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Introduction

We present a preliminary study of Situated Pathfinding
Among Moving Obstacles (SPAM-O), in which the objec-
tive is to traverse a grid, reaching the goal as quickly as
possible while avoiding both static and moving obstacles.
Real-time search planning algorithms address this by set-
ting a fixed time bound for the agent to return an incremen-
tal plan. In contrast, in the situated planning problem set-
ting, the agent plans “as the clock ticks” (Cashmore et al.
2018), meaning that time passes whether the agent is mov-
ing, thinking, or waiting. In situated planning, the agent can
plan and execute concurrently, and thus may benefit from
committing to a longer duration action, as that allows more
time to plan (Cserna, Ruml, and Frank 2017). A similar ex-
ample of a situated problem setting is the video game Frog-
ger, in which a vulnerable frog tries to cross a busy roadway.

To address SPAM-O, we examine ideas from real-time
planning and safe interval path planning (SIPP) (Phillips
and Likhachev 2011) and explore which combinations of
methods are most successful for a situated agent. We de-
velop and test a new ‘subinterval’-based method for suc-
cessor generation and state heuristic generalization. We find
that subinterval-based approaches increase the success rate
of situated agents with low to moderate expansion rates, and
that partitioned learning is critical for a successful agent.

SPAM-O

The SPAM-O state space is ⟨x, y, t⟩ where the location
is discrete and time is continuous. The environment con-
tains static and moving obstacles, which are represented
by safe temporal intervals at each grid cell. The actions
are of the form wait and move: waiting for a speci-
fied real-valued amount of time and then optionally mov-
ing to one of the 8 adjacent grid cells. The agent seeks
to minimize goal achievement time: the total time from
when the problem is presented until the agent arrives at
the goal. Actions cost their duration and when the agent
moves it is with a constant speed. A SPAM-O problem
is a 6-tuple: ⟨states ∈ S, safe intervals I(x, y), actions ∈
A, expansion rate E, sstart ∈ S, goal location G⟩. The ex-
pansion rate E is the number of expansions done by the
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search algorithm per time unit. The agent has perfect infor-
mation, but its time to look at this information is limited by
the expansion rate E.

SPAM-O is a situated version of the same problem ad-
dressed by SIPP. Safe intervals are constructed by group-
ing all consecutive co-located states into a safe interval at
that location, i ∈ I . This compresses the continuous time
dimension into a compact discrete representation, allowing
optimal solution with A∗ (Phillips and Likhachev 2011),
or sub-optimally with weighted A∗ or focal search variants
(Yakovlev, Andreychuk, and Stern 2020), or anytime algo-
rithms sufficiently fast to be used in soft-real-time on a spe-
cific problem instance (Narayanan, Phillips, and Likhachev
2012).

SIPP and its variants are able to search over a search space
⟨x, y, i⟩ of safe intervals because, when searching offline,
earlier arrival within a safe interval is always at least as good
as any later arrival, as the agent could wait in place to reach
that later state. This is no longer the case when the agent is
situated, as a hasty agent that forgoes extra planning by mov-
ing as quickly as possible into a safe interval may miss out
on opportunities that require more deliberation to recognize.
SPAM-O requires a more sophisticated handling of intervals
to be correct.

We also examine how leading real-time search methods
fare in the similar setting of situated planning. The situ-
ated agent must perform heuristic learning in order to es-
cape local minima; one can back up information from the
search frontier using methods like local search space real-
time A∗(LSS-LRTA∗) (Koenig and Sun 2009), potentially
with separate learning of costs due to static versus dynamic
portions of the environment using partitioned learning real-
time A∗(PLRTA∗) (Cannon, Rose, and Ruml 2014).

Algorithms

We explore three facets of SPAM-O: 1) the successor gen-
eration strategy, which controls which finite subset of the
potentially infinite possible successor states are generated;
2) the heuristic generalization strategy, which controls how
heuristic learning is generalized over related states; and 3)
the heuristic learning strategy, which controls how the agent
propagates heuristic information from the search frontier. In
offline SIPP, facets 2 and 3 do not apply, and the first is
avoided, due to earlier states within a safe interval domi-
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