


ordering the search. Lemons et al. (2022) show that beam
search can also benefit significantly from ordering the search
on l(n) = depth(n)+ d(n) instead of f(n). They introduce
the bead and monobead algorithms, which perform signif-
icantly better than beam and monobeam in non-unit cost
domains (and are equivalent to them in unit cost domains).
Thus we focus on these algorithms in this paper.

The guarantee of monotonicity, while making beam
search easier to use, often comes with a price in terms of
solution cost. We can see in Figure 1 many points at which
bead search returns a better quality solution than monobead,
and this is true across the wide range of experiments reported
by Lemons et al. (2022). In this paper, we explore whether
it is possible to attain some of the benefits of monotonicity
while reducing the penalty paid in terms of solution cost.
An obvious approach is to select only some elements of the
beam using a monotonic selection policy. We present two
new algorithms that each embody a different way of doing
this. First, mono-floor selects the first portion of the beam
(beam slots 1 through w−n, where w is beam width) mono-
tonically but then selects the remainder of the beam using
the regular bead selection rule. And second, mono-onward
selects the first n slots of the beam as in bead but then the
remaining slots are selected using monotonic slot-based se-
lection. We study the properties and the empirical perfor-
mance of these variants on four popular search benchmarks,
using a variety of cost models in two of those domains. We
find that, as hoped, mono-onward and mono-floor often find
solutions with better cost than monobead and typically have
more monotonic behavior than bead. This work helps illumi-
nate the design space between regular and monotonic beam
searches, illustrating what is possible, providing practition-
ers with additional tools for satisficing search problems, and
clarifying possible tradeoffs between monotonicity and so-
lution cost.

Background
The reason why beam search often shows non-monotonic
behavior is because when the width is increased, new nodes
are encountered and expanded, and the children of those new
nodes may have incorrectly low cost-to-go estimates. The
children of these new nodes look more promising than others
generated lower in the beam and take a position in the next
beam, pushing out the children of the other nodes. These
nodes are termed cuckoo nodes. If such cuckoo nodes are se-
lected for the beam, the search may lose access to good qual-
ity solutions that were found by beam searches with lower
widths.

Monobeam is a beam search algorithm that, unlike regular
beam search, provides guarantees on monotonicity, i.e., the
solution found with a beam width w2 is never worse than
any solution found with a beam width w1 < w2. Its main
difference with regular beam search is that after expanding
the i-th node of the current beam, it selects the best child
among all children of the first i expanded nodes, to be in
the next beam. This selection procedure guarantees that the
nodes picked for the next beam resulted from parents in the
corresponding beam slot or lower, preventing the appearance
of cuckoo nodes and thus guaranteeing monotonicity. Proof

Algorithm 1: monobeam(start,width)

1 solutionCost←∞;
2 beam[1]← start;
3 while at least one slot in the beam has a node with f

value < solutionCost do
4 candidates← ∅, nextBeam← [];
5 for each beam slot c from 1 to width do
6 if beam[c] is a node then
7 for each child of beam[c] do
8 if f(child) < f(beam[c]) then
9 f(child)← f(beam[c]);

10 if child is a goal and f(child) <
solutionCost then

11 store as solution;
12 solutionCost← f(child);

13 else
14 add child to candidates;

15 if candidates is nonempty then
16 nextBeam[c]← remove min f -value

node from candidates;

17 beam← nextBeam;

18 return solution;

of this property of monobeam was given by Lemons et al.
(2022). Algorithm 1 shows the main core of monobeam,
where duplicate detection and solution cost pruning have
been intentionally left out to improve readability.

Duplicate detection and solution cost pruning need to
be handled with care to preserve monotonicity. Removing
a node from further consideration because it was previ-
ously encountered with a better f value might introduce
non-monotonic behavior if the node previously seen were
generated in a higher beam slot. Neither beam search nor
monobeam are complete algorithms and thus, there is no
guarantee that we will fully explore the paths available from
the first time we encountered the node. Removing the du-
plicate may cause us to fail to find a solution that can be
reached through it. Consequently, when a good solution can
be found with a beam width low enough to prevent the gen-
eration of the node at the shallower level, incrementing the
beam width might prevent finding the same solution. How-
ever, if the node previously seen at the shallower level was
generated in a lower beam slot, then the duplicate can be
safely removed because doing so does not remove any solu-
tion found through the node at the shallower level.

When a solution is found in non-unit cost domains,
there is still a possibility that a better solution may have
been available at a greater depth in the search space. Stan-
dard beam search implementations can exploit or ignore
this fact without loss of their important features. However,
monobeam must continue searching until it is certain there
are no better solutions available, because one of those deeper
solutions may have been found by a lower width search.
Monobeam can, however, use the cost of the incumbent so-
lution to prune away nodes with an f value greater than that
incumbent’s cost, so long as the heuristic is admissible and



Algorithm 2: mono-floor(start,width,n)

1 solutionCost←∞;
2 beam[1]← start;
3 while at least one slot in the beam has a node with l

value < solutionCost do
4 candidates← ∅, nextBeam← [];
5 for each beam slot c from 1 to width do
6 if beam[c] is a node then
7 for each child of beam[c] do
8 if l(child) < l(beam[c]) then
9 l(child)← l(beam[c]);

10 if child is a goal and l(child) <
solutionCost then

11 store as solution;
12 solutionCost← l(child);

13 else
14 add child to candidates;

15 if c ≤ width− n and candidates is nonempty
then

16 nextBeam[c]← remove min l-value node
from candidates;

17 for each beam slot c from width− n + 1 to width
do

18 if candidates is nonempty then
19 nextBeam[c]← remove min l-value node

from candidates;

20 beam← nextBeam;

21 return solution;

the algorithm is selecting nodes based on f values. This is
because no node will be pruned away which could lead to a
better solution, and we will still select for the same slots any
node with f value lower than the incumbent cost. However,
when searching on l values (recall l(n) = depth(n)+d(n)),
we cannot use the incumbent’s cost for pruning. We would
have to prune on f value to insure that we give the best so-
lution (not just the shallowest, which l optimizes), but our
node selection would be disrupted because we may lose
some of the nodes which would have been selected by a
lower width search based on having the best l value.

Because of the demonstrated performance of distance-to-
go in this setting, we focus our discussion and experiments
henceforth on the d-based variants of beam, monobeam, and
our new algorithms. In unit cost settings, the d-based and
h-based variants are equivalent, but we will use the names
with ‘d’ in them (bead, monobead, etc.) throughout.

Unfortunately, monobead can sometimes produce worse
solution costs than bead search for a specific beam width.
Monobead is forced to choose from a limited subset of the
nodes when filling a specific slot, rather than being able to
consider all of the nodes. While this prevents the appearance
of cuckoo nodes, it also sometimes prevents the selection of
nodes that are more promising.

Mono-Floor
We first present a hybrid approach, called mono-floor, which
merges the slot-based monotonic approach with a non-
monotonic beam-style search. (Pseudocode is presented in
Algorithm 2.) It takes two arguments: the beam width w and
a non-monotonicity parameter n. For a beam width w, beam
slots 1 through w−n are selected monotonically, that is, the
node from a given slot is expanded, its children added to a
priority queue called candidates, and the corresponding slot
in the next beam is filled using the best node in candidates

at that time. This allows us to ensure that, in this portion of
the beam, we maintain search order through each slot s as if
a search of width s were being performed, for all s ≤ w−n.
In this way, we avoid the influence of cuckoo nodes and en-
sure that we will not lose any solution that would have been
found by a search with a narrower beam width. However,
once we reach the upper n slots of the beam, we proceed to
expand all nodes from slots (w−n)+1 onward, adding their
children to candidates and then select for slots (w−n)+1
through w the minimum l−value nodes now on candidates .
This portion of the beam acts more like a standard beam
search, optimizing for l value and taking no measures to pre-
serve solutions that would have been found by a search with
a narrower beam width.

The careful preservation of search order in the first portion
of the beam means that a mono-floor search of width w will
return no worse of a solution than could have been found by
a monobead search of width w − n. It may find better so-
lutions than this bound in the non-monotonic portion of the
beam, but there is no certainty that these will be maintained
when the beam width changes. While this is not true mono-
tonic behavior across beam widths, it allows us to have some
kind of fall-back guarantee of solution quality when the up-
per portion of the beam is ill-behaved. This floor on solution
quality is what gives rise to the name mono-floor.

Figure 2 shows the behavior of mono-floor where n =
30 relative to bead search on a single instance of the 15-
puzzle. It is clear that mono-floor is not strictly monotonic.
However, there are many sequences of beam widths where
the solution quality is stable, which beam search does not
have in this instance. When a solution is found in the lower
portion of the beam, that solution is maintained in searches
with larger beam widths. However, the solution cost does
lower at some single beam widths without maintaining that
solution quality for subsequent beam widths. These are cases
where a new solution was found in the upper, non-monotonic
portion of the beam but then lost at higher beam widths.

Similar to monobeam and monobead, duplicate elimina-
tion can be done without loss of monotonicity if it is done
with attention to the slot in which a duplicate was expanded.
If we only eliminate duplicates from slots greater than or
equal to the slot at which the node was previously seen, this
will still guarantee that search order in lower slots will not
be affected by search done in higher beam slots. The imple-
mentations tested in unit cost domains used both duplicate
elimination and solution cost pruning, while the implemen-
tations using distance-to-go in non-unit cost domains used
only duplicate elimination but not pruning based on solution
cost.











Algorithm 3: mono-onward(start,width, n)

1 solutionCost←∞;
2 beam[1]← start;
3 while at least one slot in the beam has a node with l

value < solutionCost do
4 candidates← ∅, nextBeam← [];
5 for each beam slot c from 1 to n do
6 if beam[c] is a node then
7 for each child of beam[c] do
8 if l(child) < l(beam[c]) then
9 l(child)← l(beam[c]);

10 if child is a goal and l(child) <
solutionCost then

11 store as solution;
12 solutionCost← l(child);

13 else
14 add child to candidates;

15 for each beam slot c from 1 to n do
16 if candidates is nonempty then
17 nextBeam[c]← remove min l-value node

from candidates;

18 for each beam slot c from n+1 to width do
19 if beam[c] is a node then
20 for each child of beam[c] do
21 if l(child) < l(beam[c]) then
22 l(child)← l(beam[c]);
23 if child is a goal and l(child) <

solutionCost then
24 store as solution;
25 solutionCost← l(child);

26 else
27 add child to candidates;

28 if candidates is nonempty then
29 nextBeam[c]← remove min l-value node

from candidates;

30 beam← nextBeam;

31 return solution;

beam. In spite of this, mono-onward with n = w

2
provides

greater rank correlation values than bead in the majority of
domains tested, as seen in Table 1. Even more noteworthy,
mono-onward with fixed n values (30, 100, and 300) pro-
vided consistent improvement in rank correlation over bead
search in all cases except unit 20-pancake, where all algo-
rithms had a score of 1.00. There is a typically gradual de-
crease in rank-correlation scores as the n value increases,
because of two factors. First, as n increases, more of the ex-
ecutions (all those with w < n) will be using a standard
beam search approach. Second, the solution found at beam
width n may be worse than some solution found earlier. This
will cause one or more plateaus in solution quality until the
algorithm discovers a new solution in the monotonic portion
of the beam. We can see an example of this in Figure 3 for
beam widths 50 through around 300.

Discussion

The amount of the beam dedicated to monotonic search or
standard beam search has an impact both on solution qual-
ity and monotonicty, but it is not clear in advance what the
tradeoff will be for a given value of n. Users of these algo-
rithms will likely want to be able to balance these qualities
more precisely for their specific setting. There may be useful
work to be done around tuning the n parameter or provid-
ing guidance on what n value is appropriate for a particular
problem.

It is not well known when beam search is more or less
inclined toward non-monotonic behavior. Its monotonicity
varies across domains, cost models, and even specific in-
stances. Future work should be done to better understand
what features of a domain, problem, or beam width lead to
non-monotonic behavior.

Conclusions

Given the lack of scalability of optimal heuristic search,
satisficing methods such as bead and monobead are vitally
important for enabling applications. We have shown that it
is possible to design algorithms that lie between bead and
monobead. Both mono-floor and mono-onward provide a
parameter that allows the user adjust their degree of mono-
tonicity. Our experimental study showed that this indeed re-
duces the price of monotonicity in practice, resulting in the
hoped-for tradeoff between monotonicity and cost. In the
case of mono-floor, we can be sure not to fall back lower
than the ‘floor’ of a solution found by monobead using width
w − n. And in mono-onwards, we are certain there will be
no increase in solution cost for all beam widths greater than
n. These algorithms serve as additional examples of variants
of beam search for which, unlike the original beam search,
some kind of behavior guarantee can be made.

Acknowledgments

We are grateful for support from the NSF-BSF program via
NSF grant 2008594.

References

Bisiani, R. 1987. Beam search. In Shapiro, S. C., ed., En-
cyclopedia of Artificial Intelligence, 56–58. John Wiley and
Sons.

Cohen, E.; and Beck, C. 2019. Empirical Analysis of Beam
Search Performance Degradation in Neural Sequence Mod-
els. In Proceedings of ICML, 1290–1299.

Helmert, M. 2010. Landmark heuristics for the pancake
problem. In Third Annual Symposium on Combinatorial
Search.

Kendall, M. G. 1955. Rank Correlation Methods. Hafner.

Korf, R. E. 1985. Iterative-Deepening-A*: An Optimal Ad-
missible Tree Search. In Proceedings of IJCAI-85, 1034–
1036.

Lemons, S.; Linares López, C.; Holte, R. C.; and Ruml, W.
2022. Beam Search: Faster and Monotonic. In Proceedings
of ICAPS.



Thayer, J. T.; and Ruml, W. 2009. Using Distance Estimates
in Heuristic Search. In Proceedings of ICAPS.

Vadlamudi, S. G.; Aine, S.; and Chakrabarti, P. 2013. In-
cremental Beam Search. Information Processing Letters,
113(22-24): 888–893.


