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Abstract. Event-driven architectures are broadly used for systems that
must respond to events in the real world. Event-driven applications are
prone to concurrency bugs that involve subtle errors in reasoning about
the ordering of events. Unfortunately, there are several challenges in using
existing model-checking techniques on these systems. Event-driven appli-
cations often loop indefinitely and thus pose a challenge for stateless
model checking techniques. On the other hand, deploying purely stateful
model checking can explore large sets of equivalent executions.

In this work, we explore a new technique that combines dynamic
partial order reduction with stateful model checking to support non-
terminating applications. Our work is (1) the first dynamic partial order
reduction algorithm for stateful model checking that is sound for non-
terminating applications and (2) the first dynamic partial reduction algo-
rithm for stateful model checking of event-driven applications. We exper-
imented with the IoTCheck dataset—a study of interactions in smart
home app pairs. This dataset consists of app pairs originated from 198
real-world smart home apps. Overall, our DPOR algorithm successfully
reduced the search space for the app pairs, enabling 69 pairs of apps
that did not finish without DPOR to finish and providing a 7× average
speedup.

1 Introduction

Event-driven architectures are broadly used to build systems that react to events
in the real world. They include smart home systems, GUIs, mobile applications,
and servers. For example, in the context of smart home systems, event-driven sys-
tems include Samsung SmartThings [46], Android Things [16], OpenHAB [35],
and If This Then That (IFTTT) [21].
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Event-driven architectures can have analogs of the concurrency bugs that are
known to be problematic in multithreaded programming. Subtle programming
errors involving the ordering of events can easily cause event-driven programs to
fail. These failures can be challenging to find during testing as exposing these
failures may require a specific set of events to occur in a specific order. Model-
checking tools can be helpful for finding subtle concurrency bugs or understand-
ing complex interactions between different applications [49]. In recent years,
significant work has been expended on developing model checkers for multi-
threaded concurrency [2,19,22,25,57,60,62,64], but event-driven systems have
received much less attention [22,30].

Event-driven systems pose several challenges for existing stateless and state-
ful model-checking tools. Stateless model checking of concurrent applications
explores all execution schedules without checking whether these schedules visit
the same program states. Stateless model checking often uses dynamic par-
tial order reduction (DPOR) to eliminate equivalent schedules. While there has
been much work on DPOR for stateless model checking of multithreaded pro-
grams [2,12,19,25,64], stateless model checking requires that the program under
test terminates for fair schedules. Event-driven systems are often intended to
run continuously and may not terminate. To handle non-termination, stateless
model checkers require hacks such as bounding the length of executions to verify
event-driven systems.

Stateful model checking keeps track of an application’s states and avoids
revisiting the same application states. It is less common for stateful model check-
ers to use dynamic partial order reduction to eliminate equivalent executions.
Researchers have done much work on stateful model checking [17,18,32,56].
While stateful model checking can handle non-terminating programs, they miss
an opportunity to efficiently reason about conflicting transitions to scale to large
programs. In particular, typical event-driven programs such as smart home appli-
cations have several event handlers that are completely independent of each
other. Stateful model checking enumerates different orderings of these event han-
dlers, overlooking the fact that these handlers are independent of each other and
hence the orderings are equivalent.

Stateful model checking and dynamic partial order reduction discover dif-
ferent types of redundancy, and therefore it is beneficial to combine them to
further improve model-checking scalability and efficiency. For example, we have
observed that some smart home systems have several independent event han-
dlers in our experiments, and stateful model checkers can waste an enormous
amount of time exploring different orderings of these independent transitions.
DPOR can substantially reduce the number of states and transitions that must
be explored. Although work has been done to combine DPOR algorithms with
stateful model checking [61,63] in the context of multithreaded programs, this
line of work requires that the application has an acyclic state space, i.e., it ter-
minates under all schedules. In particular, the approach of Yang et al. [61] is
designed explicitly for programs with acyclic state space and thus cannot check
programs that do not terminate. Yi et al. [63] presents a DPOR algorithm for
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stateful model checking, which is, however, incorrect for cyclic state spaces. For
instance, their algorithm fails to produce the asserting execution in the example
we will discuss shortly in Fig. 1. As a result, prior DPOR techniques all fall short
for checking event-driven programs such as smart home apps, that, in general,
do not terminate.

Our Contributions. In this work, we present a stateful model checking tech-
nique for event-driven programs that may not terminate. Such programs have
cyclic state spaces, and existing algorithms can prematurely terminate an exe-
cution and thus fail to set the necessary backtracking points to fully explore a
program’s state space. Our first technical contribution is the formulation of a
sufficient condition to complete an execution of the application that ensures that
our algorithm fully explores the application’s state space.

In addition to the early termination issue, for programs with cyclic state
spaces, a model checker can discover multiple paths to a state s before it explores
the entire state space that is reachable from state s. In this case, the backtracking
algorithms used by traditional DPOR techniques including Yang et al. [61] can
fail to set the necessary backtracking points. Our second technical contribution
is a graph-traversal-based algorithm to appropriately set backtracking points on
all paths that can reach the current state.

Prior work on stateful DPOR only considers the multithreaded case and
assumes algorithms know the effects of the next transitions of all threads before
setting backtracking points. For multithreaded programs, this assumption is not
a serious limitation as transitions model low-level memory operations (i.e., reads,
writes, and RMW operations), and each transition involves a single memory
operation. However, in the context of event-driven programs, events can involve
many memory operations that access multiple memory locations, and knowing
the effects of a transition requires actually executing the event. While it is con-
ceptually possible to execute events and then rollback to discover their effects,
this approach is likely to incur large overheads as model checkers need to know
the effects of enabled events at each program state. As our third contribution,
our algorithm avoids this extra rollback overhead by waiting until an event is
actually executed to set backtracking points and incorporates a modified back-
tracking algorithm to appropriately handle events.

We have implemented the proposed algorithm in the Java Pathfinder model
checker [56] and evaluated it on hundreds of real-world smart home apps. We
have made our DPOR implementation publicly available [50].

Paper Structure. The remainder of this paper is structured as follows: Sect. 2
presents the event-driven concurrency model that we use in this work. Section 3
presents the definitions we use to describe our stateful DPOR algorithm.
Section 4 presents problems when using the classic DPOR algorithm to model
check event-driven programs and the basic ideas behind how our algorithm solves
these problems. Section 5 presents our stateful DPOR algorithm for event-driven
programs. Section 6 presents the evaluation of our algorithm implementation on
hundreds of smart home apps. Section 7 presents the related work; we conclude
in Sect. 8.



Stateful Dynamic Partial Order Reduction 403

2 Event-Driven Concurrency Model

In this section, we first present the concurrency model of our event-driven system
and then discuss the key elements of this system formulated as an event-driven
concurrency model. Our event-driven system is inspired by—and distilled from—
smart home IoT devices and applications deployed widely in the real world.
Modern smart home platforms support developers writing apps that implement
useful functionality on smart devices. Significant efforts have been made to create
integration platforms such as Android Things from Google [16], SmartThings
from Samsung [46], and the open-source openHAB platform [35]. All of these
platforms allow users to create smart home apps that integrate multiple devices
and perform complex routines, such as implementing a home security system.

The presence of multiple apps that can control the same device cre-
ates undesirable interactions [49]. For example, a homeowner may install the
FireCO2Alarm [38] app, which upon the detection of smoke, sounds alarms and
unlocks the door. The same homeowner may also install the Lock-It-When-
I-Leave [1] app to lock the door automatically when the homeowner leaves
the house. However, these apps can interact in surprising ways when installed
together. For instance, if smoke is detected, FireCO2Alarm will unlock the door.
If someone leaves home, the Lock-It-When-I-Leave app will lock the door. This
defeats the intended purpose of the FireCO2Alarm app. Due to the increasing
popularity of IoT devices, understanding and finding such conflicting interac-
tions has become a hot research topic [27,28,54,55,58] in the past few years.
Among the many techniques developed, model checking is a popular one [49,59].
However, existing DPOR-based model checking algorithms do not support non-
terminating event-handling logic (detailed in Sect. 4), which strongly motivates
the need of developing new algorithms that are both sound and efficient in han-
dling real-world event-based (e.g., IoT) programs.

2.1 Event-Driven Concurrency Model

We next present our event-driven concurrency model (see an example of event-
driven systems in Appendix A in [51]). We assume that the event-driven system
has a finite set E of different event types. Each event type e ∈ E has a corre-
sponding event handler that is executed when an instance of the event occurs.
We assume that there is a potentially shared state and that event handlers have
arbitrary access to read and write from this shared state.

An event handler can be an arbitrarily long finite sequence of instructions and
can include an arbitrary number of accesses to shared state. We assume event-
handlers are executed atomically by the event-driven runtime system. Events can
be enabled by both external sources (e.g., events in the physical world) or event
handlers. Events can also be disabled by the execution of an event handler. We
assume that the runtime system maintains an unordered set of enabled events
to execute. It contains an event dispatch loop that selects an arbitrary enabled
event to execute next.
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This work is inspired by smart-home systems that are widely deployed in the
real world. However, the proposed techniques are general enough to handle other
types of event-driven systems, such as web applications, as long as the systems
follow the concurrency model stated above.

2.2 Background on Stateless DPOR

Partial order reduction is based on the observation that traces of concurrent sys-
tems are equivalent if they only reorder independent operations. These equiv-
alence classes are called Mazurkiewicz traces [31]. The classical DPOR algo-
rithm [12] dynamically computes persistent sets for multithreaded programs and
is guaranteed to explore at least one interleaving in each equivalence class.

The key idea behind the DPOR algorithm is to compute the next pending
memory operation for each thread, and at each point in the execution to compute
the most recent conflict for each thread’s next operation. These conflicts are used
to set backtracking points so that future executions will reverse the order of
conflicting operations and explore an execution in a different equivalence class.
Due to space constraints, we refer the interested readers to [12] for a detailed
description of the original DPOR algorithm.

3 Preliminaries

We next introduce the notations and definitions we use throughout this paper.

Transition System. We consider a transition system that consists of a finite
set E of events. Each event e ∈ E executes a sequence of instructions that change
the global state of the system.

States. Let States be the set of the states of the system, where s0 ∈ States
is the initial state. A state s captures the heap of a running program and the
values of global variables.

Transitions and Transition Sequences. Let T be the set of all transitions
for the system. Each transition t ∈ T is a partial function from States to States.
The notation ts,e = next (s, e) returns the transition ts,e from executing event e
on program state s. We assume that the transition system is deterministic, and
thus the destination state dst(ts,e) is unique for a given state s and event e. If
the execution of transition t from s produces state s′, then we write s

t−→ s′.
We formalize the behavior of the system as a transition system AG =

(States,Δ, s0), where Δ ⊆ States × States is the transition relation defined
by

(s, s′) ∈ Δ iff ∃t ∈ T : s
t−→ s′

and s0 is the initial state of the system.
A transition sequence S of the transition system is a finite sequence of tran-

sitions t1, t2, ..., tn. These transitions advance the state of the system from the
initial state s0 to further states s1, ..., si such that
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S = s0
t1−→ s1

t2−→ ... si−1
tn−→ si.

Enabling and Disabling Events. Events can be enabled and disabled. We
make the same assumption as Jensen et al. [22] regarding the mechanism for
enabling and disabling events. Each event has a special memory location asso-
ciated with it. When an event is enabled or disabled, that memory location is
written to. Thus, the same conflict detection mechanism we used for memory
operations will detect enabled/disabled conflicts between events.

Notation. We use the following notations in our presentation:

– event(t) returns the event that performs the transition t.
– first(S, s) returns the first occurrence of state s in S, e.g., if s4 is first visited

at step 2 then first(S, s4) returns 2.
– last(S) returns the last state s in a transition sequence S.
– S.t produces a new transition sequence by extending the transition sequence

S with the transition t.
– states(S) returns the set of states traversed by the transition sequence S.
– enabled(s) denotes the set of enabled events at s.
– backtrack(s) denotes the backtrack set of state s.
– done(s) denotes the set of events that have already been executed at s.
– accesses(t) denotes the set of memory accesses performed by the transition t.

An access consists of a memory operation, i.e., a read or write, and a memory
location.

State Transition Graph. In our algorithm, we construct a state transition
graph R that is similar to the visible operation dependency graph presented
in [61]. The state transition graph records all of the states that our DPOR
algorithm has explored and all of the transitions it has taken. In more detail, a
state transition graph R = 〈V,E〉 for a transition system is a directed graph,
where every node n ∈ V is a visited state, and every edge e ∈ E is a transition
explored in some execution. We use →r to denote that a transition is reachable
from another transition in R, e.g., t1 →r t2 indicates that t2 is reachable from
t1 in R.

Independence and Persistent Sets. We define the independence relation
over transitions as follows:

Definition 1 (Independence). Let T be the set of transitions. An indepen-
dence relation I ⊆ T × T is a irreflexive and symmetric relation, such that for
any transitions (t1, t2) ∈ I and any state s in the state space of a transition
system AG, the following conditions hold:

1. if t1 ∈ enabled(s) and s
t1−→ s′, then t2 ∈ enabled(s) iff t2 ∈ enabled(s′).

2. if t1 and t2 are enabled in s, then there is a unique state s′ such that s
t1t2−−→ s′

and s
t2t1−−→ s′.
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If (t1, t2) ∈ I, then we say t1 and t2 are independent. We also say that two
memory accesses to a shared location conflict if at least one of them is a write.
Since executing the same event from different states can have different effects
on the states, i.e., resulting in different transitions, we also define the notion of
read-write independence between events on top of the definition of independence
relation over transitions.

Definition 2 (Read-Write Independence). We say that two events x and
y are read-write independent, if for every transition sequences τ where events x
and y are executed, the transitions tx and ty corresponding to executing x and y
are independent, and tx and ty do not have conflicting memory accesses.

Definition 3 (Persistent Set). A set of events X ⊆ E enabled in a state s is
persistent in s if for every transition sequence from s

s
t1−→ s1

t2−→ ...
tn−1−−−→ sn−1

tn−→ sn

where event(ti) /∈ X for all 1 ≤ i ≤ n, then event(tn) is read-write independent
with all events in X.

In Appendix B in [51], we prove that exploring a persistent set of events at
each state is sufficient to ensure the exploration of at least one execution per
Mazurkiewicz trace for a program with cyclic state spaces and finite reachable
states.

4 Technique Overview

This section overviews our ideas. These ideas are discussed in the context of
four problems that arise when existing DPOR algorithms are applied directly
to event-driven programs. For each problem, we first explain the cause of the
problem and then proceed to discuss our solution.

4.1 Problem 1: Premature Termination

The first problem is that the naive application of existing stateless DPOR algo-
rithms to stateful model checking will prematurely terminate the execution of
programs with cyclic state spaces, causing a model checker to miss exploring
portions of the state space. This problem is known in the general POR liter-
ature [13,37,52] and various provisos (conditions) have been proposed to solve
the problem. While the problem is known, all existing stateful DPOR algorithms
produce incorrect results for programs with cyclic state spaces. Prior work by
Yang et al. [61] only handles programs with acyclic state spaces. Work by Yi
et al. [63] claims to handle cyclic state spaces, but overlooks the need for a pro-
viso for when it is safe to stop an execution due to a state match and thus
can produce incorrect results when model checking programs with cyclic state
spaces.
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Fig. 1. Problem with existing stateful DPOR algorithms on a non-terminating mul-
tithreaded program. Execution (a) terminates at a state match without setting any
backtracking points. Thus, stateful DPOR would miss exploring Execution (b) which
has an assertion failure.

Figure 1 presents a simple multithreaded program that illustrates the prob-
lem of using a naive stateful adaptation of the DPOR algorithm to check pro-
grams with cyclic state spaces. Let us suppose that a stateful DPOR algorithm
explores the state space from s0, and it selects thread T1 to take a step: the state
is advanced to state s1. However, when it selects T2 to take the next step, it will
revisit the same state and stop the current execution (see Fig. 1-a). Since it did
not set any backtracking points, the algorithm prematurely finishes its explo-
ration at this point. It misses the execution where both threads T1 and T3 take
steps, leading to an assertion failure. Figure 1-b shows this missing execution.
The underlying issue with halting an execution when it matches a state from the
current execution is that the execution may not have explored a sufficient set of
events to create the necessary backtracking points. In our context, event-driven
applications are non-terminating. Similar to our multithreaded example, execu-
tions in event-driven applications may cause the algorithm to revisit a state and
prematurely stop the exploration.

Our Idea. Since the applications we are interested in typically have cyclic state
spaces, we address this challenge by changing our termination criteria for an exe-
cution to require that an execution either (1) matches a state from a previous
execution or (2) matches a previously explored state from the current execu-
tion and has explored every enabled event in the cycle at least once since the
first exploration of that state. The second criterion would prevent the DPOR
algorithm from terminating prematurely after the exploration in Fig. 1-a.
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Fig. 2. (a) Stateless model checking explores si, sj , sk, and sl twice and thus sets
backtracking points for both S and S’. (b) Stateful model checking matches state si
and skips the second exploration and thus we must explicitly set backtracking points.

4.2 Problem 2: State Matching for Previously Explored States

Typically stateful model checkers can simply terminate an execution when a
previously discovered state is reached. As mentioned in [61], this handling is
unsound in the presence of dynamic partial order reduction. Figure 2 illustrates
the issue: Fig. 2-a and b show the behavior of a classical stateless DPOR algo-
rithm as well as the situation in a stateful DPOR algorithm, respectively. We
assume that S was the first transition sequence to reach si and S’ was the second
such transition sequence. The issue in Fig. 2-b is that after the state match for si
in S’, the algorithm may inappropriately skip setting backtracking points for the
transition sequence S’, preventing the model checker from completely exploring
the state space.

Our Idea. Similar to the approach of Yang et al. [61], we propose to use a graph
to store the set of previously explored transitions that may set backtracking
points in the current transition sequence, so that the algorithm can set those
backtracking points without reexploring the same state space.

4.3 Problem 3: State Matching Incompletely Explored States

Figure 3 illustrates another problem with cyclic state spaces—even if our new
termination condition and the algorithm for setting backtrack points for a state
match are applied to the stateful DPOR algorithm, it could still fail to explore
all executions.

With our new termination criteria, the stateful DPOR algorithm will first
explore the execution shown in Fig. 3-a. It starts from s0 and executes the events
e1, e2, and e3. While executing the three events, it puts event e2 in the backtrack
set of s0 and event e3 in the backtrack set of s1 as it finds a conflict between
the events e1 and e2, and the events e2 and e3. Then, the algorithm revisits
s1. At this point it updates the backtrack sets using the transitions that are
reachable from state s1: it puts event e2 in the backtrack set of state s2 because
of a conflict between e2 and e3.
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Fig. 3. Example of a event-driven program that misses an execution. We assume that
e1, e2, e3, and e4 are all initially enabled.

However, with the new termination criteria, it does not stop its exploration. It
continues to execute event e4, finds a conflict between e1 and e4, and puts event
e4 into the backtrack set of s0. The algorithm now revisits state s0 and updates
the backtrack sets using the transitions reachable from state s0: it puts event e1
in the backtrack set of s1 because of the conflict between e1 and e4. Figures 3-b,
c, and d show the executions explored by the stateful DPOR algorithm from the
events e1 and e3 in the backtrack set of s1, and event e2 in the backtrack set of
s2, respectively.

Next, the algorithm explores the execution from event e2 in the backtrack set
of s0 shown in Fig. 3-e. The algorithm finds a conflict between the events e2 and
e3, and it puts event e2 in the backtrack set of s3 and event e3 in the backtrack
set of s0 whose executions are shown in Figs. 3-f and g, respectively. Finally, the
algorithm explores the execution from event e4 in the backtrack set of s0 shown
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Fig. 4. Stateful model checking needs to handle loops caused by cyclic state spaces.

in Fig. 3-h. Then the algorithm stops, failing to explore the asserting execution
shown in Fig. 3-i.

The key issue in the above example is that the stateful DPOR algorithm
by Yang et al. [61] does not consider all possible transition sequences that can
reach the current state but merely considers the current transition sequence when
setting backtracking points. It thus does not add event e4 from the execution in
Fig. 3-h to the backtrack set of state s3.

Our Idea. Figure 4 shows the core issue behind the problem. When the algo-
rithm sets backtracking points after executing the transition tk, the algorithm
must consider both the transition sequence that includes th and the transition
sequence that includes ti. The classical backtracking algorithm would only con-
sider the current transition sequence when setting backtracking points.

We propose a new algorithm that uses a backwards depth first search on the
state transition graph combined with summaries to set backtracking points on
previously discovered paths to the currently executing transition. Yi et al. [63]
uses a different approach for updating summary information to address this
issue.

4.4 Problem 4: Events as Transitions

The fourth problem, also identified in Jensen et al. [22], is that existing stateful
DPOR algorithms and most DPOR algorithms assume that each transition only
executes a single memory operation, whereas an event in our context can consist
of many different memory operations. For example, the e4 handler in Fig. 3 reads
x and y.

A related issue is that many DPOR algorithms assume that they know, ahead
of time, the effects of the next step for each thread. In our setting, however, since
events contain many different memory operations, we must execute an event to
know its effects. Figure 5 illustrates this problem. In this example, we assume
that each event can only execute once.
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Fig. 5. Example of an event-driven program for which a naive application of the stan-
dard DPOR algorithm fails to construct the correct persistent set at state s0. We
assume that e1, e2, and e3 are all initially enabled.

Figure 5-a shows the first execution of these 3 events. The stateful DPOR
algorithm finds a conflict between the events e2 and e3, adds event e3 to the
backtrack set for state s1, and then schedules the second execution shown in
Fig. 5-b. At this point, the exploration stops prematurely, missing the assertion
violating execution shown in Fig. 5-c.

The key issue is that the set {e1} is not a persistent set for state s0. Tradi-
tional DPOR algorithms fail to construct the correct persistent set at state s0
because the backtracking algorithm finds that the transition for event e3 con-
flicts with the transition for event e2 and stops setting backtracking points. This
occurs since these algorithms do not separately track conflicts from different
memory operations in an event when adding backtracking points—they simply
assume transitions are comprised of single memory operations. Separately track-
ing different operations would allow these algorithms to find a conflict relation
between the events e1 and e3 (as both access the variable y) in the first execu-
tion, put event e2 into the backtrack set of s0, and explore the missing execution
shown in Fig. 5-c.

Our Idea. In the classical DPOR algorithm, transitions correspond to single
instructions whose effects can be determined ahead of time without executing
the instructions [12]. Thus, the DPOR algorithm assumes that the effects of each
thread’s next transition are known. Our events on the other hand include many
instructions, and thus, as Jensen et al. [22] observes, determining the effects of
an event requires executing the event. Our algorithm therefore determines the
effects of a transition when the transition is actually executed.
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Algorithm 1: Top-level exploration algorithm.
1 ExploreAll()
2 H := ∅
3 R := ∅
4 S := ∅
5 Explore(s0)
6 while ∃s, backtrack(s) �= done(s) do
7 Explore(s)
8 end

9 end

A second consequence of having events as transitions is that transitions can
access multiple different memory locations. Thus, as the example in Fig. 5 shows,
it does not suffice to simply set a backtracking point at the last conflicting tran-
sition. To address this issue, our idea is to compute conflicts on a per-memory-
location basis.

5 Stateful Dynamic Partial Order Reduction

This section presents our algorithm, which extends DPOR to support stateful
model checking of event-driven applications with cyclic state spaces. We first
present the states that our algorithm maintains:

1. The transition sequence S contains the new transitions that the current
execution explores. Our algorithm explores a given transition in at most one
execution.

2. The state history H is a set of program states that have been visited in
completed executions.

3. The state transition graph R records the states our algorithm has
explored thus far. Nodes in this graph correspond to program states and
edges to transitions between program states.

Recall that for each reachable state s ∈ States, our algorithm maintains the
backtrack(s) set that contains the events to be explored at s, the done(s) set
that contains the events that have already been explored at s, and the enabled(s)
set that contains all events that are enabled at s.

Algorithm 1 presents the top-level ExploreAll procedure. This proce-
dure first invokes the Explore procedure to start model checking from the
initial state. However, the presence of cycles in the state space means that
our backtracking-based search algorithm may occasionally set new backtrack-
ing points for states in completed executions. The ExploreAll procedure thus
loops over all states that have unexplored items in their backtrack sets and
invokes the Explore procedure to explore those transitions.

Algorithm 2 describes the logic of the Explore procedure. The if statement
in line 2 checks if the current state s’s backtrack set is the same as the current
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Algorithm 2: Stateful DPOR algorithm for event-driven applications.
1 Explore(s)
2 if backtrack(s) = done(s) then
3 if done(s) = enabled(s) then
4 if enabled(s) is not empty then
5 select e ∈ enabled(s)
6 remove e from done(s)

7 else
8 add states(S) to H
9 S := ∅

10 return

11 end

12 else
13 select e ∈ enabled(s) \ done(s)
14 add e to backtrack(s)

15 end

16 end
17 while ∃b ∈ backtrack(s) \ done(s) do
18 add b to s.done
19 t := next (s, b)
20 s′ := dst (t)
21 add transition t to R
22 foreach e ∈ enabled(s) \ enabled(s′) do
23 add e to backtrack(s)
24 end
25 UpdateBacktrackSet (t)
26 if s′ ∈ H ∨ IsFullCycle (t) then
27 UpdateBacktrackSetsFromGraph (t)
28 add states(S) to H
29 S := ∅
30 else
31 if s′ ∈ states(S) then
32 UpdateBacktrackSetsFromGraph (t)
33 end
34 S := S.t
35 Explore(s′)
36 end

37 end

38 end

state s’s done set. If so, the algorithm selects an event to execute in the next
transition. If some enabled events are not yet explored, it selects an unexplored
event to add to the current state’s backtrack set. Otherwise, if the enabled set
is not empty, it selects an enabled event to remove from the done set. Note that
this scenario occurs only if the execution is continuing past a state match to
satisfy the termination condition.
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Then the while loop in line 17 selects an event b to execute on the current
state s and executes the event b to generate the transition t that leads to a
new state s′. At this point, the algorithm knows the memory accesses performed
by the transition t and thus can add the event b to the backtrack sets of the
previous states. This is done via the procedure UpdateBacktrackSet.

Traditional DPOR algorithms continue an execution until it terminates. Since
our programs may have cyclic state spaces, this would cause the model checker
to potentially not terminate. Our algorithm instead checks the conditions in
line 26 to decide whether to terminate the execution. These checks see whether
the new state s′ matches a state from a previous execution, or if the current exe-
cution revisits a state the current execution previously explored and meets other
criteria that are checked in the IsFullCycle procedure. If so, the algorithm
calls the UpdateBacktrackSetsFromGraph procedure to set backtracking
points, from transitions reachable from t, to states that can reach t. An execu-
tion will also terminate if it reaches a state in which no event is enabled (line 4).
It then adds the states from the current transition sequence to the set of previ-
ously visited states H, resets the current execution transition sequence S, and
backtracks to start a new execution.

If the algorithm has reached a state s′ that was previously discovered in this
execution, it sets backtracking points by calling the UpdateBacktrackSets-
FromGraph procedure. Finally, it updates the transition sequence S and calls
Explore.

Algorithm 3: Procedure that updates the backtrack sets of states in pre-
vious executions.
1 UpdateBacktrackSetsFromGraph(ts)
2 Rt := {t ∈ R | ts →r t}
3 foreach t ∈ Rt do
4 UpdateBacktrackSet (t)
5 end

6 end

Algorithm 3 shows the UpdateBacktrackSetsFromGraph procedure.
This procedure takes a transition t that connects the current execution to a
previously discovered state in the transition graph R. Since our algorithm does
not explore all of the transitions reachable from the previously discovered state,
we need to set the backtracking points that would have been set by these skipped
transitions. This procedure therefore computes the set of transitions reachable
from the destination state of t and invokes UpdateBacktrackSet on each of
those transitions to set backtracking points.
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Algorithm 4: Procedure that checks the looping termination condition: a
cycle that contains every event enabled in the cycle.
1 IsFullCycle(t)
2 if ¬dst(t) ∈ states(S) then
3 return false
4 end

5 Sfc := {tj ∈ S | i = first(S, dst(t)), and i < j} ∪ {t}
6 Efc := {event(t′) | ∀t′ ∈ Sfc }
7 Eenabled := {enabled(dst(t′)) | ∀t′ ∈ Sfc }
8 return Efc = Eenabled

9 end

Algorithm 4 presents the IsFullCycle procedure. This procedure first
checks if there is a cycle that contains the transition t in the state space explored
by the current execution. The example from Fig. 1 shows that such a state match
is not sufficient to terminate the execution as the execution may not have set the
necessary backtracking points. Our algorithm stops the exploration of an execu-
tion when there is a cycle that has explored every event that is enabled in that
cycle. This ensures that for every transition t in the execution, there is a future
transition te for each enabled event e in the cycle that can set a backtracking
point if t and te conflict.

Algorithm 5 presents the UpdateBacktrackSet procedure, which sets
backtracking points. There are two differences between our algorithm and tra-
ditional DPOR algorithms. First, since our algorithm supports programs with
cyclic state spaces, it is possible that the algorithm has discovered multiple
paths from the start state s0 to the current transition t. Thus, the algorithm
must potentially set backtracking points on multiple different paths. We address
this issue using a backwards depth first search traversal of the R graph. Second,
since our transitions correspond to events, they may potentially access multi-
ple different memory locations and thus the backtracking algorithm potentially
needs to set separate backtracking points for each of these memory locations.

The UpdateBacktrackSetDFS procedure implements a backwards depth
first traversal to set backtracking points. The procedure takes the following
parameters: tcurr is the current transition in the DFS, tconf is the transition
that we are currently setting a backtracking point for, A is the set of accesses
that the algorithm searches for conflicts for, and Texp is the set of transitions that
the algorithm has explored down this search path. Recall that accesses consist
of both an operation, i.e., a read or write, and a memory location. Conflicts are
defined in the usual way—writes to a memory location conflict with reads or
writes to the same location.
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Algorithm 5: Procedure that updates the backtrack sets of states for
previously executed transitions that conflict with the current transition in
the search stack.
1 UpdateBacktrackSet(t)
2 UpdateBacktrackSetDFS (t, t, accesses(t), {t})
3 end
4 UpdateBacktrackSetDFS(tcurr, tconf,A, Texp)
5 foreach tb ∈ predR(tcurr) \ Texp do

6 Ab := accesses(tb)
7 tconf

′ := tconf
8 if ∃a ∈ A, ∃ab ∈ Ab, conflicts(a, ab) then
9 if event(tconf) ∈ enabled(src(tb)) then

10 add event(tconf) to backtrack(src(tb))
11 else
12 add enabled(src(tb)) to backtrack(src(tb))
13 end
14 tconf

′ := tb
15 end
16 Ar := {a ∈ A | ¬∃ab ∈ Ab, conflicts(a, ab)}
17 UpdateBacktrackSetDFS (tb, tconf

′,Ar, Texp ∪ {tb})

18 end

19 end

Line 5 loops over each transition tb that immediately precedes transition tcurr
in the state transition graph and has not been explored. Line 8 checks for con-
flicts between the accesses of tb and the access set A for the DFS. If a conflict
is detected, the algorithm adds the event for transition tconf to the backtrack
set. Line 16 removes the accesses that conflicted with transition tb. The search
procedure then recursively calls itself. If the current transition tb conflicts with
the transition tconf for which we are setting a backtracking point, then it is pos-
sible that the behavior we are interested in for tconf requires that tb be executed
first. Thus, if there is a conflict between tb and tconf, we pass tb as the conflict
transition parameter to the recursive calls to UpdateBacktrackSetDFS.

Appendix B in [51] proves correctness properties for our DPOR algorithm.
Appendix C in [51] revisits the example shown in Fig. 3. It describes how our
DPOR algorithm explores all executions in Fig. 3, including Fig. 3-i.

6 Implementation and Evaluation

In this section, we present the implementation of our DPOR algorithm (Sect. 6.1)
and its evaluation results (Sect. 6.2).

6.1 Implementation

We have implemented the algorithm by extending IoTCheck [49], a tool that
model-checks pairs of Samsung’s SmartThings smart home apps and reports
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conflicting updates to the same device or global variables from different apps.
IoTCheck extends Java Pathfinder, an explicit stateful model checker [56]. In
the implementation, we optimized our DPOR algorithm by caching the results
of the graph search when UpdateBacktrackSetsFromGraph is called. The
results are cached for each state as a summary of the potentially conflicting
transitions that are reachable from the given state (see Appendix D in [51]).

We selected the SmartThings platform because it has an extensive collection
of event-driven apps. The SmartThings official GitHub [45] has an active user
community—the repository has been forked more than 84,000 times as of August
2021.

We did not compare our implementation against other systems, e.g., event-
driven systems [22,30]. Not only that these systems do not perform stateful
model checking and handle cyclic state spaces, but also they implemented their
algorithms in different domains: web [22] and Android applications [30]—it will
not be straightforward to adapt and compare these with our implementation on
smart home apps.

6.2 Evaluation

Dataset. Our SmartThings app corpus consists of 198 official and third-party
apps that are taken from the IoTCheck smart home apps dataset [48,49]. These
apps were collected from different sources, including the official SmartThings
GitHub [45]. In this dataset, the authors of IoTCheck formed pairs of apps to
study the interactions between the apps [49].

We selected the 1,438 pairs of apps in the Device Interaction category as our
benchmarks set. It contains a diverse set of apps and app pairs that are further
categorized into 11 subgroups based on various device handlers [44] used in each
app. For example, the FireCO2Alarm [38] and the Lock-It-When-I-Leave [1] apps
both control and may interact through a door lock (see Sect. 1). Hence, they are
both categorized as a pair in the Locks group. As the authors of IoTCheck
noted, these pairs are challenging to model check—IoTCheck did not finish for
412 pairs.

Pair Selection. In the IoTCheck evaluation, the authors had to exclude
175 problematic pairs. In our evaluation, we further excluded pairs. First, we
excluded pairs that were reported to finish their executions in 10 s or less—
these typically will generate a small number of states (i.e., less than 100) when
model checked. Next, we further removed redundant pairs across the different
11 subgroups. An app may control different devices, and thus they may use
various device handlers in its code. For example, the apps FireCO2Alarm [38]
and groveStreams [39] both control door locks and thermostats in their code.
Thus, the two apps are categorized as a pair both in the Locks and Thermostats
subgroups—we need to only include this pair once in our evaluation. These steps
reduced our benchmarks set to 535 pairs.

Experimental Setup. Each pair was model checked on an Ubuntu-based server
with Intel Xeon quad-core CPU of 3.5 GHz and 32 GB of memory—we allocated
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Table 1. Sample model-checked pairs that finished with or without DPOR. Evt. is
number of events and Time is in seconds. The complete list of results for 229 pairs
that finished with or without DPOR is included in Table A.2 in Appendices in [51].

No. App Evt. Without DPOR With DPOR

States Trans. Time States Trans. Time

1 smart-nightlight–ecobeeAwayFromHome 14 16,441 76,720 5,059 11,743 46,196 5,498

2 step-notifier–ecobeeAwayFromHome 11 14,401 52,800 4,885 11,490 35,142 5,079

3 smart-security–ecobeeAwayFromHome 11 14,301 47,608 4,385 8,187 21,269 2,980

4 keep-me-cozy–whole-house-fan 17 8,793 149,464 4,736 8,776 95,084 6,043

5 keep-me-cozy-ii–thermostat-window-check 13 8,764 113,919 4,070 7,884 59,342 4,515

6 step-notifier–mini-hue-controller 6 7,967 47,796 2,063 7,907 40,045 3,582

7 keep-me-cozy–thermostat-mode-director 12 7,633 91,584 3,259 6,913 49,850 3,652

8 lighting-director–step-notifier 14 7,611 106,540 5,278 2,723 25,295 2,552

9 smart-alarm–DeviceTamperAlarm 15 5,665 84,960 3,559 3,437 40,906 4,441

10 forgiving-security–smart-alarm 13 5,545 72,072 3,134 4,903 52,205 5,728

28 GB of heap space for JVM. In our experiments, we ran the model checker
for every pair for at most 2 h. We found that the model checker usually ran out
of memory for pairs that had to be model checked longer. Further investigation
indicates that these pairs generate too many states even when run with the
DPOR algorithm. We observed that many smart home apps generate substantial
numbers of read-write and write-write conflicts when model checked—this is
challenging for any DPOR algorithms. In our benchmarks set, 300 pairs finished
for DPOR and/or no DPOR.

Results. Our DPOR algorithm substantially reduced the search space for many
pairs. There are 69 pairs that were unfinished (i.e.,“Unf”) without DPOR. These
pairs did not finish because their executions exceeded the 2-h limit, or gener-
ated too many states quickly and consumed too much memory, causing the
model checker to run out of memory within the first hour of their execution.
When run with our DPOR algorithm, these pairs successfully finished—mostly
in 1 h or less. Table A.1 in Appendices in [51] shows the results for pairs that
finished with DPOR but did not finish without DPOR. Most notably, even for
the pair initial-state-event-streamer—thermostat-auto-off that has the
most number of states, our DPOR algorithm successfully finished model checking
it within 1 h.

Next, we discovered that 229 pairs finished when model checked with and
without DPOR. Table 1 shows 10 pairs with the most numbers of states (see the
complete results in Table A.2 in Appendices in [51]). These pairs consist of apps
that generate substantial numbers of read-write and write-write conflicts when
model checked with our DPOR algorithm. Thus, our DPOR algorithm did not
significantly reduce the states, transitions, and runtimes for these pairs.

Finally, we found 2 pairs that finished when run without our DPOR algo-
rithm, but did not finish when run with it. These pairs consist of apps that
are exceptionally challenging for our DPOR algorithm in terms of numbers of
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read-write and write-write conflicts. Nevertheless, these are corner cases—please
note that our DPOR algorithm is effective in many pairs.

Overall, our DPOR algorithm achieved a 2× state reduction and a 3× tran-
sition reduction for the 229 pairs that finished for both DPOR and no DPOR
(geometric mean). Assuming that “Unf” is equal to 7,200 s (i.e., 2 h) of runtime,
we achieved an overall speedup of 7× for the 300 pairs (geometric mean). This
is a lower bound runtime for the “Unf” cases, in which executions exceeded the
2-h limit—these pairs could have taken more time to finish.

7 Related Work

There has been much work on model checking. Stateless model checking tech-
niques do not explicitly track which program states have been visited and instead
focus on enumerating schedules [13–15,33].

To make model checking more efficient, researchers have also looked into
various partial order reduction techniques. The original partial order reduction
techniques (e.g., persistent/stubborn sets [13,53] and sleep sets [13]) can also
be used in the context of cyclic state spaces when combined with a proviso that
ensures that executions are not prematurely terminated [13], and ample sets [7,8]
that are basically persistent sets with additional conditions. However, the persis-
tent/stubborn set techniques “suffer from severe fundamental limitation” [12]:
the operations and their communication objects in future process executions are
difficult or impossible to compute precisely through static analysis, while sleep
sets alone only reduce the number of transitions (not states). Work on collapses
by Katz and Peled also suffers from the same requirement for a statically known
independence relation [23].

The first DPOR technique was proposed by Flanagan and Godefroid [12]
to address those issues. The authors introduced a technique that combats the
state space explosion by detecting read-write and write-write conflicts on shared
variable on the fly. Since then, a significant effort has been made to further
improve dynamic partial order reduction [26,41–43,47]. Unfortunately, a lot of
DPOR algorithms assume the context of shared-memory concurrency in that
each transition consists of a single memory operation. In the context of event-
driven applications, each transition is an event that can consist of different mem-
ory operations. Thus, we have to execute the event to know its effects and analyze
it dynamically on the fly in our DPOR algorithm (see Sect. 4.4).

Optimal DPOR [2] seeks to make stateless model checking more efficient by
skipping equivalent executions. Maximal causality reduction [19] further refines
the technique with the insight that it is only necessary to explore executions
in which threads read different values. Value-centric DPOR [6] has the insight
that executions are equivalent if all of their loads read from the same writes.
Unfolding [40] is an alternative approach to POR for reducing the number of
executions to be explored. The unfolding algorithm involves solving an NP-
complete problem to add events to the unfolding.

Recent work has extended these algorithms to handle the TSO and PSO
memory models [3,20,64] and the release acquire fragment of C/C++ [4]. The
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RCMC tool implements a DPOR tool that operates on execution graphs for
the RC11 memory model [24]. SAT solvers have been used to avoid explicitly
enumerating all executions. SATCheck extends partial order reduction with the
insight that it is only necessary to explore executions that exhibit new behav-
iors [9]. CheckFence checks code by translating it into SAT [5]. Other work has
also presented techniques orthogonal to DPOR, either in a more general con-
text [10] or platform specific (e.g., Android [36] and Node.js [29]).

Recent work on dynamic partial order reduction for event-driven programs
has developed dynamic partial order reduction algorithms for stateless model
checking of event-driven applications [22,30]. Jensen et al. [22] consider a model
similar to ours in which an event is treated as a single transition, while Maiya
et al. [30] consider a model in which event execution interleaves concurrently
with threads. Neither of these approaches handle cyclic state spaces nor consider
challenges that arise from stateful model checking.

Recent work on DPOR algorithms reduces the number of executions for pro-
grams with critical sections by considering whether critical sections contain con-
flicting operations [25]. This work considers stateless model checking of multi-
threaded programs, but like our work it must consider code blocks that perform
multiple memory operations.

CHESS [33] is designed to find and reproduce concurrency bugs in C, C++,
and C#. It systematically explores thread interleavings using a preemption
bounded strategy. The Inspect tool combines stateless model checking and state-
ful model checking to model check C and C++ code [57,60,62].

In stateful model checking, there has also been substantial work such as
SPIN [18], Bogor [11], and JPF [56]. In addition to these model checkers, other
researchers have proposed different techniques to capture program states [17,32].

Versions of JPF include a partial order reduction algorithm. The design of
this algorithm is not well documented, but some publications have reverse engi-
neered the pseudocode [34]. The algorithm is naive compared to modern DPOR
algorithms—this algorithm simply identifies accesses to shared variables and
adds backtracking points for all threads at any shared variable access.

8 Conclusion

In this paper, we have presented a new technique that combines dynamic partial
order reduction with stateful model checking to model check event-driven appli-
cations with cyclic state spaces. To achieve this, we introduce two techniques: a
new termination condition for looping executions and a new algorithm for setting
backtracking points. Our technique is the first stateful DPOR algorithm that can
model check event-driven applications with cyclic state spaces. We have evalu-
ated this work on a benchmark set of smart home apps. Our results show that
our techniques effectively reduce the search space for these apps. An extended
version of this paper, including appendices, can be found in [51].
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