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Frobenius structures on hypergeometric equations

Kiran S. Kedlaya

Abstract. We give an exposition of Dwork’s construction of Frobenius struc-
tures associated to generalized hypergeometric equations via the interpreta-
tion of the latter due to Gelfand–Kapranov–Zelevinsky in the language of A-
hypergeometric systems. As a consequence, we extract some explicit formulas
for the degeneration at 0 in terms of the Morita p-adic gamma function.

1. Introduction

Hypergeometric differential equations, of arbitrary order, provide some key ex-
amples of Picard–Fuchs equations and of rigid local systems. As such, they admit
p-adic analytic Frobenius structures which interpolate the zeta functions associated
to certain motives over finite fields.

The purpose of this note is to extract from Dwork’s book [16] an explicit con-
struction of Frobenius structures on hypergeometric equations (see Theorem 4.1.2),
and in particular a formula for the residue at 0 (see Corollary 4.3.3), using A-
hypergeometric systems in the sense of Gelfand–Kapranov–Zelevinsky [22] (which
we introduce in very little detail in §3). We also give a brief indication of how this
knowledge can be used as the basis for an efficient algorithm to compute the action
of Frobenius on the (rational) crystalline realizations of hypergeometric motives, in
the style of Lauder’s deformation method [36]. We have implemented this method
in SageMath [33] and gotten good results in practice; however, some further anal-
ysis is needed on the tradeoff between rigor and efficiency caused by the choice of
working precision for certain power series and p-adic coefficients (see Remark 5.3.1).

2. Generalities

We first recall some general facts and definitions concerning ordinary differential
equations, including the definition of a Frobenius structure.
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2.1. Ordinary differential equations. We first recall some standard con-
cepts in order to set notation for them.

Definition 2.1.1. Let D be a differential operator acting on a field F of char-
acteristic zero. By a D-differential equation, we will always mean a homogeneous
linear differential equation in the variable y of the form

(2.1.1.1) Dn(y) + an−1D
n−1(y) + · · ·+ a0y = 0

with a0, . . . , an−1 ∈ F . For uniformity of notation, we set an = 1.
By a D-differential system of rank n, we will mean an equation in the variable

v (a column vector of length n) of the form

(2.1.1.2) Nv +D(v) = 0,

where N is an n×n matrix over F . This is the same structure as a connection over
F whose underlying module is equipped with a distinguished basis.

Remark 2.1.2. Given the equation (2.1.1.1), let N be the companion matrix

N =















0 −1 · · · 0 0
0 0 0 0
...

. . .
...

0 0 0 −1
a0 a1 · · · an−2 an−1















;

then the solutions of (2.1.1.2) are precisely the vectors of the form

v =











y
D(y)
...

Dn−1(y)











where y is a solution of (2.1.1.1).
Conversely, given the equation (2.1.1.2), note that for U an invertible n × n

matrix over F , the equation

NUw +D(w) = 0, NU := U−1NU + U−1D(U)

is equivalent to the original equation via the substitutions

v 7→ Uw, w 7→ U−1v.

The cyclic vector theorem (see for example [32, Theorem 5.4.2]) then implies that
for any choice of N , there exists some U for which NU is a companion matrix.
However, there is typically no natural choice of U .

Definition 2.1.3. Let X be a locally ringed space over SpecQ. Let Ω be a
coherent sheaf on X equipped with a derivation d : OX → Ω. A connection on X
(with respect to d) consists of a pair (E ,∇) in which E is a vector bundle (locally free
coherent sheaf) E on X and ∇ : E → E ⊗OX

Ω is an additive morphism satisfying
the Leibniz rule with respect to d: for U ⊆ X open, f ∈ Γ(U,O), v ∈ Γ(U, E), we
have

d(fv) = f∇(v) + v ⊗ d(f).

We also refer to such a pair as being a connection on E . The elements of the kernel
of ∇ on E(U) are called the horizontal sections of E , or more precisely of (E ,∇),
over U .
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Given two connections (E1,∇1), (E2,∇2), the tensor product is the connection
(E1 ⊗OX

E2,∇) given by

∇(fv ⊗w) = f∇1(v)⊗w + fv ⊗∇2(w) + d(f)⊗ v ⊗w.

Given a connection (E ,∇), the dual is the unique connection whose underlying
bundle is the modulo-theoretic dual E∨ for which the canonical pairing E⊗E∨ → OX

is a morphism of connections.

Remark 2.1.4. In the case where X = SpecF , Ω = OX , d = D, and E = O⊕n
X ,

any connection on E has the form v 7→ Nv + D(v) for some n × n matrix N
over F (and conversely any such matrix defines a connection). The solutions of the
equation (2.1.1.1) then correspond to the horizontal sections of E over X. The dual
connection (with the dual basis) corresponds to the matrix −NT .

Definition 2.1.5. Let F{D} denote the Ore polynomial ring in D; it is a
noncommutative F -algebra whose underlying set coincides with that of F [D], but
whose multiplication is characterized by the identity

Dx− xD = D(x) (x ∈ F ).

Then a connection on SpecF is the same as a left F{D}-module whose underlying
F -vector space is identified with the set of length-n column vectors over F , with the
action of D given by v 7→ Nv+D(v); passing from N to NU amounts to changing
basis on this vector space via the matrix U .

Given a D-differential system defined by a D-differential equation (2.1.1.1), the
dual of the corresponding connection is the left F{D}-module F{D}/F{D}(Dn +
an−1D

n−1 + · · ·+ a0).

2.2. Regular singularities. Throughout §2.2, let K be a field of character-
istic 0.

Definition 2.2.1. In the notation of §2.1, take F = K(z) to be equipped
with the derivation D = z d

dz . We then say that the equation (2.1.1.1) is regular
at 0 if ord0(ai) ≥ 0 for i = 0, . . . , n − 1. We say that (2.1.1.2) is regular at 0 if
ord0(Nij) ≥ 0 for i, j = 1, . . . , n.

Definition 2.2.2. With notation as in Definition 2.2.1, fix an algebraic closure
of K. Define the local exponents at 0 of the equation (2.1.1.2) to be the negations
of the roots of the characteristic polynomial of N |z=0. By the classical theory of
regular (Fuchsian) singularities, the images of the local exponents under exp(2πi•)
compute the eigenvalues of local monodromy around z = 0. Note that this only
uses the values of the exponents modulo Z; in fact it is only these residues that
are intrinsic under meromorphic changes of coordinates, as one can make integral
shifts using shearing transformations [32, Proposition 7.3.10].

Definition 2.2.3. Now in the notation of §2.1, take F = K(z) to be equipped
with the derivation D = d

dz . For z0 ∈ P1
K , the equation (2.1.1.2) is regular at z0 if

the entries of N have at worst simple poles at z = z0; for z = 0, this is consistent
with Definition 2.2.1. The equation (2.1.1.1) is regular at z0 if the corresponding
matrix equation is; for z0 ∈ A1

K , this translates into the condition

ordz0(ai) ≥ i− n (i = 0, . . . , n− 1).
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2.3. Frobenius structures on differential equations.

Hypothesis 2.3.1. Throughout §2.3, fix a prime p. Let X be an open subspace
of P1

Qp
. Let Z be the complement of X in P1

Qp
; to simplify notation, we assume

that {0,∞} ⊆ Z.

Definition 2.3.2. By a Frobenius lift, we will mean a Qp-linear map σ :
O(X) → O(X) such that σ(z)−zp ∈ pZp[z](p). For instance, we may take σ(z) = zp;
we call this the standard Frobenius lift (with respect to the coordinate z).

Definition 2.3.3. Let P1,an
Qp

be the analytification of P1
Qp

in the sense of rigid

analytic geometry. (For the purposes of this discussion, we use Tate’s model of
p-adic analytic geometry; however any of the equivalent models of p-adic analytic
geometry may be used instead, such as Berkovich spaces or Huber adic spaces.)

Let (E ,∇) be a connection on X. We define a Frobenius structure on (E ,∇)
with respect to the Frobenius lift σ as an isomorphism σ∗E ∼= E of vector bundles
with connection on some subspace V of P1,an

Qp
whose complement consists of a union

of closed discs, each contained in the open unit disc around some point of Z.
More generally, for (E ′,∇′) another connection on X, we define a Frobenius

intertwiner from (E ,∇) to (E ′,∇′) with respect to the Frobenius lift σ to be an
isomorphism σ∗E ∼= E ′ of vector bundles with connection on some subspace V as
above.

Remark 2.3.4. In the context of Remark 2.1.4, a Frobenius intertwiner corre-
sponds to an invertible n× n matrix Φ with entries in the ring O(V ) satisfying

(2.3.4.1) N ′Φ− cσσ(N) +D(Φ) = 0, cσ =
σ(dz/z)

dz/z
=
D(σ(z))

σ(z)
.

The effect of changing basis by two invertible matrices U,U ′ is to replace Φ with

ΦU,U ′ := U−1Φσ(U ′),

which defines a Frobenius intertwiner from NU to N ′
U ′ .

Remark 2.3.5. When a Frobenius intertwiner exists, one can always rescale it
by an invertible elements of Qp. In many cases, one can show that there can be at
most one Frobenius structure up to rescaling (see Lemma 2.3.6 below); however, we
will need some extra information in order to normalize for this scalar ambiguity.

Lemma 2.3.6. Let (E ,∇) and (E ′,∇′) be two connections on X satisfying the
following conditions.

(a) The restriction of (E ,∇) to some open unit disc is trivial.
(b) The points of Z are pairwise noncongruent modulo p.
(c) At each z ∈ Z, (E ′,∇′) is regular with exponents in Z(p).
(d) The connection (E ′,∇′) is irreducible over Qp(z).

Then up to Q×
p -scalar multiplication, there exists at most one Frobenius interwiner

from (E ,∇) to (E ′,∇′).

Proof. By Baldassari’s theorem on continuity of the radius of convergence
of p-adic differential equations [3], condition (a) implies triviality of (E ,∇) also
on the restriction to a generic open unit disc. With this, we may apply [14] to
conclude. �
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Remark 2.3.7. While the definition of a Frobenius intertwiner was made in
terms of the chosen Frobenius lift σ, there is a certain independence from this choice:
for any other Frobenius lift σ̃, there is a functorial way to transform Frobenius
intertwiners with respect to σ into Frobenius intertwiners with respect to σ̃ using
the Taylor isomorphism. As we will mostly be concerned with Frobenius defined
with respect to a fixed Frobenius lift z 7→ zp, we will not develop this point here;
see for example [32, §17.3].

Lemma 2.3.8. Let D0 denote the open unit disc around 0, and suppose that
Z ∩D0 = {0}. Let (E ,∇), (E ′,∇′) be connections on X which are regular at 0 with
exponents in Q ∩ Z(p). Suppose that there exists a Frobenius intertwiner Φ from
(E ,∇) to (E ′,∇′) with respect to the standard Frobenius lift σ.

(a) As multisets of Q/Z, the local exponents of (E ′,∇′) at 0 correspond to p
times the local exponents of (E ,∇).

(b) On D0, we have decompositions

E ∼=
⊕

λ∈Z(p)∩[0,1)

Eλ, E ′ ∼=
⊕

µ∈Z(p)∩[0,1)

E ′
µ

of connections such that Eλ (resp. E ′
µ) admits a basis on which D = z d

dz

acts by multiplication by λ (resp. µ) plus a nilpotent scalar matrix.
(c) Any Frobenius structure Φ on (E ,∇) extends holomorphically to the punc-

tured open unit disc around 0 and meromorphically across 0. More pre-
cisely, with bases as in (b), for λ, µ ∈ Z(p) ∩ [0, 1) with pλ ≡ µ (mod Z),

Φ carries σ∗Eλ into E ′
µ and tpµ−λΦ acts holomorphically on the chosen

bases.

Proof. Suppose first that the exponents at 0 are all in Z. In this case, (a) is
trivial, (b) follows from [32, Proposition 17.5.1], and (c) follows from (b) by logic
as in Remark 2.3.10 below.

To treat the general case, let m be the least common denominator of the expo-
nents; then pulling back along z 7→ zm gives another pair of connections admitting
a Frobenius intertwiner, to which we may apply the previous argument to deduce
the claim. Compare the proof of [34, Lemma 2.3]. �

Remark 2.3.9. By making the substitution z 7→ z−1, we may immediately
infer that Lemma 2.3.8 holds with the point 0 replaced by ∞. The same does not
apply directly to other points of P1

Qp
because the relevant substitutions change the

Frobenius lift; however, by Remark 2.3.7 we may still infer that Lemma 2.3.8(a)
holds at any point of P1

Qp
.

We next introduce the idea that one can compute a Frobenius structure by
solving a differential equation and imposing an initial condition.

Remark 2.3.10. Assuming that a given pair of connections given by matrices
N,N ′ admits a Frobenius intertwiner Φ for the standard Frobenius lift σ, one can
attempt to compute it by first finding formal solution matrices U,U ′ of N,N ′ at 0,
i.e., finding invertible matrices U,U ′ over QpJzK for which NU and N ′

U ′ are scalar
matrices. In the context of hypergeometric equations, we will even have explicit
formulas for U,U ′ in terms of hypergeometric series and their derivatives.

We may further ensure that NU , N
′
U ′ are block diagonal matrices with blocks

indexed by λ ∈ Z(p) ∩ [0, 1), in which each of the blocks Nλ, N
′
λ equals λ plus a
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nilpotent matrix. In this case, ΦU is itself a block permutation matrix with nonzero
(λ, µ)-block whenever pλ ≡ µ (mod Z). If we call this block Φλ, as per (2.3.4.1) we
have

NµΦλ +D(Φλ) = pΦλNλ.

(Here we have replaced σ(Nλ) with Nλ because Nλ has entries in Qp, which are
fixed by σ.) Since Nλ and Nµ are scalar matrices, we may write Φλ =

∑∞
n=−∞ Φnz

n

and see that
NµΦn + nΦn = pΦnNλ;

since Nλ −λ and Nµ −µ are nilpotent, this implies that Φn = 0 unless µ+n = pλ;
that is, Φλ equals tpλ−µ times an invertible matrix over Qp.

Remark 2.3.11. Keeping notation as in Remark 2.3.10, by writing Φ in the
form UΦUσ(U

′)−1, we can express the entries of Φ as elements of QpJzK. In order
to be a Frobenius structure, these series have to also represent entries of O(V ) for
some V ; this in particular implies that the series in QpJzK we are considering have
bounded coefficients, that is, they belong to the subring ZpJzK[p

−1] of QpJzK.
This containment generally does not hold “by accident.” For a typical differen-

tial equation, there is no choice of the scalar matrices Φλ,0 := tµ−pλΦλ for which
this last containment holds; in this case, no Frobenius structure can exist. When a
Frobenius structure does exist, typically the values of Φλ,0 are uniquely determined,
up to a joint scalar multiplication, by the fact that they give rise to entries of F
having bounded coefficients. This can be used as a mechanism for discovering the
entries of Φλ,0 empirically without any prior knowledge; see [43] for some examples
of this and [8] for a more comprehensive treatment.

By contrast, in the case of hypergeometric equations, we will give a computable
formula for the matrices Φλ,0. (Since the entries are elements of Qp which are in
general transcendental over Q, this means that for any fixed integer N , we can
compute rational numbers which differ from the entries of Φλ,0 by values in pNZp.)

Remark 2.3.12. Keeping notation as in Remark 2.3.11, suppose that there
exists a Frobenius structure Φ for which we have a computable formula for matrices
Φλ,0. The entries of Φ are elements of O(V ); this ring is a certain completion of
O(X) contained in the p-adic completion. We may thus represent the entries of Φ
as sums of the form

P (z) +
∞
∑

i=1

ci
Q(z)i

(P (z) ∈ Qp[z
±], ci ∈ Qp, lim

i→∞
ci = 0)

where Q(z) is the monic polynomial with simple zeroes at Z \ {0,∞}. (In the case
of hypergeometric equations, we will have Q(z) = z − 1.)

In order to obtain a representation of Φ which is accurate to some prescribed
p-adic accuracy, we need an effective bound on the decay rate of the ci; this amounts
to identifying a choice of the subspace V and a bound on Φ over V . In the case
where the points of Z have pairwise distinct images under specialization, this can
be done by studying the effect of changing the Frobenius lift (Remark 2.3.7).

3. Hypergeometric equations and the GKZ construction

We now describe the generalized hypergeometric equation that we consider, the
Gelfand–Kapranov–Zelevinsky construction of A-hypergeometric systems, and how
the two are related.
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3.1. Hypergeometric differential equations.

Definition 3.1.1. Define the differential operator D := z d
dz on the field K(z)

as in Definition 2.2.1. The generalized hypergeometric equation with parameters in
K given by

α;β = α1, . . . , αm;β1, . . . , βn

is the linear differential equation of the form

(3.1.1.1) P (α;β)(y) = 0, P (α;β) := z
m
∏

i=1

(D + αi)−
n
∏

j=1

(D + βj − 1).

(We conflate this equation with the equivalent equation in terms of the operator
d
dz , which is somewhat less compact to express.) The case m = n = 2 recovers the
classical (Gaussian) hypergeometric equation. We will primarily be interested in
the case K = Q, but in this section we treat the case K = C following Beukers–
Heckman [5].

Remark 3.1.2. Under the substitution z 7→ (−1)m−nz−1, solutions of (3.1.1.1)
correspond to solutions of P (α′;β′)(y) = 0 for

α′;β′ := 1− β1, . . . , 1− βn; 1− α1, . . . , 1− αm.

Remark 3.1.3. As in [5, Proposition 2.3], one has

(D + δ − 1)P (α;β) = P (α, δ;β, δ)

P (α;β)(D + δ) = P (α, δ;β, δ + 1).

As per [5, Corollary 2.4], it follows that for i = 1, . . . ,m and j = 1, . . . , n,

P (α;β)(D + αi − 1) = (D + αi − 1)P (α1, . . . , αi − 1, . . . , αm;β1, . . . , βn)

(D + βj − 1)P (α;β) = P (α1, . . . , αm;β1, . . . , βj − 1, . . . , βn)(D + βj).

This has the consequence that for all practical purposes, the analysis of the hyper-
geometric equation is insensitive to integer shifts in the parameters. In particular,
there is no real loss of generality in normalizing the parameters so that

0 ≤ Re(α1) ≤ · · · ≤ Re(αm) < 1, 0 ≤ Re(β1) ≤ · · · ≤ Re(βn) < 1;

this will become convenient when we start manipulating series solutions of (3.1.1.1).

Remark 3.1.4. For n = 1, (3.1.1.1) becomes

(z − 1)D + (z − 1)(1− β1) + z(α1 − β1 + 1) = 0

with formal solutions

y = cz1−β1(z − 1)α1−β1+1.

We next recall the explicit description of formal solutions of (3.1.1.1) at z = 0.
The formal solutions at z = ∞ may be described similarly by interchanging the
roles of the α and the β. The formal solutions at z = 1 behave somewhat differently;
see [5, Proposition 2.8].

Definition 3.1.5. For n a nonnegative integer, define the rising Pochhammer
symbol

(α)n := α(α+ 1) · · · (α+ n− 1).
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Define the Clausen–Thomae hypergeometric series

Fm n−1

(

α1, . . . , αm

β1, . . . , βn−1

∣

∣

∣

∣

z

)

:=
∞
∑

k=0

(α1)k · · · (αm)k
(β1)k · · · (βn−1)k

zk

k!
.

The case m = n = 3 was first considered by Clausen [12]; the general case was first
considered by Thomae [42].

Proposition 3.1.6. In (3.1.1.1), suppose that βn = 1 (so that (βn)k = k!) and
that no βi is a nonpositive integer (which is to say that (βi)k 6= 0 for all k ≥ 0).
Then

Fm n−1

(

α1, . . . , αm

β1, . . . , βn−1

∣

∣

∣

∣

z

)

is a solution of (3.1.1.1) in CJzK.

Proof. This may be seen by a direct calculation: applying the operator z(D+
α1) · · · (D + αm) to the given series yields

∞
∑

k=0

(α1)k+1 · · · (αm)k+1

(β1)k · · · (βn−1)k

zk+1

k!

while applying (D + β1 − 1) · · · (D + βn − 1) = (D + β1 − 1) · · · (D + βn−1 − 1)D
yields the equivalent expression

∞
∑

k=0

(α1)k · · · (αm)k
(β1)k−1 · · · (βn−1)k−1

kzk

k!
. �

Corollary 3.1.7. In (3.1.1.1), suppose that m ≤ n and that β1, . . . , βn ∈ Q
are pairwise distinct modulo Z. Then the sums
(3.1.7.1)

z1−βi Fm n−1

(

α1 − βi + 1, . . . , αm − βi + 1

β1 − βi + 1, . . . , ̂βi − βi + 1, . . . , βn − βi + 1

∣

∣

∣

∣

z

)

(i = 1, . . . , n)

form a C-basis of the solutions of (3.1.1.1) in the Puiseux field
⋃∞

l=1 C((z
1/l)).

By formally differentiating with respect to parameters, we see what happens
when some of the β’s come together modulo Z.

Corollary 3.1.8. In (3.1.1.1), suppose that no two of β1, . . . , βn ∈ Q differ by
a nonzero integer (e.g., because they all belong to [0, 1)). For each β ∈ {β1, . . . , βn}
occurring with multiplicity µ, for = 1, . . . , µ− 1, consider the sums
(3.1.8.1)

z1−β

j
∑

i=0

j!(log z)j−i

(j − i)!

∞
∑

k=0

[ǫi]

(

(α1 − β + 1 + ǫ)k · · · (αm − β + 1 + ǫ)k
(β1 − β + 1 + ǫ)k · · · (βn − β + 1 + ǫ)k

)

zk

where [ǫi](∗) means the coefficient of ǫi of the expansion of ∗ as a formal power
series in ǫ. These then form a C-basis of the solutions of (3.1.1.1) in the ring
⋃∞

m=1 C((z
1/m))[log z].

Proof. For i = 0, Proposition 3.1.6 implies that (3.1.8.1) is a solution for
ǫ = 0. We obtain µ − 1 additional linearly independent solutions by formally dif-
ferentiating with respect to −β; noting that the derivative of z1−β with respect to
−β is (log z)z1−β , we obtain the claimed formula. �
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Corollary 3.1.9. In (3.1.1.1), suppose that β1, . . . , βn ∈ Q and 0 ≤ β1 ≤
· · · ≤ βn < 1. Let i1 < · · · < il be the sequence of indices i ∈ {1, . . . , n} for which
either i = 1, or i > 1 and βi−1 < βi. For h = 1, . . . , l, let µh denote the multiplicity
of βih (so that µj = ih+1 − ih if h < l and n+ 1− ih otherwise). Define the series
f1, . . . , fn ∈ CJzK by the following formula: for h = 1, . . . , l and j = 0, . . . , µh − 1,

fih+j :=
1

j!

∞
∑

k=0

[ǫj ]

(

(α1 − β + 1 + ǫ)k · · · (αm − β + 1 + ǫ)k
(β1 − β + 1 + ǫ)k · · · (βn − β + 1 + ǫ)k

)

zk.

Let U be the matrix over CJzK given by the following formula: for h = 1, . . . , l;
i = 1, . . . , n; j = 0, . . . , µh − 1,

Ui(ih+j) =

j
∑

k=max{0,j−i+1}

j!(i− 1)!

k!(j − k)!(i− 1− j + k)!
(D + 1− βih)

i−1−j+k(fih+k).

Then U is invertible and NU is a block matrix with block lengths µ1, . . . , µm in
which

(NU )(ih+i)(ih+j) =











βih − 1 i = j

−j j = i+ 1

0 otherwise

(h = 1, . . . ,m; 0 ≤ i, j ≤ µh − 1).

Proof. In the ring C((z))[log z], we may define the elements g1, . . . , gn so that
for h = 1, . . . ,m, j = 0, . . . , µh−1, the series gih+j is given by (3.1.8.1) for β = βih ,
omitting the factor of z1−β . Define the invertible n× n matrix V over C((z))[log z]
by setting Vij = (D + 1 − βj)

i−1(gj); then NV is the diagonal matrix with entries
β1 − 1, . . . , βn − 1.

By construction, we have

gih+j =

j
∑

k=0

(

j

k

)

(log z)kfih+j−k (j = 0, . . . , µh − 1);

consequently, for i = 1, . . . , n we have

(D + 1− βih)
i−1(gih+j) =

j
∑

l=0

(

j

l

)

(D + 1− βih)
i−1((log z)lfih+j−l)

=

j
∑

k=0

(

j

k

)

(log z)j−k

j
∑

l=j−k

∗(D + 1− βih)
i−1−l+j−k(fih+j−l),

∗ =
k!(i− 1)!

(j − l)!(l − j + k)!(i− 1− l + j − k)!
.

That is, we have V = UW where W is the block matrix with block lengths
µ1, . . . , µm in which

W(ih+i)(ih+j) =

(

j

i

)

(log z)j−i (0 ≤ i, j ≤ µh − 1);

it follows thatNU =WNVW
−1+WD(W−1). Since each block ofNV is a scalar ma-

trix, we have WNVW
−1 = NV ; meanwhile, an elementary computation shows that

the h-th block ofWD(W−1) is nilpotent with superdiagonal entries−1,−2, . . . ,−µh+
1. �
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We recall the local structure of the singularities of (3.1.1.1) in the case m = n.

Proposition 3.1.10. For m = n, the equation (3.1.1.1) is regular with singu-
larities at 0, 1,∞ having local exponents as follows:

z = 0 : 1− β1, . . . , 1− βn

z = ∞ : α1, . . . , αn

z = 1 : 0, . . . , n− 2, γ, γ :=

n
∑

i=1

βi −

n
∑

i=1

αi.

Proof. See [5, §2]. �

Although we will not use this overtly, for context we recall the explicit descrip-
tion of the monodromy representation of (3.1.1.1).

Proposition 3.1.11. Suppose that m = n and that αi − βj /∈ Z for i, j =
1, . . . , n.

(a) Put ai := exp(2πiαi), bi := exp(2πiβi) and define the polynomials
n
∏

i=1

(T − ai) = Tn +A1T
n−1 + · · ·+An,

n
∏

i=1

(T − bi) = Tn +B1T
n−1 + · · ·+Bn.

Then in a suitable basis (see Remark 3.1.12), the local monodromy oper-
ators (3.1.1.1) may taken to be

h0 := B−1, h1 := A−1B, h∞ := A ∈ GLn(C),

A :=











0 0 · · · 0 −An

1 0 · · · 0 −An−1

...
. . .

...
0 0 · · · 1 −A1











, B :=











0 0 · · · 0 −Bn

1 0 · · · 0 −Bn−1

...
. . .

...
0 0 · · · 1 −B1











.

(b) The representation described in (a) is irreducible.
(c) The matrix h1 is a complex reflection with special eigenvalue c := exp(2πiγ),

meaning that h1 − 1 has rank 1.

Proof. Part (a) is a theorem of Levelt [5, Theorem 3.5]. Parts (b) and (c) are
immediate corollaries; see [5, Proposition 3.3] for (b) and [5, Proposition 2.10] for
(c). �

Remark 3.1.12. In Proposition 3.1.11, if one further assumes that the αi and
βj are all distinct mod Z, one can make the choice of a “suitable basis” quite explicit
in terms of the local solutions given by Corollary 3.1.7. This was originally shown
by Golyshev–Mellit [23].

Remark 3.1.13. In case m 6= n, the local structure of the singularities of
(3.1.1.1) is rather different; to simplify notation, we assume that m < n. In this
case, (3.1.1.1) is of order n and its local monodromy at 0 is as described above;
however, we no longer have a singularity at z = 1, and the singularity at z =
∞ is now irregular. This can be understood in terms of confluence, where the
regular singularities at 1 and ∞ have coalesced into an irregular singularity upon
degeneration of one of the parameters. To make this more explicit, consider the
one-parameter family of hypergeometric equations

P (α1, . . . , αm, 1/t, . . . , 1/t;β1, . . . , βn)
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indexed by a parameter t. This is equivalent via the substitution z 7→ tn−mz to the
equation

z

m
∏

i=1

(D + αi)

n
∏

i=m+1

(tD + 1)−

n
∏

j=1

(D + βj − 1)

with a regular singularity at z = tm−n. Taking the limit as t→ 0 yields the operator
P (α1, . . . , αm;β1, . . . , βn).

3.2. The GKZ interpretation. In preparation for adopting the point of view
of Dwork [16], we recall the description of the hypergeometric equation (3.1.1.1) in
terms of a GKZ (Gelfand–Kapranov–Zelevinsky) A-hypergeometric system, follow-
ing [18] (see also [1], [10, §1.4], and [9, §2]).

We begin by rewriting the hypergeometric equation to simplify the dependence
on the parameters α, β at the expense of replacing the original series with a function
of multiple variables. (Warning: the use of the letter Φ here has nothing to do with
the Frobenius intertwiners discussed in §2.3.)

Lemma 3.2.1. Consider a function Φ(x, y) of indeterminates x = x1, . . . , xm
and y = y1, . . . , yn. (For the moment, we leave it unspecified what sort of function
we have in mind.)

(a) The function Φ is annihilated by the operators

(3.2.1.1) xj
∂

∂xj
+ yk

∂

∂yk
+ αj − βk + 1 (j = 1, . . . ,m; k = 1, . . . , n)

if and only if there exists a univariate function f(z) such that

(3.2.1.2) Φ(x, y) = x−α1
1 · · ·x−αm

m yβ1−1
1 · · · yβn−1

n f((−1)mx−1
1 · · ·x−1

m y1 · · · yn).

(b) For Φ, f satisfying (3.2.1.2), Φ is annihilated by the operator

(3.2.1.3)

m
∏

j=1

∂

∂xj
−

n
∏

j=1

∂

∂yj
.

if and only if f is a solution of the hypergeometric equation (3.1.1.1).

Proof. For Φ as in (3.2.1.2) and z = (−1)mx−1
1 · · ·x−1

m y1 · · · yn, we have

xj
∂

∂xj
(Φ)(x, y) = ((−D − αj)(f))(z)(3.2.1.4)

yj
∂

∂yj
(Φ)(x, y) = ((D + βj − 1)(f))(z).(3.2.1.5)

In particular, any such Φ satisfies (3.2.1.1). Conversely, to check that any Φ sat-
isfying (3.2.1.1) satisfies (3.2.1.2) for some f , we may formally reduce to the case
where αi = 0, βi = 1 for all i. In this case, (3.2.1.1) implies that Φ remains constant
under any substitution of the form

xj 7→ cxj , yk 7→ cyk

(for some j, k, with the other variables left unchanged); consequently, (3.2.1.2) holds
for

f(z) := Φ(1, . . . , 1, (−1)mz).

This proves (a).
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For z as above, the operator (3.2.1.3) may be rewritten as

y−1
1 · · · y−1

n



z

m
∏

j=1

(

−xj
∂

∂xj

)

−

n
∏

j=1

(

yj
∂

∂yj

)



 .

This makes it clear that from (3.2.1.4), (3.2.1.5), we immediately deduce (b). �

Corollary 3.2.2. Suppose that β1, . . . , βn are pairwise distinct modulo Z. In
terms of the indeterminates x, y = x1, . . . , xm, y1, . . . , yn, for i = 1, . . . , n define
(formally)

fi(z) := z1−βi Fm n−1

(

α1 − βi + 1, . . . , αm − βi + 1

β1 − βi + 1, . . . , ̂βi − βi + 1, . . . , βn − βi + 1

∣

∣

∣

∣

z

)

Φi(x, y) := x−α1
1 · · ·x−αm

m yβ1−1
1 · · · yβn−1

n fi((−1)mx−1
1 · · ·x−1

m y1 · · · yn).

Then Φ1, . . . ,Φn are all annihilated by the operators (3.2.1.1) and (3.2.1.3).

Proof. Combine Lemma 3.2.1 with Corollary 3.1.7. �

Definition 3.2.3. Form a positive integer, letWm := C〈x1, . . . , xm, ∂1, . . . , ∂m〉
denote the Weyl algebra, i.e., the quotient of the noncommutative polynomial alge-
bra in x1, . . . , xm, ∂1, . . . , ∂m by the two-sided ideal generated by

xixj − xjxi, ∂i∂j − ∂j∂i, ∂ixi − xi∂i − 1 (i, j = 1, . . . ,m).

We write θi as shorthand for xi∂i.
For d a nonnegative integer, let A be a d×m matrix over Z. (In the notation

of [1, §2], our d is n therein, our m is N therein, and the columns of A correspond
to the lattice points therein.) The toric ideal associated to A is the ideal

IA = {∂u − ∂v : u, v ∈ Zm
≥0, Au = Av} ⊆ C[∂1, . . . , ∂m].

For δ ∈ Cd a column vector, for i = 1, . . . , d we may define an Euler operator

Ai1θ1 + · · ·+Aimθm − δi ∈Wm.

The GKZ ideal (or hypergeometric ideal) defined by A and δ is the left ideal JA,δ

of Wm generated by IA and the Euler operators.

Example 3.2.4. Define the (m+n−1)× (m+n) matrix A over Z by the block
expression

A =

(

Im 0 1
0 −In−1 1

)

;

the toric ideal is generated by ∂1 · · · ∂m − ∂m+1 · · · ∂m+n. Let δ ∈ Cm+n be the
column vector

(α1 − βn + 1, . . . , αm − βn + 1, β1 − βn, . . . , βn−1 − βn);

the Euler operators then have the form

θj + θm+n + αj − βn + 1 (j = 1, . . . ,m)

−θm+j + θm+n + βj − βn (j = 1, . . . , n− 1).

By Lemma 3.2.1, the formula
(3.2.4.1)

Φ(x1, . . . , xm+n) = x−α1
1 · · ·x−αm

m xβ1−1
m+1 · · ·xβn−1

m+n f((−1)mx−1
1 · · ·x−1

m xm+1 · · ·xm+n)
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defines a bijection between the functions f(z) satisfying (3.1.1.1) and the functions
Φ(x1, . . . , xm+n) annihilated by JA,δ.

It will be useful to also have a symmetric variant of Example 3.2.4.

Example 3.2.5. Define an mn× (m+ n) matrix A over Z, using the index set
{1, . . . ,m} × {1, . . . , n} in place of {1, . . . ,mn}, by

A(i1,i2)j =

{

1 j ∈ {i1,m+ i2}

0 otherwise.

and a column vector δ ∈ Cmn by

δ(i1,i2) = αi1 − βi2 + 1.

The Euler operators then have the form

θi1 + θi2 + αi1 − βi2 + 1 (i1 = 1, . . . ,m; i2 = 1, . . . , n).

This GKZ system is isomorphic to the previous one, in a sense to be made explicit
in §3.4.

Remark 3.2.6. Let d′,m′ be two more positive integers, let A be a d′ × m′

matrix over Z, and let δ′ ∈ Cd′

. We then have a canonical isomorphism of C-vector
spaces

Wm/JA,δ ⊗C Wm′/JA′,δ′
∼=Wm+m′/JA⊕A′,δ⊕δ′

which promotes to an isomorphism of left Wm+m′ -modules if we identify the vari-
ables of Wm′ with the variables xm+1, . . . , xm+m′ , ∂m+1, . . . , ∂m+m′ of Wm+m′ .

Remark 3.2.7. In Example 3.2.4, if we drop the last column, the toric ideal
becomes the zero ideal. In this case, the functions annihilated by JA,δ are just

the constant multiples of x−α1+βn−1
1 · · ·x−αm+βn−1

m xβ1−βn

m+1 · · ·x
βn−1−βn

m+n−1 ; this can
be viewed as an instance of the product construction described in Remark 3.2.6.

Remark 3.2.8. A comment related to Remark 3.2.7 is that the definition of a
GKZ system in Example 3.2.4 is insensitive to an overall translation

αi 7→ αi + c, βi 7→ βi + c;

the value of c only appears in the comparison with the hypergeometric equation in
(3.2.4.1) (and specifically in the exponents of the leading powers).

3.3. Dwork’s exponential module. Returning to the general GKZ setup,
we now introduce Dwork’s construction of the exponential module (compare [17,
§4]).

Definition 3.3.1. Retain notation as in Definition 3.2.3. Let RA be the C-

subalgebra of C[X±
1 , . . . , X

±
d ] generated by the monomials X(j) := X

A1j

1 · · ·X
Adj

d

for j = 1, . . . ,m. Define also RA[x] := RA[x1, . . . , xm]. Define the element

gA := λ

m
∑

j=1

xjX
(j) ∈ RA[x].

(In the original construction one takes λ = 1; since we can absorb λ by rescaling
xj there is no extra generality in varying λ, but this will be convenient for the
construction of Frobenius structures.)
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There are obvious “natural” actions of the derivations

∂1, . . . , ∂m, Θ1, . . . ,Θd := X1
∂

∂X1
, . . . , Xd

∂

∂Xd

on RA[x] (but not
∂

∂Xi
in general). Define the twisted operators

∂A,j := ∂j + ∂j(gA) = ∂j + λxjX
(j)

DA,δ,i := Θi +Θi(gA) + δi = Xi
∂

∂Xi
+ δi + λ

m
∑

j=1

AijxjX
(j).

We give RA[x] the structure of a left Wm-module by specifying that ∂j acts via
∂A,j .

Remark 3.3.2. In the setting of Example 3.2.4, we have

gA = λ(x1X1 + · · ·+ xmXm + xm+1X
−1
m+1 + · · ·

+ xm+n−1X
−1
m+n−1 + xm+nX1 · · ·Xm+n−1)

DA,δ,i = Xi
∂

∂Xi
+ λxiXi + λxm+nX1 · · ·Xm+n−1 + αi − βn + 1

DA,δ,i = Xi
∂

∂Xi
− λxiX

−1
i + λxm+nX1 · · ·Xm+n−1 + βi−m − βn.

where the second and third equations are for i = 1, . . . ,m and i = m+ 1, . . . ,m+
n− 1 respectively.

Lemma 3.3.3. The formula

x1 7→ x1, . . . , xm 7→ xm, ∂1 7→ X(1), . . . , ∂m 7→ X(m)

defines a surjective homomorphism φ : Wm → RA[x] of left Wm-modules (for the
exotic module structure on RA[x] from Definition 3.3.1) which induces the following
isomorphisms of left Wm-modules:

Wm/WmIA ∼= RA[x]

Wm/JA,δ
∼= RA[x]/

d
∑

i=1

DA,δ,iRA[x].

Proof. See [1, Theorem 4.4]. (Compare also [18, Theorem 6.8] and [16, Corol-
lary 11.1.3].) �

Remark 3.3.4. Even beyond the setting of Example 3.2.4, one can give a good
“toric” description of Wm/JA,δ. As this is not necessary for our purposes, we defer
to [1] for details.

3.4. Morphisms of A-hypergeometric systems.

Definition 3.4.1. Let A′ be a d′ ×m′ matrix over Z and let δ′ ∈ Cd′

be a col-
umn vector. By a morphism from the GKZ hypergeometric system with parameters
(A, δ) to the GKZ hypergeometric system with parameters (A′, δ′), we will mean a
homomorphism ψ : RA[x] → RA′ [x] of C-modules which induces a homomorphism

ψ : RA[x]/

d
∑

i=1

DA,δ,iRA[x] → RA′ [x]/

d′

∑

i′=1

DA′,δ′,i′RA′ [x].
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In order to make this meaningful, we must also have some compatibility with the
∂j ; we will describe this on a case-by-case basis.

Construction 3.4.2. Let B be a d′ × d matrix over Z and let B′ be a d× d′

matrix over Z satisfying

BA = A′, B′A′ = A, Bδ = δ′, B′δ′ = δ.

Consider the C-linear ring homomorphisms ψ : RA[x] → RA′ [x], ψ′ : RA′ [x] →
RA[x] of C-modules given by

ψ : xj 7→ xj , Xi 7→

d′

∏

i′=1

X
Bi′i

i′ ,

ψ′ : xj 7→ xj , Xi′ 7→

d
∏

i=1

X
B′

ii′

i .

These satisfy the following identities:

ψ′ ◦ ψ = idRA[x], ψ ◦ ψ′ = idRA′ [x],

ψ(gA) = gA′ , ψ′(gA′) = A,

DA′,δ′,i′ ◦ ψ =
∑

i

Bi′iψ ◦DA,δ,i,

DA,δ,i ◦ ψ
′ =

∑

i′

B′
ii′ψ

′ ◦DA′,δ′,i′ .

Consequently, ψ and ψ′ define morphisms (A, δ) → (A′, δ′), (A′, δ′) → (A, δ) which
are inverses of each other and manifestly commute with ∂1, . . . , ∂m.

Example 3.4.3. In Example 3.2.5, we have obvious isomorphisms as in Con-
struction 3.4.2 corresponding to the permutations of α1, . . . , αn and of β1, . . . , βn;
however, these are not automorphisms because they change δ. We may similarly con-
struct an isomorphism effecting the interchange of parameters from Remark 3.1.2.

Example 3.4.4. We construct an isomorphism, in the sense of Construction 3.4.2,
between the minimal GKZ system corresponding to a hypergeometric equation
(Example 3.2.4) and the more symmetric version (Example 3.2.5). This uses the
matrices

B(i1,i2)i =











1 i = i1

−1 i = m+ i2

0 otherwise.

B′
i(i1,i2)

=



















1 (i1, i2) = (i, n)

1 (i1, i2) = (i−m,n)

−1 (i1, i2) = (i−m, i−m)

0 otherwise.

Construction 3.4.5. Let T ∈ Zd be a vector in the column span of A and put
A′ := A, δ′ := δ − T . Let ψ : RA[x] → RA′ [x] be the map given by multiplication

by XT1
1 · · ·XTd

d ; it satisfies

DA′,δ′,i ◦ ψ = ψ ◦DA,δ,i (i = 1, . . . , d)

and therefore defines a morphism (A, δ) → (A′, δ′) which manifestly commutes with
∂1, . . . , ∂m.

We now consider some cases where the interaction with ∂1, . . . , ∂m is a bit more
subtle.
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Construction 3.4.6. Let A′ be the d × (m − 1) matrix obtained from A by
omitting the last column, and put δ′ := δ. The ring homomorphism ψ : RA[x] →
RA′ [x] specializing xm to 0 then satisfies

DA′,δ,i ◦ ψ = ψ ◦DA,δ,i (i = 1, . . . , d);

consequently, it defines a morphism (A, δ) → (A′, δ′) which commutes with the
operators ∂1, . . . , ∂m−1. This does not extend to ∂m because no such operator has
been defined on RA′ [x].

Construction 3.4.7. Put A′ = A, δ′ := pδ, and consider the morphism
ϕ : RA[x] → RA[x] given by the substitution xj 7→ xpj , Xi 7→ Xp

i . If we define

h := λ
m
∑

j=1

(xjX
(j) − (xjX

(j))p),

then

(DA,pδ,i −Θi(h)) ◦ ϕ = pϕ ◦DA,δ,i (i = 1, . . . , d)

(xj∂A,j − xj∂j(h)) ◦ ϕ = pϕ ◦ (xj∂A,j) (j = 1, . . . ,m).

Formally, this means that exp(h)ϕ is a morphism which defines a Frobenius inter-
twiner (because of the factor of p in the second relation). In the p-adic context,
this becomes not merely formal because of the convergence properties of the Dwork
exponential series (for a suitable choice of λ).

Remark 3.4.8. Somewhat tangentially to our current discussion, we note that
one could also make the Frobenius intertwiner nonformal by working over a base
ring equipped with a topology in which λ, xj − 1, and Xi − 1 are small enough to
make the series exp(h) convergent. This hints towards a potential connection with
q-de Rham cohomology in the sense of Scholze [39] and prismatic cohomology in
the sense of Bhatt–Scholze [6].

4. Hypergeometric Frobenius intertwiners

We now give our interpretation of Dwork’s construction of Frobenius inter-
twiners for hypergeometric equations, based on morphisms of A-hypergeometric
systems.

4.1. Existence of Frobenius intertwiners.

Definition 4.1.1. Fix a choice of π in an algebraic closure of Qp satisfying
πp−1 = −p. Define the Dwork exponential series to be the series

Eπ(t) :=

∞
∑

j=0

cjt
j = exp(π(t− tp));

it has radius of convergence p(p−1)/p2

> 1 [37, §VII.2.4].

Theorem 4.1.2 (Dwork). Let α;β and α′, β′ be two sequences in Zp such

that pα; pβ are congruent modulo Z to some permutations of α′, β′. Then over
Qp(π), there exists a Frobenius intertwiner between the connections corresponding
to P (α, β) and P (α′, β′).

Proof. We construct the desired intertwiner as follows.
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• Take A, δ as in Example 3.2.5, then apply Construction 3.4.7 (taking λ
there to be our chosen π) to replace α;β with pα; pβ.

• Use Construction 3.4.5 to replace pα; pβ with a permutation of α′;β′.

• Use Example 3.4.3 to undo the permutation of α′;β′.

Note that the convergence property of the Dwork exponential is needed in the first
step. �

Remark 4.1.3. In Theorem 4.1.2, if m = n and αi − βj /∈ Z for all i, j, then
we may combine Lemma 2.3.6 and Proposition 3.1.11 to deduce that the Frobenius
intertwiner is unique up to scalar multiplication. On the other hand, we can resolve
the ambiguity completely by observing that the construction given by Theorem 4.1.2
has the following properties.

(a) In case α = α′, β = β′, the Frobenius intertwiner is the identity.
(b) The construction of the Frobenius intertwiner is compatible (in a natural

sense which we decline to notate) with permutations of each of α, β, α′, β′.
(c) Suppose that

(4.1.3.1) α′
i = pαi + µi, β′

j = pαj + νj (µi, νj ∈ Z).

Then the restriction of the Frobenius intertwiner to any fixed point of X
varies p-adically continuously as we vary α, β while maintaining (4.1.3.1)
and fixing µi, νj .

Remark 4.1.4. For n = 2, an alternate construction of the Frobenius inter-
twiner has been given by Salinier [38] using rigidity; this has been generalized
to all n by Vargas Montoya [44]. While this approach is technically simpler than
Dwork’s method, the latter is more useful for our ultimate aim of making explicit
computations.

4.2. Gamma factors and the Dwork exponential series. In order to
make use of Construction 3.4.7, we recall the description due to Dwork1 [7], [15,
§1] of the relationship between the Morita p-adic gamma function and Gauss sums
provided by the Gross–Koblitz formula [25]. See Remark 5.1.2 for the geometric
interpretation of this.

Definition 4.2.1. Recall (or see [37, §VII.1.1]) that there exists a unique
continuous function Γp : Zp → Z×

p characterized by the properties

Γp(0) = 1(4.2.1.1)

Γp(x+ 1)

Γp(x)
=

{

−x x /∈ pZp

−1 x ∈ Zp.
(4.2.1.2)

This function is the Morita p-adic gamma function.

Definition 4.2.2. For a, b ∈ Z(p) \ Z with pb− a = µ ∈ Z, Dwork defines the
symbol γp(a, b) ∈ Qp(π) by the formula

γp(a, b) =
∑

i∈Z

cpi+µ(b)i/(−π)
i.

1The attribution is predicated on the fact that [7] was written by Dwork under the pseudonym
Maurizio Boyarsky [31, p. 341, first sidebar].
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Equivalently, writing

ψ(f)(x) =
1

p

∑

zp=x

f(x),

we have

(4.2.2.1) ψ(xa−pbEπ(x)) ≡ γp(a, b) mod

(

x
d

dx
+ b+ πx

)

Qp(π)JxK.

For fixed µ ∈ Z, using the series representation we may extend γp(pb − µ, b) to a
continuous function of b ∈ Zp; note that γp(0, 0) = 1. For s, t ∈ Z, we have the
functional equation [15, (1.7)]

(4.2.2.2) γp(a+ s, b+ t) = γp(a, b)(−π)
t−s (a)s

(b)t
.

Theorem 4.2.3 (Dwork). For a, b ∈ Z(p) with pb− a = µ ∈ {0, . . . , p− 1}, we
have

γp(a, b) = πµΓp(a).

Proof. Using the above discussion, one checks that γ(a, b)/πµ satisfies the
defining properties (4.2.1.1), (4.2.1.2) of Γp(a); this proves the claim. �

As indicated in [7], Theorem 4.2.3 can be viewed as an equivalent form of
the Gross–Koblitz formula for Gauss sums [25]. In other words, we immediately
compute the Frobenius intertwiners for hypergeometric equations of order 1.

Corollary 4.2.4. Let {x} := x − ⌊x⌋ denote the fractional part of x. In the
case

m = n = 1, α1, α
′
1, β1, β

′
1 ∈ [0, 1), α1 6= β1,

for
µ = p(α1 − β1)− (α′

1 − β′
1) ∈ Z,

the Frobenius interwiner of Theorem 4.1.2 is given by multiplication by

γ(α′
1 − β′

1 + 1, α1 − β1 + 1) := πµΓp({α
′
1 − β′

1})×
(({

1
α1−β1

α1 > β1

p α1 < β1

)

×

({

α′
1 − β′

1 α′
1 > β′

1

−1 α′
1 < β′

1

))

.

Proof. We first make some auxiliary calculations in order to prepare for the
use of Theorem 4.2.3. Note that

pα1 − α′
1, pβ1 − β′

1 ∈ Z ∩ (−1, p) = {0, . . . , p− 1}

and so
µ = (pα1 − α′

1)− (pβ1 − β′
1) ∈ {1− p, . . . , p− 1}.

If α1 > β1, then we also have p(α1 − β1) ∈ (0, p), α′
1 − β′

1 ∈ (−1, 1) and so

(4.2.4.1) µ ∈ {1− p, . . . , p− 1} ∩ (−1, p+ 1) = {0, . . . , p− 1}.

Similarly, if α1 < β1, then p(α1 − β1) ∈ (−p, 0), α′
1 − β′

1 ∈ (−1, 1) and so

µ ∈ {1− p, . . . , p− 1} ∩ (−p− 1, 1) = {1− p, . . . , 0}

and

(4.2.4.2) p(α1 − β1 + 1)− (α′
1 − β′

1 + 1) = (p− 1) + µ ∈ {0, . . . , p− 1}.

In particular, µ is either zero or has the same sign as α1 − β1.
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By (4.2.2.1) and (4.2.2.2), the Frobenius intertwiner is given by multiplication
by

γ(α′
1 − β′

1 + 1, α1 − β1 + 1) = γ(α′
1 − β′

1, α1 − β1)
α′
1 − β′

1

α1 − β1
.

In case α1 < β1, we apply Theorem 4.2.3 and (4.2.4.2) to write

γ(α′
1 − β′

1 + 1, α1 − β1 + 1) = π(p−1)+µΓp(α
′
1 − β′

1 + 1).

In case α1 > β1, we may apply Theorem 4.2.3 and (4.2.4.1) to write

γ(α′
1 − β′

1, α1 − β1) = πµΓp(α
′
1 − β′

1).

We can thus write the intertwiner as

(4.2.4.3)

{

πµ α′

1−β′

1

α1−β1
Γp(α

′
1 − β′

1) α1 > β1

−pπµΓp(α
′
1 − β′

1 + 1) α1 < β1.

Now note that if α′
1 − β′

1 and α1 − β1 are of opposite sign, we cannot have µ = 0,
and so we can rewrite (α′

1 −β′
1)Γp(α

′
1 −β′

1) as −Γp(α
′
1 −β′

1 +1) or vice versa. This
yields the stated formula. �

4.3. Specialization and factorization. Using the GKZ interpretation, we
may immediately extend the previous computation to arbitrary rank.

Hypothesis 4.3.1. Throughout §4.3, suppose that m ≤ n; αi, βj ∈ Z(p)∩ [0, 1)
for i, j = 1, . . . , n; and αi 6= βj for i, j = 1, . . . , n. Define α′

i := {pαi}, β
′
j := {pβj}.

Theorem 4.3.2. Suppose that k ∈ {1, . . . , n} is such that βj 6= βk for j 6= k.
Then the matrix Φλ for λ = βk is the 1× 1 scalar

m
∏

i=1

γ(α′
i − β′

k + 1, αi − βk + 1)

n
∏

j=1

γ(β′
j − β′

k + 1, βj − βk + 1)−1

(Note that the factor j = k contributes 1 to the product.)

Proof. For ease of notation we treat only the case k = n. In this case, under
the GKZ interpretation, we may read off Φλ by specializing xm+n to 0 via the
morphism from Construction 3.4.6. In this case, as per Remark 3.2.7 we obtain the
specified factorization. �

By combining Theorem 4.3.2 with Corollary 4.2.4, we get an explicit formula
for the initial condition for the Frobenius intertwiner in the case where β1, . . . , βn
are pairwise distinct mod Z.

Corollary 4.3.3. In addition to Hypothesis 4.3.1, suppose that β1, . . . , βn are
pairwise distinct. Consider the formal solution matrix obtained by multiplying the
function (3.1.7.1) corresponding to βk by the scalar factor

(4.3.3.1)

∏m
i=1(αi − βk)+

∏n
j=1(βj − βk)+

, (x)+ :=

{

x x > 0

1 x ≤ 0.

Define the zigzag function associated to α, β as the function Z : R → R given by

Z(x) = #{i ∈ {1, . . . ,m} : αi < x} −#{j ∈ {1, . . . , n} : βi < x}.

Then the sole entry of Φλ for λ = βk can be written as

(−1)Z(β′

k)pZ(βk)µc

∏m
i=1 Γp({α

′
i − β′

k})
∏n

j=1 Γp({β′
j − β′

k})
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for

c :=
n
∑

i=1

(pαi − α′
i)−

n
∑

j=1

(pβj − β′
j).

Remark 4.3.4. In Corollary 4.3.3, the factor µc does not depend on k. We may
thus eliminate it at the expense that our normalization no longer matches that of
Theorem 4.2.3.

Remark 4.3.5. In applications, we will typically be interested in the case
where, in addition to the conditions of Hypothesis 4.3.1, one has that m = n and
α, β ⊂ Z(p) ∩ [0, 1) are Galois-stable, meaning that any two elements of Z(p) ∩ [0, 1)
with the same denominator occur with the same multiplicity in α and β. These
conditions ensure the existence of a family of hypergeometric motives with this
hypergeometric equation as associated Picard–Fuchs equation.

In this situation, a further renormalization beyond that of Remark 4.3.4 is some-
times warranted in order to ensure that the Frobenius structure correctly computes
the characteristic polynomials of the p-Frobenius of the associated hypergeometric
motives. This is achieved by taking the entry of Φλ to be

(−1)Z(β′

k)pZ(βk)−min{Z(β∗)}

∏m
i=1 Γp({α

′
i − β′

k})/Γp(α
′
i)

∏n
j=1 Γp({β′

j − β′
k})/Γp(β′

j)
.

The net effect of the factors Γp(α
′
i) and Γp(β

′
j) is limited by the identity

Γp(x)Γp(1− x) = (−1)y, y ∈ {1, . . . , p}, y ≡ x (mod p)

and its special case

Γp

(

1

2

)2

=

(

−1

p

)

(p 6= 2).

4.4. An example with repeated parameters. In lieu of extending Theo-
rem 4.3.2 to the case where the βj are not all distinct (which would create some
notational headaches), we sketch an example originally due to Shapiro [40, 41].

Example 4.4.1. Consider the case

m = n = 4, α;β =

(

1

5
,
2

5
,
3

5
,
4

5

)

; (1, 1, 1, 1).

This example is well-known; the corresponding hypergeometric equation is a Picard–
Fuchs equation for the Dwork pencil of quintic threefolds.

Assume p 6= 2, 5. (The restriction p 6= 5 is essential; the restriction p = 2 is
probably not, but is made in [41].) For λ = 0, the matrix Φλ,0 is upper-triangular
with eigenvalues 1, p, p2, p3. To compute the off-diagonal entries, we use p-adic in-
terpolation: consider the statement of Corollary 4.3.3 for

β = (1, 1 + ǫ, 1 + 2ǫ, 1 + 3ǫ), ǫ :=
pn

3pn + 1
.

For U the formal solution matrix, the matrix ΦU equals the diagonal matrix whose
k-diagonal entry (for k = 0, . . . , 3) equals

z(p−1)kǫ(−p)k
Γp(−1/5− kǫ)Γp(−2/5− kǫ)Γp(−3/5− kǫ)Γp(−4/5− kǫ)

Γp(−kǫ)Γp((1− k)ǫ)Γp((2− k)ǫ)Γp((3− k)ǫ)
.

Using Definition 4.2.2 and Theorem 4.2.3, one may compute coefficients of the
Taylor series for Γp (see for example [41, Proposition 3.1]); we may thus rewrite Φ0
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truncated at ǫ4, and the formal solution matrix U truncated at ǫ4 and z4. Taking the
limit of Φ = UΦUσ(U

−1) as ǫ→ 0+, and using the relationship between derivatives
of Γp and p-adic zeta values (e.g., see [11, Proposition 11.5.19]), one may recover
Shapiro’s formula

Φλ =









1 0 0 23

52 (p
3 − 1)ζp(3)

0 p 0 0
0 0 p2 0
0 0 0 p3









.

We leave further details to the interested reader.

5. Applications to computation of L-functions

The formula of Dwork can be used as part of an efficient algorithm for comput-
ing Euler factors of L-functions associated to hypergeometric motives. We sketch
this here. (In the case n = 2, an alternate approach has been described by Asakura
[2].)

5.1. Hypergeometric motives.

Definition 5.1.1. Suppose that m = n and that α, β ⊂ Q are both Galois-
stable. Then there exists a family of motivesH(α;β; t) over Q(t) which for t 6= {0, 1}
is pure of dimension n and weight

w = max(Z)−min(Z)− 1

where Z denotes the zigzag function defined in Corollary 4.3.3. For example, this
motive can be found inside the family of varieties considered in [4].

If we specialize to a value of t in Q, then the motive H(α;β; t) has good re-
duction at all places of the number field Q(t) at which α1, . . . , αn, β1, . . . , βn have
nonnegative valuation and t, t−1, t − 1 have nonnegative valuation. An excluded
prime is said to be wild if the first condition fails (note that this does not depend
on t) and tame otherwise.

Remark 5.1.2. When the Galois-stable condition holds and the βj are pairwise
distinct, the specialization of H(α;β; t) at t = 0 is a CM motive, whose associated
L-function is therefore given by certain Jacobi sums. The formula given in Corol-
lary 4.3.3 can also be derived by applying the Gross-Koblitz formula to these Jacobi
sums.

When the βj are not pairwise distinct, the specialization of H(α;β; t) at t = 0
becomes a mixed motive, whose L-function then includes a contribution from exten-
sion classes. Again, it should be possible to make an explicit link with degenerations
of Corollary 4.3.3; for example, in Example 4.4.1, the appearance of ζp(3) should be
related via motivic considerations to a corresponding appearance of ζ(3) in mirror
symmetry [35].

Remark 5.1.3. We expect that there are corresponding families of motives
associated to GKZ systems associated to parameters (A, δ) with δ ∈ Qd, under a
suitable analogue of the Galois-stable condition: for each prime p for which δ ∈ Zd

(p),

the GKZ system with parameters (A, pδ) should be isomorphic to the original one.

Remark 5.1.4. The families H(α;β; t) and H(β;α; t−1) are isomorphic. This
can be used in certain cases where one wants to make an asymmetric restriction on
α and β, as in our computation of Frobenius structures.
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5.2. The approach via trace formulas. Before describing the approach we
have in mind, we describe an alternate approach for purposes of comparison.

Remark 5.2.1. Suppose that t ∈ Q\{0, 1} and p is a prime at which H(α;β; t)
has good reduction. For f a positive integer, let Hpf be the trace of the f -th power
of the p-Frobenius acting on H(α;β; t); note that this depends only on the residue
of t modulo p. By combining [4] with the Gross-Koblitz formula, one can obtain
a highly practical formula for Hpf ; this is a poorly documented result of Cohen–
Rodriguez Villegas–Watkins, but the formula can be found in the documentation
of the Magma package on hypergeometric motives:

http://magma.maths.usyd.edu.au/magma/handbook/hypergeometric_motives.

The same formula is also implemented in SageMath.

5.3. The approach via Frobenius structures. To simplify this discussion,
we assume that β1, . . . , βn are pairwise distinct. Recall that via Remark 5.1.4, we
can swap α with β to achieve these conditions in some cases where it is not initially
satisfied.

Let N denote the companion matrix for the differential operator P (α, β).
Let U denote the formal solution matrix obtained from the matrix U of Corol-
lary 3.1.9 by multiplying its k-th column by the factor (4.3.3.1) for k = 1, . . . , n.
By Theorem 4.2.3 and Corollary 4.3.3, there is a Frobenius structure on N with
Φ = Φ0σ(U

−1), where Φ0 is the matrix with

(Φ0)i,j = (−1)Z(βi)pZ(βj)−min{Z(β∗)}

∏n
k=1 Γp({αk − βi})/Γp(αk)

∏n
k=1 Γp({βk − βi})/Γp(βk)

t1−p+⌊pβj⌋

whenever βi ≡ pβj (mod Z) and (Φ0)i,j = 0 otherwise. Note that this computation
nominally takes place in Qp((t)); in order to represent the elements of Φ as rigid
analytic functions, we must multiply by a suitable power of t − 1, then truncate
modulo suitable powers of p and t. One can then specialize t to any (p− 1)-st root
of unity to obtain a matrix whose characteristic polynomial gives the Euler factor
of H(α;β; p). (Beware that we have not yet checked that the scalar normalization
is correct. One way to do this would be to use this formula to reprove the Beukers–
Cohen–Mellit trace formula.)

We have an experimental SageMath implementation of this algorithm, and
have done numerous tests to confirm its agreement with Beukers–Cohen–Mellit
(albeit without fixing the precision estimates; see below). See [33].

Remark 5.3.1. In order to make the previous algorithm rigorous, one must
bound the p-adic and t-adic precision requirements. The power of t − 1 can be
estimated using the method of [34]. This depends on estimating the p-adic valuation
of Φ0; this appears to be controlled by the p-adic valuations of the differences αk−βi
and βk−βi. In any case, it appears that for a fixed p-adic truncation (which suffices
for the computation of Euler factors), the power of t− 1 is bounded independently
of p; this means that the t-adic truncation can be bounded by cp for some constant
c independently of p.

This has the following consequences for an average polynomial time algorithm.
One is trying to evaluate the entries of the matrix

(t− 1)eUΦ0σ(U
−1),

modulo some fixed power of p; they look like polynomial of degree bounded by
cp where c is independent of p. This means that for the purposes of evaluation
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σ(U−1), we need only a constant number of terms of U−1; these coefficients are
moreover rational numbers with no dependence at all on p. We may thus frame the
problem as that of computing, for various primes p, a certain Q-linear combination
of coefficients of terms of U of the form tap+b for certain fixed pairs (a, b), then
reducing the result modulo a fixed power of p.

5.4. Comparison of approaches. When comparing the relative efficacy of
the trace formula and Frobenius structures, it is important to separate different use
cases in which the relative strengths of the approaches play different roles. In the
following discussion, we mostly ignore constants and logarithmic factors.

Remark 5.4.1. Suppose we wish to compute Hp(α;β; t) for a single choice of
α, β, t and a single prime p. Both approaches have complexity linear in p; however,
the trace formula carries less overhead in this context and thus is preferable in
practice. Moreover, if one repeats the computation for the same p and different
values of α, β, one can cache the Mahler expansion of Γp for additional savings.

Remark 5.4.2. Suppose we fix α, β, p, and wish to compute either Hp(α;β; t)
for all values of t (or equivalently, for t ∈ {2, . . . , p − 1}). In this case, the trace
formula can be computed as a polynomial in a variable (running over (p − 1)-st
roots of unity); alternatively, the Frobenius structure can be computed and then
specialized repeatedly.

Remark 5.4.3. Suppose we wish to compute the full Euler factor of the L-
function associated to H(α;β; t) at a prime p. In this case, the trace formula ap-
proach requires computing Hpf (α;β; t) for f ranging from 1 to half the degree of

the associated L-function; the formula is a sum over pf − 1 terms. By contrast,
the Frobenius structure computation gives the entire Euler factor at once, with
complexity linearly in p.

Remark 5.4.4. Suppose we wish to compute the first X Dirichlet coefficients
of the L-function associated to H(α;β; t); this is the relevant use case when making
numerical computations with the L-function. Using the trace formula directly scales
quadratically in X; however, it should be possible to develop an average polynomial
time algorithm in the sense of Harvey [26, 27] (see also [28, 29]). A partial result
has been given by Costa–Kedlaya–Roe [13], who compute Hp(α;β; t) (mod p) for
all primes p ≤ X with complexity linear in X. As remarked upon in [13], it should
be possible to adapt this approach to compute Hp(α;β; t) exactly for all primes
p ≤ X with similar complexity.

It is less clear how to include higher prime powers into this approach. However,
one can use Frobenius structures to circumvent this difficulty, by directly computing
full Euler factors for all primes p ≤ X1/2, then using these to recover Hpf (α;β; t)

for all prime powers pf ≤ X with f > 1. Since this involves O(X1/2) computations
each of complexity linear in X1/2, this does not dominate the computation of prime
Dirichlet coefficients.

Remark 5.4.5. Suppose we wish to compute the full Euler factors of the L-
function associated to H(α;β; t) at all primes p ≤ X; this is the relevant use case
when studying statistical properties of the Euler factors (e.g., the generalized Sato-
Tate conjecture). In this case, it should be possible (and relatively straightforward)
to give an average polynomial time computation using Frobenius structures; how-
ever, we do not develop this point further here.
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6. Towards A-hypergeometric motives

In this paper, we have used only a restricted form of the theory ofA-hypergeometric
systems. However, it is likely that the circle of ideas giving rise to hypergeometric
motives and L-functions can be extended beyond this special case; this question
was posed at the end of the introduction of [13]. We record here some references
that point towards such an extension.

The story of hypergeometric motives begins with Greene’s construction of finite
hypergeometric sums [24]. This was generalized to A-hypergeometric systems by
Gelfand–Graev [21].

Greene’s sums were reinterpreted in terms of ℓ-adic cohomology by Katz [30].
This interpretation was extended to the Gelfand–Graev construction by Lei Fu
[19]. The p-adic construction described in this paper has been generalized by Fu–
Wan–Zhang [20]. However, we know of no analogue of the Beukers–Cohen–Mellit
construction.
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