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Learning Hidden Influences 
in Large-Scale Dynamical 
Social Networks

T
he processes of information diffusion across so-
cial networks (for example, the spread of opin-
ions and the formation of beliefs) are attracting 
substantial interest in disciplines ranging from 
behavioral sciences to mathematics and engineer-

ing (see “Summary”). Since the opinions and behaviors of 
each individual are infl uenced by interactions with others, 
understanding the structure of interpersonal infl uences is 
a key ingredient to predict, analyze, and, possibly, control 
information and decisions [1]. With the rapid proliferation 
of social media platforms that provide instant messaging, 
blogging, and other networking services (see “Online So-
cial Networks”) people can easily share news, opinions, 
and preferences. Information can reach a broad audience 

much faster than before, and opinion mining and sentiment 
analysis are becoming key challenges in modern society [2]. 
The fi rst anecdotal evidence of this fact is probably the use 
that the Obama campaign made of social networks during 
the 2008 U.S. presidential election [3]. More recently, several 
news outlets stated that Facebook users played a major role 
in spreading fake news that might have infl uenced the out-
come of the 2016 U.S. presidential election [4]. This can be ex-
plained by the phenomena of homophily and biased assimi-
lation [5]–[7] in social networks, which correspond to the 
tendency of people to follow the behaviors of their friends 
and establish relationships with like-minded individuals.

The inference of social ties from empirical data becomes of 
central interest in political organizations and business firms 
due to its potential impact on decision making and action 
planning (see Figure 1). According to a report by McKinsey & 
Company [8], “Marketing-induced consumer-to-consumer 
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word of mouth generates more than twice the sales of paid 
advertising.” Influence analysis is becoming a key input for 
sophisticated recommendation engines that identify potential 
customers, exploiting similarities among several users to pre-
dict preferences. The same report [8] estimates that 35% of 
Amazon’s revenue and 75% of what users watch on Netflix 
come from product recommendations. The study of structures 
in networks (such as community detection and computing a 
node’s centralities) has been the main concern of social net-
work analysis (SNA) [9], embraced now by the multidisciplinary 

field of network science [10]–[12]. In a parallel line of research, 
many works have been published in physical, mathematical, 
and engineering that focus on dynamical models of opinion 
diffusion (see [13]–[19] and the references therein).

There are numerous gaps between SNA and opinion 
dynamics modeling, and the relations between structures 
of social influence and information spread mechanisms are 
far from well studied. This article takes a step toward fill-
ing these gaps (and in the direction of deriving a unified 
theory) by describing the intricate relations between struc-
tural and dynamical properties of social systems. In this 
new area, the methods of systems and control should play 
a key role. The aim, as explained in “Summary,” is to pro-
vide a general overview of the main concepts, algorithmic 
tools, results, and open problems in the systematic study of 
learning interpersonal influence in networked systems.

As summarized in “Opinion Dynamics Over Networks, in 
a Nutshell,” the main research lines in this field can be grouped 
into three broad categories: modeling, analysis, and control. 
Modeling aims to find a coherent mathematical description of 
social interactions. To build a mathematical model, one must 
define 1) the interaction protocol (for example, the times of 
interactions, which can be discrete or continuous), the contact 
modes (deterministic and random), and the frequency of inter-
actions among social network members and 2) the dynamical 
mechanism of social interactions (or ties), which can be 
described by linear and nonlinear functions [20]–[22]. In the 
simplest situation, each social tie is described by a single scalar, 
treated as the “influence weight” one individual assigns to 
another [14]. The analysis of social networks usually focuses on 
the study of the qualitative and quantitative properties of 
opinion dynamics (such as asymptotic convergence and oscil-
lations, eventual consensus, and disagreement). It is also 
important to extract low-dimensional features of a network, 
for example, to identify communities and the most influential 

Summary

Interpersonal influence estimation from empirical data is 

a central challenge in the study of social structures and 

dynamics. Opinion dynamics theory is a young interdisci-

plinary science that studies opinion formation in social net-

works and has huge potential in applications such as mar-

keting, advertising, and recommendations. The term social 

influence refers to the behavioral change of individuals 

due to the interactions with others in a social system (for 

example, organizations, communities, and society in gen-

eral). The advent of the Internet has made a huge volume 

of data easily available to measure social influence across 

large populations. The aim of this work is to qualitatively 

and quantitatively infer social influence from data, from a 

systems and control viewpoint. First, definitions and mod-

els of opinions dynamics are introduced, and structural 

constraints of online social networks are considered based 

on the notion of sparsity. Then, the main approaches to 

infer a network’s structure from a set of observed data are 

reviewed. Finally, algorithms that exploit the introduced 

models and structural constraints are presented, focusing 

on sample complexity and computational requirements.

“Marketing-Induced consumer-to-consumer word of mouth generates
more than twice the sales of paid advertising …. That analysis becomes
a key input into sophisticated recommendation engines that identify
potential customers.”—McKinsey and Company, 2015.

“Big  Data offers a promising new avenue for gauging
political preferences in parliament”

“Data are widely available, what is scarce is the ability to extract wisdom from
them.”—“Data, Data Everywhere,” The Economist, 2010.”

FIGURE 1 The data-driven analysis of social systems. 
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Online Social Networks

Online social networks (OSNs), or technosocial networks, 

are groups of individuals and organizations that use new 

communication technologies (that is, the Internet and mobile de-

vices) as a communication medium, forming a social structure 

described by particular relations [S1]. The study of OSNs has 

increasingly attracted the attention of the scientific community. In 

fact, online services, such as Facebook, Twitter, and Instagram, 

play an increasingly important role in the dissemination of 

opinions and the emergence of certain behaviors. They facilitate 
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FIGURE S1 (a) The global penetration rate of online social networks (OSNs) (45%), broken down by region. (b) The number of 
active users of the most popular OSNs, in millions. (Source of logos: Freepik.com.)
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leaders. A long-standing goal in the study of social networks is 
to control the final distribution of opinions [23]–[26].

The role of the systems and control community in the 
area of social networks has increased with the introduction 
of dynamical models, which capture phenomena observed in 
sociology and thus enable an understanding of social pro-
cesses and interactions. The workflow envisaged for a sys-
tematic study of opinion formation and networks’ structural 
properties is shown in “Data-Driven Systems and Control 
Approach.” All research [including data collection, the 
design of a mathematical framework (modeling, analysis, 
and control), the development of algorithms, and design of 
large-scale experiments] must proceed in parallel with con-
tinuous interactions among blocks. Data collection and pro-
cessing constitute the backbone of computational social 
science [27] and require a careful systematization. More pre-
cisely, one must define what kind of information can be 
acquired, the frequency of the samples, and, subsequently, 
how much information is contained in each sample.

In this context, the first issue is to encode people’s opinions, 
sentiments, and preferences from written language into a 
formal language or numerical representation that can be 

processed with numerical techniques. To this end, several 
methods for sensing opinions based on sentiment analysis 
have been proposed in recent years [28]. Efficient procedures 
for sampling graph signals require only a few nodes in a net-
work to be directly observed and sensed [29], [30] and remove 
irrelevant information to improve the performance of process-
ing. The analysis must identify the best models that accurately 
characterize a social system and select the evaluation metrics 
to quantify the interpersonal influence in a network. Efficient 
algorithms and new control mechanisms of centrality mea-
sures (see “Centrality Measures in Weighted Graphs”) must be 
designed to improve social network interconnectivity and 
resilience. Note that the control models should be data driven 
(that is, simulations based on data collected from real social 
networks must be performed to validate and refine dynamic 
models, then predict and control opinion diffusion across a 
network). Since parameters of system dynamics models are 
subject to uncertainty, a sensitivity analysis is crucial to explore 
the effects of parameter uncertainty on the behavior patterns.

Social ties among individuals have to be quantified to vali-
date and examine the models. In a small group participat-
ing in a roundtable discussion, individuals can estimate the 

social interactions, helping individuals to find other people with 

common interests, establish a forum for discussion, and exchange 

information [S2], [S3]. A 2020 special digital report [S4] stated 

that digital, mobile, and social media are a fundamental part of 

people’s daily lives around the world. According to Statista.com, 

the social penetration rate of OSNs in 2019 reached 70% in East 

Asia and North America, followed by Northern Europe at 67%, 

leading to a global social penetration rate of 45%. Moreover, since 

the COVID-19 outbreak was declared a public health emergency 

of international concern on January 30, 2020, social media use 

has reportedly increased significantly. On March 24, 2020, Face-

book recorded a 50% increase in total messages in many of the 

countries most affected by the virus, with a 70% jump in the time 

users spent on social media since the beginning of the pandemic 

[S5]. Figure S1 shows the total number of active users of the 

most popular social media networks [S6].
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influence they and the others have on the formation of their 
opinions (see “Friedkin–Johnsen Experiment”). However, this 
approach is inapplicable to large-scale groups and online 
social networks, whose structures of influence relations can be 
inferred only from data. The rapid development of the Inter-
net, on the one hand, makes a large volume of data easily 
available for analysis. On the other hand, it poses new chal-
lenges. Data sizes are getting larger, and collected information 
becomes heterogeneous and more complex. The massive data 
in OSNs consist of linked information, mainly in the form of 
graphic structures, describing communications between any 
two entities (including text, images, audio, and video) that 
must be processed. Hence, efficient analytic tools and algo-
rithms to reconstruct social influence mechanisms are required.

These considerations motivate the present work, which 
aims to present a unified overview of the two main aspects of 
interpersonal influence estimation: 1) the social network sens-
ing problem and 2) network reconstruction algorithms, with a 
particular focus on sample complexity and computational 
requirements. The main challenge is to guarantee the 
efficiency and scalability of the algorithms in the face of big 
data produced by OSNs. It is shown that the interpersonal 

influence estimation problem can leverage a mature technical 
background and strong mathematical foundations, and it can 
be addressed efficiently using modern techniques. The main 
studies performed on this subject are highly innovative, 
blending learning tools with high-dimensional data analysis, 
including principal component analysis [33], compressed 
sensing [34], and graph analytics [35], and encompassing vari-
ous fields of research, including the following:

1)	 graph theory and linear algebra
2)	 control theory techniques, such as stability, controllabil-

ity, system identification, and optimal and robust control
3)	 signal processing, statistics, and machine learning 

for big data analysis
4)	 efficient optimization-based algorithms for the sam-

pling and reconstruction of graph signals.
The main focus of the article is based on previous works 

[36]–[43]. The interested reader is referred to the literature for 
more insight. This survey was partly presented during the 
tutorial section “Control and Learning for Social Sciences: 
Dynamical Networks of Social Influence” at the 2020 IFAC 
World Congress. The remainder of this article is organized 
as follows. The main body of the text is complemented by 

A downside of this high social penetration rate is the spread 

of fake news, whose detection is becoming a serious problem 

[S7], [S8]. Figure S2 describes the percentage of people who 

are concerned about what is real and fake on the Internet re-

garding news. The data are current to 2019 [S9]. Moreover, 

approximately 43% of adults in the United States get news 

from Facebook (according to a survey conducted in July and 

August 2018 [S10]). This proportion is much higher than the 

percentage of adults who get news through YouTube (21%), 

Twitter (only 12%), and other platforms. Recent contributions 

in systems and control focus on modeling the dynamics of the 

spread of misinformation [S11]. It has been shown [S12] that in 

Twitter diffusion networks, misleading content spreads deeper 

than mainstream news with a small number of followers (and 

communities sharing fake news are more connected and clus-

tered). Structural properties of Twitter diffusion networks (such 

as the number and size of weakly connected components, the 

average clustering coefficient, and the diameter of the larg-

est weakly connected components) can effectively be used to 

identify misleading and harmful information [S12]. Inferring the 

networks’ structure and learning global properties from partial 

information become central tasks [S13], [S14].
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“summary” sidebars (“Opinion DynamicsOver Networks, 
in a Nutshell,” “Data-Driven Systems and Control Approach,” 
“A Glossary of Graphs,” “Centrality Measures in Weighted 
Graphs,” “Sparsity Structure in Online Social Networks,” 
“Sparse Models,” “French’s Original Model,” “DeGroot’s 
Model as Dynamics Over aGraph,” “Simple Properties of the 
Friedkin–Johnsen Model,” “Control Matrix and Friedkin’s 
Centrality,” “Reflected Appraisal Model,” “Asynchronous 
Gossip-Based Friedkin–Johnsen Model,” “Dynamics of Mul-
tiplex Networks,” “Necessary and Sufficient Conditions for 
Recovery,” “Performance of Influence Estimation: Asynchro-
nous Gossip-Based Friedkin–Johnsen Model,” and “Bayesian 
Estimation of ( )S[ ]

( )s
0 3 ”) that aim to improve understanding 

through concise and schematic blocks and “focus” sidebars 
(“Online Social Networks,” “Friedkin–Johnsen Experiment,” 
“Degree Distribution in Facebook Ego Networks,” “Multidi-
mensional Networks,” “Gaussian Graphical Models and the 
Graphical Lasso,” “Graph Signal Processing,” “Schur Stability 
Criteria,” “A Model of a Belief System’s Dynamics,” and “Com-
pressed Sensing”) that address specific topics through further 
study, technical results, and additional discussions. The reader 
can skip these parts without a loss of comprehension. 

DEFINING INFLUENCE IN SOCIAL NETWORKS
As defined in [44] and [45], interpersonal influence is a “causal 
effect of one actor on another,” such as a change in opinions 

Opinion Dynamics Over Networks, 
in a Nutshell 

Certain assumptions are involved, including the following:

• First, a population of individuals (or actors) forms.

• Individuals interact and exchange opinions.

• As a result, their opinions evolve.

There are three research directions, as described in the 

following:

1) Mathematical modeling of social behaviors:

• Interaction protocol: discrete/continuous-time, de-

terministic/random contacts

• Social ties: linear (parameterized by scalar “weights”) 

and nonlinear functions

2) Analysis (sociology plus computer science):

• the evolution of opinions (convergence/oscillations 

and consensus/disagreement)

• low-dimensional features (communities and opinion 

leaders)

3) Control (design mechanisms to provide the desired be-

havior of the opinion profile):

• induce qualitative changes (for example, consensus)

• induce quantitative changes (for example, drive an 

individual’s opinions to a desired value).

Data-Driven Systems and Control Approach

The ultimate goal is the development of a theoretical 

framework that is based on systems theory and data-

driven control and that is able to predict the processes of 

opinion formation and information spread in large-scale so-

cial networks, providing well-grounded tools to quantify and 

control the impact of specific actions. The workflow for a sys-

tematic study of network structures and dynamics appears 

in Figure S3.
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FIGURE S3 The workflow for a systematic study of network structures and dynamics. 
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and behaviors [46]. The quantification and measurement of 
social ties are long-standing problems that have been stud-
ied since the 1950s [47]–[50]. One principal difficulty is to 
separate direct and indirect influence: “If the opinion 
change has occurred within a system of influences involving 
other actors, then these other actors may have induced 
the observed opinion difference or change” [44]. Another 
problem is the coevolution of social ties and individuals’ 
behaviors. On the one hand, people modify their behaviors 
to align with those of their friends (social influence). How-
ever, people tend to form friendships with others like 
themselves (social selection). Opinions and other mutable 
characteristics are thus formed by the interplay between 
social selection and influence [12].

Research into interpersonal influence exists in the litera-
ture, and three main directions prevail. The first develops the 
seminal ideas of Granovetter [51], defining the strength of a 
social tie between two individuals as a function of positions in 
a social group. For instance, the more friends that actors A 
and B have in common, the stronger is the tie among them 
[46], [51]. Social influence introduced in this way depends 
only on the structure of a network. A large amount of avail-
able data from real-world social networks and the existence 
of efficient tools for the information’s analysis make this 

approach very attractive for both behavioral and computer 
sciences. The second line of research relates social influence 
to temporal (dynamical) mechanisms, modifying some numeri-
cal attributes of social actors, such as opinions and quantities 
related to them. The influence (or power) of actor B over actor 
A is a parameter of the corresponding mechanism, measur-
ing A’s sensitivity to the opinion of B and A’s level of trust in 
B’s opinions. This idea is elaborated in the Friedkin–Johnsen 
theory of social influence [14], [31], [32], [44].

The fundamental results reported in [44] establish inter-
relations between structural and dynamical approaches to 
social influence. Namely, in networks of scientific collabora-
tions, social positions (“opinions”) of individual researchers 
can be encoded by multidimensional vectors. Two opinions 
are close if researchers have similar (in some sense) sets of 
collaborators. The evolution of these opinions is predicted 
by the Friedkin–Johnsen model of opinion formation (see 
Figure 2 and the section “Social Influence in Opinion Dy-
namics”) whose parameters can be constructed via a struc-
tural analysis. The third research direction related to complex 
networks (not necessarily social ones) is statistical (learning-
based) methods of network reconstruction. Like the second 
approach, it assumes that actors at a network’s nodes are 
endowed with numerical values that are supposed to be 

Friedkin–Johnsen Experiment

Aseminal example of coupling theory with empirical re-

search can be found in [32], where the Friedkin–Johnsen 

model [31] for single-issue opinion dynamics is validated for 

small and medium groups of individuals (social actors). An ex-

periment was designed using 30 groups, four individuals, and 

15 issues (risk choice dilemmas), and it included the following:

•	 recording actors’ initial opinions

•	 discussions lasting 15 min

•	 actors distributing “chips” to quantify influence

•	 recording actors’ final opinions.

The participants were asked to express their opinions 

about 15 issues selected uniformly at random without replace-

ment from a set of risk choice dilemmas. Risk choice dilem-

mas are hypothetical life decisions that are used to measure 

willingness to assume a risk. More precisely, the agents were 

asked to express their minimum level of confidence (that is, a 

scalar value in the range [0, 1]) to accept a risky option with 

a high payoff over a less risky option with a low payoff. The 

individuals recorded their initial opinions on an issue; then, a 

15-min discussion was opened, and the actors’ final opinions 

were recorded.

•	 Investment Choice: Imagine you want to invest some money 

you recently inherited. You may invest in secure, low-return 

securities (small risk), or alternately, in more risky securities 

that offer the possibility of large gains (great risk).

INFLUENCE DETERMINATION

To estimate social influence, participants were asked during 

the discussion to distribute chips (Figure S4) among them-

selves while they interacted, as a subjective measure of the 

influence exercised by other group members. Model validation 

was then performed by showing that predicted opinions were 

close to those recorded.

•	 The issues involve opinions on the minimum level of 

confidence (which is a value in the [0, 1] interval) required 

to accept a risky option with a high payoff over a less risky 

option with a low payoff.

FIGURE S4 Influence is experimentally measured by asking par-
ticipants to distribute chips to measure the influence weights 
that each person has assigned to him/herself and others during 
the decision-making process. (Source: Freepik.com.)

Authorized licensed use limited to: Penn State University. Downloaded on October 04,2022 at 14:37:18 UTC from IEEE Xplore.  Restrictions apply. 



68  IEEE CONTROL SYSTEMS »  OCTOBER 2021

random. Unlike the second technique, the existence of a 
temporal mechanism modifying values is not stipulated. A 
tie between two nodes corresponds to statistical correlation 
among values, and the strength of this tie is naturally mea-

sured by the correlation coefficient. In other words, a net-
work is considered a probabilistic graphical model [52], [53] 
and analyzed by methods of statistics and statistical learning 
theory (see the section “Learning Graphs From Data”). 

Main Challenges:
• Quantification and Measurement of Influence

• Separation Between Direct and Indirect Influence

• Social Ties Coevolve (Social Influence Versus Social Selection)

• Attachment to Prior Beliefs (External Influences and Attachment to a Specific Ideology).

“Interpersonal influence is a causal effect of
one actor on another …. It is difficult to isolate

and measure this effect because …. if the
opinion change has occurred within a system of

influences involving other actors, then these
other actors may have induced the observed
opinion difference or change…. Work on the

measurements of influence structures, should be
pursued,”—Friedkin and Johnsen, 1998

FIGURE 2 Measuring influence, affinities, and social ties.

A Glossary of Graphs
n unweighted graph G  is represented by the couple ( , ),V E  

where the following apply:

•	 V  is the set of nodes (corresponding, for example, to 

agents in a network), indexed as , , .n1 f

•	 E V V#3  is a set of ordered pairs of nodes describing 

a relationship: if ( , ) ,Ei j !  then j is influenced by i. The 

couples (i, j) are referred to as the edges of the graph.

Given an unweighted graph, adjacency matrix Adj is de-

fined, with ij entry [ ]Adj 1ij =  if ( , ) Ei j !  and zero otherwise.

A weighted graph G  is represented by a triple ( , , ),V E W  

where V  and E  are the nodes and edges of the graph and 

[ ]wW ij=  is the weighted adjacency matrix (known as the influ-

ence matrix), whose entry wij  defines the weight of the edge 

(i, j) [w 0ij =  if ( , ) ;Ei j !Y  that is, i and j are not connected]. Each 

square matrix ( )wW , Vij i j= !  can be associated with a graph 

[ ] ( , , ),G V EW W=  where {( , ) : }.E i j w 0ij !=  Figure S5 repre-

sents a graph.

A matrix M is said to be adapted to the graph G  if [ ] .G GM =  

By construction, the adjacency matrix Adj and every influence 

matrix W of a graph G  are adapted to G. The matrix W is said 

to be row stochastic if its rows sum to one; that is, .w 1i ijR =  

In compact form, ,1 1W =  with [ ] .1 1 1g0 <  Similarly, matrix 

W is column stochastic if ;w 1j ijR =  that is, .1 1W =< <  For un-

weighted graphs, ( , )G V E=  is an undirected graph if ( , ) Ei j !  

implies that ( j, i) is also an edge in .E  For a weighted graph 

( , , ),G V E W=  it is also required that the weights of edges (i, j) 

and ( j, i) coincide: .W W= <

The Laplacian matrix of a weighted graph (possibly, direct-

ed) is defined as

,L D W0 -

where ( , , )d ddiagD n1 f0  is the weighted degree matrix  

and .d wji ijR=  For each node ,Vi !  its neighborhood is de-

noted by { : ( , ) }.N V Ej i ji 0 ! !  A sequence of edges 

( , ), ( , ), , ( , )i i i i i jm1 1 2 1f -  without repeated vertices forms a path 

from i to j. A graph is said to be strongly connected if there ex-

ists a path between any pair of different nodes.

xi

xj

wij

FIGURE S5 A representation of a graph.

A

Authorized licensed use limited to: Penn State University. Downloaded on October 04,2022 at 14:37:18 UTC from IEEE Xplore.  Restrictions apply. 



OCTOBER 2021 «  IEEE CONTROL SYSTEMS  69

This article focuses on the second and third lines of research. 
Certain sections consider the statistical estimation of social 
influence (the third direction). Sections throughout address 
the identification of dynamic mechanisms of opinion forma-
tion, namely, the Friedkin–Johnsen model. Both approaches 
use the construction of a weighted directed graph whose nodes 
have numerical attributes (considered to be opinions of social 
actors), where arcs represent social ties whose strengths are 
described by weights. A natural question is how the estimates 
of these weights can be used to study the structure of a social 
network (for example, exploring communities). The remainder 

of this section is devoted to this problem and introduces 
important characteristics of weighted graphs.

Influence-Related Measures
A social network consists of two main components: 1) social 
actors (individuals and organizations) and 2) dependency, 
influence, and similarity relations. Each actor has a numeri-
cal attribute (representing an opinion). A social network can 
be mathematically described by a directed weighted graph 
(see “A Glossary of Graphs” for definitions). At the local 
level, social influence is a directional effect from node i to node j, 

Symbol Meaning

( , )G V E= A (directed) graph with a set of nodes V  and a set of arcs E; elements V  are in one-to-one 
correspondence with individuals of a social network

n The number of individuals in a social network ( | |)Vn =

]MG[ The graph corresponding to matrix M

Adj Adjacency binary (0/1) matrix of a given graph

( )wW ij= Weighted adjacency matrix of a graph as well as the stochastic matrix of the influence weights in 
the DeGroot and Friedkin–Johnsen model; wij  is a strength of individual j’s influence on individual i.

L Laplacian matrix of the weighted graph

1 The column vector of n ones

N i Neighborhood of node i (the set of nodes to which j is connected)

in-deg(i), out-deg(i) In- and out-degrees of node i

( )At Spectral radius of matrix A (for nonnegative matrices, also the largest in modulus eigenvalue)

|| ||x 0 Number of nonzero elements in vector x (same notation applies also to matrices)

,W( ) In multidimensional (multiplex) networks and models of reflected appraisal dynamics, the matrix of 
influence weights during the discussion on , th topic

t Symbol of statistical independence among random variables

( | )p x H Family of distributions with a parameter matrix H

R Covariance matrix

H Inverse covariance or precision matrix

( ) ( , , )k x xx ( ) ( )
i i i

m1
f= Multidimensional opinion of individual i, consisting of the individual’s positions on m different topics 

(issues); evolves in discrete time , ,k 0 1 f=

( )
( )

( )
k

k

kx
X

x

n

1

= h> H
Matrix of individual opinions at time k

p Vector of social power in the French–DeGroot model

( , , )diag n1 fm mK = In the Friedkin–Johnsen model, the diagonal matrix of individual susceptibilities to social influence

In Identity n n#  matrix

V Row-stochastic “control matrix,” which determines the outcome of opinion formation process in the 
Friedkin–Johnsen model

c Vector of Friedkin’s influence centrality

( ), ( )k kBC Random matrices describing randomized gossip-based opinion dynamics

,bCr r In gossip-based opinion dynamics, the expectations of matrix ( )kC  and vector ( ) ( )k 0B x

( ) ( ( ))k kdiagP p= In the models with random opinion measurement, the (random) measurement matrix; the vector 
( ) { , }k 0 1p n!  is the random selection vector.

|| ||x 1 1,  norm of vector x

S Sample covariance matrix

TABLE 1  The main notation symbols. 
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which is related to the edge strength E( , )i j !  [46]. To comply 
with previously published works on opinion dynamics [14], 
[42] the arc (i, j) is associated with the influence of j on i. 
Social influence relations can thus be encoded in the social 
influence matrix ,wW ij= 6 @  which is adapted to the graph 
[if E( , ) ,i j "  then the corresponding entry wij  is zero] (see 
Table 1 for notations used in this article). In dynamic 
models of social influence [14], this matrix is often nor-
malized to be row stochastic. At the global level, some 
nodes can be more influential than others, due to net-
work interconnections. Several global measures have 

been introduced to identify the most relevant entities in a 
network. These global measures can refer to nodes and 
edges and can be defined in several ways according to 
the specific context and application, leading to different 
notions of centrality (a node’s/edge’s importance) measure. 
Various measures of centrality are defined in “Centrality 
Measures in Weighted Graphs.”

The simplest and most popular definition of centrality 
is degree centrality, that is, the number of neighbors of a 
node. This measure can be interpreted as a measure of the 
immediate risk of a node catching (in-degree) or spreading 

Centrality Measures in Weighted Graphs

Consider a weighted graph ( , , ),WG V E=  where V  is the set 

of agents in the network, E V V#3  is a set of links describ-

ing interpersonal influences, and [ , ]W 0 1 V V! #  is the social 

influence matrix (which is adapted to the graph). A centrality 

measure is a nonnegative scalar measuring the importance of 

a node or an arc in the graph. Alternative definitions of central-

ity are illustrated using a simple directed network known as the 

football data set [S15]. The network recorded 35 soccer teams 

that participated in the 1998 World Championship, in Paris, 

France. Every edge recorded the number of national team play-

ers of one country who played in the league of another country.

DEGREE CENTRALITY

The in/out-degrees of Vi !  (Figure S6) are defined as

{

{ : } ,

: } ,in-deg( )

out-deg( ) V

Vj w

j w

i

i 0

0ij

ji !

!!

!

=

=

respectively, where X  denotes the cardinality of the set .X  

In social systems, the degree corresponds to the number of 

paths of length one starting from a node. The weighted in/

out-degree is defined as the sum of weights when analyzing 

weighted networks:

in ( ) , out ( ) .deg degi w i w- -W W
VV

ij
j

ji
j

= =
! !

/ /

CLOSENESS CENTRALITY

The closeness centrality (Figure S7) of node i is defined as

,c
d

1

{ }V

i
ij

j i

=

=!

/

where dij denotes the length of the shortest path between i 

and j. This notion can be modified using other definitions of 

distances, as considered in [56] and [57]. Closeness centrality 

for weighted graphs can be defined by introducing “weighted 

distance dij,” that is, the minimal weight of all paths that con-

nect i to j. The weight of a path is naturally defined as the sum 

of the weights on the traversed edges.

FIGURE S6 Nodes colored according to in-degree centrality. FIGURE S7 Nodes colored according to closeness centrality. 
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BETWEENNESS CENTRALITY

The betweenness (Figure S8) of node i is defined as

( , )
( , )

,
S
S

b
j k
j k

, V,

i
i

j k j k i

=
! !!

/

where , )S( j k  denotes the set of shortest paths from j to k and 

( , )S j k  is the set of shortest paths from j to k that contain the 

node i. For weighted graphs, the length of each edge forming 

the paths in , )S( j k  and ( , )S j k  is measured through the entries 

of the influence matrix W.

EIGENVALUE CENTRALITY

The idea of eigenvector centrality (Figure S9) is based on a 

simple principle: a node is important if it is connected to other 

important ones. This centrality measure is determined by the 

dominating (Perron–Frobenius) eigenvector x*  of some prop-

erly defined nonnegative matrix A that is compatible with the 

graph. Formally,

,  , ,Ax x x1 x i1 0n i 6$m= =* * * )<

where ( )Am t=  is the maximal positive eigenvalue (being also 

the spectral radius) of A. In the prevailing definition of eigen-

vector centrality [11], A Adj=  is the standard adjacency matrix. 

A more general construction

( ) ( ) ,A M M 1 1m n
m1 n n= - + <

where M is a column stochastic matrix and ( , ),m 0 1!  arises in 

the definition of PageRank centrality [S16].

REFERENCES
[S15] “The football dataset.” [Online] Available: http://www.casos 
.cs.cmu.edu/computational_tools/datasets/external/football/index2 
.html 
[S16] A. Z. Broder, R. Lempel, F. Maghoul, and J. Pedersen, “Ef-
ficient pagerank approximation via graph aggregation,” Inform. Re-
trieval, vol. 9, no. 2, pp. 123–138, Mar. 2006. doi: 10.1007/s10791-
006-7146-1.

FIGURE S8 Nodes colored according to betweenness centrality. FIGURE S9 Nodes colored according to eigenvalue centrality.

(out-degree) information. A more general concept is K-path 
centrality [54], defined as the number of paths of length K 
starting from a node. Both the degree and K-path central-
ity definitions are local. Alternative centrality measures 
have been considered to measure the importance of a node 
for a graph as a whole. Among them, closeness, between-
ness, and eigenvector centrality are briefly discussed. 
Closeness centrality is a measure of how near a node is to 
most of the other ones [55] and provides insight into how 
long it will take to spread information from i to all other 
nodes in the network.

Another relevant measure is represented by node between-
ness [56], [57]. Nodes with high betweenness occupy critical 
positions in a network and are bridges between two groups 
of vertices (since many paths in different groups must pass 
through them). The eigenvector centrality of a node is a func-
tion of the node’s neighbors, and the relevance is assigned 
according to the entries of the leading eigenvector x*  of a 
suitable weighted adjacency matrix of a network. Contrary 
to degree centrality, this notion does not depend on the 
number of neighbors but considers the relevance of neigh-
bors. In this way, a node with a few influential neighbors 

Authorized licensed use limited to: Penn State University. Downloaded on October 04,2022 at 14:37:18 UTC from IEEE Xplore.  Restrictions apply. 



72  IEEE CONTROL SYSTEMS »  OCTOBER 2021

has larger eigenvector centrality than a node with various 
neighbors of limited influence. The most famous eigenvalue 
centrality measure is PageRank centrality [58], which was 
introduced in the context of webpage ranking. Many other 
centrality measures (such as Katz centrality [59], Bonacich 
centrality [60], [61], and harmonic influence centrality [14], 
[15], [62]) naturally arise as extensions of eigenvector central-
ity and the PageRank.

SPARSITY STRUCTURE OF SOCIAL NETWORKS
A systematic study of the structure of social networks 
offers several metrics and algorithms for extracting 
low-dimensional features. Metrics can quantify global 
and local structural properties. Network density is 
an aggregate metric defined as the ratio /E n2  of the 
number of observed social relationships to the number 
of possible relationships among nodes (that is, the pro-
portion of ties within a network). A collection of large 
social network data sets is made available by the Stan-
ford Network Analysis Platform [63] and can be visual-
ized using the software GraphViz [65]. In “Sparsity 
Structure in Online Social Networks,” Table S1 reports 
the type, number of nodes, and density of some social 
networks. Note that OSNs have common features, includ-
ing the following:

»» They are massive networks with a number of nodes 
Vn =  ranging from tens of thousands to millions.

»» They are not dense, in the sense that the number of 
edges is not close to n2  (that is, the maximal number 
of possible edges) and linearly depends on the net-
work size.

The distinction between dense and sparse graphs 
depends on context. The index with which sparsity is 
commonly measured in network graphs is edge density 
[65]. Consider the following asymptotic definition of 
sparsity. Assume that a graph is sparse if the number of 
edges is not larger than a quantity that scales linearly in 
the number of nodes; that is, E ,n# a  with ( , ) .0 1!a  
There are other metrics to define sparsity, for example, 
the generalization of the Gini Index [66] for networks. 
Refer to [67] for an overview of sparsity definitions 
adapted for networks. Another important statistical 
characteristic is the in- and out-degree dist r ibut ion 
(see “Centrality Measures in Weighted Graphs”). If 
the in-degree of a node is small compared to the net-
work size, then the corresponding row in the influence 
matrix W is sparse and contains few nonzero entries (see 
“Sparse Models”). Many real-world networks exhibit 
power law degree distributions [11]. Remarkably, such a 
distribution was discovered in early works about soci-
ometry [68]. It is said that the network exhibits power 
law distribution if the fraction of nodes with degree k 
is distributed as

	 ( )p k kdeg + c- � (1)

for some exponent 12c  and minimum degree .kmin  Net-
works with power law distributions are called scale-free 
because power laws have the same functional form at all 
scales; that is, the power law ( )p kdeg  remains unchanged 
(other than a multiplicative factor) when rescaling the inde-
pendent variable k [as it satisfies ( ) ( )].p k p kdeg dega a= c-

In [69], structural properties of Facebook ego networks 
are analyzed. Ego networks are well studied, as they cap-
ture local information about network structure from the 
perspective of a vertex. The ego network of a focal node 
(called the ego) is defined as a subgraph induced across 
nodes that are directly connected to it but exclude the ego 
itself. Note that since the ego node is removed from the net-
work, an ego network can be disconnected. “Degree Distri-
bution in Facebook Ego Networks” shows the normalized 
degree distribution of three ego networks [63]. As shown, 
some are more “concentrated” around a mean value, while 
others show power law decay with a smaller exponent .c  As 
discussed in the next section, this concentration property 
plays a crucial role in the inference of trust network from 
little data.

Examining the Twitter networks of 14 destination mar-
keting organizations, Finally, other networks exhibit the 
presence of few clusters [69], that is, a community of indi-
viduals with dense friendship patterns internally and 
sparse friendships externally. This inherent tendency to 
cluster is measured by the average clustering coefficient [71]. 
These types of networks are described by an influence 
matrix that can be decomposed as a sum of a low-rank and 
sparse matrix. To better address some ideas, “Sparse 
Models” provides different examples that summarize how 
sparsity can be exploited for social network analysis.

SPARSE MODELS FOR  
MULTIDIMENSIONAL NETWORKS
Multidimensional networks describe different types of 
relations among nodes. For example, friendships in a 
social net work may ar ise for var ious reasons (for 
instance, because users are colleagues, teammates in 
sports, or share hobbies). In this case, consider multi-
plex networks, where different layers of interconnec-
tions can be distinguished that correspond to various 
types of relations. Another real-world example is when 
a social group discusses several issues in parallel. For 
example, Twitter is comprised of microblogs, and users 
express opinions about different topics. The influence 
between the users is topic dependent (for example, net-
works are sometimes called heterogeneous [72]). Each 
layer in a multilayer network considers influence rela-
tions among people when they discuss a certain sub-
ject. The analysis of multiplex networks is an active 
field of research (see [73] and the references therein). If 
an underlying social network is composed of the same 
individuals, then it is expected that social systems share 
a common feature.
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The preceding intuition entails that networks describ-
ing the microlevel mechanisms of social influence with 
respect to topics are not completely independent. It fol-
lows that (besides the sparsity model describing the de
grees of freedom of each network), the model must be 
augmented by considering the correlations of networks 
relative to different topics. In this sense, [74] introduces 

correlated models. The first, the common component model 
M( ),cc  considers cases where networks relative to differ-

ent topics , , m1 f, =  differ only for a few edges. In this 
case, all influence matrices share a common base and con-
tain an innovation. Formally, the influence matrix W( ),  
describing an interaction network relative to the , th topic 
is decomposed as

Sparsity Structure in Online Social Networks

Sparsity structure allows one to distinguish dense net-

works (Figure S10) and sparse networks (Figure S11).   

According to the Stanford Large Network Data Set Collec-

tion, “Most real social networks are sparse.” Table S1 de-

scribes the type, number of nodes, and density of some 

social networks. 

Name Type Nodes Edges Network Density

ego-Facebook Undirected 4039 ,88 234 ·5408 10 3-

ego-Gplus Directed ,107 614 , ,13 673 453 ·1180 10 3-

ego-Twitter Directed ,81 306 , ,1 768 149 ·2674 10 4-

soc-Epinions1 Directed ,75 879 ,508 837 ·8837 10 5-

soc-LiveJournal1 Directed , ,4 847 571 , ,68 993 773 ·2936 10 6-

soc-Pokec Directed , ,1 632 803 , ,30 622 564 ·1148 10 5-

soc-Slashdot0922 Directed ,82 168 ,948 464 ·1404 10 4-

wiki-Vote Directed 7115 ,103 689 ·2048 10 3-

gemsec-deezer Undirected ,143 884 ,846 915 ·4090 10 5-

gemsec-facebook Undirected ,134 833 , ,1 380 293 ·7592 10 5-

TABLE S1 Social networks according to their type, number of nodes and edges, and 
density. 

FIGURE S10 A dense network. FIGURE S11 A sparse network.
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	 ,W W W( ) ( )d= +, , � (2)

where the matrices W  and W( )d ,  (representing, res
pectively, the common part and the innovation part) are 
both sparse (see the examples in “Multidimensional Net-
works”). The second model, the common support model 
M( ),cs  describes situations where the topology is equal 

for all the different topics but where the weights vary. 
This is captured by a model in which all transition ma
trices share a common support , , , , ;n n1 1#f f3X " ", ,  
that is,

	 ( , ) , , , .i j m0 1W( )
ij + 6 f,! ! !X, " , � (3)

An example of this model can be found in deliberative 
groups that address a sequence of issues, such as depart-
ment faculty at universities and boards of directors in 
large organizations. Empirical findings show [75] that 
the weights evolve according to a natural social process 
known as reflected appraisal [76], [77]. The representation 
of this process, proposed in [75], is squarely based on the 
Friedkin–Johnsen model of opinion formation and will be 
considered in a following section.

Sparse Models

Sparse models to represent high-dimensional data have 

been used in several areas, such as statistics, signal and 

image processing, machine learning, coding, and control the-

ory [S17]. Intuitively, data are considered sparse or compress-

ible if they are so highly correlated that only a few degrees of 

freedom are significant compared to their ambient dimension. 

This general definition leads to many possible interpretations, 

and alternative measures of sparsity can be defined according 

to data and applications. The simplest definition is the sparsity 

in the elements. A signal is sparse if the number of nonze-

ros (or significantly different from zero) is small compared to 

the signal dimension. Moreover, a signal x Rn!  is k-sparse if 

{ { , , } : } ,x i n x k1 0i0 f !0 ! #  with .k n%

In social networks analysis, sparsity can be exploited in 

several ways. This article provides examples to easily address 

ideas. If, from a sociological perspective, an agent is influ-

enced by few friends (Figure S12), then the in-degree is low 

compared to the size of the network. As a consequence, the 

corresponding adjacency matrix is sparse; that is, it contains 

few nonzero elements (Figure S13). Here, a typical sparse ad-

jacency matrix is depicted with the signal obtained by stacking 

FIGURE S12 A network where each individual has few friends.

FIGURE S13 Sparsity in the elements of the adjacency matrix.
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FIGURE S14 A network with few influencers.
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the matrix by columns. Note that only a small portion of the 

elements is different from zero.

If a network contains few leaders (that is, few individuals 

influencing many people in the network), then the adjacency 

matrix will exhibit a sparse structure with few dense columns 

(Figure S15). The adjacency matrix of a network with five in-

fluencers is shown in Figure S14. In Figure S15, the elements 

of the matrix are stacked by columns. Note that the signal is 

sparse with few dense patterns. In the literature, this feature is 

also known as block sparsity.

Other networks show the presence of few communities, 

that is, a set of individuals with dense friendship patterns 

internally and sparse friendships externally. For these types 

of networks, the adjacency matrix can be decomposed as 

,A L S= +  where L is a low-rank matrix and S is a sparse 

one. Here, we show a typical adjacency matrix of a network 

with few communities (Figure S16) and the corresponding 

eigenvalues in absolute values (Figure S17). Note that the 

eigenvalues are highly compressible and that only four ei-

genvalues (even with the number of communities) contain the 

most energy of the signal.
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FIGURE S15 Block sparsity in the adjacency matrix.

FIGURE S16 A network with few communities.

FIGURE S17 Sparsity in the eigenvalues of the adjacency matrix. 
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To summarize, any efficient technique for social 
media modeling, analysis, and optimization must con-
sider the large size of the networks and exploit the 
notion of sparsity as a structural constraint. From the 
previous discussion, note that the key ingredient for 
performing social influence analysis is the knowledge 
of influence matrix W. The next sections focus on algo-
rithms inferring matrix W and related computational 
aspects and consider two different approaches. The 
“static” method addresses the inference of matrix W 
from samples of some observables ,x Vj j!" ,  whereas the 

“dynamic” approach addresses the identification of opin-
ion formation models.

LEARNING GRAPHS FROM DATA
The influence network estimation problem discussed in 
this article represents a special instance of the general 
problem of reconstructing a graph topology from data 
measured on nodes. This problem, known as graph learning 
or network inference, has attracted increasing interest in past 
years. Readers are referred to [78], on which this section is 
largely based. The literature distinguishes among several 
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Multidimensional Networks

Multidimensional (multiplex and multilayer) networks facili-

tate distinguishing different kinds of links among nodes 

and naturally arise in social sciences [73], economics and fi-

nance [S20], transportation [S21], and biology [S22]. There are 

multiple ways to define a multidimensional network. For simplic-

ity, consider networks denoted by a triple , , ,G V E L= ^ h  where 

V  is a set of nodes, L  is the set of layers, E ELd d= !'  is the 

set of edges, and Ed  is the set of edges at layer d. Temporal 

networks are a special type of multiplex networks with explicit 

dimensions and can be represented as a sequence of graphs, 

Sports Team

Workplace

University

Household

Hobby

FIGURE S19 Relationships among various individuals: five different layers. 

Degree Distribution in Facebook Ego Networks

Ego network analysis represents a common tool for the in-

vestigation of relationships among individuals and their 

peers in online social networks [S18]. Moreover, the structural 

properties of ego networks are shown to be correlated to many 

aspects of human social behavior, such as willingness to co-

operate and share resources [S19]. The ego network of a focal 

node is defined as a subgraph induced across nodes that are 

directly connected to it but exclude the ego itself. Figure S18 

depicts the empirical degree distribution of three Facebook 

ego networks retrieved from the Stanford Network Database 

[63]. Note that some degree distributions are more concentrat-

ed around a mean value, while others show power law decay. 

The tails of the distribution are well approximated by (1), with 

[ . , ] .1 2 3!c
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2012, pp. 31–40.FIGURE S18 The degree distribution of Facebook ego networks.
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where a single dimension is represented as a separate layer. 

Therefore, it is mandatory in this new framework to 1) general-

ize the centrality measures defined for classical monodimen-

sional networks and 2) study correlations among dimensions to 

capture hidden relationships among different layers.

Figure S19 represents relationships among different indi-

viduals. The colors correspond to various origins of friendships 

(for example, friendships arising in sports teams, at workplac-

es, and at universities). Consider single networks as separate 

graphs, while multiplex networks are given by the union of all 

graphs. In this case, each layer has been independently gener-

ated as an Erdős–Rényi graph. In Figure S20, 3D networks are 

considered. They are constituted by different layers and repre-

sent the influence network of a community based on a topic un-

der discussion (for example, food and drink, sports, and mov-

ies). Each layer is constituted by a sparse common component 

(the subgraph in red) and a sparse innovation component (the 

subgraphs in orange, purple, and light blue, respectively).

In [S23], a measure is defined to quantify how similar two 

dimensions are. These measures can be seen as an exten-

sion of the classical Jaccard correlation coefficient to address 

more than two sets. Let D L3  be a subset of dimensions of 

a network .G V, E, L= ^ h  The pair D  correlation is defined as

.
E

E

D

D

D

d
d

d
dt =

!

!

(

'

In the example, . , . ,0 3636 0 3871{ {M,F&D}M,S}t t= =  and {S,F&D}t =  

0.3333.
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FIGURE S20 Relationships based on common interests. 
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approaches for influence network estimation. These mainly 
depend on assumptions about networks under observation 
and available data. The methods are categorized into three 
classes: 1) statistical models, 2) learning models for social 
similarity and influence, and 3) model-based approaches. 
Most address undirected graphs and nondynamical (static) 
variables, and extensions to directed and dynamically 
varying topologies are usually rather complex. For this 
reason, this section mostly focuses on the simpler case of 
static undirected graphs.

Statistical Models
Statistical models presume the availability of N measure-
ments (usually scalar) at each node V:i !

V( ), , ( ), .x x N i1i if !

The main idea behind statistical models is to interpret 
observed data as independent realizations of random vari-
ables ,xi" ,  Vi !  whose joint probability distribution is 
determined by the topology of the graph G. Hence, a con-
nection between two nodes translates into a statistical cor-
relation among signals at those nodes. In particular, one 
can introduce so-called probabilistic graphical models [52], 

[79], in which data are interpreted as multiple outcomes of 
random experiments.

A graphical model is introduced to capture conditional 
dependence among random variables. When applied to 
social opinion analysis, these representations are some-
times referred to as model free, in the sense that they do not 
exploit any analytical model of the dynamical evolution of 
an opinion (but assume only a statistical correlation between 
opinions). In the simple case of undirected graphs and con-
tinuous variables, the most popular models proposed in the 
literature are Markov random fields (MRFs) [80]. Given a 
graph G V, E ,( )=  MRFs are postulated by requiring that 
random variables at different nodes satisfy a series of local 
Markov properties. Of particular interest is the so-called 
pairwise Markov property, which states that two variables 
are conditionally independent given all other variables if 
and only if they are not connected by an edge. That is,

xi t  E( , ) ,x x i jV\ ,j w i jw , g!" ", ,

where t denotes statistical independence.
It is shown in [81] that the preceding conditional inde-

pendence property holds if the probability mass function 
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(if the beliefs are discrete) or probability density function 
(if the beliefs are continuous) belongs to the family of expo-
nential distributions. That is, it is of the form

( ) ( ) ,expp Z x x x1
2
1x

EV ( , )
ii

v
j ij

i j
i j

2i iH
H

= - +
! !

c m; E/ /

where , ,x xx n1 f0 <6 @  is a collection of the random vari-
ables across nodes, ijiH = 6 @ is a parameter matrix, and 

( )Z H  is a normalization constant. Conditional indepen-
dence between xi  and xj  translates into .0iji =  In other 
words, the parameter matrix H  is adapted to the graph. 
This class is named exponential random graphs or p)  models. 
In the literature, estimation schemes for such graphs based 
on Monte Carlo maximum likelihood (ML) estimation have 
been proposed [82]. As observed in [83], these methods 
naturally extend the classical statistical approach based on 
estimating the partial (Pearson) correlation coefficient start-
ing from the observations x.

A commonly adopted assumption in exponential 
random graphs stipulates that observations are realiza-
tions of the multivariate Gaussian distribution

( )
( )

( )
,

det
expp

2 2
1x x x/

/

n 2

1 2

r
H

H
H= - <` j

where H  represents the so-called precision matrix, that is, 
the inverse of the covariance matrix .IRH =  This leads to 
the family of Gaussian graphical models [81]. It can be 
observed that (in this case) the existence of a nonzero entry 
in the precision matrix immediately implies a partial cor-
relation among corresponding random variables. The goal 
then becomes to estimate the precision matrix from the 
observed data .x Vj j!" ,  To this end, several procedures have 
been proposed for computing the (ML) estimator via a log-
determinant program. In this class of algorithms, the so-
called graphical Lasso (G-Lasso) [84] method has become 
extremely popular (see “Gaussian Graphical Models and 
the Graphical Lasso”).

Note that, although the convergence of the G-Lasso is 
guaranteed under suitable conditions, this method has some 
drawbacks. First, the procedure works only in the case of 
undirected networks. Second, in many contexts (for exam-
ple, the opinion formation processes discussed in this arti-
cle), data are the result of a dynamic process. This situation is 
not well captured by the G-Lasso framework since data can 
be highly correlated for these problems, leading to a dense 
precision matrix. Finally, the sample covariance matrix may 
fail to have full rank due to a lack of observed data, giving 
rise to numerical problems in the identification of a network. 

Gaussian Graphical Models and the Graphical Lasso

Graphical models are graphs capturing relationships among 

many variables, providing a compact representation of joint 

probability distributions. In these models, nodes correspond 

to random variables, and edges represent statistical depen-

dencies between node pairs. In Gaussian graphical models, 

variables at each node are normally distributed, ~ , ),N(0x xR  

and for any i and ,Vj !  a zero in the i, j entry of the precision 

matrix (Figure S21) means conditional independence (given all 

other variables):

.x x x 0\ ,Vj j w w i j i j
1

x
,G i H= =!

-" ", , /

Consider N observations { ( ), ( ), , ( )}x x x N1 2 f  from the mul-

tivariate Gaussian distribution. This work is interested in esti-

mating the precision matrix .1H R= -  The classical maximum 

likelihood (ML) estimator is obtained by solving the optimiza-

tion problem

	 ( ) tr ( ) with ( ) ( ) ,S S x xmaxlog det k kN
1

ML
k

N

10
H H H= - = <

*H
=

t /

where tr( • ) denotes the trace of a matrix. Classical theory 

guarantees that in the high-dimensional regime, MLHt  converg-

es to the truth as sample size .N "3

In practice, we are often in the regime where sample size N is 

small compared to the dimension n. Therefore, S is not full rank, 

and the ML estimation problem does not admit a unique solution. 

The main approach in these cases is to assume that many pairs 

of variables are conditionally independent; that is, many links are 

missing in the graphical model or, equivalently, H  is sparse. The 

key idea in the graphical Lasso [S24] is to treat each node as a 

response variable and solve the convex program

( ) tr ( ) ,Smaxlog detGlasso 1
0

- tH H H H= - -
*H

t

where t  tunes the number of zero entries in .H
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It is worth emphasizing that the estimation of the precision 
matrix via graphical models does not support a direct inter-
pretation of social influence but is able to reflect a pairwise 
correlation among opinions in a social system. The estima-
tion of social influence, however, is primarily aimed at pre-
dicting a direct causal effect of this influence.

Graph Signal Processing
Recent years have witnessed growing signal processing 
community interest in the analysis of signals that are 
supported on the vertex set of weighted graphs, leading 
to the field of graph signal processing (GSP), [85]. By gen-
eralizing classical signal processing concepts and tools, 
GSP enables the processing and analysis of signals that 
lie on structured but irregular domains. In particular, 
GSP facilitates redefining concepts such as the Fourier 
transform, filtering, and frequency response for data 
residing on graphs. Note that the signals in the graph 
are not time dependent. Instead, they vary spatially, and 
their spatial dynamics are governed by the underlying 
graph. A brief overview of GSP is provided in “Graph 
Signal Processing.”

While the main directions of research in GSP focus on 
the development of methods for analyzing signals defined 
across known graphs, the inverse problem concerned with 
learning the graph topology from measurements of the sig-
nals on the graph has also been considered. The existing 
mathematical results adopt specific assumptions about the 
characteristics of the graph Fourier transform (GFT). The 
most common approach for GSP-based graph topology 
reconstruction is based on the assumption that the under-
lying graph signal is smooth on the graph. That is, the links 
in the graph should be chosen in such a way that signals on 
neighboring nodes are close to one another. As a measure 
of smoothness of the signal x on the graph G,  the so-called 
Laplacian quadratic form is usually adopted [86]:

	 ( ) .w x x2
1x Lx

,
ij

i j
i j

2= -< / � (4)

Several approaches have been proposed in the literature for 
learning a graph (or, in this case, its Laplacian matrix L), 
such that the Laplacian quadratic cost (4) is small (that is, the 
signal variations on the resulting graph are small). Readers 
are referred to [78] for a detailed overview of this approach, 
whose central step is to solve the optimization problem

.min x y y Ly
, 2

2

L y
a- + <

The first term enforces data fidelity, and the second one 
enforces the smoothness of the signal. This method is 
extended in subsequent works [86], [87] by adding addi-
tional constraints on the Laplacian L, thus enabling the 
volume of the graph to be fixed and imposing specific 
structures on the graph. Other GSP-based approaches for 
deriving topological characteristics of a graph are based on 

graph signal measurement and assume that graph signals 
are generated by applying a graph filtering operation to a 
latent signal. In particular, the graph signal x is assumed to 
be generated by a diffusion process of the form

,x S uk
k

K
k

0
a=

=

/

where S is a given graph operator (again, usually the 
Laplacian matrix L) capturing the graph connectivity. The 
ensuing algorithm is well suited for learning graph topolo-
gies when the observations are the result of a diffusion 
process on a graph. This is the case for many diffusion 
dynamics in social systems. Existing methods for recon-
struction stem from the observation that when the “input” 
signal u is uncorrelated (white noise) and the graph is 
undirected, then the eigenvalues of S coincide with the 
eigenvalues of the covariance matrix xR  of x. This, in turn, 
may be approximated via the sample covariance. Finally, 
note the approaches using spectral graph dictionaries for 
efficient signal representation [88]. In this case, a graph 
signal diffusion model is envisioned, which represents 
data as (sparse) combinations of overlapping local patterns 
that reside on a graph.

Model-Based Learning of Directed 
and Dynamical Graphs
As discussed, the large majority of the graph learning 
approaches available in the literature address undirected 
and stationary graphs, whereas their extensions to directed 
graphs meet serious difficulties. In the case of probabilistic 
graphical models, for instance, directed graphical models 
(also called Bayesian networks or belief networks) require the 
introduction of a more complicated notion of indepen-
dence, which considers the asymmetry of interconnections. 
In GSP-based techniques, the directionality of a graph 
destroys the symmetry of its operator S, thus complicating 
the mere definition of the GFT. In many contexts (as with 
social interaction reconstruction, which represents the 
main focus of this work), learning directed graphs is more 
desirable, especially for those cases where the edge direc-
tions translate to causal dependencies among the variables 
that the vertices represent. In this case, model-based 
approaches appear more naturally. The main assumption is 
that data are results of a dynamical process, and the prob-
lem is an inverse optimization one exploiting prior infor-
mation on the model. This research is related to sparse 
vector autoregressive estimation [83], [89], [90], inverse opti-
mization from partial samples [91], and models from opin-
ion dynamics [39], [92]. The next section provides an 
overview of the main models introduced in the literature.

SOCIAL INFLUENCE IN OPINION DYNAMICS
The approaches to social influence discussed up to now 
represent a social network as either a weighted graph or a 
probabilistic graphical model. An alternative approach, 
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leading to so-called social influence network theory [44], 
[93], considers a social network to be a dynamical system. 
Relevant mathematical models describe the diffusion 
of some information across the network, which can 
manifest itself as the evolution of individual opinions, 
attitudes, and beliefs. Individuals interact (during face-
to-face meetings and via social media) and display 
their opinions about issues to one another. Based on 
others’ views, each individual updates his or her opin-
ion. The within-individual mechanisms of opinion assimi-
lation are related to psychological studies of information 
integration [94] and cognitive dissonance [95]. Their math-
ematical models are currently limited to simple opinion 
update rules, such as iterative averaging. In such simpli-
fied models, social influence is naturally represented by 
influence weights an individual assigns to his or her own 
and others’ opinions. Models are considered that stem 
from the French–Harary–DeGroot model of iterative 
opinion pooling.

The French–Harary–DeGroot Model
One of the simplest models of opinion formation was pro-
posed by French in his seminal work on social power [49] 
and later examined by the renowned graph theorist 
Harary [96], [98] (and discussed in “French’s Original 
Model”). The most known version, however, is the gener-
alized one proposed by DeGroot [99] (and, independently, 
by Lehrer [100], [101]):

	 ( ) ( ), , , .k w k i n1 1x xi ij
j

n

j
1

f+ = =
=

/ � (5)

Here ( )kxi  stands for the opinion of agent i at the kth stage 
of opinion evolution, and wW ij= 6 @ is a row-stochastic 
matrix (a nonnegative matrix whose rows sum to one). It 
is remarkable that the work [99] (unlike the pioneer arti-
cles [49] and [96]) introduced multidimensional opinions, 
which can represent an individual’s positions on several 
issues, for instance, the optimal distribution of resources 

Graph Signal Processing

The rapidly growing field of graph signal processing (GSP) 

provides tools to represent signals that are supported on 

the vertices of a graph. A graph signal is defined as a func-

tion :x V Rn"  that assigns a scalar value to the vertices of 

a graph. It can be represented as a vector ,x Rn!  where xi 

stores the value of the signal on the ith vertex. A simple way 

to understand the basics of GSP is to consider how the classi-

cal concept of the shift operator is extended to graph signals. 

First, observe that a periodic discrete time signal can be repre-

sented by a circular, directed, unweighted graph, in which the 

kth node represents the value of the signal x at the discrete 

time instant k. In Figure S22, (a) represents a signal x and (b) 

shows the shifted version ;x+  they follow the classical relation-

ship S ( ) ,Fx x SxHI T 0=+  defined as follows:

, , , ,

,

x x i

x x

n2i i

n

1

1

f= =

=

+
-

+

where the last equation follows from the circular shift assump-

tion. Note that, in this case, the shift operator S coincides with 

the adjacency matrix Adj of the directed graph:

, .x Sx S
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This parallelism between shift operators and graphs 

may be extended to general graphs (Figure S23). In GSP, 

given a graph ,G  a graph shift operator is defined as a ma-

trix S R ,n n!  adapted to the graph, and the shift operation is 

given by .Sx  Different choices of S define different shifts. 

For undirected graphs, the most typical choice of graph 

shift operator is the Laplacian L: for any graph signal x, 

define the new signal ,x Sx Lx= =+  whose element xu
+  is  

given by

[ ] ( ) .Lxx w x xu u ij
v

i j
Nu

= = -
!

+ /

From this formulation, it can be easily observed that the Lapla-

cian acts as a difference operator on graph signals.

From the definit ion of the graph shif t operator, the 

ex tension of the concept of the Fourier transform to 

graph signals descends almost immediately [S25]. For 
S L=  (under the assumption of the connectivity of the  
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FIGURE S22 (a) A periodic signal on a directed graph 
, , , ,x x x x x1 2 8 9f=  and (b) its shifted version.
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between several entities [102], and the subjective proba-
bility distribution of outcomes in some random experi-
ment [99], [103]. Unless otherwise stated, assume the 
opinions to be row vectors:

( ) ( ), , ( ) .k x k x kx ( ) ( )
i i i

m1
f= 6 @

It is convenient to stack theses rows on top of one another, 
thus obtaining an n m#  matrix of opinions:

	 ( )
( )

( )
( ), , ( ) .k

k

k
k kX

x

x
x x R( ) ( )

n

m n m
1

1h f != = #6> @H � (6)

The , th column of this matrix ( ) ( , , )k x xx( ) ( ) ( )
n1 f= <, , ,  con-

tains the actors’ positions on issue , , .m1 f, =  DeGroot’s 
model is then rewritten in the matrix form

	 ( ) ( ), , , .k k k1 0 1X WX f+ = = � (7)

According to the DeGroot model (see “Degroot’s Model 
as Dynamics Over a Graph”), at each stage of opinion itera-
tion, individuals simultaneously update their positions to 
convex combinations of all beliefs disclosed to them. The 
weights wij  of this convex combination serve as natural 
measures of mutual influences among individuals [14], [104]. 
Social influence can be thought of as a finite resource that 
individuals distribute among themselves and their peers 
(this is modeled as a distribution of chips, as discussed 
in “Friedkin–Johnsen Experiment”). The weight w 0ij $  
assigned by agent i to another agent j measures the impor-
tance of j’s opinion for i. If w 1ij =  (the maximal value), agent 
i fully relies on agent j’s opinion about an issue and is 
insensitive to the opinions of others:

( ) ( ) .w k k1 1x xij i j+= + =

An individual assigning the maximal weight w 1ii =  to him- 
or herself is often called stubborn (radical): completely closed 
to social influence and keeping an opinion unchanged:

network), if one considers the eigenvalue decomposition 

of ,L L= <  then

, diag( , , ), [ ],L U U U u un n1 1f gm mK K= = =<

where U is the eigenvector matrix, that is, the matrix contain-

ing the eigenvectors of L as columns (which are orthonormal, 

being L symmetric), and im  are the eigenvalues (which are 

real and ordered), with .0 n2 g1 # #m m  The graph Fourier 

transform (GFT) associated with the Laplacian may then be 

defined as

[ ] .ux xu xk k j
j

n

k j
1

0 =<

=

u /

Note that the Laplacian-based GFT works only for undirected 

graphs. Extensions to directed graphs are nontrivial since the 

GFT definition does not cover situations where L has complex 

eigenvalues and when it is not diagonalizable.
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FIGURE S23 (a) A signal defined on a generic undirected graph and (b) the corresponding graph shift operator, defined in terms  
of the Laplacian.
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	 ( ) ( ) ( ) .k k1 0x x xi i if+ = = = � (8)

If ,w 0ij =  the opinion of agent j is either not disclosed to 
agent i or not taken into account by agent i. Mathematically, 
agent j’s opinion at step k does not influence the opinion of 
agent i at the consecutive step ;k 1+  however, it can indi-
rectly influence i’s opinions at the subsequent steps ,k 2+  

,k 3+  and so on through the opinions of other individuals 
(a chain of influence ).j j j i$ $ $fl m  Along with French’s 
representation, the DeGroot model (5) predicts the consensus 

of opinions, that is, the convergence of all opinion vectors 
( )x ki  to the same vector as .k " 3  Equivalently, consensus 

means that the matrices Wk  converge to a stochastic matrix 
of rank one; that is,

	 1 1, .1W p pk
k =
"3

<< � (9)

Here, p is a nonnegative vector, being a left eigenvector of 
W so that .p W p= <<  This vector can be considered a cen-
trality measure on a social network (similar in spirit to 

DeGroot’s Model as Dynamics Over a Graph

Social network )  weighted graph 

( , , ),G V E W=  according to the fol-

lowing (see Figure S25): 

•	 Agents .Vv) !

•	 Interactions .E V V) #3

•	 Influences .W RV V) ! #

•	 Here, ( , ) .Ew i j0 ifij "=

•	 Opinions on issue , ( ) .x k R( )
v), !

•	 The row vectors of multidimen-

sional opinions ( ) ( ( ), ,k x kx i i
1 f=

( ))x ki
m  obey (5).

•	 The vectors of positions on each 

issue , , ,( ) ( ( ), , ( ))k x k x kx( ) ( ) ( )
n1 f= <  

evolve as , ,( ) ( ) .k k1x Wx( ) ( )+ =

•	 The matrix of opinions (6) evolves 

in accordance with (7).
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FIGURE S25 DeGroot’s model: opinions on several issues.

French’s Original Model

In this model [49], the following events occur: 

•	 A group of n individuals is associated with nodes of a di-

rected graph.

•	 Individual i holds an opinion xi, assumed to be a scalar 

real value.

•	 Individual j discloses his or her opinion to individual i if the 

graph has a directed arc ( j, i).

•	 Individuals know their own opinions, and thus each node 

in the graph has a self-arc.

•	 At each period , , ,k 0 1 f=  an individual updates his or 

her opinion to the mean values of all opinions he or she 

has encountered.

For instance, Figure S24 describes the opinion formation 

process
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The most typical behavior of the model is the eventual con-

sensus (unanimity) of the opinions. Due to the positivity of 

self-weights, consensus (for an arbitrary initial condition) is 

achieved if and only if [15], [96], [97] the graph has a node from 

which all other nodes are reachable (that is, there is an agent 

who influences, directly or indirectly, all other agents).
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FIGURE S24 French’s opinion formation model with n = 3 
individuals.
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eigenvector centrality) and characterizing social powers of 
individuals [49], [104]. The vector of the consensus opinions 
of a group is given by

( ) ( ),lim k p 0x x
k

i
i

i=
"3

/

and hence the element pi  quantifies the influence of the ini-
tial opinion of individual i on the ultimate group’s opinions. 
Matrices satisfying (9) are known as stochastic, indecom-
posable, aperiodic (SIA) matrices [105]. The SIA property 
can be proved for primitive (irreducible and aperiodic) 
[106], [107] matrices, for which Wk  has strictly positive 
entries for a sufficiently large exponent k [99]. Another stan-
dard criterion guarantees consensus if all diagonal entries 
wii  are positive and if the graph corresponding to W has a 
globally reachable node (some individual influences all 
others directly or indirectly) [108], [109]. A necessary and 
sufficient graph-theoretic condition for consensus can be 
found in [15] and [97].

From Consensus to Disagreement
Since social groups often fail to reach a consensus, realistic 
models of opinion formation should be able to explain 
not only “regular” consensus behavior but various “disor-
dered” actions featuring disagreement. Finding such a 
model is a problem that has been studied since the 1960s 
[20], [110], and the difficulty is known as Abelson’s diver-
sity puzzle (or the problem of community cleavage [14]). Most 
models portraying community cleavage (for instance, the 
convergence of opinions to several clusters) replace the 
DeGroot equation through nonlinear dynamics, taking 
into account various effects of information assimilation 
and integration within individuals and communication 
among individuals [6], [21], [111]–[119]. The most studied 
ones are bounded confidence models [16], [103], [111], [112], 
[118] capturing the effect of homophily in social groups 
and assuming that individuals tend to assimilate opin-
ions of like-minded peers and meet dissimilar opinions 
with discretion and even ignore them. The simplest, 
the Hegselmann–Krause model [111], may be considered 
an extension of the DeGroot dynamics (5) with opinion-
dependent influence weights ( ) ( ( )).w k w kXij ij=  Identifi-
ability properties of nonlinear models are, however, 
almost unexplored. The models’ dynamics are very sensi-
tive to the structures of nonlinear couplings (for example, 
the lengths of confidence intervals in bounded confi-
dence models), noise, and numerical errors [23]. Hence, 
despite some recent progress in the identification of non-
linear networks [120]–[122], they are not considered in 
this survey.

In linear models of opinion formation, the disagreement 
of opinions is typically explained by two factors: antagonis-
tic interactions among individuals and their stubbornness 
(reluctance to change the initial opinion). Models of the 
first type revise the basic assumption about the convex 

combination mechanism of opinion evolution and allow 
not only the attraction of agents’ opinions but their repul-
sion [123]–[130]. The presence of negative influence is 
typically explained by “boomerang,” reactance, and anti
conformity effects [20], [125] (that is, the resistance of some 
individuals to social influence). The theory of signed (or 
“coopetitive”) dynamical networks developed in the lit-
erature is extremely important due to various applica-
tions in economics, physics, and biology [131]. However, 
its applicability to social influence systems is still disput-
able for several reasons. The evidence of the ubiquity of 
negative influence has not been experimentally secured. 
Since the first definition of boomerang effects [132], the 
empirical literature has concentrated on special condi-
tions under which these effects might arise in dyadic 
interpersonal interactions. Whereas positive and negative 
relations (friendship/enmity and trust/distrust) between 
individuals are ubiquitous, it is still unclear whether 
such relations really correspond to positive and nega-
tive influences [133].

Under a natural assumption of strong connectivity, the 
clustering of opinions in the presence of antagonistic 
interactions usually requires various forms of a structural 
balance of positive and negative ties [124], [127], [129], 
[134], [135]. The clustering of opinions without structural 
balance is usually guaranteed by special hierarchical 
(“extended leader-following”) structures in a graph [136], 
[137]. If a graph of social influence is time-varying, the 
absence of strong connectivity (understood in some uni-
form sense [138]) may lead to the existence of oscillatory 
solutions. At the same time, the usual DeGroot model 
is able to explain the disagreement of opinions, assuming 
the existence of several stubborn individuals that are 
closed to social influence and keep their opinions un
changed (equivalently, their self-weights are maximal 

)w 1ii =  [139]. Further development of the DeGroot model 
with stubborn individuals has naturally led to the Fried-
kin–Johnsen model (considered in the next section). Unlike 
many other models proposed in physical and engineering 
literature, the Friedkin–Johnsen model has been experi-
mentally assessed on small and medium groups [31], [32], 
[102], [140]. An essential part of these experiments is the 
empirical procedure of matrix W reconstruction (see 
“Friedkin–Johnsen Experiment”).

Friedkin–Johnsen Model
Whereas the DeGroot representation accommodates stub-
born individuals who are completely closed to social influ-
ence, the Friedkin–Johnsen model admits “partial” 
stubbornness, which is measured by a susceptibility coeffi-
cient , .0 1i !m 6 @  An agent with minimal susceptibility is the 
stubborn individual retaining his or her initial opinion (8), 
whereas the agent with maximal susceptibility assimilates 
to others’ opinions in accordance with the conventional 
DeGroot mechanism (5). In general, an individual opinion 
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at each iteration is influenced by both others’ opinions and 
agents’ initial opinions:

	 ( ) ( ) ( ) ( ) .k w k1 1 0x x xi i ij
j

n

j i i
1

m m+ = + -
=

/ � (10)

The matrix W is stochastic and has the same meaning as 
in DeGroot’s model; namely, wij  represents the influence 
weight that individual i accords to individual j. Without a 
loss of generality, it can be assumed that 0im =  for the 
agents with the maximal self-weights ,w 1ii =  as both con-
ditions imply full stubbornness in the sense of (8) (see 
“Simple Properties of the Friedkin–Johnsen Model”). As 
discussed in [31], individuals’ anchorage at their initial 
opinions can be explained by an ongoing effect of some 
exogenous factors that previously influenced a social group 
in the past. An initial opinion can also be considered an 
individual’s prejudice [36], [42], [141] that influences his or 
her opinion in subsequent steps.

Similar to DeGroot’s model, the opinions ( )kxi  may be 
scalar or multidimensional. Stacking the opinions on top 

of one another to obtain the opinion matrix ( ),kX  the 
Friedkin–Johnsen system (10) can be rewritten in matrix 
form as

	 ( ) ( ) ( ) ( ).k k1 0X WX I XnK K+ = + - � (11)

Here, ( , , )diag n1 fm mK =  represents the diagonal matrix 
composed of the susceptibility coefficients. DeGroot’s model 
arises as a special case of (11), with .InK =

Due to the presence of fully and partially stubborn 
agents, the Friedkin–Johnsen dynamics usually do not 
lead to a consensus of opinions (except for special situa-
tions where the Friedkin–Johnsen system reduces to 
DeGroot’s model). In generic situations, the opinions 
converge. The most interesting case where such a conver-
gence can be established is where the matrix WK  is 
Schur stable; that is, all its eigenvalues , , n1 fn n  belong to 
the open unit disk .1j 1n  A graph-theoretical criterion 
of Schur [15], [36], [42] is summarized in “Schur Stability 
Criteria.” If WK  is a Schur-stable matrix, then the matrix of 
opinions converges [36], [42]:

	
( ) ( ) ( ),

( ) ( ) .

lim k 0X X VX

V I W I
k

n n
1

3

K K

= =

= - -

"3

-
�

(12)

The matrix vV ij= 6 @ is row stochastic [14], [15] and is referred 
to as the control matrix, as it determines the ability of indi-
viduals to control the final opinion of others (see “Control 
Matrix and Friedkin’s Centrality”).

Dynamics of Reflected Appraisal
The concept of influence centrality (see “Control Matrix 
and Friedkin’s Centrality”) serves as a basis for dynami-
cal models describing the evolution of influence matrix 
W and is known as the dynamics of reflected appraisals. 
As argued in [75], in deliberative groups (such as stand-
ing policy bodies and committees, boards of directors, 
juries, and panels of judges), an individual’s influence cen-
trality on an issue alters his or her expectation of future group-
specific influence on issues. In other words, the influence 
matrix may evolve as a social group discusses a sequence 
of issues (see “Reflected Appraisal Model”). Notice that 
models of appraisal dynamics do not portray the evolu-
tion of opinions, and they operate with quantities that 
are hard to measure experimentally, such as centrality 
vectors. This, along with the highly nonlinear dynamics 
of centrality vectors, makes such models extremely dif-
ficult for identification. The problem of network recon-
struction from appraisal dynamics is beyond the scope 
of this survey.

Extensions of the Friedkin–Johnsen Model
The seminal Friedkin–Johnsen model can be extended 
in many directions, among which only three are considered. 

Simple Properties of the Friedkin–Johnsen 
Model

Using induction on , , ,k 0 1 f=  a number of properties of 

the Friedkin–Johnsen model can be proved, as in the 

following:

1) � Self-weight and stubbornness: An agent with maximal 

self-weight wii = 1 is stubborn, independent of the sus-

ceptibility value; that is, ( ) ( ) .x xk 0i i=  For this reason, it 

is convenient to assume that 0im =  whenever wii = 1.

2) � Consensus preservation: If initial opinions are in con-

sensus ( ) ( ) ,x x x0 0 *
n1 0f= = =  this consensus is not 

deteriorated:

  ( ) ( ) .x x xk k k*
n1 0f 6= = =

3)  �Containment property: More generally, at each stage 

of their iteration, opinions are contained by the convex 

hull of their initial values; that is, ( ) ,x Xki 0!  where

( ) : , .xX a a a0 0 1i
i

n

i i i
i

n

0
1 1

$= =
= =

' 1/ /

Whereas the containment property is very intuitive in the 

case of scalar opinions (where the set X0  is the interval 

[ ( ), ( )]),min maxx x0 0i i i i  its validity in higher dimensions is a 

nontrivial property of a social influence network, predicted 

by the Friedkin–Johnsen theory. Even for 3D opinions, it 

is difficult to visualize the convex hull X0  (being a convex 

polyhedron) without special software. Nevertheless, 

experiments concerned with rational decision making 

about resource allocation [102] illustrate that individuals’ 

multidimensional decisions typically stay in the convex 

polyhedron X0 .
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The first is concerned with the dynamics of multidi-
mensional opinions, which represent an agents’ positions 
on several logically related issue. Such an opinion may be 
considered a special case of a belief system, defined as “a 

configuration of ideas and attitudes in which the elements 
are bound together by some form of constraint or functional 
interdependence” [142]. Contradictions and other inconsis-
tencies among beliefs, attitudes, and ideas may trigger 

Schur Stability Criteria

Consider the graph of social influence [ ]WG  associated with 

the matrix W, and let { , , }S n1 f3  represent the set of in-

dividuals who are fully or partially stubborn (anchored at their 

initial opinions):

{ : } .S i 1i 1m=

As discussed in [31], an individual’s attachment to his or her 

initial opinion may be explained as a direct, ongoing effect of 

some previous experience or other external factors that previ-

ously influenced a group. The Friedkin–Johnsen model is Sch-

ur stable if and only if the opinions of the remaining individuals 

(with 1im = ) also remain influenced by these factors via paths 

of influence (that is, any node V Sl =!  is connected by a walk 

to a node from ).S

Theorem

The matrix WK  is Schur stable if and only if every node of 

[ ]WG  either belongs to S  or is connected to a node from S  by 

a walk. This holds if S 4!  and [ ]WG  is a strongly connected 

graph [36], [42].

The social group in Figure S26(a) corresponds to a Schur-

stable matrix WK  (each node with 1m =  is connected to one 

of the nodes with ) .11m  For the group in Figure S26(b), the 

matrix WK  is not Schur stable: the group of red nodes is not 

connected to the unique node with 1m = .

FIGURE S26 (a) A network corresponding to the Schur-stable 
matrix. (b) A network whose matrix is not Schur stable. 
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Control Matrix and Friedkin’s Centrality

W hen agents’ opinions converge, the final opinion of agent 

i can be represented as

( ) ( ) .x xv 0i ij
j

n

j
1

3 =
=

/

In this sense, the entry vij serves as a measure of the social 

power [104]) of individual j over individual i, that is, j’s ability to 

influence i’s terminal opinion. The average power of individual 

j over the group

c n v1
j ij

i

n

1

=
=

/

serves as a natural measure of centrality for the nodes of the 

social network. Choosing different matrices ,K  a whole fam-

ily of centrality measures is obtained for the weighted graph 

[ ];WG  it was introduced by Friedkin [62] for the case where 

InaK =  with a scalar ( , ) .0 1!a  In this situation,

( )( ) ,V WI1 1a a= - - -

and the vector of influence centralities ( , , )c c cn1 f= <  can be 

found as

( ) .c V W1 1n I1 1 1a a= = - -< < -^ h

For a specially chosen matrix [S26] W and m1a = -  [where 

( , )],m 0 1!  the latter vector coincides with the PageRank cen-

trality measure, which appeared in [62] seven years earlier than 

the seminal work by Brin and Page [58]. Relations between 

influence centrality and the PageRank are discussed in more 

detail in [15], [S27], and [S28].
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Reflected Appraisal Model

In psychology, the theory of reflected appraisal states that 

people’s perceptions are influenced by the evaluation of oth-

ers [77]. In [75], the evolution of power across a series of is-

sues over time is explained as the result of direct and indirect 

interpersonal influences on group members. More formally, the 

phenomenon is described by the following dynamical system:

	

,

( ) ( ) ( ),

diag( ) diag( ),

W I C

c I W I

c W

1
n

I I

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

s s s

s s s s

s s s

1 1 1 1

K K

K K

K

= - +

= - -

= - = -

<
<

- - - - �

(S1)

where cs  is the influence centrality vector during a discussion 

about issue s and C is a constant matrix with zero diagonal en-

tries. From a control-theoretic viewpoint, this mechanism can 

be interpreted as nonlinear feedback. The social power ( )c si  

that an individual has acquired in the discussion about issue 

s – 1 influences his or her self-weight (and thus the weights as-

signed to others) during a discussion around issue s. 

The evolution of the influence network and social power is de-

picted as a function of issue sequence, respectively (Figures S27 

and S28). It should be noted that the network topology is the same 

at each layer, as the mechanism alters only the influence weights. 

However, the influence strength changes across the issue se-

quence. This is captured by a model in which all transition ma-

trices share a common support { , , } { , , };n n1 1#f f3X  that is,

	 ( , ) , { , , } .W i j m0 1( )
ij
s

6 6, f! ! !X � (S2)

A simpler model of appraisal dynamics, which is now re-

ferred to as the DeGroot–Friedkin model [43], was proposed 

in [S29]. Unlike (S1), it is based on the DeGroot model and 

describes the evolution of social power vector p from (9) 

instead of the influence centrality vector c.

REFERENCE
[S29] P. Jia, A. MirTabatabaei, N. E. Friedkin, and F. Bullo, “Opinion dy-
namics and the evolution of social power in influence networks,” SIAM 
Rev., vol. 57, no. 3, pp. 367–397, 2015. doi: 10.1137/130913250.

FIGURE S27 Reflected appraisal model (S1): the evolution of 
nodes’ centralities.
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A Model of a Belief System’s Dynamics
djusting his or her position on an interdependent issue, an 

individual might have to simultaneously change perspec-

tives on several related issues to maintain a belief system’s con-

sistency. Such an adjustment can be thought of as an operator 

( )x xCi ii7  that preserves the vector’s dimension. Whereas the 

actual mathematical representation of introspective tension-

resolving processes is unknown, it was conjectured in [148] that 

(in some situations) the operator C i  may be linear (and repre-

sented by a matrix )C i  so that x x Ci i i7 <  (recall that, according 

to our conventions, a multidimensional opinion is represented 

by a row m-dimensional vector so that ) .C Ri
m m! #  Assum-

ing that a tension-resolving process follows the integration of 

opinions from neighbors, the Friedkin–Johnsen model (10) is 

replaced by the dynamics

	 ( ) ( ) ( ) ( ) .x x C xk w k1 1 0i j i ii ij
j

n

i
1

m m+ = + -<

=

e o/ � (S3)

It has been shown (see the supplementary material for 

[148]) that if the matrix WK  is Schur stable and all matrices 

C i  are row stochastic or (more generally) ( ),C c( )
i lm

i
=  where 

c 1m
i

lm #R
^ h  for each l and i, then the linear operator

X W

x C
x C

x Cnn

1

2

1

2
7

h
K

<

<

<J

L

K
K
K
KK

N

P

O
O
O
OO

is Schur stable. Specifically, the opinion matrix ( )X k  de-

termined by (S3) converges as .k "3  Equation (S3) be-

comes more elegant in the case of homogeneous agents 

.C C Cn1 f= = =  In this situation, (S3) may be rewritten in a 

matrix form very similar to (S4):

	 ( ) ( ) ( ) ( ).X WX C I Xk k1 0nK K+ = + -< � (S4)

The Friedkin–Johnsen model is a special case of (S4), cor-

responding to C In=  (if the issues are not logically related, it is 

natural to assume that the different dimensions of the opinion 

evolve independently). In [42], C is referred to as the multi-

issue dependency structure (MiDS) matrix. An example of the 

system (S4) with 3D opinions was considered in [148]. It was 

conjectured that a speech by Colin Powell, a highly respected 

U.S. Secretary of State, at the United Nations Security Council 

presented a logic structure through three truth statements:

1)	 Saddam Hussein had a stockpile of weapons of mass de-

struction.

2)	 Hussein’s weapons of mass destruction were real and pre-

sented dangers to the region and the world.

3)	 An invasion of Iraq would be a just war.

It was a logic structure, as a high certainty of belief in state-

ment 1 implies a high certainty of belief in statements 2 and 3. 

On the other hand, if statement 1 is false, then statements 

2 and 3 are also false. This corresponds to the MiDS matrix

.C
1
1
1

0
0
0

0
0
0

= f p
A numerical example considered in [148] shows that if a popu-

lation initially has a high certainty about statement 1, then the 

belief system dynamics across a random graph generate a 

consensus that a preemptive invasion is a just war. At the same 

time, if statement 1 is considered false, then the population’s 

certainty belief in all three statements is dramatically lowered. 

Hence, the model can explain the fluctuation of public opinion 

about the Iraq invasion.

tensions and discomfort (“cognitive dissonance”) that can 
be resolved by a within-individual process. This process, 
studied in cognitive dissonance and cognitive consis-
tency theory, is thought to be an automatic function of 
the brain, enabling humans to develop coherent systems 
of beliefs [95], [143]. Modeling the dynamics of opinions 
about interrelated issues is a challenging problem, and 
only a few models have been proposed in the literature 
(most of them feature nonlinear dynamics [144]–[146]). 
“A Model of a Belief System’s Dynamics” is devoted to a 
simple linear model proposed in [42], [147], and [148]. In 
general, the presence of logical relations among issues can 
affect the recoverability of an influence network from par-
tial observations [39].

Another extension of the Friedkin–Johnsen model 
revises the restrictive assumption about simultaneous 
communication. As stated in [31], interpersonal influences do 
not occur simultaneously, and the assumption of synchro-
nous rounds of interactions is too simplistic. In other 

words, individuals in real social groups are featured 
by asynchronous ad hoc interactions. More realistic models 
that assume that only a couple individuals can interact at 
each step were introduced in [36], [37], and [42]. Such mul-
tiagent communication protocols are known as gossiping 
[149]. The model is summarized in “Asynchronous Gossip-
Based Friedkin–Johnsen Model.” In [42], a gossip-based 
version of the extended Friedkin–Johnsen model (16) 
is considered. Another potential “culprit” of randomness 
is noise, representing the effects of individuals’ free will 
and the unpredictability of their decisions (one model with 
noise is discussed in “Dynamics of Multiplex Networks”).

INFERENCE ACROSS NETWORKS:  
MODEL-BASED APPROACH
This section provides a classification of different approach-
es for inference across networks, while subsequent sec-
tions introduce two classes of the methods. The models 
presented in the previous sections have proved to be 

A
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powerful tools for the analysis of interactions in social 
networks. However, the general structure of the network 
is typically not available. Hence, the following question 
arises: Given measurements of the evolution of opinions 
and a model of the opinion evolution, how can one esti-
mate the interaction graph and the strength of the con-
nections? With this in mind, the second part of this article 
describes recent approaches in the literature to infer 
social influences in a group of individuals whose opin-
ions on m independent issues are supposed to evolve ac-
cording to a prespecified model. This study is limited to 
the Friedkin–Johnsen model. The approaches described 
can be adapted to the DeGroot model and other represen-
tations of opinion formation.

Inference methods can be categorized according to 
available information. Two main research areas are distin-
guished. The first considers uncontrolled experiments, 
assuming that we cannot intervene with a social system 
and that only individual opinion updates can be tracked. 
This is a passive approach taken in previous work [152]. 

The latter considers controlled experiments, developing 
a social radar by exploiting the special role of stubborn 
agents. As shown in [92], stubborn agents can help expose 
network structure through a set of steady-state equations. 
This strategy generally assumes partial knowledge of the 
support of the social graph and considers an optimized 
placement of stubborn agents injecting inputs that affect 
the natural behavior of the opinion dynamics. This section 
reviews the first approach, while the reader is referred to 
[92] and [153]–[155] for inference network estimation via 
controlled experiments.

Consider two strategies to estimate interactions in a net-
work that are referred to as persistent measurement and 
sporadic measurement identification procedures. In experi-
ments of the first kind (persistent measurement), opinions 
are observed during T rounds of conversation, and the 
influence matrix is estimated as the matrix best fitting 
the dynamics for .k T0 1#  In such cases, the available 
results for parsimonious system identification can be used 
to determine the unknown parameters [83], [156]. To 

Asynchronous Gossip-Based Friedkin–Johnsen Model

T he Friedkin–Johnsen model [S30] can be extended to a 

case where interactions follow a model more consistent 

with “usual” social network interactions, during which only a 

few agents communicate at one time. In this case, the opinions 

evolve as follows [36]:

•	 Each agent Vi !  starts from an initial belief ( ) .x 0 Ri !

•	 At each period ,k Z 0! $  a subset of active nodes Vk  is 

randomly selected from a uniform distribution across ;V

•	 The opinions of inactive agents remain unchanged, where 

each active agent Vi k!  interacts with a randomly chosen 

neighbor j and updates its belief according to a rule that re-

sembles the Friedkin–Johnsen mechanism, which results 

in the equations
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(S5)

By denoting the set of neighbors of node Vi !  by 

{ : ( , ) }N V Ej i ji 0 ! !  and introducing the out-degree ,Ndi i0  

the dynamics (S5) can be formally rewritten in the following 

form: given Vk  and letting ( ) { } ,k Vi i k0i i !

	 ( ) ( ) ( ) ( ) ( ),x x B xk k k k1 0C+ = + � (S6)

where the coefficients are defined as
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and ii  is a uniformly distributed random element of N i  (that 

is, Nji i!i =  with probability / ) .d1 i  It can be shown that the 

sequence ( )kx k Z 0! $
" ,  is a Markov process [S31], which fails to 

converge in a deterministic sense and shows persistent oscil-

lations [Figure S29(a)]. 

However, if the matrix WK  is Schur stable (see “Schur Stabil-

ity Criteria”), the convergence of the expectations and the ergo-

dicity of the oscillations can be ensured. Namely, it was shown in 

[38] that the opinions’ expected values obey the equation

) ) ,x( x bk k1 (E EC+ = +r r6 6@ @

where

	
( )

( )

( ) ( ),

),

I I D I W

b I x

k 1

0(

E n n

n

n
10

0

b b

b

C K

K

C

-

= - + - --r

r

^ h6 @
�

(S7)

where V Vkb =  and D is the degree matrix of the network 

(a diagonal matrix whose diagonal entry is equal to the degree 

) .Ndi i=  Moreover, the sequence ( )x kE6 @ converges to

[ ( )] ( ) .x I bE n
13 C= - - rr

The opinion sequence has a few more interesting ergodic-

ity properties that can be exploited in estimation algorithms. 

Namely, 1) ( )x k  converges in a distribution to a random vari-

able ,x3  and the distribution is the unique invariant distribution 

for (S5); 2) the process is ergodic; 3) the limit random variable 

satisfies [ ] ( ) ;x I bE n
1C= -3

- rr  and 4) the Cesáro averages con-

verge almost surely (and in the sense of pth moment for each 

):p 1$

( ) ( ) .x xx k k 1
1 k

k
0

,=
+ "

,
3 3

=

r /
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To identify influences in a social network, the opinion cross 

correlation matrix is useful and defined as

( ) ( ) ( ) .x xk k kE[ ] ,0R +, <6 @

As shown in [150], these correlation matrices satisfy

	 ( ) ( ) [ ( )] .x bk k kE[ ] [ ]1R R C= +, , < <+ r r � (S8)

Moreover ( )k[ ]R ,  converges (as )k " 3  to the limit ( )[ ] 3R ,  for 

all ,Z 0, ! $  satisfying

	 ( ) ( ) [ ( )] .x bE[ ] [ ]1 3 3 3R R C= +, , < <+ r r � (S9)

Notice that the relation in (S9) is a sort of Yule–Walker equa-

tion [151] used for estimation in autoregressive processes.
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FIGURE S29 A gossip-based Friedkin–Johnsen model: (a) random opinions versus (b) the Cesáro averages.

exemplify how such an approach can be used in the context 
of network inference estimation, assume that opinions 
evolve according to the multidimensional Friedkin–
Johnsen model (11), which is recalled here for readability:

	 ( ) ( ) ( ) ( ) .k k1 0X WX I XnK K+ = + - � (13)

Assume that measurements of ( )kX  are available for 
, , , , .k T0 1 2 f=  This can be relaxed by assuming that a suf-

ficient number of measurement pairs, ( ( ), ( )),k k1X X+  are 
available. To simplify the development to follow, first 
rewrite this model in a standard system identification 
form as

( ) ( ) ( ),k k1 0X AX BX+ = +

with ,A W0K  ( , , , ) .b b bdiagB In n1 2 f 0 K= -  Denote by 
( ) ( )off diagA A A0 -  the matrix composed of the off-diag-

onal elements of A and having a zero diagonal. Then, given 
measurement error ,e  the problem of estimating the 

sparsest interaction graph that is compatible with the col-
lected measurements can be formulated as the following 
optimization problem:

 ( ) ( ) ( )
, , , , ,

( , , , ),

 , , ,

, , , , ,

,

min

k k

k T

b b b

b i n

b i j n

1 0
0 1 2 1

1 1 2

0 0 1 1 2

off( )

subject to

diag

for

and for

A

X AX BX

B

A

A

,

,

,

n

i j
j

n

i

i j i

0

1 2

1

A B

f

f

f

f

#

$ # #

e+ - -

= -

=

= - =

=

3

=

/

where A 0  denotes the number of nonzero entries of the 
matrix A. This optimization problem is a nonconvex com-
binatorial one, due to the presence of the zero-norm cost. To 
approximate the solution, a commonly used convex relax-
ation is to relax this norm to the 1,  norm (see “Compressed 
Sensing” for additional details):
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Dynamics of Multiplex Networks

T he Friedkin–Johnsen model can be extended to cases where 

a social network discusses several issues and the influence 

network matrix is different depending on the topic. Since the un-

derlying social network is essentially the same, it is expected that 

social systems will share some common feature. In this sense, 

Mcc  (the common component model; see Figure S30) consid-

ers cases where networks differ in few components. Instead,Mcs  

(the common support model; see Figure S31) describes situations 

where the topology is equal for all systems but the weights are 

different (see and “Multidimensional Networks”). More precisely, 

consider the following set of dynamical equations:

( ) ( ) ( ) ,x W x I uk k1( ) ( ) ( ) ( ) ( ) ( )s s s s s shK K+ = + - +

( ) ,x u0 ( )s s=

where x( )s  represent agents’ opinions about a specific subject 

s and ( ) ~ ( , )0 QNt( )sh h  is additive noise. The Markov process 

(Figure S32) exhibits persistent fluctuations due to the random 

uncertainty in the dynamical system. It can also be shown that 

the expected opinions and cross correlation matrices converge 

to a final pattern of values.

However, if the matrices W( ) ( )s sK  are Schur stable (see 

“Schur Stability Criteria”), the convergence of the expectations 

and the ergodicity of the osscillations can be ensured. The se-

quence [ ( )]x kE  converges to

[ ( )] ( ) ( ) ,l W lx uE ( ) ( ) ( ) ( ) ( )s
n

s s
n

s s13 K K= - --

and the opinions’ cross correlation matrices satisfy the follow-

ing relations (see [41]):

	 ( ) ( ) ( ) [ ( )] ( ) ,bk k x kE( )
[ ]

( )
[ ] ( ) ( ) ( )

s s
s s s1R R C= +

, , < <+ r r � (S10)

with W( ) ( ) ( )s s sC K=  and ( ) ,b I u( )
n

sK= -  and
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FIGURE S30 Model :Mcc  Influence matrices differ in few com-
ponents. (a) A common component of an adjacency matrix of 
two influence networks. (b) Sparse innovation of two influ-
ence networks.
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FIGURE S32 A sample trajectory of the evolution of believes.
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Since ( ) ,Aoff A i j i ij
n

1 10 R R !=  the latter problem can be 
decomposed into n independent ones. This is especially 
useful in very large networks. The drawback of these 
methods is that they require knowing the discrete time 
indices for the observations and storing a sufficiently long 
subsequence of opinions ( ),kx  ( ), , ( ) .k k M1 1x xf+ + -  
This knowledge may be difficult to obtain, in general, and the 
collection may involve a large amount of data. The loss of data 
from one of the agents requires restarting the experiment. 

Compressed Sensing

The optimization issues in (16) are a particular case of the 

so-called sparse recovery problem starting from com-

pressed measurements [163], a problem also known as com-

pressed sensing. More precisely, sparse recovery problems 

are of the form

s.t. ,

z

z

min 0
z Rn

}U =

!

where Rm n!U #  with m < n, and z 0  defines the 0,  quasi-

norm (which corresponds to the number of nonzero elements 

of z). Note that the linear system of equations in the preceding 

optimization problem is underdetermined and admits infinitely 

many solutions. However, a sufficient condition for determining 

a solution can be derived by exploiting the sparsity of the de-

sired solution and using the notion of the spark of a matrix [34].

SPARK OF A MATRIX

The spark of a given matrix ,U  denoted with spark( ),U  is the 

smallest number of columns from U  that are linearly dependent. 

When dealing with sparse vectors, the spark concept provides a 

complete characterization of when sparse recovery is possible. 

Interested readers can refer to [34, Theorem 1.1] for a proof.

Proposition 1

For any vector ,}  there exists at most one vector z such that 

z} U=  if and only if

spark( ) .z2 02U  

Computing the spark of a matrix involves checking the de-

pendence of combinations of columns. Testing the condition 

in Proposition 1 is computationally expensive for practical 

purposes, as it requires a combinatorial search. Moreover, 

the compressed sensing problem is known to be, in general, 

NP-hard. For this reason, 1, -based relaxations are often used 

to approximate the solution of compressed sensing problems. 

More precisely, this relaxation has the form

s.t. .

z

z

min 1
z Rn

}U =

!

Much of the theory concerning explicit performance bounds 

for the relaxation described previously relies on the concept 

of the restricted isometry property (RIP), which characterizes 

matrices that are nearly orthonormal, at least when acting on 

sparse vectors [S32].

Restricted Isometry Property

Let .Rm n!U #  Suppose there exists a constant ( , )0 1s !d  such 

that

( ) ( ) ,z z z1 1s s2
2

2
2

2
2

# #d dU- +

for all { : } .sz z zRZs
n

0! ! #=  Then, the matrix U  is said 

to satisfy the s-restricted isometry property with restricted 

isometry constant .Sd  Denote with SU  the matrix with col-

umns indexed by [ ] .S n3  It can be shown (see [S32]) that, 

if a given matrix satisfies the RIP of order 2s with a constant 

( , / ( )),0 1 2 1s2 !d +  then one can uniquely recover an s-

sparse vector using the 1,  relaxation described previously. It is 

straightforward to see that

( ) ( ) ( ) ( ),1 1min maxs S S S S s# # #d n n dU U U U- +<<

where minn  and maxn  denote the smallest and largest eigen-

value. Consequently, it must hold that

( )
( )

,1 2
min

max

S S

S S
. #

n

n

U U
U U

<

<

for all [ ]S n3  with | | .S s#  It is well known [S32] that sub-

Gaussian random matrices with independent identically dis-

tributed entries satisfy the RIP of order 2s with constant s2d  

(with a probability close to one) if

,logm cs
s

n
s s2

2
2

$
d d

` j

where c > 0 is a positive constant. Note that in the classical 

framework of compressed sensing, the sensing matrix is gen-

erally chosen by the user and is independent of the signal to 

be recovered.
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Moreover, the system could be updated at an unknown interac-
tion rate, and the interaction timing among agents can be unob-
servable, in practice [157], [158]. These considerations make 
the persistent measurement approach inapplicable in many 
practical situations, as discussed in [92]. To circumvent these 
issues, this article describes two approaches that fall in the 
second class of methods; that is, they use only sporadic data, 
and therefore a complete history of agents’ opinions is not 
required, and the interactions are not limited to any prescribed 

number of rounds. In the first one, similar to the experiments 
from [92], agents interact until their opinions stabilize, and 
the identification problem considers only the initial and final 
opinions. In the second, it is assumed only that one has access 
to random measurements of agents’ opinions, and statistics 
of the measurement process are used to estimate the struc-
ture of the social network that generated the measurements. 
Figure 3 and Table 2 summarize the main differences and 
requirements of the reviewed methods.

MODEL ASSUMPTIONS EXPERIMENTS

GRAPH ASSUMPTIONS

LEARNING METHODS

SAMPLING

• Model-Free Learning • Controlled Experiments • Frequency of Samples

• Nature of Sampling

• G-Lasso
• Gradient Methods
• Sparse Recovery Methods
 (L-1 Minimization)
• Low-Rank Minimization
• Bayesian Methods
• Log Likelihood Maximization

• Uncontrolled Experiments

• Adjacency/Laplacian Matrix

• Model-Based Learning
 (Control Systems)

1) Statistical Models
 (Computer Science
 Community)

1) Full Observations
2) Intermittent
 Measurements
3) Observation of a Subset
 of Opinions
4) Observation of Initial and
 Steady States (Need
 Stable Dynamics)

1) Deterministic Sampling
2) Random Sampling

1) Linear/Affine Dynamics
2) Non Linear Dynamics

1) Sparse/Group-Sparse

“Inject External Input and
Observe the Response”

“Just Observe the Response”

2) Low Rank

2) Graph Signal Processing
 (Signal Processing)

FIGURE 3 Learning graphs from data: main features.

Model Assumptions Graph Assumptions Experiments Sampling

Abir et al. [159] DeGroot Sparse networks Passive Full observations

Wang et al. [160] DeGroot Sparse models Passive Full observations

Wai et al. [92] DeGroot Sparse models Controlled Infinite horizon

Wai et al. [153] DeGroot Sparse/low-rank models Controlled Infinite horizon

Wai et al. [154] DeGroot Low-rank models Controlled Infinite horizon

Wai et al. [155] Nonlinear dynamics Sparse Controlled Infinite horizon

Ravazzi et al. [39] Friedkin–Johnsen dynamics Sparse models Passive Infinite horizon

Ravazzi et al. [40], [150] Friedkin–Johnsen dynamics Sparse models Passive Random intermittent 
measurements

Coluccia et al. [41] Friedkin–Johnsen dynamics Distributed sparse models Passive Random intermittent 
measurements

Anderson et al. [43] Friedkin–Johnsen dynamics Sparse models Passive Finite/infinite horizon

TABLE 2  A comparison of selected model-based learning methods.
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THE INFLUENCE ESTIMATION PROBLEM: 
INFINITE HORIZON APPROACH
As the first approach to the problem of estimating the struc-
ture of a social network from infrequent data, consider the 
Friedkin–Johnsen model in (13) and assume there is knowledge 
of n prejudices ( )0X  and final opinions ( ) ( ) .lim kX X

k
3 =

"3
 

The goal is to estimate W from these data only, under the 
assumption of network sparsity. To this end, some model 
identifiability considerations must be made. This is accom-
plished in the next section.

Model Identifiability
First, note that due to the consensus preservation property 
discussed in “Simple Properties of the Friedkin–Johnsen 
Model,” whenever initial opinions are at a consensus, final 
opinions are also in agreement. In this case, the problem is 
not well posed since any stochastic matrix W will be con-
sistent with the data. Motivated by this consideration, 
assume that for all , , ,m1 f, =  there exists V,i j !  such 
that ( ) ( ) .x x0 0( ) ( )

i j!
, ,  Similarly, when all agents are com-

pletely susceptible (that is, ),InK =  the Friedkin–Johnsen 
model reduces to DeGroot’s representation, typically lead-
ing to a consensus of opinions. Clearly, the problem is not 
well posed in this case since there are infinitely many 
matrices leading the dynamics in (13) to the same value of 
consensus. This fact is illustrated in the following example, 
borrowed from [39].

Example 1
Let ,InK =  and let W Rn n! #  be any doubly stochastic 
matrix that is irreducible (the graph G W6 @ is strongly con-
nected) and aperiodic. Then, the Perron–Frobenius theo-
rem [161] guarantees that

11
( )

( )
.n

0
X

X
3 =

<

Similarly, if ,0K =  then ( ) (0),X X3 =  and all stochastic 
matrices W are consistent with the data.

Note that an agent i with susceptibility 0im =  is to
tally stubborn; that is, it is not influenced by any other 
agent. Hence, to avoid ambiguities, the remainder of this 
article assumes that 0i !m  for all V,i !  ,In!K  and that 
for any node Vi !  there exists a path from i to a node j 
such that 1j 1m  (each agent is influenced by at least one 
partially stubborn agent). With these assumptions, for 
any initial profile, the opinion dynamics lead asymp-
totically to an equilibrium point that can be computed 
from weights, obstinacy levels, and initial opinions. It 
follows that recovering W amounts to solving the system 
of equations

	 1 1
( ) ( ) ( ) ( ),

,
, .

0

0 0

I W x I x
W
W

( ) ( )
n n3

$ $

K K

K

- = -

=

, ,

* � (14)

However, as shown in [39], this system contains an im
plicit ambiguity: if ( , )WK  is a solution of (14), then it is pos-
sible to construct a different solution pair ( , )WKl  as

1 1 1

( ),
( ) ( ),
( ) ( )(( ) ),

off off
diag off

I D I

W D W

W WD I

n n

n

K K

K K

K K K

= - -

=

= - - +

l

l l

l l

for any nonnegative diagonal matrix D with , .0 1D ii !6 6@ @  
The ambiguity, which was noted in [92] in the setting of 
DeGroot models with stubborn agents, arises because 
information about the rate of social interactions is missing 
(and it cannot be removed without making the additional 
assumption that the susceptibilities K  are known). For 

,m n$  if the system in (14) is full rank, then the problem in 
(14) admits a unique solution and may be easily solved (for 
example, using linear programming and any solver for 
convex optimization [162]). Following these considerations, 
assume that K  is known, and focus on the more interest-
ing case when .m n%  Note that if the matrix K  is part of 
the learning, an invariant quantity must be defined among 
the ambiguous solutions [for instance, by defining equiva-
lence classes and resolving the ambiguity by imposing 
constraints on diag( )] .W  

Sparse Identification Problem
Motivated by the discussion in the previous section, the 
identification approach is based on the observation that a 
social network is typically sparse, in the sense that inter-
actions among agents are few when compared to the 
network dimension. For a given ,K  ( )0X  and ( ),X 3  this 
leads to estimating social influence networks by solving 
a sparsity problem. Formally, determining the sparsest 
network that is compatible with the available informa-
tion can be expressed as the following 0,  minimization 
problem [163]:

	 1 1, .
,

,
,min

0
s.tW

W
W
W

0
W Rn n

$

U W=

=

<<

! #
* � (15)

where W 0  is the number of nonzeros of the matrix W, 
( ) ,X 30U <  and  ( ) ( ) ( ) .0X I Xn

1 30W K K- -- 6 @  This prob-
lem is decomposable into n subproblems since each row of 

, ,W w wn1 f= < <<6 @  can be independently learned from the 
others. More precisely,

	 1, . .
,

 
,

,min w s t
0

1
w

w
w

j j

j
w

j j0Rj
n

$

}U =

=<

!
* � (16)

where j}  is the jth row of W  for every [ ].j n!

As discussed in “Schur Stability Criteria,” the reachabil-
ity of each node from a partially stubborn node is an 
assumption that the true network must satisfy to guarantee 
the stability of the affine dynamics in (13) and the existence 
of the final opinion profile. This property is automatically 
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ensured if .I1K  If 1i 1m  for at least one i, the stability 
property is generic: the set of matrices W such that WK  has 
an eigenvalue at one has zero Lebesgue measure. In prac-
tice (taking into account inaccuracies in the opinion mea-
surement), it is impossible to satisfy the first constraint in 
(14) unless the matrix ( )I WK-  is invertible. However, as 
should be noticed in the optimization problem (16), this 
constraint is not imposed in the recovery problem.

Recovery via Convex Optimization
The convex relaxation of (16) (where the constraint 0w j $  
is removed)

	
1

,
 ,min 1s.t.w

w
w

j j
j

j
1w Rj

n

}U =

=<
!

, ) � (17)

can be formulated as a linear program and has been exten-
sively studied (see “Compressed Sensing”). A large number 
of algorithms has been proposed to solve it efficiently, espe-
cially for the case where the dimension of the vector to be 
sparsified is high [34]. It is well known that under certain 
conditions on the matrix ,U  the number of measurements 
m, and the sparsity of ,w j  (16) and (17) have the same unique 
solution [163]. However, in the case of influence estimation 
in the social dynamical networks (SDNs) considered in this 
article and (contrary to other problems in compressed sens-
ing) the sensing matrix U  cannot be designed to satisfy the 
recovery properties mentioned in the preceding because it 
depends on the model’s parameters:

	 .<( ) ( ) ( ) ( )0X X I I Wn n
13U K K= = - -< < -

Where the initial opinions are independent identically dis-
tributed Gaussian random variables and the agents are all 
“very stubborn” (K  has small diagonal entries), one could 
(in principle) consider ( ) ,0X.U <  which would satisfy 
the restricted isometry (RIP) recovery condition with high 
probability. However, this is a very special case that does 
not cover most of the SDN recovery problems of interest. If 
K  is not close to zero, then U  is a random variable whose 
entries are coupled, and available results through com-
pressed sensing do not apply. The remainder of this section 
reviews the results in [39], where recovery conditions specific to 
SDNs are derived. Assume that the initial opinions ( )0x( ),  on 
topic ,  are independent identically distributed random vari-
ables having a Gaussian distribution with zero mean and 
unit variance. The hypothesis about the Gaussian distribu-
tion of the initial condition is a common assumption in opin-
ion dynamics literature [164]. It can also be explained by 
the fact that initial opinions can be preaveraged or several 
criteria that can be treated as independent random variables. 
Therefore, the distribution of initial opinions has a Gaussian-
like shape due to the central limit theorem [165].

Moreover, the assumption about the zero mean and 
identity covariance matrix is not a restrictive one. Given 
any Gaussian distribution of the initial opinions, one can 

always perform a linear transformation and obtain an 
equivalent problem that satisfies the assumptions. If 

( )x 0( ),  have a nonzero expected value, then consider 
1( ) ( )x x0 0( ) ( )-, ,r  and 1( ) ( ( ) ( ) ),z x x0 0V( ) ( ) ( )3 = -, , ,r  where V 

is the total effects matrix. Since the total effects matrix is 
stochastic, then 1( ) ( ) ( ) .z x x 0( ) ( ) ( )3 3= -, , ,r  Note that for the 
SDN influence estimation problem formulated in this sec-
tion, the probability of violating the RIP condition can be 
very close to one (even for very simple graphs). More pre-
cisely, in [39] it is proved that for Gaussian initial conditions 

N( ) ~ ( , )x I0 0,  for all [ ]m, !  and for an arbitrary set [ ]S n3  
of size | | ,S s=  for the defined / ,mSS S SR U U= <t  with a prob-
ability greater than ,e1 2 /m 32- -  we have
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1

min
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n

n
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n

R

R
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t

where .( ) ( ) ( )I I IW W1 2R K K= - - - <-  For this reason, more 
powerful tools are required for the performance analy-
sis of the problem. More precisely, the so-called null space 
property [163] is needed, which provides a necessary 
and sufficient condition for recovery. This property is 
summarized in “Necessary and Sufficient Conditions 
for Recovery.”

These necessary and sufficient conditions on sparse 
recovery enable one to study when it is possible to recover 
sparse models for an SDN. It is shown in [39] that the initial 
condition N( )~ ( , ),0 0x I( )

n
,  and if the number of considered 

topics satisfies

	
( )

( ) ( )
,logm c d n4

1
1 1

max

max min
max4

2 2

$
m

m m

-

+ -
� (18)

then the solution to (17) is unique and coincides with that of 
(16) with a probability of at least ,c1 e c m- -l m  where ,c cl and cm  
are positive constants, N| ( )|,maxd vVmax v= ! ,maxmax j jm m=  
and .minmin j jm m=  Equation (18) shows that to recover a 
sparse influence model, the sensitivity to other opinions 
cannot be high. More precisely, if ,1max "m  then the number 
of measurements needed for recovery diverges to infinity. 
This is reasonable since the final opinions are a function of 
preconceived ones, and network sensing performance should 
depend on the strength of the influencing power of prejudices.

Moreover (as conjectured in [92]), another important issue 
that affects reconstruction performance is the degree distri-
bution in a social network. More precisely, for a fixed total 
number of edges, it is easier to recover a network with a con-
centrated degree distribution (for example, a Watts–Strogatz 
network [166]), while a network with a power law degree dis-
tribution (for example, a Barabasi–Albert network [167]) is 
more difficult to recover. To finalize the discussion in this 
section, recall that if K  is not known, then the identification 
problem is not well posed. The ambiguity is due to missing 
information about the rate of social interactions. It cannot 
be removed without making additional assumptions. 
However, an invariant quantity can be determined among 
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Necessary and Sufficient Conditions for Recovery

The concept of the null space property (NSP) [163] is 

needed to derive more general conditions for sparse 

recovery.

NULL SPACE PROPERTY

The matrix Rm n!U #  satisfies the NSP of order s if given

( )

) : | | ,

Ker( ) { },C

C( s

0

Rn
S 1 1

c

+,

, ! #h h h

U

=

=

" ,

for all index sets S with | | ,S s#  where Ker denotes the kernel 

of a matrix. Using this definition, Theorem 1 in [163] provides 

additional results for when one can recover sparse solutions 

from systems of linear equations. More precisely, consider ma-

trix .Rm n!U #  Then, the optimization problem

:z zmin 1 }U =" ,

uniquely recovers all s-sparse vectors z)  from measurements

z*} U=

if and only if U  satisfies the NSP with order 2s. To further ana-

lyze when can sparse solutions can be recovered, introduce 

the concept of restricted eigenvalue criterion (REC).

Definition 1: Restricted Eigenvalue Criterion

A matrix U  satisfies the REC of order s if there exists a 0s 2d  

such that

z zm
1

s2
2 2

2
2

$ dU

for all ( )z C ,!  uniformly for all index sets [ ]S n3  with | | .S s#  

It is straightforward to see that the REC is equivalent to the 

NSP. For random matrices U  with independent identically dis-

tributed entries drawn from particular distributions and for uni-

tary matrices, it can be shown that, if enough measurements 

are available, then the REC condition is satisfied with the pre-

scribed sd , with a probability close to one [S33].

REFERENCE
[S33] E. J. Candes and T. Tao, “Decoding by linear programming,” 
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10.1109/TIT.2005.858979.

the ambiguous solutions by defining equivalence classes 
and resolving the ambiguity by imposing constraints 
on ( ) .diag W  More precisely, in [39], it is shown that the prob-
lem of learning sensitivity matrix K  can be cast as in 
(17), with [ ( ) , ( ) ( )]0X x xj j3 30U -<  and ( ),0B X=  where 

( ), ( )0x xj j3  are the column vectors corresponding to jth row 
of ( )X 3  and ( ),0X  respectively, with the additional con-
straint that .w 0jj =

INFLUENCE ESTIMATION FROM RANDOM  
OPINION MEASUREMENTS
While the infinite horizon approach is surely innovative in 
various aspects, it suffers the clear drawback of being static. 
Indeed, the identification does not exploit the dynamical 
nature of the system, and it requires knowledge of initial 
and final opinions about several topics to build the neces-
sary information to render the problem identifiable. Even if 
the number of topics that is necessary to correctly identify 
a network is strictly smaller than the size of the graph (and, 
in many cases, scales logarithmically with it), this informa-
tion may sometimes be hard to collect. This section reviews 
an alternative approach to the social network estimation 
problem that exploits the dynamical evolution of opinions. 
At the same time, the technique does not require observa-
tions of opinions about different topics or perfect knowledge 
of interaction times, and it can be adapted to cases when 
some information is missing or partial.

More precisely, the availability of “intermittent” measure-
ments of opinions is assumed to identify the dynamics of the 
evolution of opinions and, as a consequence, the influence 

matrix [151], [168]. Such an approach is especially useful in the 
case where not all opinions are updated at the same time and 
where a random sampling of opinions might be a less oner-
ous way of estimating the behavior of the network. Hence, 
this section focuses on the asynchronous gossip-based Fried-
kin–Johnsen model and assumes that random measurements 
of opinions are available. For simplicity (as in [150]), consider 
a case when a single topic is discussed. However, the reason-
ing can be easily extended to cases involving multiple topics.

Observation Models
Consider the gossip opinion dynamics in (S5), where the 
influence matrix W is unknown. Assume that each time k 
does not have complete knowledge of the opinion vector 

( );kx  only partial information is available. More precisely, 
assume the following random model for the observations:

	 ( ) ( ) ( ),k k kz P x= � (19)

where the diagonal matrix ( )kP  is a random measurement 
matrix defined by

	 ( ) ( ( )),k kdiagP p=

and ( ) { , }k 0 1p n!  is a random selection vector with a known 
distribution representing which opinions are measured at 
time k.

Various probability distributions of the matrix ( )kP  lead 
to very different observation models. For example, if

1
( )k 0

w.p.
otherwise,p

t
= '
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then the so-called intermittent observation model is 
present, where at ,k Z 0! $  all observations are available 
with probabil ity t  or where no observations are 
observed. This model facilitates capturing a typical 
situation in which the actual rates at which interactions 
occur are not perfectly known (thus, the sampling time 
is different from the interaction time). Moreover, if at 
each time k Z 0! $  the selection vector is ( )~ ( )p k Beri it  
for all V,i !  then the so-called independent random 
sampling model [151], [168] is present, where opinions 
are independent ly observed with a probabi l it y of 

[ , ] .0 1i !t  In a case where observations are made with 
an equal probability of it t=  for all V,i !  this model is 
referred to as independent and homogeneous sampling. If 

,1t =  then there are full observations; if ,1!t  there is 
partial information.

This model has a clear interpretation for SDNs, describ-
ing a situation where only a subset of individuals can be 
contacted at each time k (for example, random interviews). 
This section reviews the approach described in [150], where 
the objective is as follows. Given the sequence of observa-
tion { ( )} ,kz k

t
1=  the estimate of the matrix W is referred to as 

.WtZ  In [150], theoretical conditions are also provided for 
the number of samples that is sufficient to have an error not 
larger than a fixed tolerance e  with high probability. For 
the clarity of exposition, these theoretical results are not 
reviewed here.

Overview of the Proposed Approach  
to Influence Estimation
The main stream of the methodology is summarized in 
Figure 4. To reconstruct the influence matrix, recall the 
definition of opinions’ cross correlation matrix:

	 :( ) ( ) ( ) .k k kx xE[ ] ,R = + <, 6 @

It has been shown that the evolution of the covariance 
matrix ( )k[ ]R ,  is described by

	 ( ) ( ) [ ( )] ,bk k kxE[ ] [ ]1R R C= +< <, ,+ r r � (20)

where ( , )WC C K=r r  and ( , ( ))b b 0xK=r r  are defined in (S7). 
Moreover, ( )k[ ]R ,  converges to ( )[ ] 3R ,  for all nonnegative 
integers ,  that satisfy

	 ( ) ( ) [ ( )] ,bxE[ ] [ ]1 3 3 3R R C= +< <, ,+ r r � (21)

where ( ) ( ) .lim k[ ] [ ]
k3R R= "3

, ,:  The preceding simple linear 
equation provides the motivation for the approach 
described in this section, which can be summarized as fol-
lows. First, from the partial random measurements 
{ ( )} ,kz k

t
1=  estimate the expected terminal state [ ( )]xE 3  and 

the terminal covariance matrices ( )[ ]0 3R  through ( )[ ] 3R ,  
for some .,  Given these estimates and using (21), estimate 
the matrix .Cr  Finally, estimate the influence matrix W by 
exploiting the relation between Cr  and W.

Estimating the Expected Opinion Profile  
and Cross Correlation Matrices
It is now shown how to exploit the model of observations 
and collected data to estimate an opinion’s expectation 
covariance. To estimate the expected opinion profile 

[ ( )],xE 3  start with time averages of the observations ( ) .kz  
It can be shown that

	 [ ( )] [ ( )],k kz xE E%r=

where [ ( )]kpEr =  and % denotes the entrywise product. 
This facilitates estimating the expectation of the opinions 
from available data. More precisely, begin by estimating 

[ ( )]kzE  using time averages

	 ( ) ( ),t t k1z z
k

t

1
=

=

r /

Sampling Opinion
Dynamics

Cross Correlation
Estimation From
Partial Samples

Transition Matrix
Estimation

Influence
Network
Estimation

FIGURE 4 The main stream of the methodology.

“Weak” ties facilitate the exchange of information among closed 

communities, enabling the mobility of labor and integration of individuals  

into political movements.

Authorized licensed use limited to: Penn State University. Downloaded on October 04,2022 at 14:37:18 UTC from IEEE Xplore.  Restrictions apply. 



OCTOBER 2021 «  IEEE CONTROL SYSTEMS  97

and obtain

	 ( )
( )

.x t
z t

i
i

i

r
=t

r
� (22)

Estimating covariance matrices can be done in a similar 
way. The cross correlation matrices ( )[ ] 3R ,  are estimated 
from the empirical covariance matrix of the observations 

( ) .kz  Denote

	 :( ) [ ( ) ( ) ] .k k kS z zE[ ] ,= + <,

Then,

	 ( ) ( ) ( ),k k kS[ ] [ ] [ ]%P R=, , ,

where [ ( ) ( ) ]k kp pE[ ] ,P = + <,  and %  indicates the Had-
amard product. Since ( )kS[ ],  is unknown, estimate ( )kS[ ],  
using time averages

	 ( ) ( ) ( ) ,t t k k1S z z[ ]

k

t

1,
,=

-
+ <,

,

=

-
t /

from which

	 ( ) ( )/ .t tS[ ] [ ] [ ]
ij ij ijR P=
, , ,t t � (23)

Although these seem rather ad hoc estimates of the 
needed quantities, it can be shown that they converge to the 
desired values as the number of measurements tends to 
infinity. More precisely, in [150], a careful analysis of the 
procedures developed in the preceding shows that the esti-
mates converge to the true values at a rate of ( / ),O t1  
where t is the number of measurements. As an example of 
the estimation procedure, consider first the case of indepen-
dent homogeneous random sampling. In it, ,r t=

11

11

V

V V( , ) ,
( , ) ( ),i j

i j 0if 
I I

P

P[ ]

[ ]

k n n

k k

0

2

2

, !! !

!

t

t tP

P

=

= =

= + -
,

,
<

<

+

from which ( ) ( )/ ,x t z t t=t r  and

	 ( ) ( ) ( ) ( ) .t t t1 1
1 0ISS[ ] [ ] [ ]

ij n2 2 % ,
t t

t
R = -

-
=

, , ,t t tc m � (24)

As a second example, consider the case of intermittent obser-
vations. Here, ,r t=

	 11 11 ,0and if [ ] [ ]0 2 , !t tP P= =< <,

from which ( ) ( )/t tx z t=t r  and ( ) ( )/ .t tS[ ] [ ]
ij

2tR = ,, t

Estimating the Influence Matrix
In principle, the estimators ( )t[ ]1Rt  and ( )t[ ]0Rt  of ( )t[ ]1R  and 

( ),t[ ]0R  together with (21), can be used to estimate the 
dynamics matrix .Cr  However, there is a significant obstacle 
to address when using such a “naive” approach. Given the 
fact that one has random observations, it is likely that the 
procedure described previously produces “poor” estimates 
of ( )t[ ]1R  since, for several k, many of the entries of 

( ) ( )k kz z ,+ <  might be zero. To circumvent this, start by 
choosing a number NR  of covariance matrices to be consid-
ered in the estimation of dynamics, and use a combination 
of these covariance matrices. More precisely, given esti-
mates ( ),t[ ]R ,t  compute

	 ( ) ( ), ( ) ( ),t N t t N t1 1[ ] [ ]
N N

0

1

1
0 0R R R R

, ,

, ,

R R
-

=

-

+

=

R R

t t t t// � (25)

and note that these matrices (approximately) satisfy (21). 
Hence, they can be used to estimate the structure of a net-
work. Consider two types of networks. First, assume that one 
knows in advance that a network is dense. In this case, a pos-
sible estimator of Cr  can be obtained by directly solving the set 
of linear equations (21). In other words, the estimator is

	 ( ) ( ) ( ( ) ( ) ) .bt t t txC R R= -@ <<
- +

rt t t r r � (26)

In the case of networks that are known to be sparse, one can 
solve a sparsity-inducing optimization problem aimed at 
finding the sparsest graph that is compatible with the avail-
able information. The estimator can be obtained by solving

	
( )

( ) ( ( ) ( ) )] .

,argmin

b

t

t t ts.t.

M

M x
, ,

max

ij
i j i jM RV V

# h

C

R R

=

- - <

<

!!

- +

#

rt

t t r r

/

Estimating the Network Topology and Influence Matrix
Once an estimate of the average transition matrix ( )tCr  has 
been obtained, the topology of the influence network can be 
retrieved in a straightforward manner by noticing that 

( ) ( ) .supp supp WC =r  Hence, we can reconstruct the support 
of W using the elements of the estimated matrix Crt  that are 
significantly larger than zero. The estimation of the intensity 
of the influence can be done by exploiting previously devel-
oped results. More precisely, the following equality holds:

	 ( ) ( ) ( ) ,t t 1W I I DD n n
1 1b bK C K= - - - -- -t t r t^ h6 @

The problem of parameter identification appears to be nontrivial  

and is closely related to compressed sensing and other rapidly  

growing branches of signal processing theory.
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where Dt  represents an estimate of the degree matrix D 
obtained from the reconstructed support. That is, Dt  is the 
diagonal matrix with elements

	 ( )suppD ,i i i 0c= ,t

with ic
<  being the ith row of matrix .Crt

Influence Estimation in Multiplex Networks
For the model described in “Dynamics of Multiplex Net-
works,” one can estimate the cross correlation matrices and 
then use relations (S10) and (S11) for each dynamical system, 
replacing the theoretical covariances ( )t[ ]

( )sR ,  with esti-
mated value ( )t[ ]

( )sR ,
t  (see the methodology summarized 

in Figure 4). Leveraging the estimation of autoregressive 
processes [151] and on the ergodicity of dynamical systems, 
it can be shown that with a probability of at least ,1 d-

	 ( )
( )

( ,|| ||)
t

t
C n

1
W W

Q( ) ( )

max

s s
F 4#

v t
-

-

h ,t

where ( , || ||)C n Qh  is a constant independent of t (see 
“Performance of Influence Estimation: Asychronous Gos-
sip-Based Friedkin–Johnsen Model). This bound can 
be improved by imposing new constraints in the recovery 
by exploiting correlations among different dynamical sys-
tems (see models M cc  and Mcs  in “Dynamics of Multiplex  
Networks”). If the correlations are not known among in
fluence matrices, the idea proposed in [41] is to leverage 
global properties of the local processes to correct the 
local estimates of ( ) .S[ ]

( )s
0 3  Moreover, the reconstruction 

performance suffers when the sample size is not large, as 
the quantity of observed data must be larger than the 
number of unknowns to have a full-rank estimation of 

( ) .[ ]
( )s
0 3Rt  The Bayesian approach is a powerful estimation 

framework since it combines prior probabilistic information 
(parametrized by some unknown hyperparameters) and 
gathered observations (see “Bayesian Estimation of ( )) .S[ ]

( )s
0 3  

In [41], the performance of the proposed estimators is 
tested within Mcc  and M .cs  Simulations show that the 
approach based on the Bayesian method achieves better 
performance in the estimation. For both considered 
models, the variance of the reconstruction error is much 
lower for the proposed approach compared to the conven-
tional ML estimator. It is worth remarking that the recov-
ery of the transition matrices depends significantly on the 
conditioning of the estimated covariance matrices. 
Although the matrices are invertible, the reconstruction 
performance suffers when the sample size is not large. In 
this sense, the Bayesian method acts as a regularizer of 

Bayesian Estimation of ( )S[0]
( )s

3

In the absence of additional information about a model, the 

selection of the prior distribution is quite delicate. A com-

monly used approach is to consider the conjugate prior of 

the multivariate normal distribution. More precisely, consid-

er the inverse Wishart with matrix W  and n 12o +  degrees 

or, equivalently,

( ) ( ) ( ),1S S S[ ]
( ) ( ) ( )

 SCM
( )s s s s

0 3 3c c= + -t r t

where the following are true:

•	 ( )S  SCM
( )s

3t  is the sample covariance matrix.

•	 ( )n 1S oW= - +r  is the prior mean/mode.

•	 ( ) ( ) ( , )n T n1 1 0 1( ) ( )s s !c o o= - + + - +  is a term bal-

ancing the two contributions according to the sample 

size T( )s  and the informative level of the prior (degrees 

of freedom o ).

The inverse Wishart parameter estimations are obtained 

via alternating minimization:

( , )
( ( ) )

( )
.

Z Z
argmin log

det

det T n
2

, ( ) ( )

( )

n s

m

nT T s s

n

s

0 1 1 2 2

2

( ) ( )s so
r

o

W

W C
W = -

+

+ +

<2 2o
o

o

W + =
+

t t
c m

/

We refer the reader to [41] for details.

The most challenging problem at the frontier of computer science,  

social sciences, and systems theory is to extract the structure of  

an online social network from big data.

Performance of Influence Estimation: 
Asynchronous Gossip-Based  
Friedkin–Johnsen Model

The estimation error on matrix ( )tCr  is based on the pre-

vious estimation of the cross correlation matrices. Us-

ing (26), R+
t  must be inverted, and the estimation error de-

pends on the singular values of .R!
t  It can be shown that, 

with a probability of at least ,1 d-

( ) ( ) ( )
( )

,t t O
t

n n
1 1min max

max

2 2v d b m

v

P
C C- =

+ -

+
)-

+

r rt e^ ^ oh h � (S12)

where max 2v R=+
+  and ( , )minmin min min0v v v- - -t  (where minv-  

and minv-t  are the minimum singular value of R-  and ,R-
t  re-

spectively). We refer the reader to [150] for details.
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the covariance estimation in an adaptive fashion, that is, 
with automatic selection of the regularization parameter. 
By putting a prior distribution on the covariance matrix, the 
reconstruction formula will be a combination of a sample 
statistic (computed from the observed data) and a function 
of the hyperparameters (prior information). The latter can 
indeed help in the case of scarce data, while its effect van-
ishes asymptotically as posterior estimates converge to the 
ML counterparts for large samples (the Bernstein–von 
Mises theorem), thus converging to the classical sample 
covariance matrix. This is a “natural-weighting” mecha-
nism, which automatically regulates (through the parame-
ters )( )sc  the relative importance of the prior model and data 
according to the sample size, automatically switching to a 
noninformative prior (retrieved for limit values of the 
hyperparameters) if, conversely, the sample size is large.

CONCLUDING REMARKS
Although the phenomenon of social influence has long been 
studied in social and behavioral sciences, mathematical char-
acterization of influence among individuals is not a trivial 
task. How to understand which connections between people 
are most essential and who are the genuine leaders of a group 
is a difficult problem. Granovetter [51], [169] proposed the 
theory of “strong” and “weak” ties connecting close friends 
and acquaintances, respectively. Strong ties build densely 
connected subgraphs (communities) in a network, whereas 
weak ones build bridges among densely knit communities. 
This principle led to a number of mathematical characteris-
tics [46] measuring influence between two individuals as a 
function of their positions in a network. At the same time, 
Granovetter argued that some “weak” ties not only have a 
strong impact on an individual but are actually vital for an indi-
vidual’s integration into modern society [169]. “Weak” ties facili-
tate the exchange of information among closed communities, 
enabling the mobility of labor and integration of individuals 
into political movements. Hence, “static” characteristics con-
sidering only links among individuals and ignoring specific 
features of their interactions can be misleading.

Alternative methods are needed that consider a social 
network as a dynamical system. This survey focused on 
two novel directions of research concerned with dynamical 
networks of social influence. The statistical approach 
adopted in machine learning considers a social network a 
probabilistic graphical model treating social influence as a 
measure of statistical correlation among data produced by 
individuals (for example, information about events they 
attend and goods they consume). The approach in social 

influence network theory [32] considers social influence as 
a process that alters opinions of individuals; to find the 
parameters of these models, methods of identification 
theory should be used. Even for a parsimonious opinion 
formation model, proposed by Friedkin and Johnson, the 
problem of parameter identification appears to be nontriv-
ial and is closely related to compressed sensing and other 
rapidly growing branches of signal processing theory.

Many problems related to the recovery of influence net-
works’ structure remain beyond the scope of this survey and are 
still waiting for solutions. Identification problems become quite 
challenging when a dynamical model nonlinearly depends on 
unknown parameters as, for example, the bounded confidence 
models surveyed in [16]. Along with continuous (real-valued) 
measurements, models can address discrete (finite-valued) data 
as, for example, cellular automata considered in physical litera-
ture [13] and continuous-opinion–discrete-action models [170]. 
Even more complicated for analysis is the case of temporal social 
networks, where both nodes and arcs can emerge and disap-
pear. Such models are vital to understanding online social net-
work dynamics, where individuals can easily create and delete 
user profiles. Systems theory lacks tools to address such tempo-
ral models, and a promising framework of open multiagent sys-
tems was recently proposed in [171] and [172].

The most challenging problem at the frontier of com-
puter science, social sciences, and systems theory is to 
extract the structure of an online social network from big 
data produced by users. Unlike simplified mathematical 
models, people do not broadcast numbers; they communi-
cate via web forums, microblogs, mobile apps, and other 
social media. Numbers must be extracted from textual and 
multimedia information, which requires advanced tools 
for video and language processing, big data analytics, and 
efficient numerical methods that are able to address large-
scale dynamical systems. We hope this survey will help to 
recruit young, talented researchers to the vibrant and fasci-
nating area of dynamical SNA.
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