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Abstract

We study the faithfulness of an explanation sys-
tem to the underlying prediction model. We show
that this can be captured by two properties, consis-
tency and sufficiency, and introduce quantitative
measures of the extent to which these hold. Inter-
estingly, these measures depend on the test-time
data distribution. For a variety of existing expla-
nation systems, such as anchors, we analytically
study these quantities. We also provide estimators
and sample complexity bounds for empirically de-
termining the faithfulness of black-box explana-
tion systems. Finally, we experimentally validate
the new properties and estimators.

1. Introduction

Machine learning is an integral part of many human-facing
computer systems and is increasingly a key component of
decisions that have profound effects on people’s lives. There
are many dangers that come with this. For instance, statisti-
cal models can easily be error-prone in regions of the input
space that are not well-reflected in training data but that end
up arising in practice. Or they can be excessively compli-
cated in ways that impact their generalization ability. Or
they might implicitly make their decisions based on criteria
that would not considered acceptable by society. For all
these reasons, and many others, it is crucial to have models
that are understandable or can explain their predictions to
humans (Kim & Doshi-Velez, 2021).

Explanations of a classification system can take many forms,
but should accurately reflect the classifier’s inner workings.
Perhaps the best scenario is where the model itself is inher-
ently understandable by humans. This is arguably true of
decision trees, for instance. If the tree is small, then it can
be fathomed in its entirety: a global explanation of every
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prediction the model makes. If the tree is large, it can be
hard to understand as a whole, but as long as it has modest
depth, any individual prediction can be locally explained
using the features on the corresponding root-to-leaf path.

A common situation is where the predictive model is not
inherently understandable, either at a global or local level,
and so a separate post-hoc explanation is needed. These
are typically local, in the sense that they explain a specific
prediction and perhaps also explain what the model does
on other nearby instances. Over the past few years, many
strategies for post-hoc explanation have emerged, such as
LIME (Ribeiro et al., 2016), Anchors (Ribeiro et al., 2018),
and SHAP (Lundberg & Lee, 2017).

Explanation systems need to satisfy two broad criteria: the
explanations should (i) make sense to a human user and (ii)
be an accurate reflection of the actual predictive model. The
first of these is hard to pin down because it is inextricably
linked to vagaries of human cognition: is a linear model
“understandable”, for instance? Further research is needed to
better characterize what (i) might mean. This paper focuses
on criterion (ii): gauging the faithfulness of explanations
to the underlying predictive model, or put differently, the
internal coherence of the overall explanation system.

1.1. Contributions

We focus on classification problems and on explanation
systems that consist of two components:

¢ A prediction function (the classifier) f : X — ),
where X is the instance space and ) is the label space.

¢ An explanation function e : X — &, where & is the
space of explanations, or properties.

The explanation function explains the prediction f(z) by
pointing out some relevant property of the input. These
properties can be quite general. Consider, for instance,
a decision tree. Its prediction f(x) on a point 2 can be
explained by the features on the root-to-leaf path for z; the
explanation e(x) is the conjunction of these features, e.g.
“(x2 > 0.5) A (x4 = true) A (x190 < —1)”. Thus the set £
has a conjunction for each leaf of the tree.

Or consider a classifier that takes an image x of a landscape
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and returns its biome, e.g., rainforest. One way this
predictor f(x) might operate is by identifying telltale flora
or fauna in the image. For instance, if the image contains a
zebra then its biome must be savannah: f(z) = savannah
and e(z) = “contains a zebra”. Although such explanations
are based on nontrivial attributes of the input, they are com-
prehensible to humans and are within the scope of our setup.

For an explanation system to be internally coherent, it
should satisfy two properties:

 Consistency: Roughly, two instances x, =’ that get the
same explanation should also have the same prediction.

For instance, if two different images are assigned the
same explanation, e(z) = e(z’) = “contains a zebra”,
then their assigned labels should also be the same.

* Sufficiency: If z is assigned an explanation e(z) = 7
that also holds for another instance 2’ (even if e(z’) #
), then 2’ should have the same label as z.

For instance, if an image x is assigned explana-
tion e(xz) = “contains a zebra” and label f(z) =
savannah, then a different image 2’ that also hap-
pens to contain a zebra should get the same label,
even if it is assigned a different explanation, e.g.
e(z’) = “contains a baobab tree”.

These properties are desirable but might not hold in all cases.
We introduce quantitative measures of the extent to which
they hold.

With these measures in hand, we study a variety of estab-
lished explanation systems: decision trees, Anchors, high-
lighted text, LIME, SHAP, gradient-based method, k-nearest
neighbors, and counterfactuals. We show how they map into
our framework and study their faithfulness. For instance,
we prove that SHAP has perfect consistency, while LIME
does not. We also have results at a higher level of abstrac-
tion. We formalize a natural sub-category of explanation
systems that we call explicitly scoped rules, that includes
decision trees, anchors, and highlighted text. These have
a common structure that permits their faithfulness to be
studied in generality.

Another important use of these quantitative measures is
to empirically characterize the faithfulness of black-box
explanation systems whose internals might not be known.
We give statistical estimators for doing so and characterize
their sample complexity. Along the way, we formalize what
property a black-box explanation system should possess in
order for its faithfulness to be easily verifiable. Roughly, this
corresponds to a particular type of compression achieved
by the explanations. Indeed, we show (Claim 2) that absent
any such compression, verification is not possible.

An interesting aspect of our measures is that the extent of

faithfulness of an explanation system depends on the data
distribution to which it will be applied, and thus might not be
known at training time'. Thus faithfulness may need to be
assessed anew for each new setting in which the system will
be used. In general, there is a tradeoff between simplicity of
explanations and fidelity to the predictor. When explaining
an animal recognizer, for instance, it might be reasonable to
ignore special cases like marsupials if the system is used in
North America, but not if it is used in Australia.

Summary of contributions:

» Framework for evaluating the faithfulness of black-box
explanation systems

* Analysis of popular explanation methods
» Estimators for faithfulness, with rates of convergence

* Ease of estimation depends upon a notion of compres-
sion achieved by the explanations

» Empirical evaluation of these measures and estimators

 Highlighting fundamental properties of the faithfulness
measure such as data dependence

1.2. Related Work

There are many types of explanation (Lipton, 2018; Molnar,
2019). At a high level, we can separate them into two
groups. In intrinsic explanations, the prediction models
themselves are simple and self-explanatory, such as decision
trees (Quinlan, 1986), decision lists (Rivest, 1987), and risk
scores (Ustun & Rudin, 2019). Post-hoc explanations are
applied to existing predictors and come in many varieties,
as described throughout the paper.

The importance of evaluating explanation methods has been
discussed in the literature (Leavitt & Morcos, 2020; Zhou
et al., 2021; Kim & Doshi-Velez, 2021; Pruthi et al., 2022).
There are various attempts to measure different aspects of
an explanation: usefulness to humans (Jesus et al., 2021;
Mohseni et al., 2018; Poursabzi-Sangdeh et al., 2021); com-
plexity (Poppi et al., 2021); difficulty of answering queries
(Barcel6 et al., 2020); and robustness (Alvarez-Melis &
Jaakkola, 2018; Agarwal et al., 2022). In this paper, we mea-
sure faithfulness to the model. Earlier work has looked at
global measures of this type (Wolf et al., 2019) and measures
that are specialized to neural networks (Poppi et al., 2021;
Tomsett et al., 2020; Yeh et al., 2019; Ancona et al., 2017),
feature importance (Amparore et al., 2021; Carmichael &

!This was observed for surrogate explanations, e.g., (Lakkaraju
et al., 2020), however, we observe that faithfulness being data-
depended is a general phenomenon applicable to any local expla-
nation system.
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Scheirer, 2021; Sundararajan et al., 2017; Velmurugan et al.,
2021; Bhatt et al., 2020), rule-based explanations (Margot
& Luta, 2020), surrogate explanation (Ribeiro et al., 2016),
or highlighted text (Chen et al., 2018; Wang et al., 2020a;
Yoon et al., 2018). In contrast to these works which are
dedicated to a single type of explanation system, this paper
suggests a general framework for faithfulness evaluation,
applicable to any black-box explanation system.

2. Framework

As described in the introduction, we think of an explana-
tion system as consisting of a prediction function (classifier)
f+ X — Y and an explanation functione : X — £. (If
e(+) is randomized, we can focus on one random seed.) The
local explanation for model f at instance x is some relevant
property of x, denoted e(z). The selected property should
ideally be enough, on its own, to predict label f(x). This
general intuition has appeared in many places in the litera-
ture. Here we break it into two components—consistency
and sufficiency—and provide precise measures of each.”.

2.1. Consistency

For any explanation m € &, consider the set of instances
that are assigned this explanation:

Cr={zeX:e(x)=m}.

If 7 is a good explanation, then we would hope that these
instances all have the same predicted label. This is con-
sistency: instances that are assigned the same explanation
should also be assigned the same prediction.

For some explanation systems, this may not hold all the time.
We would like to quantify the extent to which it holds. We
start by introducing a measure of the homogeneity of pre-
dictions in C';. In order to do this, we need a distribution
over instances X’. This can be thought of as the distribution
of instances that arise in practice.

Definition 1 (local consistency). The consistency of ex-
plainer e for model f at instance x, with respect to distribu-
tion pu, is defined as

Pr (f(2') = f())

C
mc(x) =
( ) z'€,Cr
where m = e(x) and the notation «’' €, Cr means “z’ is
drawn from distribution i restricted to the set C.”

Global consistency. We have so far quantified consistency
at a specific instance. It is also of interest to measure the
consistency of the entire model.

The terms consistency and sufficiency have been previously
used in the context of explainability (Hase et al., 2021; Fel et al.,
2022) but with different meaning than this paper.

Definition 2 (global consistency). The global consistency
of explanation system (f, ), with respect to distribution u
over X, is

me = mel%x[mc(a?)].

Relation to decoding. The definition of global consis-
tency implicitly defines a decoder d from explanations 7
to labels y. Recall that C); C X is the set of all instances
that get assigned explanation 7. These instances might not
all have the same predicted label, but we can look at the
distribution over labels,

Pr(ylm) = Pr (f(z) =y).

z€,Cr

With this in place, there are two natural ways to define the
decoder: (i) the (randomized) Gibbs decoder that, given
explanation 7, returns a label y with probability Pr(y|r),
and (ii) the optimal deterministic decoder that returns the
label y that maximizes Pr(y|7). We can denote the resulting
decoding error, Pr, (f(x) # d(e(x))), by E¢ for the Gibbs
decoder and E for the deterministic decoder. Standard
manipulations show that these two errors are very similar:

Claim 1. Fp < Fg < 2FEp.

Our notion of consistency is exactly the accuracy of the
Gibbs decoder: m© =1 — Eqg.

2.2. Sufficiency

A complementary requirement from an explainer is that if
a property 7 is used to justify the prediction at instance z,
then any other instance 2’ with property 7 should also be
classified the same way. Moreover, this should hold even if
the supplied explanation, e(z’), is different from 7. In the
earlier biome example, if the explanation “contains a zebra”
is ever used to justify a prediction of savannah, then any
picture with a zebra in it should get the same prediction,
even if assigned some other property as explanation.

To start with, we say that explanations £ are intelligible if
for any instance x € X and property w € &, it is possible
to assess whether 7 applies to z. If so, we define this as
a relation A(x, 7). Ideally, the relation would not only be
well-defined but would also be checkable by humans. Note
that the relation depends solely on the instance and not on
the true or predicted label. We define the set of instances
C,, that share the same property as z’s explanation by

C,={2' € X: Az e(x))}.

As with the consistency measure, each instance can have
a different level of sufficiency; it is not a binary value. To
define this measure, we use a probability distribution over
C5. The sufficiency measure tests the homogeneity of pre-
dictions made on C,,.
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Definition 3 (local sufficiency). The local sufficiency of
explainer e for model f at instance x, with respect to distri-
bution p, is defined as

S — P / — .
(@)= Pr(f@) = ()
Recall that the notation ©’ €,, C, means “x’ is drawn from

distribution y restricted to the set Cy”.

Consistency and sufficiency are complementary measures.
For any given instance =, m¢(z) can be larger, smaller, or
equal to m®(z). Similarly to global consistency, we define
a sufficiency measure for the entire model.

Definition 4 (Global sufficiency). The global sufficiency of
explanation system ( f, e), with respect to distribution 1 on
X, is equal to m® = B¢, x[m*(x)].

3. Analysis of common explanation systems

In this section we review some popular explanation meth-
ods and assess the extent to which they achieve consis-
tency and sufficiency. We divide these methods into three
sub-categories: explicitly scoped rules, feature importance
scores, and example-based explanations.

3.1. Explicitly scoped rules

In “scoped rules”, each explanation is an explicit region of
the instance space, e.g., “(z2 > 0.5) A (x4 = true) A (z10 <
—1)”. This type of explanation includes decision trees,
anchors, and highlighted text, which we elaborate on next.

3.1.1. DECISION TREES

Suppose the instance space is some X C R?. When a
decision tree is used to “explain” a classifier f : X — ),
the tree is fit to f’s predictions (Dasgupta et al., 2020; Hu
et al., 2019; Moshkovitz et al., 2021). The explanation of
an instance z is the conjunction of the features along the
path from 7”s root to the leaf in which z lies. Thus the
explanations, £, are in one-to-one correspondence with the
leaves of the tree.

In this case, an explanation 7 applies to an instance x if and
only if x falls in 7’s leaf. Therefore, the relation A(z, )
is intelligible (well-defined) and easy for a human to as-
sess. Moreover, consistency is equal to sufficiency, and they
measure the accuracy of the tree in capturing f:

LX) = F(XDle(X) = e(XT)

= Y G Pr(f(X) = F(X)X, X' € Cy)

leaves w
=1-> u(Cy)(Gini-index of f in Cy)

m¢=m’= Pr
X

X'~

where C'; is the subset of X" that ends up in leaf 7.

3.1.2. ANCHORS

Pick any data space X C R? and prediction function f :
X — Y. An anchor explanation (Ribeiro et al., 2018) for
an instance x € X is an explicitly-specified hyperrectangle
H, C R? that contains 2 and that is meant to correspond,
roughly, to a region around x that is similarly labeled.

The quality of an anchor is typically formalized using the
notion of precision, which is the probability, over the distri-
bution p, that a random instance in H, has label f(z), that

is, Prore, 1, [f(z") = f(z)].

In this case, the space of explanations is the set of all
anchor-hyperrectangles, & = {H, : © € X}. It is easy
to check whether an anchor applies to an instance: the re-
lation A(x, H) = (x € H) is well-defined. Moreover, our
notion of local sufficiency is exactly the precision of anchors
and global sufficiency is exactly the average precision of
anchors:

m®= Pr
X, X ~p

(f(XT) = F(X)IAX", e(X)))

= E [precision(Hx)].
Xrp

If anchors are chosen to be discrete—that is, the same hyper-
rectangles are used many times—then our notion of consis-
tency gauges the uniformity of prediction over all instances
for which a particular anchor is specified:

mc = Pr (f(X/) = f(X)|HX/ = Hx)

X, X~
There is no immediate relation between this and sufficiency
or precision.

3.1.3. HIGHLIGHTED TEXT

The goal in highlighted text explanations is to pick out the
features—for instance, words in text—that are most impor-
tant for a model’s prediction (Jacovi & Goldberg, 2021).
For an instance € R?, the explanation can be thought of
as a subset of features S C [d], and the values (e.g., text) of
these features, xg € RIS,

These explanations are anchors at the level of generality of
Section 3.1.2. Thus the same observations apply here.

3.1.4. A UNIFIED FRAMEWORK FOR EXPLICITLY
SCOPED RULES

The last three examples—decision trees, anchors, and high-
lighted text—have a common structure that is appealingly
simple and may also hold for many future explanation sys-
tems. To formalize it, we say an explanation system (f, ¢)
has explicitly scoped rules if each explanation 7 is a de-
scription of a region S, C X of the instance space. For a
given point z, the explanation m = e(z) has the property
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that z € S;. The terminology “explicitly scoped” means
that subset S, is specified in a form where it is easy to
check whether a specific point lies in it or not. Thus the
set of explanations is £ = {e(z) : © € X'} and the relation
A(z,m) = (z € Syp) is well-defined (intelligible). This is
the key property of explicitly-scoped rules.

We can generalize the notion of precision to any region of
space (not just hyperrectangles) and as in the case of anchors,
sufficiency will then correspond to average precision.

For the explanation systems we will cover next,
intelligibility—determining whether an explanation applies
to a given instance—is more tricky.

3.2. Feature importance methods

Feature importance methods aim to give a precise indication
of which features of an input x are most relevant to the
prediction f(z). This often takes the form of a local linear
model g, (sometimes on a simplified instance space) that
approximates f in the vicinity of x. However, the scope
of this g,—the region over which the approximation is
accurate—is sometimes unspecified, in which case it is
unclear when a particular g, can be thought of as being
applicable to some other point . Because of the ambiguity
in the intelligibility of these explanations, we will focus on
consistency in what follows.

3.2.1. LIME

LIME (Ribeiro et al., 2016) provides an explanation of
f(z) by (1) using an interpretable representation 1) : X —
X', e.g. the presence or absence of individual words in a
document, and (2) approximating f near x with a simple
model g, : X’ — ). Typically, g, is a linear classifier.

LIME does not exhibit perfect consistency, e.g., points x
with the same interpretable representation get assigned the
same ¢, while their predicted labels may vary. Another
example is depicted in Appendix B.

3.2.2. SHAP

SHAP (Lundberg & Lee, 2017) is similar in spirit to LIME.
It uses a Boolean feature space X’ and its explanations are
linear functions g, : X’ — ). But this time the choice of
g 1s inspired by Shapley values (Shapley, 1953) from game
theory, and is chosen to satisfy four axioms for fair distribu-
tion of gains: efficiency, symmetry, linearity, and null player.
In particular, the coefficients of g, are guaranteed to sum to
f(x) — ¢o, where ¢y is constant for all .

This last property guarantees that if two examples have the
same explanation, then their label must be the same, thus
ensuring perfect consistency.

3.2.3. GRADIENT-BASED METHOD

Gradient-based explanations are popular for neural nets
(Agarwal et al., 2021; Ancona et al., 2017; Shrikumar et al.,
2016; Simonyan et al., 2013; Smilkov et al., 2017). The
explanation is the gradient of the network with respect to
the instance, the intuition being that features with highest
gradient values have the most influence on the model’s out-
put.

The gradient alone determines a function only up to an addi-
tive constant. This offset must also be provided to complete
the explanation; otherwise there is imperfect consistency.
The lack of decodability was empirically observed in several
previous works (Adebayo et al., 2018; Anders et al., 2020;
Kim & Doshi-Velez, 2021; Nie et al., 2018; Wang et al.,
2020b).

3.3. Example-based explanations

An example-based explainer justifies the prediction on an
instance x by returning instances related to . Explanations
of this type include nearest neighbors and counterfactuals.

3.3.1. NEAREST NEIGHBORS

Let’s focus on 1-nearest neighbor for concreteness. For a
given prediction function f : X — ), a nearest neighbor
explanation system maintains a set of prototypical instances
P C X and justifies the prediction on instance x by re-
turning a prototype p € P close to z (with respect to an
underlying distance function d on X’). Thus the space of
explanations is £ = P.

Our consistency measure then checks the extent to which
points z, ' that get mapped to the same prototype p € P
also get the same prediction under f.

For sufficiency, we also need to define the relation A(x, p):
when do we consider prototype p to be “applicable to” in-
stance z? Here are two options.

1. When p is the nearest neighbor of z in P.

2. When d(z,p) < 7 for some threshold 7 > 0.

The first option strictly follows the nearest neighbor rule,
but leads to problems with verifiability; for instance, it is
not easy for a human to check that A(x, p) holds unless the
set P is somehow available. The second option is easier to
check; in fact, we can treat the regions B(p, 7) as anchors
and then measure consistency and sufficiency using the
methods of Section 3.1.4.

3.3.2. COUNTERFACTUALS

A counterfactual explanation of an instance x is another in-
stance 2’ which is close to x but has a different label, f(z) #
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f(a') (Deutch & Frost, 2019; Mothilal et al., 2020; Slack
et al., 2021). To make this concrete, suppose we are perform-
ing binary classification and that some distance function d
has been chosen for the instance space X. Then the counter-
factual explanation for z is the closest point x’ that gets the
opposite label, that is, 2’ = argmin,. p,. s (@, 7).
The space of explanations is £ = X'.

In this case, the “explanation” 2’ gives information about
the nature of predictions in the vicinity of z. Specifically, it
asserts that any point in the open ball B(x,d(x, ")) has la-
bel f(x). Therefore, one way to verify faithfulness of these
explanations is simply to associate them with scoped rules of
this form and to then assess sufficiency as in Section 3.1.4.

4. Evaluating faithfulness of black-box model

In this section, we consider a scenario where we are given a
black-box explanation system ( f, ) and wish to evaluate its
faithfulness. To this end, we develop statistical estimators
for consistency and sufficiency given samples z1,..., T,
from an underlying test distribution p. How many such
samples are needed to accurately assess faithfulness?

4.1. Discrete explanation spaces

Let’s begin with the case where the explanation space £
is discrete (that is, countable). We will not assume that
we know the entire set &, since this knowledge will not
be in general available for a black-box explanation system.
Given a few samples from p, we can look at the resulting
explanations and predictions, but it is not trivial to assess
the fraction of the explanation space that we have not seen:
that is, the missing mass. And for any explanation 7 that we
do not see, faithfulness could be arbitrarily bad. With this
difficulty in mind, we now turn to our estimators.

A key observation is that although consistency and suffi-
ciency measure different aspects of the explanation system,
for the purposes of statistical estimation they can be treated
together. To see this, let R(x, ) denote an arbitrary relation
on X x &, and for a given distribution x4 on X, define

(f(X) = F(X)|R(X", e(X))) -

R _
m/—‘ - X,)]?’rwu
This generalizes both types of faithfulness: for consistency,
take R(z, ) to mean e(x) = 7 and for sufficiency take
R(z,7) = Az, ).

Thus we only need an estimator for mff. The quality of our

estimate will depend upon what fraction of the explanation
space we get to see, which in turn depends on £ and p.

We begin with a few related definitions. Let p(7) be the
fraction of points for which explanation 7 is provided, that is,
p(m) = p({z : e(x) = w}) and let ¢(7) be the fraction for
which R(x, ) holds: ¢(7) = pu({z : R(x,m)}). Thus p(r)

is a distribution over £ while ¢(7) € [0, 1] and ¢(7) > p(m).

Given samples z1,...,x, ~ u, and any y, 7, define

Np = |{i: R(zy,m)}
Nﬂ',y = |{Z : R(fL’i,’/T), f(xl) = y}|

Our estimator for mf is then

v - Ne), @) =1
i=1 e\Ti

S|

‘We can show the following rate of convergence.

Theorem 1. The mean-squared error of estimator M can
be bounded as follows:

-] < £ (S

The mean-squared error is the sum of the variance, which
is bounded by 4/n, and the squared bias, the term in paren-
theses. This bias arises from the inability to correctly assess
faithfulness for explanations 7 that appear O or 1 times in the
data. One way to make this term small, say < ¢, is to have
n comparable to the size of range(e). In this way, we see
that the ease of evaluating the faithfulness of explanations
depends on the level of compression they achieve.

Corollary 1. Suppose the unlabeled sample size is at least
n > range(e) - 1?2 log % Then, the mean-squared error of

M (for either consistency or sufficiency) is at most e.

4.2. Larger or continuous explanation spaces

The estimator of the previous section needs explanations
to appear at least twice before it can begin assessing their
faithfulness. This is problematic in continuous explanation
spaces, where no explanation might ever be repeated.

One fix, which we later study empirically, is to discretize
the space £. We introduce a function ¢ : £ — £’ where
&’ is much smaller than £, and consider explanations 7, 7/
to be equivalent if ¢)(7) = ¢ (7). An alternative fix is to
introduce a distance function d between explanations, and
to use a d(m, ') < 7 to determine when 7 and 7’ are close
enough that they should yield the same prediction.

Explainers that their inner-working is known, their consis-
tency and sufficiency might also be known (e.g., SHAP has
perfect consistency). However, the new measures need to
be estimated if the inner working is unknown. This section
provided conditions where such an estimation is possible.
Unfortunately, there are some cases where it is impossible
to apply any estimation method. One such scenario is where
all the explanations are distinct, as the next claim shows.
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Claim 2. (unverifiable explainer) Fix infinite example set
X. There are two explainers, ey and es, a model f, and a
distribution over the examples, where on every finite-sample,
with probability 1, the explanations are the same, but the
sufficiency and consistency of ey is 1 while the sufficiency
and consistency of e is 0.5.

5. Experiments
5.1. Canonical properties

We begin with experiments that illustrate basic properties
of our faithfulness estimators: (1) they assign low scores to
random explanations, (2) they assign higher scores to more
faithful explanations as long as the explanation space is not
too large, and (3) when the explanation space is huge relative
to the amount of unlabeled data, they conservatively assign
low scores since they are unable to assess faithfulness.

Highlighted text. To evaluate a variety of highlighted
text explainers, we began by training a predictor on the
rt-polaritydata dataset, used for sentiment classifi-
cation of movie reviews, with 10,433 documents. We repre-
sented each document as a bag of words, and used 80% of
the data to train a linear model. The remaining documents
were used to compare four highlighted text explainers.

We evaluated four explainers. (1) Top Coefficient is a white-
box explainer that highlights the word in the sentence with
the highest absolute coefficient in the linear model. (2)
Anchors (Ribeiro et al., 2018). (3) First Word always high-
lights the first word in the sentence as the explanation. (4)
All Words highlights all the words in the sentence as the ex-
planation. We estimated global consistency and sufficiency
for each explainer as described in previous sections. We
also recorded the uniqueness of each explainer, which is the
fraction of test data whose explanations were unique.

The results are presented in Table 1. Top Coefficient got
the highest consistency and sufficiency scores, as one might
expect from an explainer that utilizes its complete knowl-
edge of the model. As Anchors is a black-box explainer
that attempts to return a faithful explanation, it produces
better results than the last two explainers, which are not
designed to be faithful to the model. First Word is close
to a random explainer, and thus gets rather low sufficiency
and consistency. All Words highlights the entire input and
thus has maximal uniqueness (1.0), making it unverifiable.
Consequently, its consistency and sufficiency estimates are
0.0, despite the definitions implying a value of 1.0 for both
measures.

Decision trees. Next, we used decision trees to study the
relationship between the size of the explanation space and
the number of samples needed for accurate estimation of

Table 1. The mean=std of the consistency, sufficiency, and unique-
ness measures of the four highlighted text explainers, evaluated
over 5 samples of 1000 examples.

Explainer Consistency  Sufficiency Uniqueness
Top Coefficient ~ 0.69 £0.01  0.71 £0.01 0.5 £0.01
Anchors 0.54£0.01 0.61 £0.01 044 £ 0.01
First Word 037+£0.01 048£0.01 0.3940.01
All Words 0.0 £0.0 0.0 £ 0.0 1.0 £ 0.0

faithfulness. Each of our prediction models was a decision
tree, and the same tree was used for explanations, implying
perfect consistency and sufficiency. We learned six trees
of different sizes (2" leaves, forn = 6,7,...,11) on the
Adult dataset (Kohavi et al., 1996), using 66.6% of the
examples for training. From the remaining 33.3% of the
examples we varied the number of sampled records used
to estimate consistency/sufficiency (the two estimates are
identical in this setting).

The results appear in Figure 1. For the smallest tree (64
leaves), the global estimator is accurate even with very few
samples. However, as the size of the tree grows, there
are more possible explanations (root-to-leaf paths), which
increases the sample complexity of the estimation task. For
example, the largest configuration (2048 leaves) requires
4,300 samples to reach even a 0.9 estimate of sufficiency
and consistency. Similar trends were observed for different
datasets and when k-nearest neighbors was used as both the
model and explainer (Appendix D.3).
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Figure 1. Estimated consistency and sufficiency of decision trees of
different sizes over the Adult dataset, as a function of the sample
complexity. As the sample complexity increases the estimation
approaches the ground truth measures (1.0). Larger trees have
more leaves and thus a larger explanation space. The decision tree
model accuracy over the full test set is reported in the parenthesis
in the legend. The displayed results are averaged over 5 executions
with a confidence interval of 95%.

5.2. Common explanation systems

We next discuss two important considerations in applying
our faithfulness estimators in practice: (1) the effect of
explainer parameters on the quality of the estimates, and (2)
the use of discretization to reduce explanation uniqueness
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and thereby improve estimation. These apply generically
for many common explanation systems. For concreteness,
the predictors in our experiments are gradient boosted trees,
which are frequently used by practitioners (described in
Appendix D.2). The analysis is conducted on six standard
datasets (described in Appendix D.1).

First, the choice of the explainer’s parameters can impact
not only sufficiency and consistency but also the accuracy of
estimation. For example, a key parameter in Anchors is pre-
cision threshold, and high threshold leads to better
sufficiency. Moreover, for high threshold, the anchors
are typically smaller, as more explanations are possible (in-
creasing the number of explanations worsens the estimators,
as seen in Section 5.1). We next illustrate this phenomenon
both locally and globally over the Adult dataset.

Figure 2, shows an example of the effect on local measures.
(2b) shows the explanations, m; and 72, of two different
anchors over the record depicted in (2a). The two explainers
differ only in their precision threshold parameter (0.5
and 0.95). (2c) presents the statistics of these explainers
when applied over the record from (2a) and the Adult test
set. One can see that 7o refines 7 since it includes more
conditions, and hence |Cr,| > |Cr,|. Moreover, using
higher threshold improved the sufficiency.

age 38 T threshold = 0.5
workclass Private l education-num < 9.00

fnlwgt 89814 T2 threshold = 0.95

education HS-grad education-num < 9.00 and

education-num 9
marital-status Married-civ-spouse

capital-gain < 0.00 and
fnlwgt < 116736

occupation Farming-fishin
relatignship Hus%)and ¢ (b) Anchors m; and 7>
race White
sex Male T T2
capital-gain 0 N¢ 2364 53
capital-loss 0 NS csor | 2364 53
hours-per-week 50 N ; B 7438 1690
native-country United-States N ook 7049 1655
y < 50K me 1.0 1.0
prediction < 50K ms 095 098

(a) Record from Adult dataset (c) Statistics of 71 and 7y

Figure 2. Two Anchors explainers with different precision
threshold parameters, and their performance statistics over
an example record from the Adult dataset.

Moving to global measures, Figure 3 shows faithfulness esti-
mates for Anchors applied to gradient boosted trees trained
on the Adult dataset (Appendix D.4 has results for other
datasets), as a function of the precision. As expected, as the
precision increases, so do sufficiency and uniqueness. Note
that higher uniqueness reduces estimator accuracy.

Second, discretizing the output seems to be an effective
way to mitigate uniqueness. This is illustrated in Table 2,
which shows the results of 5 different discretization methods
of SHAP values (described in Appendix D.5) and a non-
discretized baseline over 6 datasets. As one would expect

=o— (Consistency Sufficiency === Uniqueness ratio]
10 | ‘—._._.\0\.“_
0.8 —_——
g
© 0.6 1
£
43 0.41
5N]
) ,__—-———‘/_—__/
0.0 1% i I I I
0.5 0.6 0.7 0.8 0.9

Anchor precision threshold

Figure 3. Estimated global consistency and sufficiency and the
number of unique explanations of the Anchors explainer over
gradient boosted trees model for the Adult dataset as a function
of precision threshold parameter.

(based on Claim 2), without discretization the measures are
extremely low. Moreover, while all examined discretization
methods improve on the non-discretized baselines, the opti-
mal method depends on the dataset and explainer at hand.
Hence, one is encouraged to experiment with different meth-
ods to identify the best approach. In Appendix D.5 we also
provide the uniqueness ratio of each discretization method,
along with discretizations of LIME and Counterfactuals that
exhibit similar behavior.

Table 2. SHAP consistency scores for various discretizations, aver-
aged over 5 executions (std is lower than 0.01 in all cases).

Dataset Original 2-FP I-FP Sign  Rank  Sign-of-top-5
Heart 0.0 0.0 048  0.02 0.02 0.39
Chess 0.0 0.0 0.0 0.33 0.32 0.35
Avila 0.01 0.01 0.05 0.71 0.56 0.58

Bank marketing 0.03 0.40 093 049 0.38 0.86
Adult 0.02 0.11 0.95 0.68 0.15 0.89
Covtype 0.01 0.03 068 0.13 0.09 0.41

5.3. Explanation quality is data-dependent

The consistency and sufficiency definitions imply that the
faithfulness of an explainer depends on the test distribution.
When two explanation methods are available, one might be
more faithful for some populations, while the other works
better for other populations. Moreover, as data distribution
changes over time, explanation methods must also adapt.
It is not advisable to deploy explainers in real-life settings
without verifying faithfulness on the target distribution.

In Figure 4 we demonstrate this by splitting the Adult test-
set into two different populations. Each negative example
is randomly assigned to the first population with probabil-
ity 0.75 and each positive example is assigned to the first
population with probability 0.25. The second population
contains all examples not assigned to the first population.
As a result, the first population contained ~ 90% records
labeled as “< 50K and the second population was almost
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balanced. We then used 4 different explainers on the two
populations (Anchors with threshold of 0.7, SHAP and
LIME with 1-FP discretization, and Counterfactuals with
discretization of the sign of modification). We estimated
the consistency of each population for 5 repetitions and
recorded the average and standard deviation. For all the
explainers, the consistency is different between the two
populations. We remark that Anchors has the highest consis-
tency in the first population (0.934 £ 0.003), while SHAP
has the highest consistency in the second (0.885 &+ 0.006).
Note that the proposed measures serve as a tool for com-
paring different explanation system, while the exact values
of the measures (which depends on the dataset) is of only
secondary importance.

. Anchors . SHAP

. Counterfactuals

. LIME

“«?1'00
@ 0.951
7]
B 0.90 1
S 0.85
o
< 0.801
g
2 0.75 1
£ 0.70]
L
) 0.65-

Mostly <=50K
Population

Mostly >50K

Figure 4. Estimated global consistency of four explanation systems
very extensively between two distributions over the Adult dataset.
The displayed results are the mean of 5 executions with std bars.

6. Conclusion and open problems

We suggest two new measures evaluating the faithfulness
of explanations, both locally and globally. These are the
consistency and sufficiency measures. We showed estima-
tors for these measures and bounded the sample complex-
ity of the global measures by an unlabeled sample of size
O(range(e)), for constant € error. We analyzed these mea-
sures on several known methods: decision trees, Anchors,
highlighted text, SHAP, LIME, gradient-based method, k-
nn, and counterfactuals. We empirically examined these
measures, highlighting essential properties, e.g., faithful-
ness can be unverifiable if there are too many explanations
and faithfulness quality is data-dependent.

In this paper, no assumptions about the explainer were made.
However, additional assumptions might pave the way for
better estimators. This can be especially important for con-
tinuous explanation spaces, where the bound on the estima-
tor, range(e), is ill-defined. As a concrete example, focus
on a feature importance explainer, e : X — R?. In this
case range(e) can be infinite. Nonetheless, assuming that
similar examples have similar feature importance (which
can be formalized with the Lipschitz assumption) might

allow the design of estimators with superior bounds. On the
practical side, a primary mission is to apply these measures
in real-life applications.
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A. Proofs
A.1. Proof of Claim 1

For the sake of completeness, we repeat some of the definitions. For a fixed explanation 7, the probability that it resulted
from an instance labeled y is equal to

Pr(glmy = Y Lda),

P
z:f(z)=yAe(z)=m I‘(ﬂ')

where Pr(m) = >° . (,)—. Pr(z) and the distribution over the instances z’s is 1. There are two natural ways to define
decoders from explanations to labels:

¢ Gibbs decoder
dg(m) = y with probability Pr(y|r)

* Optimal deterministic decoder
do(mw) = arg max Pr(y|r)
Yy

The error of any decoder d is equal to
S Pr(r) 3 Pr(ylm) Pr(d(r) # ylm).
™ yeY
Specifically, the error of the Gibbs decoder is equal to
Eg = Pr(r) ) Pr(ylm)(1 - Pr(ylr)).
™ yey

The error of the optimal deterministic decoder is equal to

Eo = ZPI‘(ﬂ')(l — mz;chPr(yhT)).

Now we are ready to prove the claim that
Eo < Eg <2Ep.

For ease of notations, arrange the probabilities (Pr(y|7)),cy in decreasing order py > pa > ... pjy|.
We first prove the left inequality in the claim. We will show that for every explanation 7 it holds that

1—p1 <Y pi(1—py).

J

Or equivalently, we will show that
Z p; < p1.
J

The latter holds because

S <d pip=np1
j j

Now we move on to proving the right inequality in the claim. We will show

> pi(1—p;) <2(1—p).
J
The LHS is equal to
pi(l—p1) + ij(l —pj)<1l-p +ij
i>1 i>1
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A.2. Proof of Theorem 1
Recall that R(x, 7) is an arbitrary relation on X' x &. For a distribution x4 on X', we wish to estimate

myt = (Br (X)) = FOOIR(X e(X))).

To begin with, let g(y|m) denote the probability that a random point = ~ y has predicted label y given R(x, 7):
q(ylm) = Pr (F(X) = y|R(X, 7).
Then we can rewrite our generic faithfulness measure as

my = E [q(f(X)]e(X))].

Xeop

Let p() be the fraction of points for which explanation 7 is provided, thatis, p(7) = p({z : e(x) = «}) and let ¢(7) be the
fraction for which R(x, ) holds: ¢(7) = p({z : R(z,m)}). Note that p() is a distribution over £ whereas ¢(m) € [0, 1]

and g(m) = p().

Given samples z1,...,x, ~ u, and any y, 7, define

N, = |{i: R(z;,m)}|
=i R(zi, m), f(z:) = y}|

Our estimator for m,}f is then

Ne@y).f@) =1

(zi) > 1

:\*—‘
M:
|_|

We start by deriving the expected value of M.

Theorem 2. For estimator M,

Proof. Fix any i € [n]. The term E,; denotes expectation over all points other than 7. We will also use E; to denote
expectation over point ¢ alone. Let y = f(x;) and 7 = e(x;), and let k be the number of other points (that is, j # @) to

which 7 also applies: that is, k = — 1. Suppose these points are z;, , ..., x;,. If k > 0, then E\; [%’Nﬁ =k+ 1]

is equal to

k
Z flai,) = ylR(zi;, 7)) = q(ylm).

?v\»—'

We then have that E[M] is equal to

n

1 Ne), @) =1
- § E |:1(Ne(:1:i) > 1) L2 lE ©
n im1 Ne(xi) —1
Ne@),f@) =1
:fEE ey > D) E | s
[ () )\i[ No — 1 ()

= ZE Ne(ay) > Da(f(z)]e(z:))]
]E [(1 — (1= q(e(X))" Ha(f(X)]e(X))],

X~p

as claimed. O
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Next, we upper-bound the variance of M.

Theorem 3. var(M ) < 4/n.

Proof. Suppose M is based on n samples 1, ..., T, ~ p. It is not hard to check that changing any one sample, xz; — 7,
can change M by at most 4/n. Thus M satisfies a bounded-differences property, whereupon its variance can be bounded by
a form of the Efron-Stein inequality (Boucheron, Lugosi, Massart, Cor 3.2). O

We then sum the bias and variance to get a bound on mean-squared error. From Theorem 2 and the fact that ¢(y|7) € [0, 1],

we can bound the bias, [M\ ] —mft| of M by

[(1 (1—q(e (X)>)"‘1)q(f(X)\e(X))] —@[q(f(X)le(XD]
[(1 = q(e(X))"q(f(X)]e(X))]
[ —(n—1)q(e( X))}

IN

E
X
E
X

:Z *(n Da(m)
weE

Theorem 1 then follows by summing the variance and squared bias.

A.3. Proof of Claim 2

Proof. The claim will hold for any model f which is balanced, i.e., there is the same number of examples labeled 1 and
examples labeled —1. Take the distribution over the examples to be the uniform one.

The explainer e; returns a different explanation to each example in X'. To define the explainer ey, partition X into pairs
(z1,22) where f(x1) # f(x2). Such a partition is possible because f is balanced. Each pair receives the exact explanation

62($1) = 62(%2).

Suppose that for the two explainers A(z, 7) < e(x) = m. By definition, the sufficiency and consistency of e; is one and the
sufficiency and consistency of e is 0.5.

Note that when given a finite sample, since the set of instances X is infinite, with zero probability, the example set will
contain a pair. Those it is impossible to distinguish if the true explainer is e; or es. O
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B. Example where LIME does not have perfect consistency

We show a model and two instances that get different labels but the same explanation by LIME. In Figure 5a, we show the
XOR model fX©% which is 1 if the two features have the same sign (in blue). We are using the LIME method to explain
two instances (2.5, 0.5) and (—2.5,0.5). The model fX©% assigns these two instances different labels. The output of LIME
when given instance (2.5,0.5) and (—2.5,0.5) is the same: second feature has the same positive importance of 0.44 on both
instances and the first feature does not have importance, see Figures 5b,5d. The reason for such a behavior is that LIME fits
a linear classifier around the labeled instance (x, y) where the goal is to predict the class y. From the view point of LIME
for both of the instances, a linear classifier is fitted for similar training data, see Figure Sc.

(a) XOR classification

-6 -4 -2 0 2 4
(c) Neighborhoods

Prediction probabilities 0 1
2

0 _m 0.44
1 [ 1.00 K

(b) Explanation for (2.5, 0.5)

Prediction probabilities 0 1
X2

o I 1.0 r
x1
1 o

(d) Explanation for (—2.5,0.5)

Figure 5. (a) XOR model with two instances (in red) with different labels (b,d) LIME provides the same explanation to these instances:
second feature has the same positive importance, 0.44, on both instances and the first feature does not have importance. (c) During the run
of LIME explainer on the two instances, the training data supplied to the linear predictor.
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C. Local estimators

In this section we explore estimators for the local measures. Namely, Algorithm 1 estimates the local consistency and
sufficiency measures of explainer e for model f at instance z. It uses, as an input, unlabelled test data S drawn from
distribution p. To estimate consistency it returns the fraction of instances with similar label out of all instances with similar
explanation. To estimate sufficiency, it returns the fraction of instances with similar label out of all examples that e(x)
applied to.

Algorithm 1 Estimating local consistency and sufficiency

input: model f, instance x, unlabelled test data S
output: estimate of consistency and sufficiency
CONcountery CONtot = 07 0
Sufcounter» Suftot =0,0
for 2’ € S do
if e(2’) = e(z) then
concounter+ = (f(x) == f(z'))
congor + +
end if
if A(2’,e(z)) then
Sufcounter+ = (f(l‘) == (J’J))
sUfror + +
end if
end for
return Concounter/contot» sufcounter/sufcounter

If we have a random sample S from C, then, by Hoeffding’s inequality, it is enough to take sample size |S| = O(1/€?)
to approximate the consistency measure up to an additive error of € with constant probability. This is summarized in the
following corollary.

Corollary 2. Fix e € (0,1) and an instance x. Given a sample of size O(1/€?) from C, (), one can estimate m*(x) up to
an additive error € with probability 0.9.

The difficulty with the above corollary is the assumption that one can obtain enough samples from Cy,). This assumption is
sometimes unrealistic. To get an instance from C,(,), one can use rejection sampling. Where instances are received from
arbitrary distribution, but then reject any instance that is not in Cy(,. Although this is a reasonable technique, it might take
a long time till an instance from C,(,) is received.
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D. More experimental details
D.1. Datasets

Datasets in the empirical evaluation are depicted in Table 3.

Table 3. Datasets properties

Dataset #of classes n d
Heart (Janosi et al., 1989) 2 303 13
Chess (Dua & Graff, 2017) 17 28,056 6
Avila (De Stefano et al., 2018) 12 20,867 10
Bank marketing (Moro et al., 2014) 2 45,211 16
Adult (Kohavi et al., 1996) 2 48,842 14
Covtype (Blackard & Dean, 1999) 7 581,012 54
rt-polaritydata (Pang & Lee, 2005) 2 10,433 15,888

D.2. Model training

In sections 5.2 and 5.3 we have explained gradient boosted trees models trained over 6 datasets. For each dataset, 66% of
it was used for model training and cross-validation. Hyper-parameters were selected based on best mean accuracy over 3
cross-validation executions. The considered hyper-parameters are all combinations of the following:

e learning_rate: 27°,274 ... 22

* n_estimators: 50,100, 150, 200, 250, 300.

* max_depth: 3,4,5,6,7.

The selected hyper-parameters and test accuracy is presented in Table 4.

Table 4. Gradient boosted trees hyper-parameters and accuracy

Dataset learning.rate n_estimators max_depth Testaccuracy
Heart (Janosi et al., 1989) 0.0625 250 3 0.8

Chess (Dua & Graff, 2017) 0.0625 300 7 0.9

Avila (De Stefano et al., 2018) 0.125 300 5 0.99

Bank marketing (Moro et al., 2014)  0.0625 250 5 0.91

Adult (Kohavi et al., 1996) 0.25 50 5 0.87
Covtype (Blackard & Dean, 1999)  0.125 300 7 0.94
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D.3. Sample complexity experiment

In Section 5.1 Figure 1 we have studied the sample complexity of decision tree model and explainer over Adult dataset.
Figure 6 depict the same concept over additional datasets.
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Figure 6. Estimated global consistency & sufficiency of decision trees with different sizes on 5 datasets. As sample complexity grows the
estimation is getting closer to the ground truth measures (1.0). Larger trees has more leaves, which implies a larger explanations domain.
Decision tree accuracy over the full test set is reported in the legend parenthesis. The displayed results are the mean of 5 executions with
confidence interval of 95%.
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Figure 7. Estimated global consistency of k£ nearest neighbors with different sizes on 5 datasets. As sample complexity grows the
estimation is getting closer to the ground truth measures (1.0). Larger k and larger training set size ,N, implies a larger explanations
domain. Accuracy over the full test set is reported in the legend parenthesis. The displayed results are the mean of 5 executions with
confidence interval of 95%.

Similarly, Figure 7 depict the sample complexity required for the evaluation of k nearest neighbors model and explainer. As
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the explainer and model are the same, the explainer consistency is 1 by definition. Figure 7 shows that as k£ or N (number of
training examples) increases, the explanations space grows, and as a result, more samples are required to accurately estimate
the explainer consistency.

D.4. Anchors dependency on precision threshold parameter

Figure 8 depict how the explainer’s parameters affect global measures. The Figure displays the measures of Anchors
explainer, applied over gradient boosted trees trained over six datasets, as a function of the precision threshold parameter.
Similarly to the findings obtained in Figure 3, one may see that as the precision increases, the sufficiency and uniqueness
increases, while the estimated consistency decreases.
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Figure 8. Estimated global consistency and sufficiency and the number of unique explanations of the Anchors explainer over gradient
boosted trees model for 6 dataset as a function of precision threshold parameter. As the required precision grows the number of
unique explanations (green) grows as well as the estimated sufficiency.

D.S. Explainers discretization
Next we discuss several discretizations we have evaluated.
Feature importance Recall that for an explanation of type feature importance, given an instance = € R? it returns a

vector ¢ € R? with ¢; the importance of the i-th feature. For feature importance explainers, i.e. SHAP and LIME we
compared the following discretization methods.

* Original: return ¢ as is.

* 2-FP: discretize ¢ to have 2 floating-points representation, i.e., return ¢’ € R%, such that ¢, = %.

« I-FP: discretize ¢ to have a single floating-point representation, i.e., return ¢’ € R?, such that ¢ = %.
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e Sign: return ¢’ € {—1,1}% such that ¢ = sign(¢;).
* Rank: return ¢/ = argsort (o).

s Sign-of-top-5: let ¢+ € R? be the vector of absolute values of ¢, ie. ¢ = |¢;], and let pTF =
argsort(¢t), i.e. ¢ is the rank of ¢ absolute values. Sign-of-top-5 return ¢’ € {—1,0,1}% such that
o = sign(¢;) d)j’R >d—5

! 0 else '

Tables 5 and 6 depict the consistency and uniqueness ratio of the above discretizations for SHAP and LIME respectively.

Table 5. SHAP consistency scores and uniqueness ratio for various discretizations, averaged over 5 executions (std is lower than 0.01 in
all cases).

Dataset Original 2-FP 1-FP Sign Rank Sign-of-top-5
Cons.  Uniq. | Cons. Uniq. | Cons. Uniq. | Cons. Uniq. | Cons. Uniq. | Cons.  Uniq.
Heart 0.0 1.0 0.0 1.0 0.48 0.70 0.02 0.99 0.02 0.99 0.39 0.75
Chess 0.0 1.0 0.0 1.0 0.0 1.0 0.33 0.02 0.32 0.15 0.35 0.06
Avila 0.01 0.99 0.01 0.99 0.05 0.97 0.71 0.21 0.56 0.49 0.58 0.07
Bank marketing | 0.03 0.97 0.40 0.65 0.93 0.09 0.49 0.59 0.38 0.68 0.86 0.17
Adult 0.02 0.98 0.11 0.93 0.95 0.08 0.68 0.44 0.15 0.89 0.89 0.15
Covtype 0.01 0.99 0.03 0.97 0.68 0.36 0.13 0.89 0.09 0.92 0.41 0.03

Table 6. LIME consistency scores and uniqueness ratio for various discretizations, averaged over 5 executions (std is lower than 0.08 in all
cases).

Dataset Original 2-FP 1-FP Sign Rank Sign-of-top-5
Cons.  Uniq. | Cons. Uniq. | Cons.  Uniq. Cons.  Uniq. Cons.  Uniq. | Cons.  Uniq.
Heart 0.0 1.0 0.0 1.0 0.34 0.81 0.02 0.99 0.0 1.0 0.46 0.66
Chess 0.0 1.0 0.11 0.0 0.11 0.0 0.13 0.02 0.13 0.18 0.13 0.07
Avila 0.0 1.0 0.23 0.0 0.23 0.0 0.37 0.17 0.01 0.98 0.28 0.33
Bank marketing | 0.0 1.0 0.0 1.0 0.87 0.0 0.65 0.48 0.0 1.0 0.84 0.10
Adult 0.0 1.0 0.0 1.0 0.77 0.0 0.77 0.22 0.04 0.97 0.72 0.13
Covtype 0.0 1.0 0.0 1.0 0.12 0.87 0.0 1.0 0.0 1.0 0.17 0.73

Counterfactuals Recall that for counterfatual explanation, given an instance = € R? it returns a vector 2’ € R such that
f(z) # f(2') and 2’ is close to x. To obtain a counterfatual explanations we have used DiCE (Mothilal et al., 2020). As the
space of explanations £ = X discretization of £ is essential for estimation of the explainability measures. To this end, we
compared the following discretization methods.

* Original: return z’ as is.
e A:return ' — x, i.e. consider only the features that were modified.
e A-sign: return 2" € R, such that o7/ = sign(x} — z;).

1 z; =1t
o Is-feature-modified: return x” € R% such that 7 = 0 ZZ ¢
else

Table 7 depict the consistency and uniqueness ratio of the above discretizations.
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Table 7. Counterfactuals consistency scores and uniqueness ratio for various discretizations, averaged over 5 executions (std is lower than
0.07 in all cases).

Dataset Original A A-sign Is-feature-modified
i Cons.  Uniq. Cons. Uniq. Cons.  Uniq. Cons.  Uniq.

Heart 0.0 1.0 0.01 1.0 0.19 0.88 0.23 0.66

Chess 0.09 0.70 0.14 0.17 0.14 0.02 0.13 0.01

Avila 0.20 0.22 0.20 0.23 0.34 0.07 0.24 0.0

Bank marketing | 0.0 1.0 0.18 0.89 0.89 0.04 0.87 0.02

Adult 0.0 1.0 0.07 0.96 0.91 0.04 0.81 0.01

Covtype 0.0 1.0 0.38 0.46 0.57 0.03 0.52 0.02




