular physical activity are more likely to have a low risk pro-
file (i.e., no cardiovascular events) 20 years later (Liu et al., 2012).

Unfortunately, this segment of the population often eludes the
reach of traditional health care interventions because they feel
healthy, have not developed chronic conditions that would require
care, and do not see physicians regularly for preventive care
(Dietz, 2017; Monaghan, 2014). One way to reach them may be
through the digital environment. Over 95% of emerging and young
adults in the United States have smartphones (Pew Research Cen-
ter, 2019). Wearable activity trackers, smartphone applications,
and text messages produce small-to-moderate effects on physical
activity (Armanasco et al., 2017; Laranjo et al., 2021; Smith et al.,
2020).

Consumer-grade activity trackers have popularized the step
count as a physical activity index over the intensity-specific activ-
ity durations noted in guidelines. Bassett argued that steps are “in-
tuitive and readily interpretable to the layperson. . .measured easily
and accurately. . .[and] objective” (Bassett et al., 2017; p. 1306).
Although a consensus evidence-based goal for daily step counts
has not been established for adults (Tudor-Locke et al., 2011),
there is clear evidence that daily step counts are linearly and inver-
sely associated with risk for mortality and cardiovascular disease
(Hall et al., 2020; Kraus et al., 2019; Saint-Maurice et al., 2020).
Yet little is known about the optimal dosing of digital messaging
interventions for increasing step counts. For example, it is unclear

if messages to “move more” or “sit less” are more effective, or if
the same dose should be delivered on weekends and weekdays.

Dose-Finding Methods in Early Stage Intervention
Development

Behavioral interventions are complex and development can pro-
ceed more efficiently using a phased approach. The Obesity-
Related Behavioral Intervention Trials framework was modeled
on the drug development pipeline (Czajkowski et al., 2015). Dose-
finding is a key task during early-phase intervention development.
With a digital messaging intervention, delivering too few mes-
sages can compromise behavior change but delivering too many
messages may be disruptive and threaten user engagement.
Although dose-finding methods are well-established and widely
used in drug development, dose-finding has not been approached
as systematically in developing behavioral interventions, and par-
ticularly digital health interventions (McVay et al., 2019; Towner
et al., 2020; Voils et al., 2014).

Given the low risk for harm from digital messages that promote
physical activity, our focus was on identifying the minimally
effective dose. Dosing is often described in terms of the duration,
frequency, and amount of treatment (Voils et al., 2012). For digital
messaging, doses can represent the number of messages sent, the
content of those messages, and the timing of the messages. An
optimized digital messaging dose will deliver the right content at
the right time in the fewest number of messages needed to achieve
a behavioral goal. Determining how to tailor message content and
timing to achieve this goal is challenging because behavior is mul-
tiply determined and the contexts in which behavior unfolds are
dynamic. Computational modeling of dynamic systems via system
identification can be useful for determining how to tailor message
content and timing (Conroy et al., 2020).

We have previously shown that it is possible to apply system
identification tools from control systems engineering to develop
person-specific dynamic models of behavioral responses to digital
messages (Ashour et al., 2016; Conroy et al., 2019). In this con-
text, the focus is on both how the dynamics of behavior unfold in
the presence or absence of microinterventions, and how that
knowledge can inform the selection and timing of interventions to
attain behavioral goals (Albertos & Mareels, 2010). Continuous
streams of physical activity data can be modeled as a function of
recent behavior and message content, and model coefficients can
be used to simulate expected changes in future behavior if differ-
ent types of messages were delivered following recent behavior.
When dynamics differ during clearly defined periods — such as on
weekends versus weekdays — piecewise dynamic models can be
estimated to characterize complementary behavioral systems.

In this article, we extend this approach in two important ways.
First, we simulate responses to different message types under dif-
ferent conditions and, for the first time, extract features of those
responses to compare person-specific models with a generic model
based on composite data from the sample as a whole. Second, we
enrich the dynamic model of physical activity by using momentary
weather conditions as inputs to improve predictions of behavioral
responses. Adults frequently describe poor weather as a barrier to
exercise (Salmon et al., 2003). Our recent scoping review indi-
cated that device-measured physical activity has an inverted-U
shaped association with temperature and a negative association
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with precipitation (Turrisi et al., 2021). We hypothesized that the
effects of digital messages would vary as a function of momentary
temperature and precipitation indices, with the greatest effects
observed during dry conditions with moderate temperatures.

The Present Study

The Physical Activity Guidelines for Americans assert that,
“adults should move more and sit less throughout the day [and]
some physical activity is better than none” (Piercy et al., 2018, p.
2025). Translating that recommendation into action is an ongoing
challenge. Technology provides a means of promoting physical ac-
tivity during the transition into adulthood but little is known about
the optimal dosing of a messaging-based intervention. In this
study, we applied system identification tools to determine the opti-
mal dosing for a context-specific, just-in-time digital messaging
intervention to promote physical activity. For six months, insuffi-
ciently active emerging and young adults wore a consumer-grade
smartwatch and received randomly assigned intervention messages
(Random AIM) in this trial. The number, timing and content of
messages varied randomly. Location data at the time of message
receipt and acknowledgment was used to lookup current weather
conditions to enrich model predictions. The primary purpose of
this study was to identify and characterize the heterogeneity of dy-
namical models of physical activity responses to digital messages.
A second purpose was to determine whether person-specific dos-
ing of digital messages may be warranted by comparing the per-
formance to a generic dynamical model based on composite data
from the entire sample to person-specific dynamical models. A
third purpose was to extend and enrich the model by accounting
for varying environmental conditions at the time of message
receipt.

Method

Participants

Emerging and young adults were recruited using fliers and
online advertisements from April 2019 to July 2020. Eligible par-
ticipants were 1829 years of age, ambulatory, free of functional
activity limitations, free of visual impairment that would interfere
with smartphone use, had verbal and written fluency in English
and were capable of giving informed consent. Participants also
needed to own a smartphone using the iOS (v10 or later) or
Android (v7 or later) operating system. Participants were excluded
if self-reported physical activity levels were greater than 90
minutes of moderate or higher physical activity per week, if unable
to be physically active or with medical contraindications for physi-
cal activity, if pregnant or had a prior diagnosis of cancer, cardio-
vascular disease, diabetes, or metabolic disorder. Participants
completed a telephone screening with a researcher followed by a
one-week ambulatory monitoring period wearing an Actigraph
wGT3X-BT activity monitor. Participants were excluded if the de-
vice recorded the equivalent of more than 150 total minutes of
moderate-intensity or greater physical activity based on five or
more days with 10+ hours of monitor wear time during the one-
week monitoring period.

The World Health Organization declared the COVID-19 pan-
demic on March 11, 2020. Stay-at-home orders associated with

the pandemic reduced physical activity levels (Pépin et al., 2020;
Tison et al., 2020). To prevent confounding of message and pan-
demic effects, analyses were restricted to participants who com-
pleted 6 months of data collection prior to the pandemic
declaration (n = 45).

Measures

During the first laboratory visit, participants self-reported demo-
graphic characteristics including age, ethnicity, race, sex, educa-
tional attainment, employment status and occupation. Research
staff measured height and weight in duplicate using a wall-
mounted stadiometer and a digital scale upon removal of the par-
ticipant’s shoes.

Actigraph wGT3XP-BT activity monitors were worn at the
waist over the midline of the dominant thigh to assess the duration
of moderate-to-vigorous intensity physical activity during the sec-
ondary screening process (without providing behavioral feedback
that could elicit reactivity). This device and placement are widely
used as a gold-standard for ambulatory physical activity assess-
ment. Established cutpoints were used to classify minutes as mod-
erate (1952-5724 counts/min) and vigorous (>5724 counts/min)
physical activity (Freedson et al., 1998).

The Fitbit Versa/Versa Lite smartwatch, a widely available con-
sumer-grade monitor that could be used to scale an intervention
later in development, was worn on the nondominant wrist to track
step counts during the six-month intervention period. This device
recorded minute-level step counts and heart rate (in five-minute
moving averages). Fitbit devices have demonstrated accuracy for
step counting that is comparable to research-grade Actigraph mon-
itors and suitable for use in adults without mobility limitations
(Feehan et al., 2018; Imboden et al., 2018).

Protocol

The protocol and compensation schedule are summarized in
Figure S1 (available online). All procedures were approved by the
Institutional Review Board at The Pennsylvania State University
(Study#00009455).

Screening & Lab Visit #1

Prospective participants provided verbal consent (day 0) and
completed a telephone screening interview to determine eligibility.
Provisionally eligible participants were scheduled for a laboratory
visit to complete screening. During that first lab visit (day 1), the
researcher described the study and participants provided written
informed consent. The researcher provided the participant with an
Actigraph wGT3X-BT activity monitor and instructions to wear it
at their waist on an elastic waistband over the midline of their
dominant leg for the next week during waking hours for a mini-
mum of 10 hr/day, and to remove it when bathing or swimming.
The researcher provided a paper wear log and asked participants to
record times when they placed the device each morning, removed
the device in the evening, and removed or replaced the device dur-
ing the day.

Lab Visit #2

During the second lab visit (day 9), the researcher collected the
activity monitor and wear log, downloaded data, reviewed
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nonwear classifications from the “Troiano 2007 algorithm in the
ActiLife v.6.13.4 software and determined eligibility. The
researcher described the second phase of the study and participants
provided written informed consent to enroll. The researcher then
assisted the participant with installing the Random AIM (custom-
designed for this study) and Fitbit mobile applications on her or
his smartphone, registered the participant on the backend system,
confirmed Random AIM functionality with a test message, pro-
vided the participant with a Fitbit Versa/Versa Lite smartwatch,
and assisted participants in authorizing Fitbit to share their data
via Fitabase. The researcher asked the participant to identify sepa-
rate Do Not Disturb periods for weekdays and weekends (<14 hr
to provide at least a 10-hr messaging window), and informed par-
ticipant that these times could be changed at any point by contact-
ing the researcher.

Intervention Period

For the next 6 months, the Random AIM app delivered 0-6
messages/day as notifications via the operating system. The num-
ber, timing, and content of messages were determined at random
each night with the constraints that no message could be delivered
within 15 min of the previous message or within the Do Not Dis-
turb window for that day. Messages were drawn from three con-
tent libraries: move more (108 messages), sit less (108 messages),
and inspirational quotes (54 messages). Half of the messages were
accompanied by a stock photography image corresponding to mes-
sage content (i.e., physical activity for move more messages,
standing for sit less images, scenic landscapes for inspirational
quotes). Notifications with each message were available for view-
ing and acknowledgment for 30 minutes after which time they dis-
appeared and were recorded as received but not acknowledged.

For each message, the backend system recorded the time that
the message was sent from the server to the mobile app, delivered
and displayed on the participant’s device, and acknowledged by
the participant (three separate timestamps). The mobile app used
location services within the operating system to record latitude
and longitude coordinates each time a message was received and
acknowledged. The timestamped location data at display and ac-
knowledgment were used to lookup location-specific momentary
weather indices via the AccuWeather Current Conditions applica-
tion programming interface (AccuWeather, n.d.). Weather indices
are recorded approximately hourly but are rarely available imme-
diately so, 3 hr after message receipt, the server looked up loca-
tion-specific weather indices using the Historical Current
Conditions (past 6 hr) application programming interface.
Recorded weather indices included temperature (Fahrenheit), dew
point (Fahrenheit), relative humidity (%), Real Feel temperature
(Fahrenheit), apparent temperature (Fahrenheit), wind chill tem-
perature (Fahrenheit), wet bulb temperature (Fahrenheit), wind
direction (degrees), wind direction (English), wind speed (miles/
hour), wind gust speed (miles/hour), UV index, cloud cover, past-
hour precipitation (liquid equivalent, inches), and past three-hour
precipitation (liquid equivalent, inches). The researcher monitored
the backend Random AIM and Fitabase dashboards daily to detect
compliance problems. A researcher contacted participants via tele-
phone or e-mail anytime 3 consecutive days without Fitbit heart
rate data (suggesting device nonwear) or 3 days without acknowl-
edging Random AIM messages were observed.

Lab Visit #3

The researcher scheduled a final lab visit (day 190) after partici-
pants completed the six-month intervention period to assist the
participant with removing the study apps.

Data Analysis
Pre-Processing

Four data tables were combined to model physical activity dy-
namics following messages: person-level availability for mes-
sages, minute-level physical activity, minute-level heart rate, and
messages with weather indices at the time of delivery and receipt.
Timestamps were harmonized in four source data files and the files
were merged. Physical activity and heart rate data were truncated
to the period from one hour before the messaging availability win-
dow started to one hour after it ended to ensure sufficient activity
data when messages were sent early or late in the day. Activity
data was separated for weekdays and weekends and classified as
missing if zero steps were recorded and heart rate data was not
available for a minute epoch. Minutes with missing heart rate and
zero step counts were not included in the model (weekends: 15%
missing, weekdays: 13% missing). Messages scheduled and sent
from the server that were not received and displayed on a partici-
pant’s device were excluded from the model because future inter-
vention decisions will be made without regard to whether a
message will be read or not. The available and valid minute-level
physical activity data was aggregated into sums for each 15-mi-
nute epochs. Message and weather data were merged with those
15-minute epochs. Days were treated as independent and message
effects on physical activity were not modeled across days.

System Identification

The Python programming language was used to implement the
system identification algorithms used to identify the models (Van
Rossum & Drake, 2009). Building on prior work, physical activity
was modeled as a switched system with separate models to reflect
the different amount and patterns of physical activity on weekdays
and weekends (Conroy et al., 2019; Phatak et al., 2018). The first
stage of analyses was based on a linear regression model with mul-
tiple variables and noise of the form

5
ap+ E a;y(kd—id)
=1
3 s
+E E byju; (kd—id)+&(kd)

j=1 =0

y(kd) =

where y(kd) is the system output at time kd which is the step
counts for the 15-minute epoch at time kd, u;(kd—id) are the inputs
for the three message types (move more, sit less, inspirational
quotes) at time kd—id (0 [message not sent], 1 [message sent]), d is
the sampling time, £(kd) is noise at time kd, and ay, a;, b;; are
the unknown coefficients of the model. To manage the tradeoff
between model complexity and size of the model error, model
order was constrained to 5 which means that the last five epochs
were used in predicting the next epoch.
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In the second stage of analyses, a linear parameter-varying
(LPV) system was modeled. This LPV model described how the
dynamics of behavioral responses to messages varied as a func-
tion of time-varying parameters. In this study, the time-varying
parameter was temperature. The LPV model with noise is of the
form

ykd)= ap(pkd)) + D _ai(plkd))y(ka-id)

3.5
+Zzo:bij (p(kd))uj(kdiid)+8(kd)

where ag (p(kd)), a; (p(kd)), b;j (p(kd)) are the unknown func-
tions in the model that vary with parameter p at time kd. In this
work, the parameter p is considered to be temperature and the
coefficients ao(p(kd)), a;(p(kd)), by(p(kd)) are considered to
be quadratic function of parameter p at time kd. A quadratic func-
tion was selected based on evidence that physical activity has an
inverted-U relation with temperature (Turrisi et al., 2021).

Models from both stages of analyses were used to simulate
responses to each message type. Impulse responses represent
expected step count changes during each 15-minute epoch
following receipt of each message type (compared to
expected step counts had a message not been received). Cu-
mulative step responses represent the total expected effect of
each type of individual message. Error bounds were estimated
for each response curve to indicate whether effects exceeded
the threshold of noise in the model. Full details on estimation
and optimization methods are provided in a Supplemental
File .

Seven features were extracted to describe person-specific
impulse response and cumulative response curves (Conroy et al.,
2019). Initial delay describes the delay between message delivery
and the first effects (nonzero impulse response) of the message.
Peak magnitude describes the absolute value of the maximum
change in step count during any individual epoch following mes-
sage receipt. Peak delay describes the latency between message
receipt and achieving peak response magnitude. These first features
indicate how quickly messages have their largest instantaneous
effect on behavior. Steady state describes the expected overall
effect (step count change) of a single message and was defined as
the value when the cumulative response curve becomes stable. Rise
time describes the time required for physical activity responses to
progress from 10% to 90% of the expected total response (steady
state). Settling time describes the duration between message receipt
and cumulative responses achieving *5% of their steady state.
Steady state, rise time, and settling time indicate the overall effect
of a single message, how quickly that effect emerges, and how
much time is required to achieve most of the effect. Effective time
describes the duration that the expected overall effect of a single
message is expected to exceed the cumulative threshold for noise
(i.e., outside the error margin). This feature indicates the time that a
message is expected to be actively influencing behavior in the face
of progressively accumulating noise which adds uncertainty to
long-term prediction of behavior change.

Results

Participant flow in the Random AIM trial is summarized in
Figure S2 Approximately 45% of interested participants qualified
and enrolled. The analytic sample (n = 45) was mostly women
(n = 30 [67%]) who identified as White (n = 29 [64%]) and not
Hispanic or Latino (n = 43 [96%]). The sample included partici-
pants who identified as Asian (n = 10 [22%]), African American
(n =4 [9%]) and two or more races (n = 2 [4%]). The mean age
was 24.4 years (SD = 3.1, range = 18 — 29) and participants’ high-
est level of education included no college education (15.9%),
some college (22.7%), bachelor's degree (34.1%), and graduate or
professional degrees (27.3%).

Message Delivery

For the 45 participants in the analytic sample, a total of 24,123
messages were scheduled on the server (M = 3.05 messages/per-
son/day, SD = .16). Of the scheduled messages, 96.0% were
received and displayed on the mobile device with the total of
23,149 messages (M = 2.92 messages/person/day, SD = .33), and
78.2% were acknowledged within 30 minutes of receipt (M = 2.38
messages/person/day, SD = .33). The mean latency of acknowl-
edgments was 00:05:26 (SD = 00:20:46). Received messages were
distributed between “move more” (n = 9093 [39%)]), “sit less” (n =
9363 [40%]), and “inspirational quotes” (n = 4693 [20%]) mes-
sage libraries. A total of 20,735 of the messages were available
with corresponding data from the physical activity monitoring de-
vice, with a similar distribution of messages between “move
more” (n = 8161 [39%]), “sit less” (n = 8351 [40%]), and “inspira-
tional quotes” (n = 4223 [20%]) in the received messages.

Most messages were delivered on weekdays (72%). The aver-
age Do Not Disturb window for participants spanned from 19:50
(95% CI = 16:30 to 23:10) to 09:20 (95% CI = 06:40 to 12:00) for
weekdays and 20:30 (95% CI = 18:00-23:00) to 10:10 (95% CI =
08:00-12:20) for weekends. Acknowledged messages were dis-
tributed across the day so messages provided suitable coverage
during waking hours outside the Do Not Disturb window (Figure
S3, top row). Messages were distributed across all four seasons
(Figure S3, bottom row). Due to the six-month protocol duration,
no participant was sampled in more than three seasons. Weather
conditions at the time of message acknowledgment varied consid-
erably. When weather indices at message acknowledgment were
aggregated within person, the average temperature was 62 °F
(SD =15, 95% CI = 31-92 °F), and an average of 8.3% of the
messages were received after measurable past-hour precipitation
(8D =2.2,95% CI =3.9-12.7). Based on the limited proportion of
messages sent during moments with measurable precipitation, pre-
cipitation models were excluded from this study.

System Identification

Do person-specific models match a generic model? Two dynam-
ical models of physical activity were estimated for each person
based on their recent physical activity and the types of messages
received on weekdays and weekends. The simulated impulse
response and cumulative step response curves for two participants
can be seen in Figures S4-S5.
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For the participant in Figure S4, the steady state of physical ac-
tivity responses differed from weekdays to weekends and as a
function of the type of message sent. On weekdays, a single “sit
less” message would be expected to lead to 87 more steps than if
he or she did not receive the message, but “move more” and
“quotes” messages were expected to reduce step counts. In con-
trast, on weekends, “sit less,” “move more” and “quotes” mes-
sages were expected to lead to 133, 183, and 65 more steps,
respectively, than if he or she did not receive the message.

For the participant in Figure S5, the steady state of physical ac-
tivity responses also differed from weekdays to weekends and as a
function of message type, but the pattern was different from the
previous participant. On weekdays, “move more” and “sit less”
messages were expected to lead to 136 and 132 more steps, respec-
tively, than if he or she did not receive the message, but “quotes”
messages were not expected to lead to nontrivial changes in step
counts. On weekends, “quotes” messages were expected to lead to
166 more steps than if he or she did not receive the message, but
neither “move more” nor “sit less” messages were expected to
lead to nontrivial changes in step counts.

As a contrast to these person-specific models, a generic model
was estimated using composite data from all eligible participants.
Figure S6 presents the impulse (left panel) and cumulative
response (right panel) curves for weekdays and weekends. On
weekdays, “sit less” messages would be expected to lead to 25
more steps than if the message was not sent but neither “move
more” nor “quotes” messages would be expected to change behav-
ior. On weekends, “move more,” and “sit less” messages would be
expected to lead to 46 and 53 more steps, respectively, than if the

Table 1

message was not sent; however, “quotes” messages were not
expected to lead to nontrivial changes in step counts.

Table 1 compares the features of the simulated responses to
messages on weekdays and weekends based on the person-specific
models and the generic model. The initial delay of responses was
zero in all models so this feature excluded from the table. Three
observations can be made based on the remaining features. First,
response features in the person-specific models vary considerably.
Peak response magnitudes in a single 15-minute epoch ranged
from quite small (<10 step increase) to quite large (~200 step
change). Some people are expected to have immediate peak
responses to messages but others are expected to have quite
delayed peak responses to messages (60 min). Cumulative
responses to messages varied considerably with greater responses
evident on weekends than weekdays. The “average” participant
would be expected to increase their activity slightly following
most messages but individual responses varied. Some participants
would be expected to increase and others would be expected to
decrease activity following messages. The latency of total effects
was highly variable as indicated by the range of settling time, rise
time, and effective time in the person-specific models. Second, no
single message type appeared to be uniformly ineffective. As illus-
trated by Figures S4-S5, participants exhibited differential respon-
sivity to messages both as a function of message content and
whether that content was sent on a weekday or weekend. Third,
the generic model features were within the range of features from
the person-specific models for 81% (29/36) of the features. Peak
magnitude estimates from the generic model were especially con-
servative, account for 5 of the 7 out-of-range values. In general,

Features of Step and Impulse Responses in the Distribution of Person-Specific Models and a Generic Model

Person-specific models

Weekday Weekend Generic model
Response
feature Type of messages M (SD) Range M (SD) Range Weekday ~ Weekend
Peak magnitude
Move more 35.40 (17.91) (8.07, 92.98) 50.94 (22.50) (14.17, 105.45) 6.1 8.8
Sit less 33.95 (19.11) (7.91, 108.3) 48.52 (20.74) (8.94, 106.42) 7.8 9.05
Inspirational quotes 49.22 (22.45) (17.66, 110.59) 65.60 (36.50) (19.67, 197.33) 9.84 8.67
Peak delay
Move more 28.33 (23.11) (0, 60) 27.66 (22.82) (0, 60) 0 15
Sit less 25 (24.77) (0, 60) 29.33 (21.91) (0, 60) 0 60
Inspirational quotes 26.33 (22.42) (0, 60) 25.33 (23.89) (0, 60) 0 30
Steady state
Move more 17.26 (93.42) (—263.45, 239.68) 47.88 (164.97)  (—338.48,445.79) 7.61 45.83
Sit less 30.62 (91.29) (—221.58, 319.36) 5441 (163.73)  (—287.12,504.76) 25.18 53.37
Inspirational quotes 20.85 (115.49)  (—186.37,267.67) —11.54 (224.35)  (—467.42,550.72) 11.11 —18.09
Settling time
Move more 138.33 (44.75) (75, 300) 167.33 (53.22) (75, 330) 60 150
Sit less 140.66 (63.01) (45, 360) 163.66 (53.01) (75, 315) 135 165
Inspirational quotes 126.66 (44.60) (75, 285) 157.33 (63.93) (60, 360) 60 195
Rise time
Move more 62 (42.85) (0, 150) 80.66 (59.16) (0,210) 15 120
Sit less 64 (48.75) (0, 225) 95 (57.56) (0,255) 90 135
Inspirational quotes 63 (38.85) (0, 165) 79.33 (52.51) (0, 195) 15 105
Effective time
Move more 175.66 (238.53) (15, 600) 154 (228.70) (15, 600) 30 240
Sit less 129.66 (202.69) (15, 600) 225.33 (256.52) (15, 600) 240 315
Inspirational quotes ~ 224.66 (263.51) (15, 600) 231 (266.25) (15, 600) 45 15
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features from the generic model failed to address the heterogeneity
of responses observed in the person-specific models.

Do person-specific responses to messages vary as a function of
temperature? Building on the heterogeneity of responses in our ini-
tial models, we sought to determine whether participants’
responses also varied under time-varying environmental condi-
tions (specifically, temperature at the time of message receipt).
Figures S7-S8 present cumulative response curves from person-
specific models of two participants’ weekday (top row) and week-
end (bottom row) responses to three message types: “move more”
(left panel), “sit less” (center panel) and “quotes” (right panel).
These figures represent data for the same participants shown in
Figures S4-S5, respectively. The range of temperatures plotted
approximates the 95% confidence interval for observed tempera-
tures during the six-month study (36 °F to 90 °F for the participant
enrolled from June to December; 23 °F to 72 °F for the participant
enrolled from August to February).

For the participant depicted in Figure S7 (cf. Figure S4), the
effects of “move more” messages on weekdays were trivial regard-
less of temperature but, on weekends, “move more” message
effects on physical activity increased monotonically with the tem-
perature. On a hot weekend day (90 °F), a single “move more”
message would be expected to lead to more than 500 additional
steps compared to what would be expected if the message was not
sent. On a cold day (=63 °F), “move more” messages had little to
no effect on this participant’s physical activity. “Sit less” messages
exhibited a different pattern. On weekdays, “sit less” message
effects increased monotonically with temperature. A single “sit
less” message on a hot day (90 °F) would be expected to lead to
nearly 300 more steps compared to what would be expected if the
message was not sent, but effects were progressively smaller as
temperatures dropped. On weekends, “sit less” messages would be
expected to have their greatest effect (>300 step increases) for
this participant during more extreme — hot or cold — conditions.

For the participant depicted in Figure S8 (cf. Figure S5), mes-
sage effects consistently varied as a function of message type, tim-
ing, and temperature. Of note, temperature-related differences in
effects were not consistently monotonic. The largest effects of
“move more” messages would be expected on weekdays with
extreme temperatures (hot or cold). On weekdays, the largest
effects of “sit less” and “quotes” messages would be expected at
times with warmer temperatures. On weekends, “sit less” and
“quotes” messages would be expected to have their greatest impact
on physical activity at moderate temperatures. Surprisingly, “sit
less” messages were expected to decrease physical activity by
over 300 steps at extremely cold moments on weekends.

Figure SO (cf. Figure S6) presents the corresponding cumulative
response curves from a generic model based on composite data
from all participants. The generic model simulation implies
smaller expected effects than the person-specific models, particu-
larly on weekdays. Overall, the generic model implied that most
message types sent under most conditions would have little to no
effect on participants’ behavior. The effects of “sit less” message
increased monotonically as a function of temperature on both
weekdays and weekends, though the gradient of effects between
message types was minimal. “Move more” messages had limited
effects (~70 step increase) under most conditions with the excep-
tion being on hot (90 °F) weekends. Surprisingly, the generic
model implied that “quotes” messages on hot (90 °F) days would

lead to the largest expected effects of all message types on
weekdays.

Discussion

This research applied an engineering-inspired approach to deter-
mine the optimal dose for a digital messaging intervention. The
approach extends the toolkit for dose-finding in behavioral inter-
vention development (McVay et al., 2019; Towner et al., 2020;
Voils et al., 2014). It extended our prior work on dynamical mod-
eling of physical activity and the effects of digital messages by
obtaining a larger sample with a longer time series enriched by
data on current weather conditions at the participant’s location
when they receive a message (Ashour et al., 2016; Conroy et al.,
2019). A heterogeneous suite of person-specific models of individ-
ual participant’s responses to messages under different conditions
were estimated along with a generic model based on composite
data. The heterogeneity of responses was notable considering that
the sample was delimited to a narrow age range of adults who
were verified as insufficiently active. Rather than comparing
model coefficients directly, expected behavioral responses were
simulated for different types of messages under different condi-
tions and key features of those responses were compared.

These dynamical models provide an evidence-based foundation
for future work developing algorithms that are optimized to
achieve behavior change goals with the smallest number of mes-
sages possible. Such algorithms represent the decisions rules that
determine dosing in a just-in-time adaptive intervention as an opti-
mization problem to be solved (Nahum-Shani et al., 2018). By
applying the computational model at prespecified decision points
to simulate the expected responses to a variety of intervention
options at that decision point, these algorithms can determine
which message type would yield the greatest benefit under current
conditions and, if the expected effect of a particular message type
exceeds the threshold for a minimally effective dose, trigger deliv-
ery of that message. These results provide new insights for dose-
finding with digital messaging interventions to promote physical
activity.

First, based on the heterogeneity of person-specific models, per-
son-specific decision rules would appear to be superior to a
generic decision rule for optimizing dosing. Features of impulse
responses (peak magnitude, peak delay) in the generic model were
consistently dampened in comparison to the mean of person-spe-
cific model features. Some features of the generic cumulative
response curves (steady state, settling time) approximated the
mean of person-specific cumulative response curves, but those
estimates were fixed and failed to account for the tremendous vari-
ation in individual responses. This insensitivity of the generic
model to individual differences could result in counterproductive
treatment decisions if decision rules were based on that model. For
example, the generic model implied a small but uniform positive
effect of the “move more” and “sit less” messages. In contrast, the
person-specific models revealed that approximately one in three
participants would be expected to reduce their physical activity
following one of these messages (see Supplementary Tables 1-2).
Decision rules should be designed to accommodate this heteroge-
neity because group-level models are unlikely to generalize to
individual-level processes (Molenaar, 2004). If not, treatment
decisions will be error-prone (selecting the wrong message content
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for delivery or sending messages at the wrong moments) and inef-
ficient (sending too many messages to achieve a goal). These char-
acteristics could jeopardize engagement and efficacy. Thus,
findings point to the promise of using a small data paradigm for
dose-finding (Hekler et al., 2019).

Second, although clearly suboptimal, the generic model may
still serve an important role in developing person-specific decision
rules. Person-specific decision rules are developed based on per-
son-specific models, and person-specific models can only be esti-
mated when sufficient time-series data are available. Such time
series are not immediately available when onboarding new users.
One solution is to use the generic model of group-level physical
activity dynamics to generate an initial decision rule (i.e., warm-
start optimization). This initial generic decision rule could be
replaced by progressively more refined person-specific decision
rules as information accumulates for an individual. In this way, the
intervention could be doubly adaptive — first adapting individual
intervention decisions (i.e., whether to send a message and which
message to send at each decision point) and second adapting indi-
vidual decision rules as individual data accumulates and person-
specific models are refined (Conroy et al., 2020; Wongvibulsin et
al., 2019).

Third, this study revealed that real-time temperatures provide a
potentially valuable tailoring variable for decision rules in a digital
messaging tool for promoting physical activity. Temperature
exhibits one of the clearest relations between the natural environ-
ment and device-measured physical activity but research has been
observational and largely based on aggregated temperature data
over time (Turrisi et al., 2021). In behavioral intervention research,
perceived weather has been identified as a barrier to physical activ-
ity (Salmon et al., 2003). Temperatures also appear to function as
an operating condition for physical activity interventions. Prior
work supported this proposition at the daily time scale but used av-
erage daily temperature readings from a single (fixed) weather sta-
tion in Chicago (Welch et al., 2018). To accommodate human
mobility patterns and weather dynamics from hour to hour, the
present study extended that support using momentary GPS coordi-
nates to lookup temperature indices recorded (or forecast) for the
users’ actual location.

The dose-finding approach described here complements meth-
ods like the microrandomized trial which has been used to develop
evidence-based decision rules for just-in-time adaptive interven-
tions (Klasnja et al., 2015). For example, the microrandomized
trial design was used to develop a decision rule for the HeartSteps
intervention (Klasnja et al., 2019) and that approach is currently
being extended using reinforcement learning techniques to adapt
the decision rule as data accumulates (Liao et al., 2020). System
identification techniques used here can also be extended to design
effective controllers (decision rules) that maximize the probability
of achieving a desired goal while avoiding unsafe or ineffective
operating regions.

One of the differentiating features of the system identification
approach applied in this study involved its flexibility in accommo-
dating smaller streams of data. Although reinforcement learning
algorithms can be applied to adapt individual’s intervention in real
time, they still face many challenges such as a need for accommo-
dating noisy data, learning quickly, and accommodating model
mis-specification (Liao et al., 2020). On the other hand, system

identification techniques can operate well in the presence of uncer-
tainty and noisy data sets.

The expected effects reported here may seem modest in relation
to normative daily step counts but keep in mind that these esti-
mates are specific to individual digital messages and messaging
interventions can send multiple messages each day. Additionally,
behavioral interventions for physical activity rarely involve single
components and there may be additional effects from and interac-
tions with other components (e.g., behavioral feedback, goal set-
ting, social support; Conroy et al., 2014; Michie et al., 2009).
Decisions about whether to include digital messaging components
with person-specific decision rules can be informed by factorial
experiments to optimize treatment packages for different target
populations, goals, and resource constraints (Collins, 2018).

Limitations

One limitation of this approach is that the person-specific mod-
els are opaque input-output models that do not reveal the mecha-
nism(s) of behavior change. System identification has been
applied to test social-cognitive models on slower (e.g., daily) time
scales (Freigoun et al., 2017; Hekler et al., 2013; Phatak et al.,
2018; Riley et al., 2016). Few health behavior theories articulate
dynamic processes clearly (Riley et al., 2011) but obtaining inten-
sive self-reports of motivational targets following message deliv-
ery may be disruptive. It may be possible to code messages within
each content library based on their social-cognitive targets to iden-
tify which targeted messages affect behavior. Elaborating the num-
ber of message categories will reduce the data available to model
the effects of each message and the risk of overfitting models will
increase when model coefficients are based on smaller data sets.
For that reason, caution is warranted in interpreting findings from
contexts with fewer observations (e.g., extreme temperatures on
weekend days); predicted effects under those conditions will be
more uncertain.

Second, these models are based on a limited number of people’s
historical responses to messages in a finite range of environmental
conditions and locations. More representative samples with respect
to people, environmental conditions, and geographic locations
may reveal even more heterogeneous responses. If future contexts
differ from those tested or assumptions of stationarity are violated,
decisions based on these models may not be optimal. Nesselroade
and Molenaar (2010) “conceive[d] of each person as a system of
interacting dynamic processes, the unfolding of which produces an
individual life trajectory in a high-dimensional psychological
space” (p. 36). Assuming that people (i.e., systems) are constantly
developing and adapting to environmental exposures and accumu-
lated experiences (a core assumption of developmental system
theory; Ford & Lerner, 1992), periodic model adaptations based
on accumulating data may prove valuable in future work because
people who learn can benefit from decision rules that learn and
adapt with them.

These results provide an empirical strategy for iteratively refin-
ing person-specific models. Such models can inform the design of
person-specific decision rules, but it is not yet clear whether per-
son-specific decision rules are superior to simpler rules based on
random selections or ad hoc decision parameters (with or without
contextual information). Comparative effectiveness and cost-bene-
fit studies are needed to answer those questions.
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Conclusions

Digital messaging is an established tool for promoting physical
activity (Smith et al., 2020). Historically, dosing parameters have
been determined by experts’ domain knowledge or user preferen-
ces. Efforts to amplify effects using a range of personalization
strategies have not been successful (Armanasco et al., 2017). This
study provided an approach for person-specific dose-finding with a
digital messaging intervention. This approach incorporates contex-
tual data (recent behavior, day-of-week, weather conditions) and
historical responses to different treatments (i.e., message types) to
inform future decisions about treatment (i.e., whether or not to
send a message and which message to send). Dose-finding is an
important task for early-phase behavioral intervention develop-
ment (Czajkowski et al., 2015). The challenge of dose-finding for
complex behaviors that are multiply determined and possibly regu-
lated idiographically is substantial. Similar to the generic model
estimated in this study, this study provides a starting point. The
next steps in developing this method involve translating the
generic model into a warm-start controller and developing meth-
ods for periodically updating that decision rule based on incoming
data. That work is underway.
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